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The major research works on malware are 
done at AV companies and they are usually 
not published. However, Internet is a good 
source of virus/worm related white papers and   
there do exist some research papers published 
at different forums. To understand research 
trends, we divided the research areas into 
some categories. These categories are often 
overlapping. Before listing the bibliography 
we indexed the list based on these categories. 
 
Theory: [6, 7, 22, 29, 30] 

Overview:[11, 16, 28, 75, 92, 95, 98, 113]  

Taxonomy: [16, 116] 

Vulnerability: [11, 56, 59, 109] 

Analysis:  [9, 10, 15, 25, 32-34, 54, 57-59, 68, 
69, 92, 93, 97, 110, 123] 

Static and Dynamic Analysis: [9, 10, 
25, 32, 54, 59, 93] 

Obfuscation, Polymorphic and 
Metamorphic: [25, 49, 50, 57, 
64, 68, 75, 82, 102, 103, 122, 
124, 125]  

Detection /Prevention/Disinfect: [1, 9, 10, 
14, 19, 21, 35, 37, 39, 44, 46, 48, 51, 
61-63, 70, 71, 73, 76, 79, 80, 82, 84, 
85, 87, 90, 93, 99, 100, 102, 104, 108, 
112, 114, 119-122, 128] 

Application of AI Tools: [86, 90, 108] 

Signature Extraction: [47, 78, 85] 

Evaluation of AV tools: [18, 26, 86] 

Case Study/Synopsis: [2-5, 33, 41, 64, 66, 
69, 76, 77, 105, 110, 127] 

Trend: [13, 43, 55, 67, 95, 106, 107, 113] 

Propagation models/Epidemiology:[20, 41, 
52, 53, 69, 96, 101, 111, 118, 126, 
127] 

  

 

 

Buffer Overflow: [8, 23, 24, 31, 36, 40, 45, 
59, 60, 66, 74, 81, 94, 109] 

Experiment/Simulation: [98, 101, 111, 115] 

Miscellaneous: [12, 17, 27, 38, 42, 65, 72, 83, 
88, 89, 91, 117] 
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methods used by such compilers can be 
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to address some of the same challenges that 
the anti-virus technologies face. 
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