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1 Introduction 

When designing a change to a software system, a programmer reviews the source 

code and often wonders if changing the source code at a particular spot might lead to an 

unanticipated ripple effect on the end-user functionality of the system. This concern is 

warranted because a segment of source code often participates in the implementation of 

many software functions.1 In most cases, the sharing of source code between various 

software functions is neither documented nor evident from the source code. This dissertation 

addresses such concerns of a programmer by answering the following question:  

If the source code at a given spot were modified, which software 

functions would be potentially affected?  

Our work assumes that this question is raised when a change to the source code is 

being designed and before the change is applied. When designing a change, a programmer 

may have multiple alternatives. The programmer may ask the above question for each 

alternative in order to discover the area of the source code with the least ripple effect. As a 

corollary, our answer to the question above is only a prediction since it does not take into 

account exactly how the source code will be modified but only where the change might take 

place. The notion of prediction is emphasized by the term potentially in our question. We 

define potentially affected with the following statement. 

A software function f is potentially affected by a change at a selected 

spot of the source code if the segment of source code at that spot 

participates in the implementation of software function f. 

                                                 

1 A software function is a task performed by a software system described from an end-user’s viewpoint.  
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1.1 Motivations 

If software change requests were not frequent, our research would have limited 

impact. However, a useful software system rarely stays unchanged. It undergoes continuous 

modifications to adapt to changes in the needs of the end user, changes in the business 

environment, and changes in technology. It has been acknowledged that a maintenance 

programmer spends a significant amount of effort understanding the program being modified 

[Sommerville 1992]. Furthermore, a software maintenance process such as that of Parikh and 

Zvegintzov points to the importance of identifying the software functions affected by a 

particular maintenance before modifying the system [Parikh and Zvegintzov 1983]. 

Likewise, in the newer incremental software development model used by many companies 

such as Microsoft and by Extreme Programming techniques, an entire system is developed in 

iteration [Cusumano and Selby 1995, Beck 1999]. In this development model, an entire 

system is built in layers where the implementation of software functions is added one 

software function at a time until the whole system is built. At each iteration cycle, the 

programmer modifies the existing source code to insert a new software function. Therefore, 

the programmer must already identify the ripple effect that the source code changes have on 

software functions during the initial development of a software application.  

Currently, programmers identify the software functions affected by a change in an ad 

hoc manner. This often leads to overlooking some of the affected software functions. In turn, 

the resulting errors, if caught on time, lead to reworking the source code and more testing, 

resulting in lost time. When the errors are not caught before deployment, these errors impact 

the system’s behavior unpredictably, resulting in poor quality. Our technique will enable 

programmers to identify the potentially affected functionality before changing the source 
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code. Hence, they will have the direct opportunity to adapt their source code modifications to 

eliminate undesired side effects. This is expected to improve the quality of modifications 

made to source code and to reduce the overall time and effort involved in making source 

code modifications. 

1.2 Relating source code to software functions 

To answer our opening question, a relation between the software functions of a 

system and the system’s source code must be created. Figure 1 calls this relation X. For our 

purpose, one must be able to use the X relationships between source code and software 

functions to identify the software functions potentially affected by a change at a selected spot 

of the source code.  

Figure 1 shows that there are three possibilities to create X relationships: (1) directly, 

(2) transitively using constraints and design, or (3) using system tests. Below, we briefly 

Design &
Constraint

Source Code

System Test

Software Function
(related to

Functional Requirements)

ExerciseActivate

Satisfy Implement

X

 

Figure 1: E-R diagram of software. 
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describe the previous works that have used X relationships, and we mention which of the 

three approaches was used. 

Antoniol et al. developed a technique to compute X relationships directly [Antoniol et 

al. 2000]. Their technique computes the probability for a segment of source code to relate to 

a particular functional requirement based on the similarity of vocabulary used in the 

requirements documents and in the source code. In other words, a process similar to that used 

in search engines attempts to match identifiers of the source code to words in the functional 

requirements document. This technique is highly dependent on how programmers name 

variables and procedures in a program. As reported in a case study by Antoniol et al., this 

approach only provides mediocre results when applied on real world systems [Antoniol et al. 

2000].  

The second way for inferring X relationships is by joining information from the 

Implement and Satisfy relationships. Commercial companies such as Rational™ and 

TogetherSoft™ push this approach using design components to infer X relationships. Gates et 

al. also developed a similar approach. Instead of using design components, their approach 

relates constraints (logic rules) created from the requirements to the source code. In turn, this 

allows inferring X relationships transitively [Gates and Della-Piana 1997, Gates and Li 1998, 

Gates and Teller 2000]. This approach through design and constraints provides a well-

founded framework; however, it requires manual intensive tasks. In fact, not only must the 

design and constraints be manually created but the Satisfy relationships must also be 

manually created. Moreover, any change to the design, constraints, or requirements 

document often requires an update of the Satisfy relationships. Over time, such an intensive 

manual effort is likely to introduce errors where the requirements, Satisfy relationships, and 
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design become out-of-sync. Hence, the X relationships inferred from Satisfy relationships 

may not be reliable. One solution is to automate the current manual maintenance of Satisfy 

relationships. However, this would require very advanced natural language processors and 

currently may prove too challenging. 

A third approach relates software functions to source code by joining information 

from the Exercise and Activate relationships. This approach works by observing that the 

execution of a system test activates software functions and exercises source code. Various 

efforts have used this approach to locate where requirements are satisfied in the source code 

implementation [Reps et al. 1997, Wilde and Scully 1995, Wong et al. 1999]. Until the mid-

nineties, programmers read the entire traces of source code created by executing system tests, 

and then they determined what source code segments related to the functional requirement of 

interest. Thanks to the methods developed by Reps et al., Wilde and Scully, Wong et al., one 

can directly zoom in to the area of the source code likely to be related to a selected functional 

requirement. So far, the methods that use Exercise and Activate relationships provide good 

information when navigating from software functions to source code. However, nobody has 

investigated whether Exercise and Activate relationships enable the inverse navigation from 

source code position to software functions. 

When using Exercise and Activate relationships for inferring X relationships, the main 

part of the job is to identify a set of system tests needed to achieve the particular goal. All 

previous works propose techniques to navigate from software functions to source code. In 

contrast, our goal is to provide a technique for navigating from source code to software 

functions. Hence, the set of system tests used to achieve the previous goal differs from ours. 
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In fact, they only require a few system tests to be executed. In contrast, for our purpose, we 

need to execute many more system tests in order to provide reliable results. 

1.3 Measuring the quality of a prediction 

Before presenting our objectives, we specify the factors that determine the quality of 

a prediction: safety and precision. This will simplify the task of stating our objectives. The 

two attributes safety and precision, which determine the quality of a prediction, are 

independent of the method used to obtain that prediction. 

Definition: •  A prediction is safe if and only if it identifies all the software functions 

potentially affected by a change at a selected source code location. 

•  A prediction is precise if and only if all the software functions it identifies 

are potentially affected by a change at a selected source code location. 

In other words, safety answers the question “has our prediction identified all 

potentially affected software functions?”, and precision answers  “Are all potentially affected 

software functions identified by our prediction?” 

When using the system tests to predict the ripple effect of a source code change on 

software functions, we know that the set of system tests used for sampling Exercise and 

Activate relationships will strongly influence the safety and precision of a prediction.  

1.4 Objectives and Challenges  

The main objective of our work is to determine criteria for selecting system tests 

where the resulting Exercise and Activate relationships predict the software functions 

potentially affected by a change at a particular source code location with the best possible 
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level of safety and of precision. Secondly, we also want to automate our method for 

computing predictions as much as possible. 

To achieve these goals, we address the following: 

1. We must find the adequate techniques for automating the sampling of Exercise and 

Activate relationships. Challenge: Program profiling helps sample Exercise relationships, 

but we have to develop our own technique for sampling Activate relationships. Moreover, 

several program profiling methods exist; therefore, we must determine the most adequate 

one for our purpose. 

2. We want to identify a set of criteria for system test selection such that the Exercise 

and Activate relationships sampled from the execution of these system tests guarantee 

safe predictions. Moreover, the number of system tests that satisfy these criteria must be 

finite. Challenge: Most software systems accept infinitely many system tests, and the 

source code implementation of a system often contains infinitely many execution paths. 

Hence, we must make sure that all needed execution paths in relation to the safety of 

predictions have been exercised by the execution of a system test. We know that 

satisfying our criteria for test selection will require a huge set of system tests. Obtaining 

such set of system tests may not be feasible in practice. Moreover, to guarantee safe 

predictions, our theory currently does not guarantee the level of precision. These last 

points lead to our next objective. 

3. We want to find criteria for test selection that are satisfied by an acceptable number 

of system tests. In particular, the number of system tests must be different from the 

number of software functions of a system by at most a small constant factor. Moreover, 

the Exercise and Activate relationships sampled from system tests that satisfy our criteria 
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must predict the ripple effect of a source code change on software functions with an 

acceptable, well-determined degree of safety and precision.  

1.5 Contributions  

Our research makes the following contributions:  

1. A technique for identifying the software functions activated by a system test. The 

technique works as follows: Step a) Build a grammar describing the input space of the 

system; Step b) Annotate each production rule of the grammar with the software 

functions activated by strings parsed by those rules; Step c) Parse a system test to 

determine the software functions activated by it.   

2. Sonar, a prototype tool that predicts the ripple effect on software functions by a 

change at a spot in the source code.  

3. A system test selection criterion that guarantees safe predictions for a large class 

of software functions. This system test selection criterion is based on the notion of 

interprocedural paths as defined by Melski and Reps. Since an exponential number of 

tests may be needed to satisfy the criterion, the criterion is not practical. Furthermore, 

there is no guarantee as to the level of precision of the predictions made using this 

criterion. In many cases, the resulting precision may be very low. Thus, this criterion is of 

theoretical significance only. 

4. A second test selection criteria that is practical in the size of system tests needed 

and the safety and precision of the predictions. These test selection criteria are 

satisfied by a number of system tests with a constant relation to the number of software 

functions.  Our case studies on the safety and precision of the predictions based on 

system tests satisfying this second criterion found that Sonar computed safe predictions 
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70% of the time and also computed safe and precise predictions between 60–70% of the 

time for the two systems studied.  

1.6 Impacts  

Our third contribution states that we found conditions to guarantee safe predictions 

for a large class of software functions from finite samples of Exercise and Activate 

relationships. Currently, it is unpractical to create a set of system tests whose Exercise and 

Activate relationships satisfy our condition. However, our finding provides a finite upper 

bound to the problem of relating a large class of software functions to source code in order to 

obtain a safe prediction on the ripple effect of a source code change on the software 

functions. Future efforts may use this bound as a stopping criterion for their algorithms. For 

example, a small set of system tests would be used to create a few seed Exercise and Activate 

relationships. A mechanism would then be used to propagate the seed information to the rest 

of source code until our bound is reached. Since the bound is finite, we know the propagation 

algorithm will be tractable.  

Part of our fourth contribution is a new set of test selection criteria. These criteria are 

always satisfied by small sets of system tests. More importantly, the Exercise and Activate 

relationships sampled from the execution of these small sets of system tests show an 

improvement over the automated method proposed by Antoniol et al. However, these new 

criteria must be refined if they are to be used to create seed Exercise and Activate 

relationships. Currently, 70% of the predictions are safe. For good seeds, we would want the 

percentage of safe prediction in the high nineties. 

Currently, our approach to predict potentially affected software functions should not 

supersede a programmer’s manual analysis. Nevertheless, programmers should definitely 



 10

complement their results with predictions computed by our method. A side effect of our case 

study illustrates that our predictions are likely to provide new information to a programmer 

when his/her manual analysis is likely to be wrong. 

Tools that help the software development process, such as those of Rational™ and 

TogetherSoft™, may benefit from our approach. Currently, these tools predict the software 

functions potentially affected by a source code change using the relationships design 

components have with software functions and source code, respectively, called Satisfy and 

Implements in Figure 1. Satisfy relationships between software functions and design elements 

are maintained manually; thus, over time errors are likely to occur. Using our approach 

provides another means to compute the software functions potentially affected by a source 

code change. Hence, the prediction of the ripple effect of a source code change on software 

function could be computed both ways, using Implements and Satisfy relationships and using 

Exercise and Activate relationships. A difference in predictions may show that some Satisfy 

relationships are not up-to-date.  

On a more general note, the software industry is moving toward object-oriented, 

component-based software architecture. Programmers using these programming techniques 

may benefit from our research more than ever. Unlike programs with procedural/functional 

architecture whose skeletons usually follow the description of the system’s software 

functions they implement, new architectures put the emphasis on objects and relations 

between objects. This is done by encapsulating all the code related to an object in the same 

area of a program. In these new architectures, it is very common for one type of object and its 

methods to be used in the implementation of several software functions of a system. 

Therefore, modifications to a shared object can possibly affect all the software functions that 
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share it. In a large system, programmers are not always aware of this code sharing. Lack of 

this kind of awareness may lead to changes in the source code with disastrous effects on the 

functionality of a system. Our technique communicates this sharing of code to programmers. 

Thus, our research is potentially more helpful for systems developed using newer 

programming technologies such as object-oriented programming. 

1.7 Outline of this dissertation 

In Chapter 2, we describe our method that uses system tests in order to infer 

relationships between software functions and source code. We first define the three entities of 

the model: source code, software function, and program input. Then, we explain how 

program profiling helps sampling Exercise relationships, and we present our technique based 

on annotated grammar for sampling Activate relationships. Chapter 2 then explains how our 

method combined Exercise and Activate relationships to predict the ripple effect of a change 

at a selected source code position on software functions. We conclude Chapter 2 with a 

presentation of Sonar, a prototype tool that implements our method. In Chapter 3, we identify 

the conditions needed in order to compute safe predictions. In Chapter 4, we present our case 

studies that determine how well Sonar compute predictions when the sampled Exercise and 

Apply relationships are small. Chapter 5 reviews in more detail the related works presented in 

this introduction. Chapter 6 presents conclusions and plans for our future works. 



