
Proceedings of the 2003 IEEE
Workshop on Information Assurance
United States Military Academy, West Point, NY June 2003

Static Verification of Worm and Virus Behavior in Binary
Executables using Model Checking

Prabhat K Singh and Arun Lakhotia
The Center for Advanced Computer Studies,
University of Louisiana, Lafayette, LA-70504

(337) 482-6766, -5791 (Fax)
{ pks3 5 3 9, arun} @cacs. louisiana.edu,

Abstract - Use of formal methods in any application scenario
requires a precise characterization and representation of the
properties that need to be verified The target, which is desired
to be verified for these properties, needs to be abstracted in a
suitable form that can be fed to a mechanical theorem prover.
The most challenging question that arises in the case of
malicious code is “What are the properties that need to be
proved?” We provide a decomposition of virus and worm
programs based on their core functional components and a
method of formally encoding and verifLing functional
behavior to detect malicious behavior in binary executables.

Index terms - Virus behavior, decompilation, verification,
model checking, modeling language, flow graphs

1. INTRODUCTION

The high cost of virus and worm infections may be
attributed to the highly interconnected nature of today’s
computers and the reactive nature of anti-virus (AV)
technologies. A virus or worm, if undetected, can spread
rapidly across the world due to high interconnectivity.
Current AV technologies still rely on varying forms of
signature-based fingerprinting to characterize a specific
virus. Thus a signature database update is required at the
end-user machines frequently or during a new virus event.
Even a day of delay in the virus analysis and a signature
update can be quite expensive as evident from virus
timeline reports published. This calls for an approach to
fast verification of programs, which does not need to be
updated frequently for signatures.

Model checking of software programs has been gaining
increased use in program verification tasks, the reason
being that it provides sound verification of a property in a
given program. Contemporary model checking
approaches to verification of security properties require
the availability of source code of the program under
verification [11. The verification of security properties in
binary executables is problematic mainly due to two
reasons:
I. The malicious properties of viruses and worms have to

be identified and precisely encoded into a suitable
logic formula using predicates that are representative
of a particular action by the program. Generation or

extraction of such predicates from a binary program is
a challenging model checking, problem.

11. A virus writer can apply obfuscating transformations
using hand written assembly and thus make the
process of flow analysis difficult and less reliable.

While studying the virus and worm source code as part of
this work, it has been a frequent observation that
remarkably different virus source codes (even those
which were implemented in different languages)
displayed identical operational behavior. The front-ends
of the publicly available virus generator programs provide
the user with a matrix of features to be implemented in
the virus. Thus, part of our research has been centered on
studying these features with an increased granularity so
that we can come out with a detailed property
characterization of viruses and worms using formal
specification [2].

It has previously been argued that computer viruses are
artificial life forms, performing similar functions as
biological life forms [3]. Considering this argument as the
premise we carry the analogy with artificial life forms
further by identifying and studying the functional organs
of virus and worm programs. The organs are functional in
sense that they are defined constituents that make up a
worm. Unlike a biological life form, the organs of a
computer virus may not be physically distinguishable
from the rest of the body. In fact, the code corresponding
to an organ function may be dispersed and interleaved
with the code for other computations.

11. OUR APPROACH

Our approach to verifying virus and worm binaries uses a
combination of techniques from the reverse engineering
and model checking domains. A malicious program
behavior is characterized using predicates. A predicate is
a Boolean outcome of abstract action present in a worm
or virus program. An action is a sequence of one or more
functiodsystem calls, in a program, connected through a
flow relationship. We follow a goal directed approach to
binary program decompilation where in the final results of

lSBN 0-7803-7808-3/03/$17.00 0 2003 IEEE 298

http://louisiana.edu

Proceedings of the 2003 IEEE
Workshop on Information Assurance
United States Military Academy, West Point, NY June 2003

decompilation are the predicates that can be used to
represent the property and the program model of the given
binary using the model checker’s language. The program
properties to be verified are manually formulated using
these predicates.

Classibing Computer Worms and Virus behavior
We use the phrase “organ” to imply a functional organ.
Each organ function is achieved by the application of an
action procedure by a subject on an object within the

U Action
Subject (sequence of Object
(Representative Predicates) (Resources in a system)
of the user on
the system)

Figure 1: The worm organ abstraction

system. We have identified five functions that are
sufficient in describing the internal working, and hence to
capture malicious properties, of a virus. These functions
are Survey, Concealment, Propagation, Injection, Sew-
identification. Our experience with manual analysis of
viruses suggests that these functions are sufficient to
describe the behavior of malicious programs.

The Model Checking Process
Model Checking [4] is an automated technique that, given
a finite-state model of a system and a logical property,
systematically checks whether this property holds for a
given initial state in that model.

