
Page 1 of 15

Virus Analysis: Annotated Bibliography
Md Enamul Karim1, Prabhat K. Singh2, Arun Lakhotia1

University of Louisiana at Lafayette1, AVERT, McAfee Inc. Bangalore2

The major research works on malware are
done at AV companies and they are usually
not published. However, Internet is a good
source of virus/worm related white papers and
there do exist some research papers published
at different forums. To understand research
trends, we divided the research areas into
some categories. These categories are often
overlapping. Before listing the bibliography
we indexed the list based on these categories.

Theory: [6, 7, 22, 29, 30]

Overview:[11, 16, 28, 75, 92, 95, 98, 113]

Taxonomy: [16, 116]

Vulnerability: [11, 56, 59, 109]

Analysis: [9, 10, 15, 25, 32-34, 54, 57-59, 68,
69, 92, 93, 97, 110, 123]

Static and Dynamic Analysis: [9, 10,
25, 32, 54, 59, 93]

Obfuscation, Polymorphic and
Metamorphic: [25, 49, 50, 57,
64, 68, 75, 82, 102, 103, 122,
124, 125]

Detection /Prevention/Disinfect: [1, 9, 10,
14, 19, 21, 35, 37, 39, 44, 46, 48, 51,
61-63, 70, 71, 73, 76, 79, 80, 82, 84,
85, 87, 90, 93, 99, 100, 102, 104, 108,
112, 114, 119-122, 128]

Application of AI Tools: [86, 90, 108]

Signature Extraction: [47, 78, 85]

Evaluation of AV tools: [18, 26, 86]

Case Study/Synopsis: [2-5, 33, 41, 64, 66,
69, 76, 77, 105, 110, 127]

Trend: [13, 43, 55, 67, 95, 106, 107, 113]

Propagation models/Epidemiology:[20, 41,
52, 53, 69, 96, 101, 111, 118, 126,
127]

Buffer Overflow: [8, 23, 24, 31, 36, 40, 45,
59, 60, 66, 74, 81, 94, 109]

Experiment/Simulation: [98, 101, 111, 115]

Miscellaneous: [12, 17, 27, 38, 42, 65, 72, 83,
88, 89, 91, 117]

Bibliography
[1] "The Digital Immune System," Symantec,
http://securityresponse.symantec.com/avcente
r/reference/dis.tech.brief.pdf, Last accessed.

[2] "W32.Cabanas,"
http://securityresponse.symantec.com/avcente
r/venc/data/w32.cabanas.html, Last accessed.

[3] "W32/Chiton,"
http://www.virusbtn.com/resources/viruses/in
depth/gemini.xml, Last accessed.

[4] "W32/Gemini,"
http://www.virusbtn.com/resources/viruses/in
depth/gemini.xml, Last accessed.

[5] "W95.Bistro,"
http://securityresponse.symantec.com/avcente
r/venc/data/w95.bistro.html, Last accessed.

[6] L. M. Adleman, "An Abstract Theory of
Computer Viruses," in Advances in
Computing - Crypto'88, 1988.
This paper applies formal computability
theory to viruses. It presents definition for
computer viruses based on set theory. Viruses
have been broken up into benign,
disseminating, malicious, and Epeian
categories. It proves that "detecting viruses is
quite untractable". It identifies several areas of
possible research including complexity
theoretic and program size theoretic aspects of
computer viruses, protection mechanisms and
development of other models.

[7] B. Barak, et al., "On the (Im)Possibility of
Obfuscating Programs," in Advances in

Page 2 of 15

Cryptology (CRYPTO'01), Santa Barbara,
California, 2001.
The paper rules out as impossible the
following notion of obfuscation: An
obfuscator is an efficient probabilistic
program that takes as input a program P and
produces as output a program O(P) such that
O(P) computes the same function as P and
"[...] anything one can efficiently compute
from the obfuscated program [code and
executable], one should be able to efficiently
compute given just oracle access to the
program." This means that having access to a
description of O(P) should be no better than
having access to P as a black box (i.e. The
only efficiently understandable/ analyzable
part of O(P) is the output).
That is, all the information one can get from
O(P) can be as easily obtained by running the
black box implementing P and taking note of
the output. And no analysis of the description
of the obfuscated program can efficiently
yield results that cannot be efficiently
obtained from the black box.

[8] A. Baratloo, N. Singh, and T. Tsai,
"Transparent Run-Time Defense against Stack
Smashing Attacks," in Proceedings of the
USENIX Annual Technical Conference, 2000.

[9] J. Bergeron, et al., "Static Detection of
Malicious Code in Executable Programs," in
Symposium on Requirements Engineering for
Information Security (SREIS'01), 2001.
This paper approaches the problem of
detection of malicious code in executable
programs using static analysis. It involves
three steps: the generation of intermediate
representation, analyzing the control and data
flows, and then doing static verification.
Static verification consists of comparing a
security policy to the output of the analysis
phase. A brief description of a prototype tool
is also given.

[10] J. Bergeron, et al., "Static Analysis of
Binary Code to Isolate Malicious Behaviors,"
in IEEE 4th International Workshop on
Enterprise Security (WETICE'99), Stanford
University, California, USA, 1999.

This paper addresses the problem of static
slicing on binary executables for the purpose
of detecting malicious code in commercial
off-the shelf software components. The paper
first defines a malicious code. To analyze
malicious code, the executable is first
disassembled and passed through a series of
transformations. These transformations aid in
getting a high level imperative representation
of the code. This leads to improved
analyzability while preserving the original
semantics. Next, the program is sliced to
extract code segments critical from standpoint
of security. The behavior of these segments is
reviewed for malicious characteristics.

[11] M. Bishop, "An Overview of Computer
Viruses in a Research Environment," 1992.
This paper analyzes virus in a general
framework. A brief history of computer
viruses is presented and any presence of threat
relevant to research and development systems
has been investigated. It examines several
specific areas on vulnerability in research-
oriented systems.