2 Predicting Potentially Affected software functions 

using system tests 

We present a method to predict the software functions potentially affected by a 

change introduced at a selected position of source code. Before addressing the particularities 

of our method, we first describe the domains of inputs (source code components) and of 

outputs (software functions) in Section 2.1. 

We then break down the presentation of our method into two steps. Section 2.2 

explains how to sample Exercise relationships between system tests and source code 

components and how to sample Activate relationships between system tests and software 

functions. In Section 2.3, we explain how to combine Exercise and Activate relationships to 

infer Potentially Affect relationships. Our method uses these latter relationships to compute 

its predictions. 

Here are some definitions and notations used throughout this dissertation. 

Definition: •  A set of elements contains zero or more elements in no particular order and 

no element is repeated. A Singleton is a set with one element. 

•  ℘ (S) denotes the power set of set S. It is the set of all subsets of S including 

S. 

•  A sequence of elements contains zero or more elements in a specific order, 

and an element may appear several times within the sequence. 

•  An ordered pair of two elements a and b denoted ba,  is a sequence of two 

elements, where a is the first element and b is the second element. 
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•  A collection of elements is a set or a sequence of elements. 

•  R: A ∝  B defines a relation R between two spaces, namely, A and B. R 

specifies the relationships between elements of A and B. A relation may be 

one-to-one, one-to-many, many-to-one, or many-to-many. Set-theoretic 

notation can be used to define the domain of a relation R. Every element of R 

is an ordered pair ',' BA , where A'⊆  A and B'⊆  B.  

2.1 Source code components and software functions 

2.1.1 Source code components 

Our method is to help during a program understanding exercise. Thus, the source 

code implementation of a system exists. Below, our definitions explain how the source code 

is divided into components.  

Definition: •  Source code of a system consists of all files that implement a system and 

that a programmer is allowed to change. 

•  A source code component is a partition of source code. A source code 

component may be a file, a procedure, a basic block, a statement, or an 

expression.  

•  A basic block is “a sequence of consecutive statements in which flow of 

control enters at the beginning and leaves at the end without halt or 

possibility of branching except at the end” [Aho et al. 1986, page 528].  

Usually, source code components do not share pieces of source code with other 

source code components. In our work, we have partitioned source code into basic blocks. In 

the case of basic block, source code is not shared between source code components. Given 
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that in our research we only use source code components at the level of basic blocks, we 

interchangeably use these two terms.  

To enable interprocedural source code analysis, the above definition of basic block is 

adapted as follows:  

•  Two basic blocks are added to every procedure definition. The first basic block 

corresponds to the start of a procedure. This first basic block is sometimes associated to 

the syntax that specifies the signature of the procedure. The second basic block 

corresponds to the end of the procedure. It may be associated to the symbol (or reserved 

word) that indicates the end of a procedure. 

•  Every procedure call c in a procedure p generates two basic blocks, one representing the 

entry from p to the target procedure c and the other representing the exit back from the 

target procedure c to p.  

These adaptations enable a precise recording of the basic blocks exercised during the 

execution of a software system.  

2.1.2 Software functions 

Software functions are short names given to the functional behaviors of a system. On 

the same level, we may also describe a software function as a name given to a set of 

references to portions of the software documents that document a particular functional 

behavior.  

Definition: •  A software function f of a software system is the name given to a task 

performed by a software system expressed from the end-user’s viewpoint.  

This definition is general, as it does not specify the granularity a task must have in 

order to be considered a software function. The only specificity of the definition is that a task 
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must be specified from an end-user’s viewpoint. Thus, when listing the software functions 

offered by a system, one is free to enumerate the functional behavior of a system no matter 

how generic or specific they may be. For example, a software function of a bank automated 

teller machine (ATM) may be as generic as perform monetary transaction or as specific as 

that expressed in a test scenario such as attempt to overdraw cash from checking.  

Our definition of software function, however, excludes the internal behaviors of the 

system transparent to the end-user, as well as the nonfunctional behaviors. For example, the 

behavior perform lexical analysis performed by a compiler is transparent to the compiler 

user; therefore, it is not considered a software function. Our future efforts will work on 

including these behaviors as a part of our method.  

We prefer introducing the new term software function rather than using functional 

behavior or functionality because the term function naturally combines with the verb activate, 

which we later use to refer to the relationships between software functions and system tests. 

We also rule out the term feature since it is used to refer to nonfunctional characteristics of a 

system, which our definition currently excludes.  

The remainder of this section uses a bank ATM example to show how to materialize 

and organize software functions in a tree. In this particular example, we extract the list of 

software functions shown in Table 2 from the textual description of the functional 

requirements of the bank ATM given in Table 1.  
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Table 2 is a flat list. However, some software functions are not totally different from 

each other; hence, it is more convenient to classify them in a hierarchy built using a 

generalization/specialization relationship between software functions. By definition of the 

Table 1: A list of functional requirements of our bank ATM. 

Functional requirements of our bank ATM 

1. The ATM must first authenticate the customer by matching the card number and PIN.
2. If the PIN validation fails three straight times the ATM ejects the card. 
3. Once the PIN is validated, the ATM must allow the customer to perform one or more 

of the following operations: 
•  Check balance of checking or savings account tied to current bank card. 
•  Withdraw cash from the checking or savings account tied to current bank card by 

specifying a sum that is a multiple of $10. 
•  Deposit a check in the checking or savings account tied to current bank card. 
•  Transfer money from an account associated with the bank card to any other 

account. 
4. After a successful operation, the customer must be able to request a receipt. 
5. The customer must be able to cancel an operation at any time before it has started 

being processed. 
6. Failure of any operation, beside a failed PIN validation, must generate an error 

message on the screen that requires the customer’s acknowledgement. Once 
acknowledged, a receipt detailing the failure is printed. Hence, on failure a receipt is 
always printed. 

 
Table 2: A list of software functions created from requirements of our bank ATM. 
f1 Enter PIN f11 Abort withdrawal from 

savings 
f21 Process transfer from savings 
to checking 

f2 Abort PIN f12 Process deposit operation f22 Abort transfer from savings 
to checking 

f3 Process a balance operation f13 Process deposit in checking f23 Process transfer from savings 
to other 

f4 Process balance from 
checking 

f14 Abort deposit in checking f24 Abort transfer from savings 
to other 

f5 Process balance from savings f15 Process deposit in savings f25 Process receipt operation 
 

f6 Abort balance operation f16 Abort deposit in savings f26 Start another transaction 
f7 Process withdrawal operation f17 Process transfer from 

checking to savings 
f27 Process operation on 
checking 

f8 Process withdrawal from 
checking 

f18 Abort transfer from checking 
to savings 

f28 Process operation on savings 

f9 Abort withdrawal from 
checking 

f19 Process transfer from 
checking to other 

f29 Process a money transaction 

f10 Process withdrawal from 
savings 

f20 Abort transfer from checking 
to other 
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generalization/specialization relation, a hierarchy of software functions always holds the 

following properties:  

Property: •  If a software function f is a generalization of f' then  

•  f is an ancestor of f' in the hierarchy and 

•  The activation of f' automatically means that f (and all other ancestors 

of f') is also activated. 

•  A hierarchy of software functions is either a tree or an acyclic graph 

because a specialization cannot be more general than its ancestors. 

Such hierarchical organization facilitates the assessment of a prediction computed by 

our method. In particular, one can directly know that an entire subtree of software functions 

is unaffected by simply viewing that the root software function of that subtree is not affected. 

For example, in our ATM bank, if a prediction shows that a change does not affect the 

process withdrawal software function, then we automatically know that the specialized 

versions of that software function process withdrawal from checking and process withdrawal 

from savings are not affected. When structuring software functions in a hierarchy, this 

information is directly visible as compared to presenting them in a flat list such as Table 2. 

The generalization/specialization relationship between software functions is the basic 

concept of our classifications; however, there exist different techniques to specify such an 

organization. In particular, one may use object-oriented, function-oriented, and state-oriented 

viewpoints to determine whether two software functions are related. In the object-oriented 

model, one specializes the hierarchy of software functions according to the objects and their 

attributes. In the case of the function-oriented classification, the focus is on the action 

performed by software functions. In state-oriented classification, the system functionality is 
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partitioned according to the different states that the system can be in. Some software 

functions can only be activated when the system is in one particular state and not any other. 

These three classification techniques are also the most prominent ways of determining 

suitable organizations of the requirements of a system [Davis 1993, page 21].  

Table 3 shows the three types of hierarchies for the list of software functions given in 

Table 2. Each hierarchy provides a different point of view on the world of the bank ATM’s 

software functions. One may also construct a hybrid hierarchy where more than one of the 

three classification techniques is used to organize a group of software functions. A resulting 

hierarchy of software function often has a tree structure, but it may also be an acyclic graph; 

this is usually the case when organizing software functions using a hybrid hierarchy.  

Finally, we define the concept of complete specialization. We later use that concept to 

express an interesting property between software functions and their source code 

implementation.  

Definition: A set F of software functions is a complete specialization of a software 

function f if the activation of f also implies the activation of at least one fi∈ F. 
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Table 3: Software functions organized in function-oriented, object-oriented, and state-
oriented hierarchies.  

Function-oriented hierarchy  Object-oriented hierarchy State-oriented hierarchy 

 

Enter PIN (f1)

from checking (f4)

from savings (f5)

Request Balance (f3)

From Checking (f8)
From Savings (f10)

Withdraw (f7)

From Checking (f13)
From Savings (f15)

Deposit (f12)

From Checking
    to savings (f17)
From Checking
    to others (f19)
From Savings
    to checking (f21)
From Savings
    to others (f23)

Transfer

Print receipt (f25)

Start another transaction (f26)

Process

Same as subtree
   as Process except
   in this subtree actions
   are aborted.

Abort

Bank ATM

 

 

Enter PIN (f1)
Abort PIN (f2)

PIN

Process balance enquiry (f4)
Process withdraw from (f8)
Process deposit on (f13)
Process transfer from (f17/f19)
Process transfer to (f21)
Abort withdraw from (f9)
Abort deposit on (f14)
Abort transfer from (f18/f20)
Abort transfer to (f22)

Checking

Same subtree as Checking
   Except here action are
   performed on savings.

Savings

Account

Print (f25)

Receipt

Start another (f26)

Transaction

Bank ATM

   

 

Enter PIN (f1)
Abort PIN (f2)

PIN validation

Balance from checking (f4)
Balance from savings (f5)
Abort balance enquiry (f6)

Enquiry transacation mode

Process withdraw from checking (f8)
Abort withdraw from checking (f9)
Process withdraw from savings (f10)
Abort withdraw from savings (f11)
Process deposit in checking (f13)
Aborted deposit in checking (f14)
Processed deposit in savings (f15)
Aborted deposit in savings (f16)

One account transaction

Processed transfer from
   checking to savings (f17)
Aborted transfer from
   checking to savings (f18)
Process transfer from
   checking to other (f19)
Aborted transfer from
   checking to other (f20)
Processed transfer from
   savings to checking (f21)
Aborted transfer from
   savings to checking (f22)
Process transfer from
   savings to other (f23)
Aborted transfer from
   savings to other (f24)

Two account transaction

Print receipt (f25)

Print receipt mode

Money transaction mode (f29)

Transaction mode

Start another transaction (f26)

Next transaction mode

Bank ATM
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As a final note, we observe that there is no direct relationship between software 

functions and function points. Function points estimate the effort needed to implement a 

system [Albrecht and Gaffney 1983]. They do so by categorizing and counting the inputs and 

the outputs of a future system. On the other hand, in our case, software functions are not 

addressing a future yet unimplemented system, but they are a nomenclature of the functional 

behaviors of an exiting system. Eventually, we may say that by estimating the effort to 

implement a system, function points also gauge the effort needed to implement the software 

functions of a system. However, there is not a quantitative correlation between a chunk of 

function points and a software function. 

2.2 Activate and Exercise: the basic relationships  

Our method proposes using system tests to relate source code components to software 

functions. System testing verifies whether a completely integrated software system conforms 

to the requirements. Therefore, a system test corresponds to the execution of a particular 

system test scenario. System testing activity implies two things: 

1. Software functions are being tested by system tests. We say that a system test 

activates the software functions being tested; therefore, there exists Activate relationships 

between system tests and software functions. 

2. A system test requires the execution of the system. During a test run, it is possible to 

record the source code components exercised. We say that there exist Exercise 

relationships between software tests and source code components. 

In section 2.2.1, we explain how program profiling helps in sampling Exercise 

relationships. In Section 2.2.2, we describe a technique to compute some Activate 

relationships. 
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2.2.1 System tests exercise source code components 

We first define the Exercise relation that exists between system tests and source code 

components. We then explore how program profiling helps automate the sampling of 

Exercise relationships between system tests and source code components.  

Definition: CTExercise ∝:  defines a set of relationships between system tests and source 

code components. T is the space of all potential system tests for a system, and C is 

the set of all the source code components that implement a system.  

For most systems, there exist an infinite number of potential system tests; in turn, 

there exist infinitely many potential Exercise relationships. The program profiling technique 

presented below enables the sampling of a finite number of Exercise relationships.  

Program profiling consists of recording information about the execution of a software 

system with a particular test phrase. The information recorded is called an execution profile. 

An execution profile collects information such as the source code components exercised 

during a run, the memory usage, the CPU time spent in a particular procedure, etc. For our 

method, we are only interested in profiling the source code components exercised during an 

execution. We refer to a collection of the source code components exercised during a 

particular run as an exercise trace.  