Model of the Progra 1-t Model Checker - +Satisfied

STATE SPACE
EXPLORATION

Program Property ‘.Not satisfied
To be verified I
(usually
expressed as a
femporal logic formula)

Figure 2: Model checking of programs

Encoding malicious behavior using Linear Temporal
Logic
In our system, we encode malicious behavior of viruses
and worms using linear temporal logic (LTL) [5] and the
predicates defined during the dataflow analysis phase. We
have chosen linear temporal logic since it are very
expressive and allows encoding temporal ordering of
security sensitive events that occur during the worm’s
execution. The LTL formula encodes the set of executions
that characterize a worm program behavior. An example
malicious behavior may involve the read and transfer of
information from a system to another system. The

information may comprise of the malicious code itself and
the information about other targets that trust the system
on which the worm is executing. Thus, this activity can be
viewed as an ordering of calls involving the worm code’s
read action followed by worm code’s send action on the
network.

111. IMPLEMENTATION

We have developed a prototype worm/virus verifier to
illustrate our approach. The malicious code verifier uses
the SPIN model checker [6] to statically verify binary
executables against property formula of worms and
viruses. It takes as input the binary executable and a set of
one or more behavioral properties that the program needs
to be verified for. If a worm behavior is detected, the trace
of the execution path that confirms to the property under
test is returned by the prototype. This is returned in the
form of a counter-example generated by the model
checker.

Generating Virus and Worm Models for Model Checking
We use the Spin model checker for verification. During
the process of generating the control flow graph it is
annotated with the predicates that were extracted during
the data-flow analysis phase. The flow graph also
includes information about all imported DLL functions in
the form of boolean variables. The control flow graph is
translated into Promela, the modeling language for Spin.
Conditional branch instructions in the basic block are
translated to their Promela equivalent to indicate a non-
deterministic choice. This means that the model checker
will explore all the branches at a conditional branch
instruction, during the verification phase.

The prototype was built as a plugin to the IDAPro
disassembler [7]. The control flow graph generation and
the data-flow analysis are done using the methodology
presented in [8, 91. The automatic recognition of the C
and C++ library functions is achieved through IDAPro’s
fast library identification and recognition mechanism.
Currently, the behavioral properties (LTL formula) are
manually fed to the prototype.

IV. SUMMARY

We identify the organs of virus programs in an attempt to
characterize malicious behavior in worms using formal
specification. We presented a method of encoding
malicious behavior using linear temporal logic. The given
binary program was translated to a finite model
representation, which was then fed to a model checker for
verification. The proposed method of representing
malicious code is beneficial since it semantically captures
the presence of malicious behavior and any ordering
between malicious actions by a program. While statically
verifying the presence of malice in programs, all possible

ISBN 0-7803-7808-3/03/$17.00 0 2003 IEEE 299

Proceedings of the 2003 IEEE
Workshop on Information Assurance
Llnited States Military Academy, West Point, NY June 2003

execution paths are explored for the verifying the
presence of some property, this approach helps in
detecting viruses or worms that execute a malicious action
only at a certain time or day.

V. REFERENCES.

[l] Hao Chen and David Wagner, “MOPS: An
Infrastructure for Examining Security Properties of
Software,” Proceedings of the 9th ACM Conference on
Computer and Communication Security. Washington, DC.
November 17-2 1,2002.
[2] Prabhat K Singh, “A Physiological Decomposition of
Virus and Worm Programs,” Master Thesis, CACS,
University of Louisiana, Lafayette, May 2002.
[3] I. H. Witten, H. W. Thimbleby, G. F. Coulouris, and
S. Greenberg, “Liveware: A new approach to sharing data
in social networks,” International Journal of Man-
Machine Studies, 1990.
[4] E. M. Clarke et al, “Model Checking,”, MIT Press,
ISBN: 0262032708.
[SI Amir Pnueli. “The Temporal Logic of Programs,”
Proc. 18Ih IEEE Symp. Foundations of Computer Science,
Providence, Rhode Island, pp. 46-51, 1977.
[6] Gerard J. Holzmann, “The Model Checker Spin,”
IEEE Transactions on Software Engineering, Vol. 23 No.
5, May 1997.
[7] Ilfak Guilfanov,
httr,:llwww.datarescue.com/index. him
[8] C. Cifuentes, “Reverse compilation techniques,” PhD
dissertation, Queensland University of technology, 1994.
[9] A. Aho, R. Sethi and J Ullman, “Compilers-Principles,
Techniques, and Tools,” Reading, MA:Addison-Wesley,
1986.

“IDA Pro disassembler,”

ISBN 0-7803-7808-3/03/$I1.00 0 2003 IEEE 300