[12] V. Bontchev, "Analysis and Maintenance
of a Clean Virus Library," in 3 rd Int. Virus
Bull. Conf, 1993.
This provides the methods adopted to
facilitate the maintenance of large amounts of
different virus samples for the sake of anti-
virus research. The paper presents guidelines
and procedures used to maintain virus
collection at the university of Hamburg's
Virus Test Center.

[13] V. Bontchev, "Future Trends in Virus
Writing," in International Virus Bulletin
Conference, 1994.
This paper summarizes some ideas that are
likely to be used by virus writers in the future
and suggests the kind of measures that could
be taken against them.

[14] V. Bontchev, "Possible Virus Attacks
against Integrity Programs and How to
Prevent Them," in Proceedings of the 6th
International Virus Bulletin Conference,
1996.

Page 3 of 15

This paper discusses the ways of attacking
one of the most powerful methods of virus
detection on integrity checking programs. It
demonstrates what can be done against these
attacks.

[15] V. Bontchev, "Macro Virus Identification
Problems," in 7th International Virus Bulletin.
Conference, 1997.
This paper discusses some interesting
theoretical problems to anti-virus software.
Two viral sets of macros can have common
subsets or one of the sets could be a subset of
the other. The paper discusses the problems
caused by this. It emphasizes the difficulties
that could be exploited by the virus writers
and methods, which could be followed to
tackle it.

[16] V. Bontchev, Methodology of Computer
Anti-Virus Research, Faculty of Informatics,
University of Hamburg Thesis, 1998.
This thesis is a detailed writing on computer
viruses. It can be treated as a definitive text on
understanding and dealing with computer
viruses. The important topics discussed in this
work include classification and analysis of
computer viruses, state of art in anti-virus
software, possible attacks against anti-virus
software, test methods for anti-virus software
systems and social aspects of virus problem. It
also discusses useful applications of self-
replicating software.

[17] V. Bontchev, "The "Pros" and "Cons" of
Wordbasic Virus Upconversion," in 8th
International Virus Bulletin Conference,
1998.
This paper discusses the ethical problem faced
by anti-virus researchers due to the automatic
Upconversion of WordBasic Viruses to Visual
Basic for Applications version 5. Since a
macro virus written in one language has been
automatically converted to another language it
is yet another unique virus. Due to this
inherent feature of MS Office 97, virus
researchers have to create new virus to
prepare an antidote. A side effect of this
activity has reportedly been that these
upconverts are created and "officially" listed
as existing in some anti-virus product

stimulates their creation and distribution by
the virus exchange people. The author has
given suggested solutions for this problem.

[18] V. Bontchev, "Vircing the Invircible,"
http://www.claws-and-
paws.com/virus/papers/, Last accessed
11/05/2004.

[19] F. Castaneda, E. C. Sezer, and J. Xuy,
"Worm Vs. Worm: Preliminary Study of an
Active Counter-Attack Mechanism," in ACM
Workshop on Rapid Malcode (WORM 2004),
George Mason University, Fairfax, Virginia,
USA, 2004.
This paper proposes a method that transforms
a malicious worm into an anti-worm which
disinfects its original and evaluate the method
using the CodeRed, Blaster and Slammer
worms.

[20] D. Chess, "Future of Viruses on the
Internet," in Virus Bulletin Conference, San
Francisco, California, 1997.
This paper discusses the role of the Internet in
the Virus problem. It reasons for the
availability of better-equipped crisis teams
that may arise due to the continued growth of
the Internet. Integrated mail systems and the
rise in mobile program systems on the Internet
have impacted the trends in virus spread. The
deployment of network aware software
systems on the Internet has contributed
positively to the spread of network-aware
virus. The paper briefly lists some generic
features of the software, which aid in virus
spread.

[21] D. M. Chess, "Virus Verification and
Removal Tools and Techniques." High
Integrity Computing Lab, IBM T. J. Watson
Research Center, Post Office Box 218,
Yorktown Heights, NY, USA, 1991.
This paper describes VERV, A Prototype
Virus Verifier and Remover, and a Virus
Description Language for VERV.

[22] D. M. Chess and S. R. White, "An
Undetectable Computer Virus," in Virus
Bulletin Conference, 2000.

Page 4 of 15

This paper extends Fred Cohen's
demonstration on computer Viruses that there
is no algorithm that can perfectly detect all
possible viruses. This paper points out that
there are computer viruses, which no
algorithm can detect, even under somewhat
more liberal definition of detection.

[23] E. Chien and P. Szor, "Blended Attacks -
Exploits, Vulnerabilities and Buffer-Overflow
Techniques in Computer Viruses," in Virus
Bulletin Conference, New Orleans, USA,
2002.
In this paper, the authors cover such
techniques as buffer overflows and input
validation exploits, plus how computer
viruses are using them to their advantage. The
authors also discuss tools, techniques and
methods to prevent these blended threats.

[24] T.-C. Chiueh and F.-H. Hsu, "Rad: A
Compile-Time Solution to Buffer Overflow
Attacks," in International Conference on
Distributed Computing Systems (ICDCS),,
Phoenix, Arizona, USA,, 2001.
Return Address Defender (RAD)
automatically creates a safe area to store a
copy of return addresses to defend programs
against buffer overflow attacks. It also
automatically adds protection code into
applications that it compiled. Using it to
protect a program does not need to modify the
source code of the program. Besides, RAD
does not change the layout of stack frames, so
binary code it generated is compatible with
existing libraries and other object files. .

[25] M. Christodorescu and S. Jha, "Static
Analysis of Executables to Detect Malicious
Patterns," in 12th USENIX Security
Symposium, Washington, D.C, 2003.
Techniques exist that attempt to foil the
disassembly process. These techniques are
very effective against state-of-the-art
disassemblers, preventing a substantial
fraction of a binary program from being
disassembled correctly. This could allow an
attacker to hide malicious code from static
analysis tools that depend on correct
disassembler output (such as virus scanners).
The paper presents novel binary analysis

techniques that substantially improve the
success of the disassembly process when
confronted with obfuscated binaries. Based on
control flow graph information and statistical
methods, a large fraction of the program's
instructions can be correctly identified. An
evaluation of the accuracy and the
performance of our tool is provided, along
with a comparison to several state-of-the-art
disassemblers

[26] M. Christodorescu and S. Jha, "Testing
Malware Detectors," in Proceedings of the
2004 ACM SIGSOFT international
symposium on Software testing and analysis,
2004.
This paper presents a technique based on
program obfuscation for generating tests for
malware detectors. Three widely-used
commercial virus scanners have been
evaluated and it is shown that the resilience of
these scanners to various obfuscations is very
poor.