Different profiling techniques record exercise traces in different formats. The 

following are the most common profiling techniques and their corresponding exercised trace 

format: 

•  Node profiling records an exercised trace as a set of source code components. 

•  Branch profiling (or edge profiling) records an exercised trace as a set of ordered pairs 

21 ,cc  where the flow of execution has gone from c1 to c2.  
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•  Path profiling records an exercise trace as a sequence of source code components. There 

exist several path-profiling techniques such as intraprocedural or interprocedural path 

profiling.  

An important observation must be made at this time. The current definition of 

Exercise states that every Exercise relationship relates a system test to a source code 

component, not to an exercised trace. Hence, given a set of Exercise relationships sampled by 

profiling the execution of system tests, it is possible to find all the source code components 

related to a particular system test. However, the sequencing in which source code 

components were exercised is lost. In other words, given the current definition of the 

Exercise relation, the information available in Exercise relationships is as if they were 

collected using node profiling. The extra sequencing information that branch and path 

profiling techniques save would actually be lost. The next important fact is that, as we will 

see in Section 2.3, our method to predict the software function potentially affected does not 

make use of sequencing between source code components. Thus, no harm is done to the 

applicability of our method when simply using node profiling. 

However, as we will see in Chapter 3, if we want the resulting predictions made by 

our method to have certain properties, system tests will have to achieve a source code 

coverage expressed in terms of path. We will present more detail on path profiling in Chapter 3.  

We further observe the following about program profiling and its use for sampling 

Exercise relationships. Program profiling collects an exercise trace, but an exercise trace by 

itself is not an Exercise relationship. To sample Exercise relationships, a link between a 

system test and each source code components of an exercised trace must be saved. Thus, we 

must have a unique way to refer to a system test. This is achieved by assigning a unique 
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name to every system test. Normally, system tests are given unique names as they are 

executed or as they are specified in the test documentation. Using system test’s unique names 

and their corresponding exercise traces, it is then possible to save Exercise relationships. 

Let us now illustrate how Exercise relationships are created between a system test and 

the source code components of our bank ATM. First, we present the system test 

specification. We then show the exercise trace created when the system test is executed. 

Finally, we list the Exercise relationships sampled between the system test and the source 

code components.  

System test with unique name t consists of the following interaction: The customer  

1. Enters a valid PIN, 

2. Withdraws $100 from checking successfully (this implies the customer has more than 

$100 in his/her account),  

3. Requests no receipt, and  

4. Does not start another transaction. 

Figure 2 shows the exercise trace created when executing system test t. When listing 

the Exercise relationships below, we use the notation Xi..Xj to delimit a source code 

component (or basic block) that starts on line i and terminates on line j of procedure X. When 

the source code component starts and ends on the same line i, we simply denoted it Xi. Using 

set notation to enumerate the Exercise relationship created using the process above, we get 
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Figure 2: Highlighted lines of source code are the exercised trace of system test t.  

 
Main process of bank ATM
Begin of main process

M1 card_info = readCard();
M2 success = validateProcess(card_info);
M3 if (success = False) then
M4 sendCard();
M5 exit;
M6 endif
M7 cust_rec =
M8 bank_db.getCustomerRecord(card_info);
M9
M10 repeat {
M11
M12 op = doOperationMenu();
M13 // abort then goto next op.
M14 if (op = ABORT) then
M15 goto NextOp;
M16 else // valid op then as for account
M17 acnt = getAccount(SIMPLE_MENU,
M18 cust_rec);
M19 if (acnt = null) then
M20 goto NextOp;
M21 endif
M22 endif
M23 // Withdraw op.
M24 if (op = WITHDRAW) then
M25 from_acnt = acnt;
M26 to_acnt = null;
M27 // Deposit op.
M28 else if (op = DEPOSIT) then
M29 from_acnt = null
M30 to_acnt = acnt
M31 // Balance op.
M32 else if (op = BALANCE) then
M33 from_acnt = acnt;
M34 // Transfer op.
M35 else if (op = TRANSFER) then
M36 from_acnt = acnt;
M37 // for transfer need target account
M38 to_acnt = getAccount(COMPLEX_MENU,
M39 cust_rec);
M40 if (to_acnt = null) then
M41 goto NextOp;
M42 endif
M43 endif
M44 if (op != BALANCE) then // money op.
M45 amount = doAmountMenu();
M46 if (amount = ABORT) then
M47 goto NextOp;
M48 else if (op = WITHDRAW) and
M49 (amount%10 != 0) then
M50 doAmountError();
M51 goto NextOp;
M52 endif
M53 performMoneyTransaction(from_acnt,
M54 to_acnt, op, amount);
M55 else // balance op.
M56 bal_str = from_acnt.getInfoStr();
M57 printReceipt(bal_str);
M58 endif
M59
M60 // jump here in case of failure
M61 NextOp:
M62 next = doNextOpMenu();
M63 until (next = False) // end of repeat loop
M64 sendCard();
End // of the main process

Boolean validationProcess(CardInfo c info)
Begin
P1 success = False;
P2 attempt = 0
P3 repeat {
P4 pin = doPINMenu();
P5 attempt = attempt + 1;
P6 if (pin = ABORT) then
P7 break;
P8 endif
P9 success = c_info.validateCustomer(pin);
P10 if (success = False) then
P11 doPINErrorMenu();
P12 endif
P13 until (success) or (attempt = 3)
P14 return success;
End

Account getAccount(int menu_type,
CustomerRecord cust_rec)

Begin
A1 acnt_no = doAcntMenu(menu_type);
A2 the_acnt = null; //Assume failure or abort
A3 if (acnt_no = CHECKING) then
A4 msg = cust_rec.getChecking(the_acnt);
A5 else if (acnt_no = SAVINGS) then
A6 msg = cust_rec.getSavings(the_acnt);
A7 else if (acnt_no = OTHER) then
A8 other = doAccountNoMenu();
A9 the_acnt =
A10 bank_bd.getAccountByNumber(other);
A11 endif
A12
A13 // print error message
A14 if (the_acnt = null) then
A15 str = msg.getFormatedString();
A16 printReceipt(str);
A17 endif
A18 return the_acnt;
End

void preformMoneyTransaction(Account from acnt,
Account to_acnt, int op, int amount)
Begin
T1 if (op = WITHDRAW) then
T2 msg = from_acnt.withdraw(amount);
T3 if (msg.noError()) then
T4 sendCash(amount);
T5 endif
T6 else if (op = DEPOSIT) then
T7 msg = to_acnt.deposit(amount);
T8 else if (op = TRANSFER) then
T9 msg = from_acnt.transfertTo
T10 (to_acnt, amount);
T11 endif
T12 if (msg != null) and (msg.error()) then
T13 str = msg.getFormatedStr();
T14 printReceipt(str);
T15 else
T16 // Ask if customer wants receipt
T17 receipt = doReceiptMenu();
T18 if (receipt = YES) then
T19 str = msg.getFormatedStr();
T20 printReceipt(str);
T21 endif
T22 endif
End
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{  (t, M1), (t,M2), (t,M3), (t,M7..M8), (t,M12), (t,M14), (t,M17..M18), (t,M19, 

M24), (t,M25..M26), (t,M44, M45), (t,M46), (t,M53..M54), (t,M61), (t,M62), 

(t,M63), (t,M64), (t,P1..P2), (t,P4), (t,P5..P6), (t,P9), (t,P10), (t,P13), (t,P14), 

(t,A1), (t,A2..A3), (t,A4), (t,A14), (t,A18), (t,T1), (t,T2..T3), (t,T4), (t,T12), 

(t,T17, (t,T18)   } 

The enumeration above only specifies the Exercise relationships sampled by the 

execution of system test t. When executing many system tests, many more Exercise 

relationships can be collected in the same fashion. However, that sample is never complete 

since there exist infinitely many potential Exercise relationships in an Exercise relation. In 

other words, for any practical purpose, only a finite number of system tests are executed; 

thus. the Exercise relationships sampled never constitute a complete Exercise relation. 

The Exercise relation is many-to-many. In other words, a system test relates to many 

source code components. Inversely, many system tests may exercise the same source code 

component.  

In the above explanation, we have only considered the case where a system test is a 

complete execution of the system. Indeed, in our example, system test t specifies a list of 

interactions that corresponds to a complete customer session from entry to exit of the ATM. 

In other words, a system test is an indivisible unit. Each first element of Exercise 

relationships refers to the unique name of a complete system test. In certain circumstances, it 

may be desirable to partition a system test into several sequences of interactions, for example 

when some sequences of interaction are totally unrelated to each other.  

Sampling Exercise relationships between partial system tests and their corresponding 

source code components only require a simple adaptation to the profiling technique if a 
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system is not distributed and runs in a single process/thread. In fact, for such a system, the 

exercise sequence of source code components respects the order of system test interactions. 

However, in the case of multi-threaded and distributed systems, the change to the profiling 

technique is nontrivial. For such systems, the exercise sequence of source code components 

does not automatically follow the order of user interactions. A first and a second series of 

interactions specified by a system test may exercise source code components concurrently in 

different processes or different threads. Adding interprocess communication to this scenario 

makes sampling Exercise relationships for a partial system test even more complex. Our 

intent is to study the applicability of our method with complete system tests. So, we leave 

changes to the profiling technique for the future.  

Let us now briefly mention two techniques that enable performing program profiling. 

We refer to the first method as source code instrumentation profiling and the second as 

interpreted profiling. Source code instrumentation consists of adding code to the source code 

of a system at compile time. This extra source code assigns a unique identification to each 

source code component. Subsequently, when the system is executed, the unique identification 

number of the source code components exercised during a particular run is saved into a file 

(or database). Source code instrumentation techniques were pioneered by research in source 

code debugging [Balzer 1969, Hanson 1978, Tolmach and Appel 1990, Agrawal, et al. 

1993]. They later found applications in testing, namely test case coverage and regression test 

selection [Fischer 1977, Fischer, et al. 1981, Harrold and Soffa 1989, Binkley 1995, 

Rothermel and Harrold 1997, Wong, et al. 1997, Ball 1998, Agrawal 1999]  

The interpreted profiling technique only applies to a system that interpreted. An 

interpreter executes the source code of the system by interpreting it at run time. When 
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instructed to profile execution, the interpreter can additionally collect execution profiles. For 

example, the java virtual machine (JVM) has a built-in capability for performing profiling. 

The interface between the profiler and the JVM is defined in the profiling interface JVMPI. 

This enables a third party to write a profiler that is connected to the JVM at run time.  

2.2.2 System tests activate software functions 

We say that a system test activates the software functions being tested.  

Definition: FTActivate ∝:  defines the relationships between t elements of T and of F, where 

T is the space of all potential system tests for the software system, and F is the 

space of software functions of the software system.  

As for the Exercise relation, the Activate relation also contains infinitely many 

relationships between software functions and input phrases. This is derived from the fact that 

there often exist infinitely many potential system tests for a system.  

The Activate relation is many-to-many. That is, a system test may, and often does, 

activate many software functions. Inversely, a particular software function may be activated 

by many system tests.  

Unlike Exercise relationships whose sampling must be automated due to the large 

number of source code components, Activate relationships may be collected manually. 

Indeed, a well-engineered project that follows IEEE 829-1983 Software Documentation 

Standards directly or indirectly specifies Activate relationships [IEEE 1983]. The IEEE 829 

standard suggests that test documentation start by the creation of a system test plan at the 

same time as the requirements analysis phase. The next step is to create a test design 

specification from which a test case specification is then built. Each test design specifies the 

features—or software function in our case—of the system the test is addressing. Test cases 



 28

are then generated for each test design. Hence, when respecting the IEEE 829 standard, 

relationships between software functions and test cases can easily be extracted from test 

documentation. When performing a system test, a tester follows the explanations provided by 

a test case specification; hence, there exists a direct relationship between the actual test and 

the test case.  

Independent of a project respecting the IEEE 829 standard, actual tests will frequently 

be coded as scripts. A test engine enables running these scripts; as a result, the actual test 

may be executed automatically. Coding test in scripts is possible irrespective of a system’s 

interface. Test scripts can be created whether the system is command line driven, interactive 

with text menus, or interactive with a graphical user interface (GUI). Several commercial 

testing tools such as Rational®Robot by Rational or WinRunner™ by Mercury Interactive 

Corporation enables the recording of interactions between a tester and a GUI system into 

scripts. 

Over time, companies have accumulated large regression test suites for each of their 

software applications. In the cases where a large quantity of such test scripts is available for a 

particular application but where the IEEE 829 standards have not be followed, it is necessary 

to recover the Activate relationships between the test scripts and the software functions of a 

system in an automated manner. Below we present such a technique.  

Recovery of Activate relationships 

The recovery method assumes the existence of a series of system tests and of a set of 

software functions. It analyzes each system test and then determines the software functions it 

activates. In order to explain our recovery technique, we first specify the information found 

in a system test.  
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2.2.2.1 System tests 

When IEEE 829 standards are respected, system test documentation found in the test 

design specification and the test case specification contains all necessary information to 

determine the software functions activated by a system test. Among others, the pieces of 

information found in the system test documentation are the following: 

•  A series of interactions with the system and information on data to be used by the 

tester.  

•  A set of input files. 

•  A set of preconditions that must be satisfied in order to execute the test. These 

preconditions define what state the system must be in before performing the test. 

They are specified either in textual descriptions or in formal specifications. 

•  A list of the expected outputs. 

•  A set of post-conditions that the state of the system must satisfy after the test.  

However, when the IEEE 829 standards on software test documentation are not 

respected, that information is not available. In many cases, the only system test information 

available is test scripts and the information needed to run the test script, such as input files 

referred to by the test scripts or the names of the databases to connect to when running the 

test scripts.  

The fact that only a limited amount of information is available seems limiting. Then 

again, we have found that many Activate relationships can be recovered by only referring to 

test scripts and their associated input files. 
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The following example illustrates the system test information available to a recovery 

technique. We use our bank ATM system for this illustration. As a side note, we imagine 

there exists a test engine with the ability to run the system test script in Figure 3.  

First, the caption shows that the system test has the name 

Withdraw_checking_success1. The inside of the system test script contains two lines. The 

first line specifies the database needed to conduct the system test: bank1.db. The second line 

contains the following list of information: “1234 enter” specifies a PIN number needed for 

authentication, “withdraw” that the transaction is a withdrawal, “checking” that the 

transaction is to be performed on the customer’s checking account, and “40 enter” that the 

sum of the transaction is $40. The first “no” specifies that no other transaction is to be 

started, and the second “no” specifies that the customer requested no receipt. 

2.2.2.2 Recovery techniques 

We actually developed two recovery techniques. The first technique has more power 

but requires the creation of a grammar that expresses the full property of the syntax of test 

scripts. A grammar is defined by a set of production rules made of terminals and 

nonterminals from which one is the start non-terminal. We illustrate a grammar for our bank 

ATM later. The second recovery technique does not require such grammar and, for most 

software application, retains enough power for the recovery of Activate relationships. A 

description of the first technique appeared in the proceedings of the international workshop 

on program comprehension 2000 [Deprez and Lakhotia 2000]. 

Database: “bank1.db” 
TestScript: “1234 enter withdraw checking 40 enter no no” 

Figure 3: Test script named Withdraw_Checking_success.1. 
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For the moment, we focus our attention on recovering Activate relationships found in 

test scripts, and we ignore the information specified next to the test script part of a system 

test such as the first line of Figure 3, which indicates the name of the database to use when 

running the script. Afterward, we address the cases where our technique can sometimes use 

the information found besides the test scripts.  

In short, our first technique works in two steps.  

1. A grammar able to parse a test script is built.  

2. Software functions are specified as parse tree patterns where a parse tree pattern is 

directly associated to the rules of the grammar. 

Thereafter, the software functions activated by a system test can be determined by 

checking if the parse tree pattern associated with the software function is present in the parse 

tree of a particular test script. If true, executing the test script activates the particular software 

function. 

Figure 4 illustrates the first step of our technique by giving a grammar that parses the 

test script of our bank ATM. The grammar is given in Backus Naur Form (BNF). BNF has 

the power to express context free languages; however, the actual ATM language is regular. 

We utilize BNF because it is a convenient notation, clearer than its regular expression 

counterpart. In Figure 4, regular black font represents nonterminals, bold font represents 

terminals, | means or, * means zero or more occurrences, + means one or more occurrences, 

and ε means empty string.  
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Parse tree patterns enable parsing to detect the syntactic features of a test script; 

therefore, we call the association of a grammar to a partial parse tree featured grammar. One 

can then create a featured grammar for our bank ATM by associating parse tree patterns to 

the ATM software functions.  

In Figure 5, we illustrate parse tree patterns associated with two software functions, 

namely, get balance from checking, and process withdrawal operation. The software 

function get balance from checking is represented by the following partial derivation: 

Transaction ⇒ Balance Account ⇒ Balance Checking. The software function processed 

withdrawal operation is represented by the following partial derivation: MoneyTrans ⇒ 

Grammar for analysis of input space coverage of the ATM: 

Session ::= Pin Ops

Pin ::= D D D D Enter | D* Abort

Ops ::= Transaction No| Transaction Yes Ops | Abort | εεεε

Transaction ::= Balance Account | MoneyTrans Ticket | Abort

MoneyTrans ::= Transfer Account TransAcnt Amount |
Withdraw Account Amount |
Deposit Account Amount |
Abort

TransAcnt ::= Account | Others AccNum | Abort | εεεε

Account ::= Checking | Savings | Abort

AccNum ::= D+ Enter | D* Abort

Amount ::= D+ Enter | D* Abort | εεεε

Ticket ::= Yes | No | εεεε

D ::= 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 0

 
Figure 4: BNF grammar for parsing test scripts of our bank ATM. 
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Withdraw Account Amount ⇒ Withdraw (Checking | Savings) Amount ⇒ Withdraw 

(Checking | Savings) D+ Enter.  

We now give a formal definition of featured grammar.  

Definition: FS = (G, F, ϕ) is a feature syntax of a system where 

•  G denotes a regular or context free grammar that describes the syntax of a 

particular software application test script,  

•  F denotes the set of software function of the software application, and 

•  ϕ:T∝ F is a relation that maps a partial derivation tree to a software function. 

The ϕ relation is a many-to-many for the following reasons. In certain cases, a 

software application implements several ways for the user to activate a particular software 

function, for example, through menu interaction or using shortcut keys. Therefore, the ϕ  

function sometimes maps different partial derivation trees to a software function. Inversely, it 

is possible that ϕ maps one partial derivation tree to several software functions. This situation 

arises when our recovery technique cannot differentiate between two or more software 

functions. This happens when the difference between software functions is not at the syntax 

level but at the semantic level. We illustrate such a scenario below. 

f1: get balance from checking 

Transaction 

Balance Account 

Checking 

f2: processed withdrawal operation 

MoneyTrans 

Account Amount Withdraw 

Checking | Savings Enter D+ 

 
Figure 5: Derivation trees for two features based on the grammar of Figure 8. 
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Let us assume that the list of our bank ATM software functions contains the two 

software functions process withdraw from checking and overdraw when withdrawing from 

checking. The test script given in Figure 3 could activate either one of these two software 

functions. Unfortunately, our technique cannot determine which software function is 

activated since it depends on the amount of money in the customer’s checking account before 

running the test script. Of course, the information on the sum of money in an account is 

available in the bank database, but currently our technique does not make use of data stored 

in database records. The fact that our technique cannot differentiate between the two software 

functions is reflected in the many-to-one correspondence from the two software functions to 

the same parse tree pattern. 

Constructing a featured grammar for a particular application is not necessarily a 

challenging task. However, it introduces work not currently practiced during software 

development. For real size systems, constructing a complete featured grammar and the 

relation ϕ may take significant time. Moreover, adding to the application’s user interface 

requires updating the featured grammar to keep it in-sync with its corresponding software 

application. Consequently, the software industry will not likely adapt its software 

development cycle for a technique that requires additional tedious work.  

Practitioners are more likely to adopt an approach that builds structures incrementally 

on-demand. Thus, we propose an alternative method where the construction of a grammar for 

the complete syntax of test scripts is not needed. Such an approach can be developed by 

observing the following. The presence of a specific pattern of tokens in the test script of a 

system test is often sufficient for determining the activated software functions. For instance, 

if a test script of our bank ATM has the tokens Balance and Checking in sequence, then the 
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system test activates the software function get balance from checking. In such case, simple 

text matching is sufficient to determine that the software function get balance from checking 

is activated.  

In this new technique, one associates software functions with regular expression 

patterns. These patterns only need to specify a partial regular expression with the few tokens 

to match in script in order to determine the activation of a software function. That is, the 

patterns only need to specify regular expressions that parse a part of the test script. 

Implementing this second technique is straightforward with engines such as UNIX 

egrep. That is, a programmer associates regular expression patterns to software functions, 

then, for each pattern, egrep identifies the test scripts that match the pattern.  

Figure 6 presents some correspondence of function ϕ between the bank ATM 

software functions and some partial regular expressions. In our notation of Figure 6, words in 

single quotes are tokens found in the test script. The other symbols follow the notation of 

regular expression understood by the UNIX function regexp.  

Certain software functions need more careful analysis than others. For example, 

verifying whether a test script activates the withdraw function only requires checking for the 

‘Withdraw’ token. In contrast, verifying if an input phrase applies the software function print 

 Partial Regular Expressions Software Functions Selected 
(a) ‘Checking’ f24 
(b) ‘Deposit’ ‘Savings’ [0-9]* ‘Enter’ f12 
   
(c) ‘Withdraw’ (‘Savings’|’Checking’) [0-9]* ‘Enter’ f27 
(d) ‘Deposit’ (‘Savings’|’Checking’) [0-9]* ‘Enter’ f28 
   
(e) ‘No’ ‘Yes’ f23 

Figure 6: Regular expression patterns of software functions of our bank ATM.  
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a receipt is more intricate. In this case, we cannot merely specify the ‘Yes’ token because the 

same token is also used to specify the start of another transaction. Thus, in this case, we must 

specify a partial regular expression that ensures the ‘Yes’ token matches the function request 

receipt and not that of initiate another transaction. The partial regular expression 

corresponding to the software function request receipt is shown on line (e) of Figure 6. 

Partial regular expressions can be developed incrementally on-demand; therefore, 

they are more likely to be adopted by the software industry. While most scripting languages 

support regular expressions, writing complex regular expressions is not always easy. For a 

complex but highly structured input phrase, one may use tree-based regular expressions, such 

as those provided by tawk [Griswold et al. 1996]. Such regular expressions have been 

successfully used in lightweight techniques for reverse engineering information from 

programs [Griswold et al. 1996, Ernst et al. 1997].  

2.2.2.3 Applicability and limitation of our recovery technique 

The language of the ATM is regular; however, the language of other applications, as 

per the Chomsky hierarchy of languages, may be regular, context-free, context-sensitive, or 

Turing enumerable. Turing enumerable languages form the largest class. They subsume 

context-sensitive languages, which subsume context-free languages, which in turn subsume 

regular languages.  

In theory, the language accepted by a software system may be Turing enumerable or 

context-sensitive. However, the syntax of test script languages for most software application 

can usually be described using context-free or regular grammar. There exist tools for 

automatically generating parsers for regular and context-sensitive grammars. These tools 

may easily be adapted for our purpose. For example, using a platform such as Software 
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Refinery, one can easily specify a context-free grammar that describes the language of a 

particular software application’s test script. Moreover, the Refine language has the 

capabilities to specify parse tree pattern using the rule construct. Thus, software refinery 

would be a practical tool for implementing our recovery technique. Other parser generators 

that allow specifying attribute grammars can also be used for implementing our recovery 

technique. As mentioned previously, implementing our second technique is straightforward 

with regular expression matching tools such as UNIX egrep.  

So far, we have shown how both of our techniques recover the Activate relationships 

between software functions and the test script portion of system tests. However, we have 

ignored the rest of the information found in a system test, such as input files referred to by a 

test script or the names and locations of databases used by a test script. That extra 

information may sometime reveal the activation of additional software functions. Below, we 

explain how and when our recovery technique can be extended to determine the software 

functions of information found outside test scripts.  

We first give a description of the extension to our technique, and then we give a brief 

example. The extension associates additional featured grammars to input files requested by 

test scripts. The content of an input file must be in a known format so a grammar can be 

created for the particular format. Once the featured grammar for a given format is created, 

our technique works exactly as for test scripts. In other words, parsing the content of an input 

file with the associated featured grammar determines the software functions activated by that 

input file. We illustrate this scenario below. 

Let us assume that  

•  The software application of interest is an HTML viewer;  
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•  A test script specifies the following operation: Open the input file test.html in the viewer; 

and  

•  The content of test.html sets the title of the page in the html header section and specifies a 

header of level 1 in the body section.  

Referring only to the test script, our technique would only identify the activation of 

software function open html file. However, when our technique also uses the appropriate 

featured grammar associated to the HTML format, it can also determine that the content of 

test.html activates the software function set title and the software function display heading 1. 

In this illustration, our second technique, which uses regular expression pattern, can also 

recover many software functions associated to the HTML syntax.  

Unfortunately, creating a featured grammar or regular expression patterns is not 

always possible for the simple reason that the application programmer does not always know 

the input file’s formats. For example, a programmer does not know the format used by a 

database management system (DBMS) for storing data. To interact with data in a database, 

the programmer only needs to know the SQL language. In such cases, our technique cannot 

analyze the data of the database to determine if they activate software functions.  

2.2.2.4 Works related to our recovery technique 

Prior efforts used grammars related to the input space of a software application. 

However, their purpose was not to recover Activate relationships but instead to generate input 

phrases, which could later be used to test the application. In particular, the grammar of a 

programming language was used to generate programs that were later used to test the 

compiler [Purdom 1972, Celentano, et al. 1980, Spadafora and Bazzichi 1982, Camuffo, et 
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al. 1990]. These test-generating techniques do not connect grammar to software functions; 

thus, they are unable to recover Activate relationships.  

Incidentally, our technique requires much simpler grammars than those used for test 

phrase generation since we are not worried about the validity of the system test’s syntax. In 

our case, we assume that system tests already exist and are valid. Thus, for our purpose, 

grammars may overlook certain complexity in the syntax of test scripts (or other input files). 

It may specify a grammar that parses a superset of the language of test scripts. In contrast, the 

grammars for test case generation must be precise so as to generate phrases with a perfect 

syntax structure. Moreover, test generation techniques often require additional methods to 

validate the semantic of a generated test phrase.  

2.3 Potentially Affect 

In this section, we explain the term potentially affect. In other words, what does it 

mean for a software function to be potentially affected? We then show that combining 

Exercise and Activate relationships infer relationships between source code components and 

software functions. In turn, these inferred relationships help identify the software functions 

potentially affected by a change at a specified spot in the source code.  

A software function f is potentially affected by a change at spot s of 

the source code if the source code component that contains s 

participates to the implementation of software function f. 

The terminology participates to the implementation of is ambiguous. We clarify it by 

the following assumption.  
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Implementation 
participation 
assumption: 

If a source code component c participates to the implementation of 

software function f, then there must be a system execution that activates f 

and exercises c.  

Hence, from the assumption above, we know that  

There cannot exist a system test t that activates a software function f 

and exercises a source code component c where c does not participate 

to the implementation of f. 