[27] F. Cohen, "Computer Viruses-Theory
and Experiments," Computers and Security, 6,
1984This paper brought the term "computer
viruses" to general attention. It describes
computer viruses and also describes several
experiments in each of which all system rights
were granted to an attacker in under an hour.

[28] F. Cohen, Computer Viruses, University
of Southern California Thesis, 1985.
This is the first formal work in the field of
computer viruses.

[29] F. Cohen, "Computational Aspects of
Computer Viruses," Computers and Security,
vol. 8, pp. 325, 1989.
It presents a model for defining computer
viruses. It formally defines a class of sets of
transitive integrity-corrupting mechanisms
called "viral-sets" and explores some of their
computational properties.

[30] F. Cohen, "A Formal Definition of
Computer Worms and Some Related Results,"
Computers and Security, vol. 11, pp. 641-652,
1992.

Page 5 of 15

A formal definition for computer worms has
been presented. The definition is based on
Turing's model of computation.

[31] C. Cowan, et al., "Stackguard: Automatic
Adaptive Detection and Prevention of Buffer-
Overflow Attacks," in Proceedings of the 7th
USENIX Security Conference, San Antonio,
TX, 1998.
This paper presents StackGuard, a systematic
solution to the buffer overflow problem.
StackGuard is a simple compiler extension
that limits the amount of damage that a buffer
overflow attack can inflict on a program.
Programs compiled with StackGuard are safe
from buffer overflow attack, regardless of the
software engineering quality of the program.

[32] M. Debbabi, "Dynamic Monitoring of
Malicious Activity in Software Systems," in
Symposium on Requirements Engineering for
Information Security (SREIS'01),
Indianapolis, Indiana, USA, 2001.
The authors discuss a dynamic monitoring
mechanism, comprising of a watchdog
system, which dynamically enforces a
security policy. The authors reason this
approach by stating that static analysis
technique will not be able to detect malicious
code inserted after the analysis has been
completed. This paper discusses a dynamic
monitor called DaMon. This is capable of
stopping certain malicious actions based on
the combined accesses to critical resources
(files, communication ports, registry,
processes and threads) according to
rudimentary specifications.

[33] M. W. Eichin and J. A. Rochlis, "With
Microscope and Tweezers: An Analysis of the
Internet Virus of November 1988," in IEEE
Symposium on Research in Security and
Privacy, 1989.
In early November 1988 the Internet, a
collection of networks consisting of 60,000
host computers implementing the TCP/IP
protocol suite, was attacked by a virus, a
program which broke into computers on the
network and which spread from one machine
to another. This paper is a detailed analysis of
the virus program itself, a detailed routine by

routine description of the virus program
including the contents of its built in dictionary
is provided.

[34] D. Ellis, "Worm Anatomy and Model," in
2003 ACM workshop on Rapid Malcode.
This paper presents a general framework for
reasoning about network worms and
analyzing the potency of worms within a
specific network. Based on a survey of
contemporary worms it develops a relational
model that associates worm parameters,
attributes of the environment, and the
subsequent potency of the worm. It then
provides a worm analytic framework that
captures the generalized mechanical process a
worm goes through while moving through a
specific environment and its state as it does
so.

[35] D. Ellis, et al., "A Behavioral Approach
to Worm Detection," in ACM Workshop on
Rapid Malcode (WORM 2004), George
Mason University, Fairfax, Virginia, USA,
2004.
This paper presents an approach to the
automatic detection of worms using
behavioral signatures.

[36] H. Etoh and K. Yoda, "Protecting from
Stack-Smashing Attacks," IBM Research,
Tokyo,
http://www.trl.ibm.com/projects/security/ssp/
main.html, Last accessed January 13.

[37] S. Forrest, S. A. Hofmeyr, and A.
Somayaji, "Computer Immunology,"
Communications of the ACM, 1996.
This papers gives an overview of how the
natural immune system relates to computer
security and then illustrates these ideas with
two examples.

[38] R. B. Fried, "A System Administrator's
Guide to Implementing Various Anti-Virus
Mechanisms: What to Do When a Virus Is
Suspected on a Computer Network,"
http://www.sans.org/rr/whitepapers/malicious/
43.php, Last accessed.

Page 6 of 15

[39] Y. G. D. George I. Davida, and Brian J.
Matt, "Defending Systems against Viruses
through Cryptographic Authentication.," in
IEEE Symposium on Computer Security and
Privacy, 1989.
This paper describes the use of cryptographic
authentication for controlling computer
viruses. The objective is to protect against
viruses infecting software distributions,
updates, and programs stored or executed on a
system. The authentication scheme determines
the source and integrity of an executable,
relying on the source to produce virus-free
software. The scheme presented relies on a
trusted device, the authenticator, used to
authenticate and update programs and convert
programs between the various formats. In
addition, each user's machine uses a similar
device to perform run-time checking.

[40] A. K. Ghosh and T. O'Connor,
"Analyzing Programs for Vulnerability to
Buffer Overrun Attacks," in Proc. 21st NIST-
NCSC National Information Systems Security
Conference, 1998.
Determines whether a program has buffer
overflow by dynamic analysis. Uses a fault
injection method for this purpose. An analyst
manually searches for buffers. Then
introduces buffer overflow function. If there is
a buffer overflow this code is executed.

[41] D. Hanson, et al., "A Comparison Study
of Three Worm Families and Their
Propagation in a Network,"
http://www.securityfocus.com/infocus/1752,
Last accessed.