The implementation participation assumption shows that Exercise and Activate 

relationships can be combined to determine the software functions potentially affected by a 

change at a selected spot of the source code. This will require joining Exercise and Activate 

relationships. 

The combination of these two types of relationships is done using the standard select 

and project operators from relational calculus defined below.  

Definition: •  ( )RX 'σ  defines the select operator. It selects X' from R where X'⊆  X and 

R:X∝ Y. It returns a set of ordered pairs ',' YX  where Y'⊆  Y. 

•  ( )RXπ  defines the project operator. It projects R on X where R is a 

relation between domain X and some other domain Y. It returns a set with 

the first elements of R if R is a set of ',' YX  or the second elements of R 

if R is a set of ',' XY .  

Applying these operators on the Exercise and Activate relationships sampled from 

system test allows inferring relationships between exercise traces and software functions. We 

specify how to infer such relationships below.  
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Let us assume the following:  

1. T is a set of system tests, C is a set of source code components, and F is a set of 

software functions.  

2. The sampling of Exercise relationships between system tests in T and source code 

components in C has been performed. Similarly, the sampling of Activate relationships 

between system tests in T and software functions in F has also be performed.  

The Potentially Affect relationships between source code components and software 

function are created as follows: 

Definition: ( )( ) ( )( ){ }CcExercisetcActivateyAffectPotentiall cTtF ∈∈=  &  , σπσπ  

We can now extract the software functions potentially affected by a change to a spot s 

in the source code. 

1. By finding the source code component c that contains spot s. Spot s in the source 

code is identified by a directory/filename, a line, and a column. With these pieces of 

information, it is straightforward to find the corresponding source code component c that 

contains a particular spot. 

2. By computing the set F' of potentially affected software function as follows: 

( )( ){ }CcyAffectPotentiallF cT ∈=  ' σπ .  

A word about the quality of predictions is now in order. Let us first assume that there 

exists an oracle that always gives a safe and precise prediction as to the set of software 

functions that will be affected by a change at a specified spot in the source code. Second, let 

us also assume that for a given spot s, the oracle finds that the set Fpa is the resulting 

predictions of the set of software functions potentially affected. We can now define the 

notion of safety and of precision of a prediction:  
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1. Safety of a prediction: A set F' of software functions is a safe prediction if Fpa ⊆  F'. 

The ratio of safety of a prediction can then be measured as follows. Let A=Fpa− F' where 

− is set subtraction; i.e., it removes all elements of F' from Fpa. If an element is in F' but 

no in Fpa, then the element is dumped.  

Ratio of Safety = |A| / |Fpa|. 

2. Precision of a prediction: A set F' of a software function is precise if F' ⊆  Fpa. 

Alternatively, the ratio of precision of a prediction can be measure as follows. Let 

A=F'−Fpa; i.e., remove all elements of Fpa from F'. If an element is in Fpa but not in F', 

then the element is dumped.  

Ratio of precision = (|Fpa|−|A|) / |Fpa|. 

Thus, safety measures how many of the potentially affected software functions are 

part of a prediction. In contrast, the precision measures how many software functions of a 

prediction are potentially affected. When a prediction is both safe and precise, we say that the 

prediction is exact or correct. 

Definition: A prediction is exact (or correct) if it is safe and precise. Alternatively, we 

may say that a precision is exact if its ratios of safety and of precision are 

100%. 

When using our method, a prediction is computed from Potentially Affect 

relationships, which are computed by combining a sample of Exercise and Activate 

relationships. In turn, Exercise and Activate relationships are sampled by a set of system 

tests. Consequently, the safety and precision of predictions depends on the set of system tests 

used for sampling the Exercise and Activate relations. 
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In Chapter 3, our goal is to find a set of conditions that guarantee safety; however, we 

do not care about precision. In Chapter 4, we define a set of criteria that a set of system tests 

must satisfy in order to be used to sample Exercise and Activate relationships. These criteria 

do not guarantee safe predictions; however, they improve the precision of predictions. 

Besides the level of safety and precision, there is also a practicality factor. In our 

context, practicality characterizes the properties of the set of system tests needed for 

sampling the Exercise and Activate relations. If satisfying the properties requires a large 

number of system tests or if it requires system tests not likely to be in a test suite, then the 

properties are unpractical. In this research, we do not attempt to measure practicality. We 

simply state whether a set of specified properties are practical or not. As we will see in our 

future analysis, the answer on the practicality issue will be obvious. 

Before studying our methods, in the next chapters, we present Sonar, a prototype tool 

that uses our method for detecting ripple effects caused by modifying a specified spot of the 

source code. 

2.4 Implementing our method: Sonar 

First, we present our design decisions for Sonar and how to prepare the required 

inputs to use Sonar with a software system. Second, we illustrate applying Sonar with our 

bank ATM. Then, for demonstrating Sonar at work with our bank ATM, we specify a 

maintenance task to implement in the ATM, and then we show how Sonar helps during that 

maintenance task. Finally, we present actual screen shots of Sonar. 
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2.4.1 Implementing our method 

In order to compute predictions, Sonar must refer to Exercise and Activate 

relationships. In other words, a preparatory step that samples Exercise and Activate 

relationships from system tests is performed before predictions can be computed. In this 

section, we explain this preparatory step.  

Prior to computing and storing Exercise and Activate relationships, a set of software 

functions and a set of system tests must be available. We assume that there exists a set T of 

system tests. As indicated in Section 2.2, each system test is held in a file with a unique 

name, and the file contains the test script plus other information needed to execute the system 

test. To facilitate the preparatory step, we require a file to list all the unique filenames of the 

system tests. 

Software functions are listed in a software function definition file. In addition to the 

list of software functions, the software function definition file also stores the 

generalization/specialization relationships between the software functions. This allows the 

software functions to be listed in a tree. Each software function defined in the software 

function definition file also maintains a reference to a software function activation file. The 

software function activation file associated to a software function f contains a list of the 

system tests that activate f. In other words, the software function activation files hold the 

Activate relationships. 

The information in a software function definition file is as follows: 

1. A unique name for the software function being defined,  

2. A short and a long description of the software function,  

3. The name of the corresponding software function activation file, and  
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4. Two lists of software functions. They enumerate software functions that are 

specialization and generalization of this software function. These two lists allow 

structuring software functions into a tree.  

In the following, we first address the Activate relationships then the Exercise 

relationships. 

We know that software function activation files hold the Activate relationships. The 

software function activation file associated with a software function f lists the unique names 

of the system tests that activate f. The two techniques based on featured grammar and on 

regular expression pattern could be used to compute the software function activation file of 

each software functions. However, we have left our implementation of Sonar independent of 

the method used to compute the Activate relationships. Sonar requires each software function 

activation file to be associated to a software function in the software function definition file. 

It also requires each software function activation file to correctly list the names of the system 

test that activate the corresponding software function. 

Our sampling of Exercise relationships uses χAtac, a tool developed by Telcordia that 

performs node profiling of system runs [χAtac]. χAtac uses source code instrumentation in 

order to collect exercise traces. It has the ability to instrument source code of the C and C++ 

languages. By default, χAtac holds all exercise traces profiled in a single trace file. However, 

χAtac allows different names to be given to each exercise trace profiled. This capability 

gives χAtac the necessary power to hold the Exercise relationships needed by Sonar. To 

obtain a sample of Exercise relationships for a set T of system tests, the following is done: 

1. Compile a software system S with χAtac.  

2. For each system test t in T do 
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a. Let n be the unique name of t 

b. Execute S with t. Thanks to the special compilation, the profile exercised by t is 

saved in the file S.trace. 

c. Name n the exercise trace just created in S.trace 

After this step, the file S.trace contains the Exercise relationships sampled using the 

set T of system tests. χAtac formats S.trace so that, given the name of system test, it is simple 

to extract the set of source code components exercised. However, χAtac does not provide the 

inverse function, which computes the set of names of system tests that exercised a particular 

source code component. Sonar needs the latter function to compute predictions. Hence, in our 

preparatory step, we use the S.trace file created by χAtac to precompute the inverse relation 

and then to cache it.  

Sonar is merely a prototype tool. In real life, the capacity of Sonar would likely be 

integrated in a tool for managing the software development process such as those of 

Rational™ and Together Software™.  

The following is a summary of the list of information needed for preparing Sonar 

with a particular software system S:  

•  A file that lists a set T of system tests with unique names.  

•  A trace file obtained by executing an instrumented version of the system S (instrumented 

using χAtac) with each system test in T.  

•  A software function specification file that defines the software functions and the 

relationships between them. 

•  A software function application file for each software function defined in the software 

function definition file.  
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Our preparatory step precomputes and caches information so that Sonar efficiently 

computes its predictions for system S. After the preparation step, Sonar is ready to compute 

predictions. To obtain a prediction, the user specifies a filename, a line, and a column. Then 

Sonar highlights its prediction in the tree of software functions. In the next section, we 

demonstrate the usefulness of Sonar with an example. 

2.4.2 Demonstration of Sonar 

First, we illustrate the file needed to prepare our bank ATM system for Sonar. We 

then demonstrate how a maintenance task on our bank ATM system benefits from the 

prediction computed by Sonar. Our bank ATM is imaginary so we cannot truly apply Sonar 

to it. Our demonstration manually computes its prediction exactly as Sonar would. 

Nevertheless, we conclude this section with actual screen shots of Sonar computing 

predictions for the software functions of a small spreadsheet application.  

2.4.2.1 Preparing our bank ATM  

For the purpose of this demonstration, we assume that the ATM is implemented by 

the source code shown in Figure 2 of Section 2.2.1. The first file required for preparing the 

bank ATM for Sonar is a file that lists all the system test names (ti’s). Table 4 gives these 

unique names in the left column. In the right column, we find the test script portion of the 

system tests.  

Now assume that the source code was instrumented with χAtac and that the 

instrumented system of the ATM was executed with these system tests. This activity creates 

the second file needed: the trace file. Finally, Figure 7 illustrates portions of the software 



Table 4: List of system tests used for computing Exercise and Activate relationships 
for our bank ATM system. 
System test 
names 

Test script 

t1 12 Abort 
t2 1234 Enter Balance Abort 
t3 1234 Enter Balance Checking No 
t4 1234 Enter Balance Savings No 
t5 1234 Enter Withdraw Checking Abort 
t6 1234 Enter Withdraw Checking 100 Enter No No 
t7 1234 Enter Withdraw Savings 200 Enter Yes No 
t8 1234 Enter Deposit Checking 500 Enter Yes No 
t9 1234 Enter Deposit Savings 1000 Enter No No 
t10 1234 Enter Transfer Checking Savings 500 Enter Yes No 
t11 1234 Enter Transfer Checking Other 11122334 123.42 Enter Yes No 
t12 1234 Enter Transfer Savings Checking 200 Enter Yes No 
t13 1234 Enter Transfer Savings Other 11122334 296.67 Enter No No 

hec

 

 

 

t14 1234 Enter Transfer Savings C
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Process_Mtrans 
Process a money transaction 
ProcMtrans.html 
ProcMtrans.sfa 
{ Process } 
{ Withdraw, Deposit, Transfer, Checking, Savings } 
 
PWithdraw 
Process a withdrawal 
PWithdraw.html 
PWithdraw.sfa 
{ Money_trans } 
{ WCheck } 
 
PWChecking 
Process Withdraw from checking 
PWCheck.html 
PWCheck.sfa 
{ Withdraw, Checking } 
{ } 
 
 

(A) 
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function definition file and the software function

information needed for Sonar is now prepared. 

 

 
Figure 7: (A) illustrates a partial software fun
software functions are defined). (B) displays th
for each of the three software functions listed 
king 100 Abort No ProcMtrans.sfa: 
t6 
t7 
t8 
t9 
t10 
t11 
t12 
t13 
________________________________________
PWithdraw.sfa 
 
t6 
t7 
 
________________________________________
PWCheck.sfa 
 
t6 
 
________________________________________
 

(B) 
 activation files of the ATM. All the ATM 

ction specification file (only three of many 
ree software function application files. One 

in Figure 7(A). 
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2.4.2.2 Using Sonar during a maintenance 

The best method to show the appropriate use of a tool such as Sonar is to propose a 

maintenance task and then demonstrate when and how the computed predictions assist during 

maintenance.  

Let us assume that the current version of the ATM satisfies the functional 

requirements given in Section 2.1.2. The team responsible for the ATM realizes that 

historically most withdrawal transactions are for $20, $40, or $60. Thus, instead of requiring 

a customer to enter an amount every time a withdrawal operation is selected, the new menu 

will enable a customer to select a fast cash withdrawal option with the different amounts 

specified above. The ATM analysts ask a programmer to implement fast cash withdrawal 

where a customer does not need to enter the amount to withdraw when that amount is $20, 

$40, or $60. Thus, the functional specification 3 (Table 1) of the current functional 

specifications changes. It is now: 

3. Once the PIN is validated, The ATM must allow the customer to perform one 
or more of the following operations: 
•  Withdraw cash from the checking or savings account tied to current bank 

card. The withdrawal function must allow a customer: 
•  To select the amount $20, $40, $60 directly without actually typing the 

amount.  
•  To enter an amount. 

From this new specification, the programmer knows to study the implementation of 

the withdraw software function and find where the customer is asked to specify an amount. 

Research by Erdem and Johonson illustrates that to understand a particular behavior, 

programmers often refer to the exercised traces of input phrases that apply the behavior of 

interest [Erdem et al. 1998]. In our case, the programmer would refer to the exercise traces of 

system test that activate the withdraw software function.  
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Figure 8: Exercise trace of system test that activates the software functions withdrawal from 
checking and withdrawal from savings.  