[42] V. Heavens, "Virus Creation Tools,"
http://vx.netlux.org/dat/vct.shtml, Last
accessed 08/29/2003.

[43] J. D. Howard, An Analysis of Security
Incidents on the Internet 1989-1995, Carnegie
Institute of Technology, Ph.D Dissertation
Thesis, 1997.
This dissertation analyses the trends in the
Internet Security by investigating 4,299
security-related incidents on the Internet
reported to the CERT Coordination Center
(CERT/CC) from 1989 to 1995.

[44] J. Hruska, "Computer Virus Prevention:
A Primer," Sophos Labs,
http://www.sophos.com/virusinfo/whitepapers
/prevention.html, Last accessed 08/29/2003.

[45] F.-H. Hsu, "The Principle, Attack
Patterns, and Defense Methods of Buffer
Overflow Attacks," State University of New
York at Stony Brook, Stony Brook, RPE TR-
87, October 2000 2000.
This paper presents a solution to the buffer
overflow attack problem using which users
can prevent attackers from compromising
their systems by changing the return address
to execute injected code, which is the most
common method used in buffer overflow
attacks.

[46] M. D. e. a. J. Bergeron, "Detection of
Malicious Code in Cots Software: A Short
Survey," in First International Software
Assurance Certification Conference
(ISACC'99), Washington DC, 1999.
This paper describes the main characteristics
of malicious code and proposes taxonomy for
the existing varieties. A formal definition of
malicious code has been given. A new
taxonomy that is oriented towards the goal of
detecting malicious code has been defined.
Different static, dynamic analysis methods
and ad hoc techniques have been discussed. It
discusses several techniques to detect
malicious code in commercial-off-the-shelf
software products. The paper concludes by
looking at the advantages and disadvantages
of static analysis over dynamic analysis
methods.

[47] B. A. Jeffrey O. Kephart, "Automatic
Extraction of Computer Virus Signatures," in
4th Virus Bulletin International Conference,
1994.
This paper discusses the idea of automatically
identifying viral signatures from machine
code using statistical methods.

[48] G. B. S. Jeffrey O. Kephart, Morton
Swimmer, and Steve R. White, "Blueprint for
a Computer Immune System," in Virus
Bulletin International Conference, 1997.

Page 7 of 15

Since the internet will provide a fertile
medium for new breeds of computer viruses,
the authors have described a immune system
for computers that senses the presence of a
previously unknown pathogen that within
minutes, automatically derives and deploys a
prescription for detecting and removing the
pathogen.

[49] M. Jordan, "Anti-Virus Research-
Dealing with Metamorphism," Virus Bulletin,
2002The paper discusses some observation of
the properties of metamorphic viruses and
provides a possible method that AV scanners
can use to deal with metamorphism.

[50] M. Jordon, "Dealing with
Metamorphism," Virus Bulletin, 2002This
article will discuss one possible method that
AV scanners could use to deal with
metamorphism.

[51] J. O. Kephart and B. Arnold, "A
Biologically Inspired Immune System for
Computers," in Fourth International
Workshop on the Synthesis and Simulation of
Living Systems, 1994.
An immune system for computers and
computer networks is designed that takes
much of its inspiration from nature. Like the
vertebrate immune system this system
develops antibodies to previously
unencountered computer viruses or worms
and remembers them so as to recognize and
respond to them more quickly in the future.

[52] J. O. Kephart and S. R. White, "Directed-
Graph Epidemiological Models of Computer
Viruses," in IEEE Computer Society
Symposium on Research in Security and
Privacy, Oakland, California, 1991.
This paper presents a detailed study of
computer virus epidemics. It presents a
theoretical view of the viral propagation using
deterministic and stochastic approaches. It
studies the conditions under which viral
epidemics are likely to occur. It argues that an
imperfect defense against a computer virus
can still be highly effective in preventing
widespread propagation provided that

infection rate does not exceed a well-defined
threshold.

[53] J. O. Kephart and S. R. White,
"Measuring and Modeling Computer Virus
Prevalence," in Proceedings of the 1999 IEEE
Computer Society Symposium on Research in
Security and Privacy, Oakland, California,
1993.
This paper introduces two new
epidemiological models of computer virus
spread. Only a small fraction of all well-
known viruses have appeared in real
incidents, partly because many viruses are
below the theoretical epidemic threshold.
Models of localized software exchange can
explain the observed sub-exponential rate of
viral spread.

[54] P. Kerchen, et al., "Static Analysis Virus
Detection Tools for Unix Systems," in 13th
National Computer Security Conference,
1990.
This paper proposes two heuristic tools the
use static analysis and verification techniques
for detecting computer viruses in a UNIX
environment. The tools should be used to
detect infected programs before their
installation. The first tool, "detector", searches
for duplicate system calls in the compiled and
linked program, the second tool, "Filter", uses
static analysis to determine all of the files,
which a program may write to. By finding out
the files to which the program can or cannot
write, the program can be identified as a
malicious or benign.

[55] D. M. Kienzle and M. C. Elder, "Recent
Worms: A Survey and Trends," in
Proceedings of the 2003 ACM workshop on
Rapid Malcode, 2003.
This paper presents a broad overview and
trend of recent worm activity.

[56] C. Ko, G. Fink, and K. Levitt,
"Automated Detection of Vulnerabilities in
Privileged Programs by Execution
Monitoring," in 10 th Annual Computer
Security Application Conf, Orlando, FL, 1994.
This paper uses concepts of solving Intrusion
Detection Problems to detect vulnerabilities in

Page 8 of 15

programs during execution. Since the
intended behaviors of privileged programs are
benign, a program policy has been developed
to describe this behavior, using a program
policy specification language. Specifications
of privileged programs in Unix have been
presented, along with a prototype execution
monitor, to analyze the audit trails with
respect to this specification.

[57] A. Lakhotia and E. U. Kumar, "Abstract
Stack Graph to Detect Obfuscated Calls in
Binaries," in Fourth IEEE International
Workshop on Source Code Analysis and
Manipulation(SCAM'04), Chicago, Illinois,
2004.
This paper presents a method to statically
detect obfuscated calls in binary code. The
notion of abstract stack is introduced to
associate each element in the stack to the
instruction that pushes the element. An
abstract stack graph is a concise
representation of all abstract stacks at every
point in the program. An abstract stack graph,
created by abstract interpretation of the binary
executables, may be used to detect obfuscated
calls and other stack related obfuscations.

[58] A. Lakhotia and P. K. Singh, "Challenges
in Getting 'Formal' with Viruses," Virus
Bulletin, 2003Here a staged architecture for
binary malware analysis is proposed. It
discusses issues relating to formal analysis
methods used by optimizing compilers and
other programming tools, being applied in the
detection of metamorphic viruses, are not
directly suitable for use in anti-virus
technologies. Unlike in the context of
optimizing compilers and other similar tools,
the analysis tool and the programmer (virus
writer) do not have a common objective.
Hence, assumptions made by analysis
methods used by such compilers can be
exploited by the virus writer. The authors
discuss how a virus writer could attack the
various stages in the decompilation of binaries
by taking advantage of the limitation of static
analysis. Concerning metamorphic viruses the
authors observe that though these viruses
pose a serious challenge to anti-virus
technologies, the virus writers are confronted

with the same theoretical limitations and have
to address some of the same challenges that
the anti-virus technologies face.

[59] D. Larochelle and D. Evans, "Statically
Detecting Likely Buffer Overflow
Vulnerabilities," in Proceedings of the 2001
USENIX Security Symposium, Washington,
D.C., 2001.
This paper presents a new approach to
mitigating buffer overflow vulnerabilities by
detecting likely vulnerabilities through an
analysis of the program source code. The
approach exploits information provided in
semantic comments and uses lightweight and
efficient static analyses.

[60] G. Lee and A. Tyagi, "Encoded Program
Counter: Self-Protection from Buffer
Overflow Attacks," in Proceedings of the
International Conference on Internet
Computing (IC'2000), Las Vegas, Nevada,
USA, 2000.

[61] C. Linn, S. Debray, and J. Kececioglu,
"Enhancing Software Tamper-Resistance Via
Stealthy Address Computations," in 19th
Annual Computer Security Applications
Conference (ACSAC), Las Vegas, Nevada,
2003.
This paper proposes new method to make it
harder for an attacker to steal intellectual
property and to breach the software security in
order to find vulnerabilities. In order to make
software 'tamper-proof' verification tools use
check-sum code technique to check the
validity of software. However, attackers can
easily identify the check-sum code and
disable it. The proposed method makes the
binary harder for the attackers to identify the
check-sum code and disable them. The idea is
of indirection in which direct control transfers
such as call and jump instructions are replaced
with calls to specialized functions that are
responsible for directing control to the
intended targets in some stealthy manner. The
intent is that the successors of each
transformed basic block will be difficult to
discover. The specialized functions are termed
as branch functions.

Page 9 of 15

[62] C. Linn, et al., "A Multi Faceted Defense
Mechanism against Code Injection Attacks,"
http://www.cs.arizona.edu/people/debray/pape
rs/injection-attacks.html, Last accessed.

[63] R. W. Lo, K. N. Levitt, and R. A. Olsson,
"Mcf: A Malicious Code Filter," Computers
& Security, vol. 14, pp. 541-566, 1995.
This paper discusses a programmable static
Analysis tool called "Malicious Code Filter,
MCF, to detect malicious code and security
related vulnerabilities in system programs.
The MCF uses telltale signs to determine
whether a program is malicious without
requiring a programmer to provide a formal
specification. Program slicing techniques are
used to reason about telltale malicious
properties. By combining the telltale sign
approach with program slicing, a small subset
of a large program can be examined for
malicious behavior. The paper also discusses
how the approach can be defeated and then
discusses a countermeasure.

[64] A. Marinescu, " An Analysis of Simile,"
http://www.securityfocus.com/infocus/1671,
Last accessed.

[65] J. Martin, "A Practical Guide to
Enterprise Antivirus and Malware Protection,"
http://www.sans.org/rr/whitepapers/malicious/
68.php, Last accessed.

[66] B. McCorkendale and P. Szor, "Code
Red Buffer Overflow," Virus Bulletin, 2001,
http://www.peterszor.com/codered.pdf.
Having encountered conflicting information
from a variety of sources about the Code Red
(aka W32/Bady.worm) buffer overflow
technique, Bruce McCorkendale and Péter
Ször decided to look into the buffer overflow
to uncover the details

[67] T. Micro, "Activex and Java: The Next
Virus Carriers?,"
http://vx.netlux.org/lib/static/vdat/epactive.ht
m, Last accessed.

[68] M. Mohammed, Zeroing in on
Metamorpic Computer Viruses, Center for

Advanced Computer Studies, University of
Louisiana at Lafayette, M.S. Thesis, 2003.
The thesis describes a technique to undo
certain obfuscation transformations, such as
statement reordering, variable renaming, and
expression reshaping which are applied to
hide information, in the case of malicious
code. The technique applies certain counter
transformation, called zeroing transformation,
to detect metamorphic viruses that obfuscate
their code using these techniques. Zeroing
transformations zero the effect of these
transformations to transform all the
metamorphic variants of the virus to a single
form called the zero form of the virus. The
zero form of a program is based on the string
representations for the statements in the
program.

[69] D. Moore, C. Shannon, and K. Claffy,
"Code-Red: A Case Study on the Spread and
Victims of an Internet Worm," in The second
ACM SIGCOMM Workshop on Internet
measurment.
This paper details the spread of the Code-Red
and CodeRedII worms in terms of infection
and deactivation rates and examines the
properties of the infected host population,
including geographic location, weekly and
diurnal time effects, top-level domains, and
ISPs

[70] J. F. Morar and D. M. Chess, "Can
Cryptography Prevent Computer Viruses?," in
Virus Bulletin Conference, 2000.
The relationship between cryptography and
virus prevention is complex. Solutions to the
virus prevention problem involving
cryptography have been proposed, though
these solutions do not contribute much to the
prevention techniques prevalent at present.
This paper discusses the role of encryption in
the field of virus authoring and in the field of
Anti-Virus research.