 

Main process of bank ATM
Begin of main process

card_info = readCard();
success = validateProcess(card_info);
if (success = False) then

sendCard();
exit;

endif
cust_rec =
bank_db.getCustomerRecord(card_info);

repeat {

op = doOperationMenu();
// abort then goto next op.
if (op = ABORT) then

goto NextOp;
else // valid op then as for account

acnt = getAccount(SIMPLE_MENU,
cust_rec);

if (acnt = null) then
goto NextOp;

endif
endif
// Withdraw op.
if (op = WITHDRAW) then

from_acnt = acnt;
to_acnt = null;

// Deposit op.
else if (op = DEPOSIT) then

from_acnt = null
to_acnt = acnt

// Balance op.
else if (op = BALANCE) then

from_acnt = acnt;
// Transfer op.
else if (op = TRANSFER) then

from_acnt = acnt;
// for transfer need target account
to_acnt = getAccount(COMPLEX_MENU,
cust_rec);

if (to_acnt = null) then
goto NextOp;

endif
endif
if (op != BALANCE) then // money op.

amount = doAmountMenu();
if (amount = ABORT) then

goto NextOp;
else if (op = WITHDRAW) and

(amount%10 != 0) then
doAmountError();
goto NextOp;

endif
performMoneyTransaction(from_acnt,
to_acnt, op, amount);

else // balance op.
bal_str = from_acnt.getInfoStr();
printReceipt(bal_str);

endif

// jump here in case of failure
NextOp:
next = doNextOpMenu();

until (next = False) // end of repeat loop
sendCard();

End // of the main process

Boolean validationProcess(CardInfo c_info)
Begin

success = False;
attempt = 0
repeat {

pin = doPINMenu();
attempt = attempt + 1;
if (pin = ABORT) then

break;
endif
success = c_info.validateCustomer(pin);
if (success = False) then

doPINErrorMenu();
endif

until (success) or (attempt = 3)
return success;

End

Account getAccount(int menu_type,
CustomerRecord cust_rec)

Begin
acnt_no = doAcntMenu(menu_type);
the_acnt = null; //Assume failure or abort
if (acnt_no = CHECKING) then

msg = cust_rec.getChecking(the_acnt);
else if (acnt_no = SAVINGS) then

msg = cust_rec.getSavings(the_acnt);
else if (acnt_no = OTHER) then

other = doAccountNoMenu();
the_acnt =
bank_bd.getAccountByNumber(other);

endif

// print error message
if (the_acnt = null) then

str = msg.getFormatedString();
printReceipt(str);

endif
return the_acnt;

End

void preformMoneyTransaction(Account from_acnt,
Account to_acnt, int op, int amount)
Begin

if (op = WITHDRAW) then
msg = from_acnt.withdraw(amount);
if (msg.noError()) then

sendCash(amount);
endif

else if (op = DEPOSIT) then
msg = to_acnt.deposit(amount);

else if (op = TRANSFER) then
msg = from_acnt.transfertTo
(to_acnt, amount);

endif
if (msg != null) and (msg.error()) then

str = msg.getFormatedStr();
printReceipt(str);

else
// Ask if customer wants receipt
receipt = doReceiptMenu();
if (receipt = YES) then

str = msg.getFormatedStr();
printReceipt(str);

endif
endif

End

New code 
could go there 
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Figure 8 shows in regular black font the source code components exercised when 

activating the software function perform withdrawal from checking and perform withdrawal 

from savings. In other words, the grayed out code is not exercised by the system tests that 

activate the two types of withdrawal. 

2.4.2.3 Before implementing the software function fast-cash withdrawal 

When studying the source code components highlighted in Figure 8, a programmer 

focuses on understanding the implementation of the withdraw software function. During that 

investigation, the programmer realizes that the line of code ”amt=doAmountMenu()”

calls the menu where the customer is asked to enter the amount to withdraw. Thus, a 

potential solution for implementing fast-cash withdrawal is to change this function call. The 

box ‘New code’ in Figure 8 indicates the spot in the source code where a change could take 

place in order to implement fast-cash withdrawal. 

This is the moment that predictions computed by Sonar are useful. Before designing 

the source code change, the programmer must know if the solution proposed for 

implementing fast-cash withdrawal affects software functions other than the withdraw 

transactions. In other words, when changing the source code at line 

”amt=doAmountMenu()”, what are all the software functions potentially affected?  

The programmer does not necessarily have the answer to the question above because 

during the initial review of the source code, the programmer studied the exercise traces with 

attention focused on the understanding the withdraw software function. During this 

investigation of the code, the programmer did not necessarily pay attention to finding out the 

other software functions that could also reach the line of source code of interest.  
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Using Sonar, the programmer can get an instantaneous prediction that answers the 

question. Figure 9 shows the software functions of the ATM that would be affected by a 

change to the line of code “amt=doAmountMenu()”. The prediction shows that the other 

monetary transactions, namely, deposit and transfer, could be affected. With that information, 

the programmer can now design the source code change that modifies the withdrawal 
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Aborted

Authenticate PIN
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From savings
Aborted

Balance operation

Processed
Aborted

From checking

Processed
Aborted

From savings

Aborted

Withdraw
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Aborted

Deposit
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To other
Aborted
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From savings ...
      (same as
       Transfer ... From checking)
Aborted

Transfer

Money Transaction

Perform operation

Print receipt

Bank ATM

 

Figure 9: Software functions 
potentially affected by a change 
at the position shown in Figure 8.  
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software function but does not affect the deposit and transfer transaction. Without the 

predictions, the programmer might have made a change to the source code that also affected 

the deposit and the transfer software function.  

We note that the results computed by Sonar also include the PIN authentication and 

the print receipt software functions. These two software functions are not directly affected; 

thus, they could be considered imprecision. Such imprecision is sometimes unavoidable. For 

example, it is not possible to reach the withdraw software function without a positive 

authentication of a PIN. Thus, Sonar will often predict that the software function Process 

PIN Authentication is potentially affected even when it might not be. On the other hand, 

other types of imprecision can be avoided. For instance, in our example, the prediction 

includes the software function Print receipt because input phrase t7 applies Withdraw in 

combination with Print receipt. If t7 did not request a receipt, then the prediction would have 

been more precise. In Chapter 4, we define criteria for system tests to reduce imprecision. 

Finally, one may wonder why the programmer only used the exercise traces of a few 

withdraw operations instead of simply studying the entire code of the ATM. This deeper 

analysis would have shown the programmer that the deposit and transfer transactions could 

be affected by a change to the proposed line of source code. In fact, when modifying a small 

program, studying its entire implementation is the best method. However, when the source 

code implementation is larger than just a few thousand lines of source code, studying the 

entire source code is often not a practical option. 

We now present a few actual screen shots of Sonar. These screen shots come from the 

study of the software application scalc, a small spreadsheet program used later in our case 

study. Although Sonar is mainly built to predict the software functions affected, we have 
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built it in such a way that it can also project the inverse information, i.e., Sonar can also 

identify the source code components related to a particular software function. The capacity to 

project information from software functions to source code components is also found in 

χSuds from Telcordia.  

Figure 10 shows the tree of software functions of scalc. This tree is generated from a 

software function specification file. This figure shows that the software function Recalculate 

is selected to identify the source code components that implement the software functions. 

Sonar highlights the relevant source code using html tags that color the relevant source code. 

The answer can then be displayed in a web browser such as the Netscape™ web browser 

(Figure 11).  

 

Figure 10: Sonar analyzing scalc. 
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We will now illustrate the true function of Sonar: the ability to predict the software 

functions affected by a change at a particular spot in the source code. In this example 

illustrated in Figure 12, the spot at line 169 and column 20 of file calculator.cpp points 

to the source code statement evaluate(y,x) highlighted in orange in Figure 11. Figure 

12 illustrates how a programmer asks Sonar for a predication, and Figure 13 shows the 

method used by Sonar for presenting its prediction. 

 

 

 

 

 

Figure 11: Highlighted source code is involved in the implementation of software function 
Recalculate. 
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Figure 12:A programmer wants Sonar to project the software functions affected if 
source code of calculator.cpp at line 169 and column 20 were modified. 

 

Figure 13: Projection computed by Sonar. 
Potentiallyaffected software functions are 
highlighted. 



3 Computing safe predictions  

In this chapter, our goal is to identify conditions under which our method safely 

predicts the software functions potentially affected by a change at a selected spot of the 

source code. In Section 3.1, we show how computing safe predictions relates to the method 

presented in the previous chapter. In turn, this allows our goal to be expressed in terms of 

coverage of software functions and coverage of source code that a set of system tests must 

achieve. Section 3.2 shows that using only coverage information is not sufficient to guarantee 

safe predictions. Therefore, we slightly redefine our goal in Section 3.3. We then propose in 

Section 3.4 a solution to this new goal where safe predictions are guaranteed for a well-

defined, broad category of software functions. Finally, in Section 3.5, we assess our solution.  

3.1 Expressing safe predictions with coverage conditions 

In the following, we use our definitions and assumptions to connect the notion of safe 

predictions to our method that computes predictions. This allows us to express our goal 

precisely. We start from the definition of safe prediction: 

A set F' of software functions is a safe prediction if Fpa ⊆  F'  

where Fpa is the correct prediction of the software functions potentially 

affected. 

In other words, a prediction is safe if it contains all the software functions potentially 

affected by a change at a specified spot of the source code. To further our analysis, we need 

the definition of potentially affected. We refer to the definition of potentially affected given 

in Chapter 1; however, we replace the phrase segment of source code by source code 

component since we have defined the latter. 



 58

A software function f is potentially affected by a change at a selected 

spot of the source code if the source code component that contains the 

spot participates to the implementation of software function f.  

Finally, our method relies on our implementation participation assumption. Thanks to 

this assumption, we can connect the notion of safety to the predictions computed by our 

method. The assumption states  

If a source code component c participates in the implementation of 

software function f, there must be a system execution that activates f 

and exercises c. 

On the one hand, the implementation participation assumption relates safety of 

predictions to the activation of software functions and the exercise of source code 

components, and on the other hand, our method uses system tests to sample Exercise and 

Activate relationships. So, we initially state our goal as follows.  

We want to identify conditions needed by a set of system tests such that  

•  There always exists a finite set T of system tests that satisfies the condition below. 

•  When a set T is used to sample Exercise and Activate relationships, our method computes 

safe predictions. 

Conditions on a set of system tests are specified in terms of coverage of software 

functions and coverage of source code. Thus, we can further refine the way we express our 

goal: 

We want to identify a criterion X of source code coverage and a criterion Y of 

software function coverage such that  
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•  There exists a finite set T of system tests whose execution satisfies coverage criteria X 

and Y. 

•  When set T is used to sample Exercise and Activate relationships, our method computes 

safe predictions. 

3.2 Predictions based on coverage conditions: unsafe  

Unfortunately, when only using information about software function coverage and 

source code coverage, it is impossible to guarantee safe predictions. No coverage of source 

code and of software functions is sufficient for guaranteeing that our method always 

computes safe predictions.  

Before illustrating our problem with an example, we first present the two factors that 

cause the problem:  

•  Factor 1. A software function is completely re-implemented in several areas of the source 

code. This happens when the implementation of a new software function cannot easily fit 

in the current source code of a system. In such cases, the software function is 

implemented several times in different areas of the source code that relate to that new 

software functions.  

•  Factor 2. The activation of different software functions results in the same path of source 

code being exercised. This situation can occur when the complete source code 

implementation of a system is not accessible, for example, when third party libraries in a 

compiled form are used to implement a system. 

A system that combines these two factors in a certain way makes it impossible to 

guarantee safe predictions. Our example is based on a very simple calculator. In particular, 

the calculator has only two software functions, namely, add two numbers and subtract two 
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numbers. The source code implementation of our calculator and its corresponding control 

flow graph are shown in Figure 14. For the purpose of our example, let us assume that the 

procedure eval in Figure 14 belongs to a third library and its source code is not accessible.  

The control flow graph (CFG) of Figure 14 contains three complete paths from start 

to end: 

•  p1 = v1, v2, v3, v7 

•  p2 = v1, v2, v4, v5, v7 

•  p3 = v1, v2, v4, v6, v7 

Let us now point out the presence of the two factors. Factor 1 is present since both 

add and subtract have their implementation duplicated in the source code. Add is 

implemented by paths p1 and p2, and subtract by path p1 and p3. Factor 2 is also present since 

v2

v1

v3

v5 v6

v4

v7

main ()
{

read(operand1);
read(operand2);
read(operator);

if (operand1%2 == 0) then
eval(operand1, operand2,

operator);
else

if (operator == '+') then
print(operator1 +

operator2);

else // operator is -
print(operator1 -

operator2);
}

read(operand1);
read(operand2);
read(operator);

if (operand1%2 == 0) then

eval (operand1,
operand2, operator);

T

if (operator == '+')
then

F

print (operator1 +
operator2);

print (operator1 -
operator2);

FT

Start

End

 
Figure 14: Sample source code and CFG of system used for illustration of unsafe 
predictions. 
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path p1 implements several software function, in this case the two software functions add and 

subtract.  

We now present three system tests that respectively exercise the paths p1, p2, and p3. 

Moreover, the set of these three system tests activates the two software functions add and 

subtract. 

•  t1 = 2 3 + activate software function add 

•  t2 = 3 2 + activate software function add 

•  t3 = 3 2 - activate software function subtract 

We now show that despite the full coverage of software functions and of the full path 

of source code achieved by these three system tests, our method still computes unsafe 

predictions. In particular, let our method compute a prediction for a spot in source code 

component v3. Our method finds that 

1. t1 is the only system test that exercised v3, and  

2. t1 activates the software function add.  

Our method predicts that a modification to a spot of v3 potentially affects the software 

function add. This prediction is unsafe since the execution of the following system test 

t4 = 2 3 -   activates software function subtract. 