[71] J. Munro, "Antivirus Research and
Detection Techniques,"
http://www.extremetech.com/article2/0,1558,
325439,00.asp?rsDis=Antivirus_Research_an
d_Detection_Techniques,_Part_I-Page001-
28716, Last accessed.

Page 10 of 15

[72] C. Nachenberg, "Computer Virus-
Antivirus Coevolution," Communications of
the ACM, vol. 40, 1997.
This is an overview of the current status of the
conflict between virus writers and AV
community. As antivirus programs became
more effective, virus writers countered by
developing techniques that allowed their
products to escape detection. "coevolution" is
the author's apt term for the never-ending
threat-response cycle in which attackers and
defenders engage. The author ends with some
speculation about the inevitable next rounds
in this war without end.

[73] L. Oudot, "Fighting Internet Worms with
Honeypots," 2003.

[74] P. Pathak, Linux Reloaded: A Linux
System Hardened against Buffer Overflow
Attacks, The Center for Advanced Computer
Studies, University of Louisiana at Lafayette,
M.S. Thesis Thesis, 2003.
A comprehensive classification of buffer
overflow attacks is done and a novel approach
for the detection and prevention of various
types of buffer overflow attacks for
segmented architectures has been developed.
The approach prevents buffer overflow
attacks at the kernel and compiler level. O.S
based and compiler based approaches are
integrated in order to gain benefits of both.
"Linux Reloaded" (LR), an enhanced Linux
System is developed by modifying the Linux
kernel and the GCC compiler

[75] S. Pearce, "Viral Polymorphism,"
http://vx.netlux.org/lib/asp00.html, Last
accessed.

[76] R. Pethia, "The Melissa Virus:
Inoculating Our Information Technology from
Emerging Threats," CERT, Carnegie Mellon
University 1999.
Provides a detail discussion on Melissa.

[77] J. Phillips, "Overview of Nimda,"
http://www.sans.org/rr/whitepapers/malicious/
92.php, Last accessed.

[78] S. Popinsky, "Advanced Clamav
Signatures,"
http://www.antionline.com/showthread.php?th
readid=262564&pagenumber=1, Last
accessed Nov. 4, 2004.

[79] P. Porras, et al., "A Hybrid Quarantine
Defense," in ACM Workshop on Rapid
Malcode (WORM 2004), George Mason
University, Fairfax, Virginia, USA, 2004.
This paper studies the strengths, weaknesses,
and potential synergies of two complementary
worm quarantine defense strategies under
various worm attack profiles.

[80] M. M. Pozzo and T. E. Gray, "An
Approach to Containing Computer Viruses,"
Computers and Security, vol. 6, pp. 321-331,
1987.
This paper presents a mechanism for
containing the spread of computer viruses by
detecting at run-time whether or not an
executable has been modified since its
installation. The detection strategy uses
encryption and is held to be better for virus
containment than conventional computer
security mechanisms, which are based on the
incorrect assumption that preventing
modification of executables by unauthorized
users is sufficient. Although this detection
mechanism is most effective when all the
executable on a system are encrypted, a
scheme is presented that shows the usefulness
of the encryption approach when this is not
the case.

[81] M. Prasad and T.-C. Chiueh, "A Binary
Rewriting Defense against Stack Based Buffer
Overflow Attacks," in USENIX 2003 Annual
Technical Conference, 2003.
Buffer overflow attack is the most common
and arguably the most dangerous attack
method used in Internet security breach
incidents reported in the public literature. The
work reported in this paper explores
application of static binary translation to
protect Internet software from buffer overflow
attacks.

[82] J. C. Rabek, et al., "Defensive
Technology: Detection of Injected,

Page 11 of 15

Dynamically Generated, and Obfuscated
Malicious Code," in ACM workshop on Rapid
Malcode, 2003.
This paper presents DOME, a host-based
technique for detecting several general classes
of malicious code in software executables.
DOME uses static analysis to identify the
locations (virtual addresses) of system calls
within the software executables, and then
monitors the executables at runtime to verify
that every observed system call is made from
a location identified using static analysis.

[83] C. Raiu, " A Virus by Any Other Name:
Virus Naming Practices,"
http://www.securityfocus.com/infocus/1587,
Last accessed.

[84] J. Reynolds, "Rfc1135: The
Helminthiasis of the Internet,"
http://ftp.arnes.si/standards/rfc/rfc1135.txt,
Last accessed.

[85] E. S. Sandeep Kumar, "Generic Virus
Scanner in C++," in 8 th Computer Security
Applications Conference.
This paper discusses a generic virus detection
tool designed for recognizing viruses across
different platforms. The paper initially
discusses various methods of virus detection
and then describes a generic signature scanner
as an anti-virus tool.

[86] A. Saxena and A. Dwivedi, "A Novel
Approach to Improve Scanners Using Fuzzy
Logic," in Proceedings of 2004 Virus Bulletin
Conference, Chicago, 2004.
Conventional method of testing AV scanners
does not take into account the characteristics
of the virus. They focus on how many viruses
are missed without taking into account the
damage caused by the virus. The paper
proposes a Fuzzified Scanner Comparison
Technique ranks the viruses on three
variables: time to spread, the severity of
damage, and operating system(s) attacked. A
ranked list of viruses is then created for
testing and evaluating AV scanners.

[87] S. E. Schechter, J. Jung, and A. W.
Berger, "Fast Detection of Scanning Worm

Infections," in 7th International Symposium
on Recent Advances in Intrusion Detection
(RAID), French Riviera, France, 2004.
This presents a hybrid approach to detecting
scanning worms.

[88] S. E. Schechter and M. D. Smith,
"Access for Sale: A New Class of Worm," in
2003 ACM workshop on Rapid Malcode.
This paper introduces a new type of worm
that enables division of labor, installing a
back door on each infected system that opens
only when presented a system-specific ticket
generated by the worm's author. In addition to
describing this new threat, it proposes a
number of approaches for defending against
it.

[89] F. B. Schneider, "Enforceable Security
Policies," Information and System Security,
vol. Vol. 3 (No. 1), pp. pp. 30--50, 2000.
A precise characterization is given for the
class of security policies enforceable with
mechanisms that work by monitoring system
execution. Security automata are introduced
for specifying exactly the class of security
policies discussed. Techniques to enforce
security policies specified by such automata
are also discussed.

[90] M. G. Schultz, et al., "Data Mining
Methods for Detection of New Malicious
Executables," in IEEE Symposium on Security
and Privacy, 2001.
This paper presents a framework for detection
of malicious executables with viral
characteristics. Since signatures for new
viruses are not known, the data mining
technique presented in this work will be able
to solve this problem in a better way than the
current signature-based methods of virus
detection.

[91] J. F. Shoch and J. A. Hupp, "The
"Worm" Programs- Early Experience with a
Distributed Computation," CACM, vol. 25,
pp. 172-180, 1982.
This is an exploratory paper for its time. This
paper discusses issues found in the early

Page 12 of 15

exploration of distributed computing. Authors
talk about the motivations and definitions for
a worm program from the distributed
computation perspective. Not much work had
been done in building distributed systems in
1982.

[92] P. K. Singh, A Physiological
Decomposition of Virus and Worm Programs,
CACS, University of Louisiana, Lafayette,
Master Thesis Thesis, 2002.
Components of malicious code formally
defined.

[93] P. K. Singh, M. Moinuddin, and A.
Lakhotia, "Using Static Analysis and
Verification for Analyzing Virus and Worm
Programs," in Proceedings of the 2nd
European Conference on Information
Warfare and Security, Reading, UK, 2003.
A framework for statically verifying binary
executables for malicious code has been
described. A decomposition of virus and
worm programs based on their functional
components has been provided.

[94] N. Smith, "Stack Smashing
Vulnerabilities in the Unix Operating
System," Southern Connecticut State
University,
http://destroy.net/machines/security/nate-
buffer.ps, Last accessed.

[95] A. Solomon, "A Brief History of Pc
Viruses," Last accessed.

[96] A. Solomon, "Epidemiology and
Computer Viruses,"
http://vx.netlux.org/lib/static/vdat/epepidem.ht
m, Last accessed.

[97] E. H. Spafford, "The Internet Worm
Program: An Analysis," Computer
communication review, vol. 19, pp. 17-57,
1989.
This paper is an analytical commentary on the
Internet Worm program, which infected the
Internet on the evening of November 2nd
1988.

The paper defines Worms and Viruses. It
discusses the flaws in computer systems that
were exploited by the Worm to spread across
the Internet. Patches to these flaws are also
discussed. A high level description of the
functioning of the Worm program is also
provided. The paper then carries a detailed
analysis of the Worm.

[98] E. H. Spafford, "Computer Viruses as
Artificial Life," Artificial Life, vol. 1, pp. 249-
265, 1994.
This paper talks about how computer viruses
operate, their history, and the various ways
computer viruses are structured. It then
examines how viruses meet properties
associated with life as defined by some
researchers in the area of artificial life and
self-organizing systems. The paper concludes
with some comments directed towards the
definition of artificially "alive" systems and
related experiments.

[99] D. J. Stang, "Fighting Computer Virus
Infection through Auto-Immune Responses."
http://vx.netlux.org/lib/static/vdat/epautoim.ht
m

[100] D. J. Stang, "Virus Prevention Policy,"
http://vx.netlux.org/lib/static/vdat/virpolic.htm
, Last accessed.

[101] S. Staniford, et al., "The Top Speed of
Flash Worms," in ACM Workshop on Rapid
Malcode (WORM 2004), George Mason
University, Fairfax, Virginia, USA, 2004.
Simulating a flash version of Slammer,
calibrated by current Internet latency
measurements and observed worm packet
delivery rates, this paper shows that a worm
could saturate 95% of one million vulnerable
hosts on the Internet in 510 milliseconds. A
similar worm using a TCP based service could
95% saturate in 1.3 seconds.

[102] G. Szappanos, "Are There Any
Polymorphic Macro Viruses at All? (… and
What to Do with Them)," in Proceedings of
the 12th International Virus Bulletin
Conference, 2002.

Page 13 of 15

It discusses how polymorphic macro viruses
fit into binary polymorphic viruses and about
their detection.

[103] G. Szappanos, "Polymorphic Macro
Viruses, Part One," Security Focus,
http://online.securityfocus.com/infocus/1635,
Last accessed 08/29/2003.

[104] P. Szor, "Generic Disinfection,"
http://vx.netlux.org/lib/static/vdat/epgendis.ht
m, Last accessed.

[105] P. Szor, "Coping with Cabanas," Virus
Bulletin, pp. 10-12, 1997.
This is an analysis of cabanas.

[106] P. Ször, "Attacks on Win32 - Part Ii," in
Virus Bulletin Conference September 2000,
Orlando, FL, 2000.
In 1998 several anti-virus companies
introduced heuristic scanning for 32-bit
Windows viruses. As a result the number of
anti-heuristic viruses is on the rise. This paper
introduces infection methods with special
attention to the anti-heuristic infection
techniques. It also provides results achieved
by testing old Win32 viruses and worms on
Windows 2000. It also says about possible
new virus models likely to be seen in the near
future.

[107] P. Ször and P. Ferrie, "Hunting for
Metamorphic," in Virus Bulletin Conference,
Prague, Czech Republic, 2001.
The paper shows the trend of evolution of
complex viruses such as polymorphic and
metamorphic. Detailed survey of various
metamorphic engines and the techniques used
by them is presented. The article aims to
provide a better understanding of problems
faced by AV community. Some examples are
also given that shows techniques of detecting
new generation metamorphic viruses.

[108] G. Tesauro, J. O. Kephart, and G. B.
Sorkin, "Neural Network for Computer Virus
Recognition," IEEE Expert, vol. 11, pp. 5-6,
1996.
This paper describes a neural network for
generic detection of boot sector viruses that

infect the boot sector of a floppy disk or a
hard drive.