Moreover, t4 also exercises path p1, which contains vertex v3. Thus, a safe predictions 

must include both the software functions add and subtract. However, referring only to 

coverage of software function and of source code, we have no way to know that the system 

test t4 is needed to guarantee safe predictions. In fact, the execution of the three system tests, 

t1, t2, and t3, already achieves a full coverage of software functions and of paths of source 

code.  
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In conclusion, in the general case, it is not possible to guarantee safe predictions only 

referring to the coverage of software function and the coverage of path of source code.  

There are two ways to remedy this problem. A first solution is broadening our 

analysis by incorporating semantic checks whose role would be to discover that, for example, 

the three system tests t1, t2, and t3 of our calculator example are not enough to guarantee safe 

predictions. Building the required semantic checks would render the application of our 

method very tedious, given that this problem does not occur frequently in practice.  

Thus, for the moment, we prefer a second strategy where we impose a restriction on 

software functions.  

3.3 Expressing safe predictions with restriction 

We accept the fact that safe predictions for all software functions cannot always be 

computed from coverage information only. Instead, we slightly shift our goal by wondering 

whether there is a well-defined category of software functions for which we can guarantee 

safe predictions only using coverage information. Obviously, we want this well-defined 

category of software functions to be as broad as possible.  

From this strategy, we can reformulate our new goal as follows. 

NEW GOAL:  

We want to identify a restriction Z on software functions, a criterion X of source code 

coverage, and a criterion Y of software function coverage such that 

1. There always exists a finite set T of system tests whose execution 
satisfies criterion X and criterion Y where criterion Y applies to all 
software functions that respect restriction Z. 
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2. IF (Exercise and Activate relationships are sampled with set T of 
           system tests that satisfies  
                             criterion X of source code coverage AND 
                             criteria Y of software functions coverage)  
   THEN our method computes safe predictions  
               for all software functions that respect restriction Z. 
In the next section, we propose a solution to this new goal and show that the proposed 

solution does in fact fulfill our new goal.  

3.4 Computing safe predictions with restriction  

In Section 3.4.1, we propose a first attempt where we specify a restriction Z on 

software functions. This trial fails. However, it teaches important lessons for our next 

attempt. In Section 3.4.2, we then develop our new solution and prove that this second trial 

fulfills our goal. 

3.4.1 Restrictions on software functions: a first attempt 

In this first attempt, we start by proposing a restriction Z on software functions. 

However, this restriction is not good enough to guarantee safe predictions. For this first 

effort, we construct restriction Z to avoid the problem mentioned in Factor 2 of Section 3.2, 

which points out that different system tests can activate different software functions but 

exercise the same path of source code.  

Restriction Z (Attempt 1): System tests that activate different software 

functions never exercise the same path of source code.  

Although this restriction solves the problem raised in Factor 2, it still does not allow 

guaranteeing safe predictions. In fact, for most software systems, there are infinitely many 

paths in the source code, and restriction Z does not allow determining the finite set of these 
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paths that must be covered for guaranteeing safe predictions. To clearly point out the 

problem, we examine a particular case.  

Let us assume that a change is to take place at a spot of source code component c. 

Because of loop and recursion, the source code implementation of most systems has 

infinitely many paths that contain c. Currently, restriction Z does not allow determining the 

finite set of paths needed to obtain a safe prediction for c. Randomly selecting a finite 

number of paths that contains c jeopardize the safety of predictions, and exercising all these 

paths requires an infinite number of system tests.  

Consequently, our first attempt fails. However, we draw lessons from it.  

Lesson 1. Restriction Z restricts software functions in terms of path of source code. 

Doing so makes restriction Z have an effect on criteria X and Y. In particular, let us define 

criterion X as every path of source code to be exercised by at least one system test, and let us 

define criterion Y as every software function to be activated by at least one system test. We 

know that if a set T of system tests satisfies criterion X then T also satisfies criterion Y for all 

software functions that respect Z. Specifying a restriction Z with such a property is useful 

because we then only need to focus our attention on finding an adequate criterion X.  

Lesson 2. Currently, our restriction Z on software functions is not restrictive enough. 

In fact, to guarantee a safe prediction for a set of software functions that respect restriction Z, 

an infinite number of paths must be exercised. One strategy for solving this problem is to 

find a way of connecting restriction Z to a criterion X that is reachable by a finite number of 

system tests.  

In conclusion, from lesson 1, we decide that our restriction Z on software function 

must guarantee that when criterion X of source code coverage is satisfied, criterion Y of 
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software function coverage is also satisfied for all software functions that respect restriction 

Z. From lesson 2, we know that restriction Z on software functions must be connected to a 

criterion X that is reachable by a finite number of system tests. 

3.4.2 Our solution for computing safe predictions with restriction 

Our lessons learned make a crucial point: restriction Z on software function and 

criterion X of source code coverage must relate in some way. To achieve a connection 

between X and Z, we find it practical to first search for units of source code used for 

measuring source code coverage. Second, we determine how these units of source code can 

be used to specify a restriction Z on software functions. Third, we use these units of source 

code to specify a criterion X of source code coverage reachable by a finite set of system tests. 

Criterion X and restriction Z will be connected since they are specified in terms of the same 

units of source code. Moreover, these units of source code also allow a restriction Z on 

software functions to be specified such that when criterion X of source code coverage is 

satisfied, criterion Y of software function coverage is also satisfied for all software functions 

that respect restriction Z.  

Consequently, to reach our goal, we perform the following steps: 

1. Let criterion Y of software functions coverage be: 

Every software function must be activated by at least one system test.  

2. Identify different units of source code used for measuring source code coverage in the 

remaining of Section 3.4.2.  

3. First, find how the units of source code help specify a restriction Z on software 

functions. Then, determine a criterion X of source code coverage that is reachable by a 

finite set of system tests (Section 3.4.3).  
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4. Show that we have identified criteria X and Y, and a restriction Z that fulfill the two 

points of our goal (Section 3.4.4).  

Units of source code  

Chapter 2 showed how program profiling helps record the source code exercised. 

Moreover, it presented node and branch profiling. These two types of profiling define two 

units of source code, namely, nodes (source code components) and branch (ordered pair of 

source code components). In this section, we go one step further by presenting units of 

source code that represent paths of source code. Units of source code paths will enable 

specifying a weaker restriction Z. Since our goal is to find a restriction Z that allows for a 

broad category of software functions, paths will define better units of source code than node 

and branches.  

First, we propose to define a unit of source code as a full path.  

Definition: A full path is a single sequence of source code components that corresponds to 

a possible chronological order of exercise during a system test. 

Full paths are not convenient because often there are infinitely many full paths in the 

source code. Hence, it will be the job of restriction Z to determine the finite set of full paths 

that must be covered in order to guarantee safety. However, all full paths are different, and 

there are no clear good criteria for determining whether a full path must be selected. In turn, 

we look at other alternatives. 

Next, we present the notion of intraprocedural acyclic path and interprocedural path. 

Research by Ball and Larus and by Melski and Reps have respectively defined intra- and 

interprocedural paths and methods for profiling these paths efficiently [Ball and Larus 1996, 
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Melski and reps 1998]. Both types of paths are defined on the control flow graph of the 

source code. 

Definition: A control flow graph G= (V, E) is defined by a set V of vertices where each 

vertex v∈  V represent a basic block of the source code, and a set E of edges. 

An edge e∈  E is represented by an ordered pair <v1, v2> where v1, v2∈  V. It 

indicates that there exists a flow of control from basic block v1 to basic block 

v2. In addition, V is augmented with a Start vertex and an End vertex, and E is 

augmented with an edge <Start, v> where v corresponds to the basic blocks of 

that is exercised first, and a set of edges <v, Exit> where each v corresponds to 

a basic block that may be executed last. 

Ball-Larus intraprocedural paths 

When a procedure contains a loop, there are infinitely many intraprocedural paths in a 

control flow graph. Ball and Larus propose to summarize the infinite number of paths with a 

finite number of acyclic intraprocedural paths (B-L paths). Every intraprocedural path can be 

expressed as a composition of B-L paths.  

The definition of B-L path uses the notion of back edges in the control flow graph. 

a z

e

dc

b

F T

 
Figure 15: Control flow graph transformed for computing B-L paths. 
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Definition: Back edge in a directed graph is an edge from basic block a to basic block b 

where b is always executed before a. 

In Figure 15, a and z respectively represent the Start and the End vertices of the CFG. 

The gray edge <e,b> is a back edge; it is part of the CFG. However, we observe that the dash 

edges are not. Their use is explained later. 

There exist four types of B-L paths: 

•  Acyclic paths from Start to Exit, for example, abz. 

•  Acyclic paths from Start to a CFG vertex x finishing by the execution of hx,  where h is 

the target of a back edge. For example, the sequence made of the single vertex a finishing 

by the execution of ba, . 

•  Acyclic paths from a CFG vertex h that is the target of a back edge to Exit, for example, 

bz. 

•  Acyclic paths from a CFG vertex v that is the target of a back edge to a CFG vertex x 

such that acyclic paths finish by executing hx,  where h is the target of a back edge. We 

note that v and h may be the same node in the case where there are several paths within a 

single loop, for example, bce and bde. Both finish by executing be,  

Ball and Larus give a method that computes B-L paths by substituting each back edge 

(gray edge of Figure 15), with two surrogate edges (dash edges of Figure 15). The first 

surrogate edge goes from the CFG Start vertex to the target of the back edges, and the second 

edge goes from the source of a back edge to the CFG End vertex. Since this transformation 

removes the intraprocedural cycle, the transformed CFG is acyclic. In turn, there exist a finite 

number of B-L paths within a procedure. In addition to the transformations, Ball and Larus 
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also provide an algorithm to instrument source code so it records the B-L paths exercised 

during an execution. 

Melski-Reps interprocedural paths 

Influenced by Ball and Larus, Melski and Reps defined the notion of interprocedural 

path. We refer to such interprocedural paths as M-R paths. M-R paths are defined on the 

interprocedural control flow graph (ICFG). We first expand our definition of CFG to define 

ICFG.  

An interprocedural control flow graph (ICFG) consists of a Global Start vertex, a 

Global End vertex, and a set of control flow graphs (CFGs), one for each procedure of the 

source code. As specified in the next section, each CFG has a unique Start vertex and a 

unique End vertex. Each vertex in a CFG represents a source code component at the basic 

block level, except for procedure calls where each call defines two vertices, an Entry vertex 

and an Exit vertex. In the ICFG, for every call to a procedure p, there is an entry edge labeled 

(i from the call Entry vertex to the Start vertex of p, and an exit edge labeled )i from the End 

vertex of p to the Exit vertex of the call to p. The label (i and )i are used to maintain the 

calling context when computing a valid interprocedural path. In addition, an ICFG contains 

an edge from the Global Start vertex to the Start vertex of the main procedure—the 

procedure that is always executed first (start node in the call graph)—and an edge from the 

Exit vertex of the main procedure to the Global Exit vertex.  

As for B-L paths, defining M-R paths requires some transformation on the ICFG. 

Figure 16 displays the transformed ICFG used to compute M-R paths. An original ICFG 

includes the gray edges but does not include the dashed edges. In Figure 16, the three 
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transformations that must be performed on an ICFG to compute the set of M-R paths are the 

following: 

•  An extra loop End vertex is added to each procedure. An edge from each loop End vertex 

to the Global Exit vertex is added.  
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Figure 16: Interprocedural control flow graph transformed for computing M-R paths. 
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•  Every back edge (the gray edge in Figure 16) is discarded and replaced by two edges 

(dashed edges in Figure 16) respectively from Start to the source of the back edge and 

from the target of the back edge to loop End. We refer to the new dashed edges as 

surrogate edges. Creating these surrogate edges is the same operation required by Ball-

Larus; it removes intraprocedural cycles. In terms of execution, traversing the dashed 

edge from Start vertex to the target of a back edge represents the beginning of a new 

iteration of a loop, and traversing the dashed edge from the source of the back edge to the 

End vertex represents the end of a loop iteration.  

•  Edges generated by a recursive call to procedure p, also shown as gray edges in 

Figure 16, are discarded. In the ICFG, a recursive call to a procedure p is responsible for 

two control flow edges: an edge going from the Entry of p in a procedure m to Start of p, 

and an edge going from the End of p to the Exit of p in procedure m. These two edges are 

replaced by a summary edge going from the Entry of p in m directly to the Exit of p in m 

(long dash edge in Figure 16). We note that this new edge is referred to as a summary 

edge, not a surrogate edge. In addition, two interprocedural edges are created: a first one 

from Global Start vertex to the Start vertex of procedure p, labeled (p, and another one 

from the End vertexof p to Global End, labeled )p. Edges mark (p or )p are called 

recursive edges. 

Definition: •  The following BNF grammar helps specify the M-R paths in the 

transformed ICFG. To each M-R path, there corresponds a string of left 

unbalanced (or balanced) parentheses.  
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•  Let us assign a label e to every edge without a parenthesis label: 

Unbalanced Left ::= Unbalanced Left (i Unbalanced Left  
Unbalanced Left ::= Unbalanced Left (p Unbalanced Left  
Unbalanced Left ::= Balanced 
Balanced ::= (i Balanced )i Balanced (for 1 ≤ i ≤ number of call site in  

     the program) 
Balanced ::= (p Balanced )p (for a procedure p called recursively) 
Balanced ::= e 
Balanced ::= ε (where ε means empty string) 

•  Referring to the grammar above, we define an M-R path as a path from 

Global Start to Global End in the transformed ICFG, which corresponds to 

a string of balanced or left unbalanced parentheses.  

In addition to the above transformations needed to define M-R paths, Melski and 

Reps developed an algorithm to assign a unique number to each M-R path. Moreover, they 

explain where and how the source code of a system must be instrumented to record the 

unique numbers of M-R paths exercised during a system run. Melski and Reps also show 

there are a finite number of M-R path in the source code of a system [Melski and Reps 1998, 

Melski 2002]. 