[109] T. K. Tsai and N. Singh, "Libsafe:
Protecting Critical Elements of Stacks,"
Avaya Labs Research, ALR-2001-019, 2001.
This paper presents a method to detect and
handle exploitation of buffer overflow
vulnerabilities. This method works with any
existing pre-compiled executable and can be
used transparently, even on a system-wide
basis.

[110] M. Venable, P. Prathak, and A.
Lakhotia, "Getting inside Beagle's Backdoor,"
Virus Bulletin, 2004This article presents a
detailed analysis of a backdoor contained
within the W32/Beagle.J worm. The focus is
on the capabilities and protocol of the
backdoor, as well as the process used to
uncover these capabilities

[111] A. Wagner, et al., "Experiences with
Worm Propagation Simulations," in ACM
workshop on Rapid Malcode, 2003.
This paper describes the design of a simulator
and compares observation of past worms with
simulated behaviour. One specific feature of
the simulator is that the Internet model used
can represent network bandwidth and latency
constraints.

[112] C. Wang, J. C. Knight, and M. C. Elder,
"On Computer Viral Infection and the Effect
of Immunization,"
ftp.cs.virginia.edu/pub/techreports/CS-99-
32.pdf, Last accessed.

[113] N. Weaver, "A Brief History of the
Worm,"
http://www.securityfocus.com/infocus/1515,
Last accessed.

[114] N. Weaver, "Future Defenses:
Technologies to Stop the Unknown Attack,"
http://tennis.ecs.umass.edu/~czou/research/em
ailDefense-TR.pdf, Last accessed.

[115] N. Weaver, et al., "Preliminary Results
Using Scaledown to Explore Worm
Dynamics," in Washington, DC, USA, 2004.

Page 14 of 15

This paper presents initial results from
investigating scaledown techniques for
approximating global Internet worm dynamics
by shrinking the effective size of the network
under study.

[116] N. Weaver, et al., "A Taxonomy of
Computer Worms," in ACM workshop on
Rapid Malcode, 2003.
To understand the threat posed by computer
worms, it is necessary to understand the
classes of worms, the attackers who may
employ them, and the potential payloads. This
paper describes a preliminary taxonomy based
on worm target discovery and selection
strategies, worm carrier mechanisms, worm
activation, possible payloads, and plausible
attackers who would employ a worm.

[117] I. Whalley, et al., "An Environment for
Controlled Worm Replication and Analysis,"
http://www.research.ibm.com/antivirus/SciPa
pers/VB2000INW.htm, Last accessed.

[118] I. Whalley, et al., "An Environment for
Controlled Worm Replication and Analysis
Or: Internet-Inna-Box," in Virus Bulletin
Conference, 2000.
The paper outlines a functional prototype of a
worm replication system. Techniques and
mechanisms for constructing and utilizing an
environment enabling the automatic
examination of worms and network bases
viruses have been described. The paper
involves a very brief description of some
well-known worms from the past and the
present. It elaborates on techniques used by
worms to spread across networks. Finally an
anatomy of the worm replicator system is
presented.

[119] S. R. White, "Open Problems in
Computer Virus Research," in Virus Bulletin
Conference, 1998.
This paper identifies some challenging open
issues on computer virus detection and
protection. It lists out five problems in this
field, namely, Development of New
Heuristics for virus detection, the study of
viral spread and epidemiology, deploying
distributed digital immune system for

detecting new viruses, detection of worm
programs and proactive approaches towards
detection of virus programs.

[120] C. Wong, et al., "A Study of Mass-
Mailing Worms.," in ACM Workshop on
Rapid Malcode (WORM 2004), George
Mason University, Fairfax, Virginia, USA,
2004.
This paper presents an in-depth study on the
effects of two mass-mailing worms, SoBig
and MyDoom, on outgoing traffic and
develops insight into the possibilities and
challenges of automatically detecting,
suppressing and stopping mass-mailing worm
propagation in an enterprise network
environment.

[121] J. Xiong, "Act: Attachment Chain
Tracing Scheme for Email Virus Detection
and Control," in ACM Workshop on Rapid
Malcode (WORM 2004), George Mason
University, Fairfax, Virginia, USA, 2004.
This paper proposes an automated email virus
detection and control scheme using
attachment chain tracing (ACT) technique.

[122] T. Yetiser, "Polymorphic Viruses,
Implementation, Detection and Protection,"
http://vx.netlux.org/lib/static/vdat/pviripd.htm
, Last accessed.

[123] L. Zeltser, "Reverse Engineering
Malware," http://www.zeltser.com/sans/gcih-
practical/revmalw.html, Last accessed.

[124] Zombie, "Disassemblers within
Viruses," http://z0mbie.host.sk/, Last
accessed.

[125] Zombie, "Some Ideas About
Metamorphism,"
http://vx.netlux.org/lib/vzo20.html, Last
accessed.

[126] C. C. Zou, W. Gong, and D. Towsley,
"Worm Propagation Modeling and Analysis
under Dynamic Quarantine Defense," in 2003
ACM workshop on Rapid Malcode.
Enlightened by the methods used in epidemic
disease control in the real world, this paper

Page 15 of 15

presents a dynamic quarantine method based
on the principle "assume guilty before proven
innocent" and shows that the dynamic
quarantine can reduce a worm's propagation
speed.

[127] C. C. Zou, W. Gong, and D. Towsley,
"Code Red Worm Propagation Modeling and
Analysis," in 9th ACM conference on
Computer and communications security,
2002.
Based on the classical epidemic Kermack-
Mckendrick model, this paper derives a
general Internet worm model to have a better
understanding and prediction of the scale and
speed of Internet worm spreading.

[128] C. C. Zou, W. Gong, and D. Towsley,
"Feedback Email Worm Defense System for
Enterprise Networks," University of
Massachusetts, Amherst 2004.
This presents an architecture and system
design of a “feedback email worm defense
system” to protect email users in enterprise
networks.