Table 5 lists all twenty M-R paths of the ICFG of Figure 16. We also added an invalid 

path in the last row of the table in order to illustrate the notion of nonmatching subscript of 

parentheses. For all M-R paths, Table 5 includes the parentheses and their labels to show 

they are valid. GS and GE respectively mean Global Start and Global End. Using the 

columns titled Main, f, and Recursion on f, we attempt to relate an M-R path to its actual 

execution behaviors. To explain the different execution behavior captured in an M-R path, 

we observe that two types of edges were introduced during the transformation on the ICFG: 

some intraprocedural surrogate edges and some interprocedural edges. In terms of execution 

behavior, traversing the former edges means repetition of a loop (intraprocedural cycle), and 
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traversing the latter edges means repeating a recursive procedure (interprocedural cycle.) We 

find that the edges introduced in the transformation of the ICFG enable the M-R path to 

capture the five types of execution behaviors listed below. The first four behaviors express 

intraprocedural behavior, and the last one expresses an inter-procedural behavior:  

•  A while loop not entered or a do while loop not repeated (Table 5 uses the symbol N to 

refer to this execution behavior),  

•  The first iteration of a loop (Table 5 uses 1st to refer to this execution behavior),  

•  Other iterations of the loop (Table 5 uses O to refer to this execution behavior),  

Table 5: M-R paths of ICFG of Figure 16. 

 M-R path 
explanation M-R paths 

 Main f  
1 N N GS, m1, m2, m3, m7, (2, f1, f2,f3,f7,f8, )2, m8, m9, GE 
2 N 1st GS, m1, m2, m3, m7, (2, f1, f2, f3, f4, f5, f6, f9, GE 
3 N O GS, m1, m2, m3, m7, (2, f1, f3, f4, f5, f6, f9, GE 
4 N L GS, m1, m2, m3, m7, (2, f1, f3,f7,f8, )2, m8, m9, GE 
5 1st N GS, m1, m2, m3, m4, (1, f1, f2, f3, f7, f8, )1, m5, m6, m10, GE 
6 1st 1st GS, m1, m2, m3, m4, (1, f1, f2, f3, f4, f5, f6, f9, GE 
7 1st O GS, m1, m2, m3, m4, (1, f1, f3, f4, f5, f6, f9, GE 
8 1st L GS, m1, m2, m3, m4, (1, f1, f3, f7, f8, )1, m5, m6, m10, GE 
9 O N GS, m1, m2, m3, m4, (1, f1, f2, f3, f7, f8, )1, m5, m6, m10, GE 
10 O 1st GS, m1, m2, m3, m4, (1, f1, f2, f3, f4, f5, f6, f9, GE 
11 O O GS, m1, m2, m3, m4, (1, f1, f3, f4, f5, f6, f9, GE 
12 O L GS, m1, m2, m3, m4, (1, f1, f3, f7, f8, )1, m5, m6, m10, GE 
13 L N GS, m1, m2, m3, m7, (2, f1, f2,f3,f7,f8, )2, m8, m9, GE 
14 L 1st GS, m1, m2, m3, m7, (2, f1, f2, f3, f4, f5, f6, f9, GE 
15 L O GS, m1, m2, m3, m7, (2, f1, f3, f4, f5, f6, f9, GE 
16 L L GS, m1, m2, m3, m7, (2, f1, f3,f7,f8, )2, m8, m9, GE 
 Rf  
17  N GS, (f, f1, f2,f3,f7,f8, )f, GE 
18  1st GS, (f, f1, f2, f3, f4, f5, f6, )f, GE 
19  O GS, (f, f1, f3, f4, f5, f6, )f, GE 
20  L GS, (f, f1, f3,f7,f8, )f, GE 

Invalid GS, m1, m3, m4, (1, f1, f3, f7, f8, )2, m8, m9, GE 
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•  A loop was previously entered and it is now being exited (Table 5 uses L to refer to this 

execution behavior), and  

•  A recursion on procedure p (Table 5 uses Rp to refer to this execution behavior).  

The last row of Table 5 is invalid because the subscripts of the parentheses do not 

match. In terms of execution, this would mean entering a procedure p from one call site and 

returning to another call site of procedure p. Obviously, this is an invalid execution. This 

table shows how labeled parentheses are used to maintain the calling context of a procedure call.  

As previously stated, Melski and Reps proposed a method to instrument source code 

so that the set of M-R paths exercised during a system execution is recoded. For example, 

executing the program of Figure 16 with the input ‘0’ records the following set of M-R 

paths, where we refer to a M-R path by its row number in Table 5: <input=0, set of

M-R paths={1}>. In this case, only one M-R path is exercised. However, for all other 

cases, more than one M-R path is exercised. For example, with input ‘2’ the outcome is: 

<input=2, set of M-R paths={6,7,8,10,11,12,14,15,16, 17}>  

3.4.3 Restriction on software functions and criterion of source code coverage  

We have four different types of units of source code available, node, branch, B-L 

path, and M-R path. We now use these units to first define restriction Z on software functions 

(Section 3.4.3.1) and then describe a criterion X of source code coverage (Section 3.4.3.2).  

3.4.3.1 Restriction Z on software functions 

We know that in the general case we cannot guarantee safe predictions. Therefore, in 

this section, we analyze how to use the unit of source code to create a restriction Z on 
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software functions. We create a definition that regroups the four different types of units of 

source code into one common term: trace element.  

Definition: A trace element is a node (=source code component = basic block,) a branch, a 

B-L path or a M-R path. 

We start with a restriction and then we weaken it until it defines a restriction Z that 

includes a broad category of software functions. When specifying our restriction Z, our 

different attempts refer to a trace element e. In all cases, we assume that  

e is or contains the source code component c that in turn includes the 

select spot of source code where a change is proposed.  

Our first restriction is the following: 

First 

attempt: 

Every software function f must be associated to one trace element e such that if 

a system test t activates f then t always exercises e and no system test t′ 

exercises e without activating f. 

In other words, our first attempt requires that every software function be related to at 

least one trace element in a unique manner. This condition is too restrictive because several 

trace elements may be needed to express the uniqueness of source code behavior associated 

to a software function f. For example, software function f is applied if trace elements e1 and 

e2 are exercised. The sole exercise of e1 without e2 or of e2 without e1 would not suffice to 

determine whether f was applied or not.  

To accommodate for this new possibility, our condition needs to be stated as follows. 

Second 

attempt: 

Every software function f must be associated to a set E of trace elements such 

that if a system test t activates f then all trace elements of E are exercised, and 

no execution of system test t′ exercises all elements of E without activating f. 
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Again, we must weaken the above condition. Indeed, it is possible that no trace 

element (or set of trace elements) is always exercised when a software function is activated. 

This is often true when the implementation of a software function has been completely 

duplicated in several areas of the source code. To allow for such a scenario, our restrictive 

condition must be formulated as follows. 

Third 

attempt: 

For every application of a software function, there exists a set E of trace 

elements such that 

If a system test t exercises all trace elements of E then t 
activates f,  
And 

No execution of a system test t′ exercises all trace 
elements of E without activating f.  

When the implementation of software functions is not duplicated, there may exist 

only one set E of trace elements that meets the condition above. However, when such 

duplication exists in the source code, it is likely that several sets E meet our condition. Our 

restrictive condition currently uses the existential quantifier there exists a set E of trace 

elements; hence, it accommodates for situations where there are one or more sets E of trace 

elements that satisfies our restriction. 

So far, we have ignored whether software functions are dependent or independent of 

each other.  

Definition: Two software functions are dependent if there exists a descendant/ascendant 

relationship between them in a generalization/specialization hierarchy. In 

contrast, two software functions are independent if they are not dependent. 
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However, as we point out below, the same set E of trace elements can be associated to 

a software function f and also to all of f’s ancestors. Consequently, our current condition does 

not need further modifications.  

To explain the reason why our condition does not need to be changed, we recall that 

the hierarchies of software functions specified in Chapter 2 are built using the 

generalization/specialization relationships between software functions. For instance, in our 

ATM example, the software function process withdrawal from checking is a specialization of 

the software function process withdrawal. When a system test t activates the software 

function process withdrawal from checking, it must also activate process withdrawal. In 

general, we know it is always the case that when two software functions f and special-f are 

dependent, the system test that activates special-f also activates f. In turn, this means that our 

condition does not need to make the distinction between special-f and its ancestors. In other 

words, a same set E of trace elements can be used to show that special-f is activated but also 

to show that all of f’s ancestors are activated. 

We therefore use our third attempt to specify our restriction Z on software functions 

below. 

Restriction Z 

on software 

functions: 

For every application of a software function, there exists a set E of trace 

elements such that 

If a system test t exercises all trace elements of E then t 
activates f,  
And 

No execution of a system test t′ exercises all trace 
elements of E without activating f. 

There exists an interesting property between our restriction Z and software 

hierarchies. In order to express this interesting property, we refer to the notion of complete 



 78

specialization of a software function. Complete specialization was defined in Section 2.1. It 

specifies that a set F of software functions is a complete specialization of a software function 

f if  at least one function in F is activated when f is activated. 

The interesting property is the following: 

Property: IF a set F of software functions satisfies our restriction Z on software functions 
AND  
IF F is a complete specialization of software function f  
THEN 

f also satisfies our restriction Z on software functions 

Proof: •  Let F be the set of software functions that is a complete specialization of f.  

•  Let Ei be the set of trace elements that show fi∈ F satisfies restriction Z. 

•  Let E be the union of Ei’s of every fi∈ F. 

•  Set E of trace elements shows that there exists a set of trace elements 

associated to software function f such that when e∈ E is exercised, f is 

activated and also satisfies Z.  

3.4.3.2 Criterion X of source code coverage 

We now use our four units of source code to define an adequate source code coverage 

criterion X. This ensures the needed connection between our criterion X and our restriction 

Z. Moreover, in this section, we argue that our criterion X of source code coverage is 

reachable by a finite set of system tests.  

M-R path is the most specific of the four units of source code used to define 

restriction Z. Moreover, we know that a source code coverage criteria specified in terms of 

M-R paths subsumes coverage criteria specified by the other three units of source code—

nodes, branches, and B-L paths. In Section 3.4.3.2.1, we show with generic and specific 

examples why our coverage criterion X must not only merely consider coverage of single M-
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R paths but also consider coverage of sets of M-R paths. In turn, in Section 3.4.3.2.2, we 

describe our criterion X using sets of M-R paths. 

3.4.3.2.1 M-R paths coverage  

The first coverage that comes to mind requires every M-R paths to be exercised by at 

least one system test. However, as we illustrate below, this coverage criterion is not enough. 

1. Let us assume that a software system has two software functions f1 and f2 that satisfy 

our restriction Z. In particular, 

•  f1 is associated to two sets of trace elements, in this case, M-R paths.  

Let us say {p1, p2} and {p2, p3}. 

•  f2 is associated to one set of trace elements, also M-R paths.  

Let us say {p4}.  

2. Let us now assume that for the two system tests: 

t1 exercises {p1, p2} and t2 exercises {p3, p4}.  

3. M-R paths p1, p2, p3, and p4 have all been exercised. From our restriction Z, we know 

that t1 must have activated f1 and t2 activated f2. 

4. However, let us assume that there exists a possible system test that exercised {p2, p3}, 

but that this test scenario was not executed. 

5. In such case, if our method is used to compute a prediction for a spot in source code 

component c where c is only contained in M-R path p3 then only f2 is potentially affected 

by a change at the proposed spot. In fact, our method finds that only t2 exercised p3. 

Furthermore, t2 only activated f2. However, from point 4, we know there exists an 

untested scenario that would have exercised {p2, p3}. In turn, this would show that f1 is 

also potentially affected. Therefore, our prediction is unsafe. 
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Such a scenario is not only theoretical. Below we present an illustration where the 

coverage of all M-R paths is not always sufficient to compute safe predictions. Figure 17 

illustrates a slight variation of the source code implementation of our bank ATM. The line 

indicated with pis shows the last statement of M-R paths that create the problem. In order to 

make this illustration more realistic, we must first explain how the source code reached its 

current state. 

Let us assume that originally the ATM was made of the source code in the left 

column of Figure 17, in particular, only the source code nested in the then part of 

 

Figure 17: Sample implementation of another bank ATM. 

// Bank ATM
main ()
{

card = read_card_type(card_info);
if (card.hasChip() == False) {

// code magnetic validation here

another = ‘y’;
while (another == ‘y’) {

op_read = False;
while (op_read == False) {

cout << “Enter operation”;
cin >> op;
if (op == ‘W’)

op_read = True;
op_fp = withdraw;p1

else if (op == ‘D’)
op_read = True;
op_fp = deposit;p2

}

ac_read = False;
while (ac_read == False) {

cout << “Enter account”;
cin >> ac;
if (ac == ‘C’)

ac_read = True;
acct = card.getChecking();p3

else if (ac == ‘S’)
ac_read = True;
acct = card.getSavings();p4

}

op_fn(acct);

cout << “Other transaction?”;
cin >> another;

}
}

else { // This cards has a chip
// code chip validation here

another = ‘y’;
while (another == ‘y’) {

op_read = False;
while (op_read == False) {

cout << “Enter operation”;
cin >> op;
if (op == ‘W’)

op_read = True;
op_fp = withdraw;p5

else if (op == ‘D’)
op_read = True;
op_fp = deposit;p6

}

ac_read = False;
while (ac_read == False) {

cout << “Enter account”;
cin >> ac;
if (ac == ‘C’)

ac_read = True;
acct=card.getChecking();p7

else if (ac == ‘S’)
ac_read = True;
acct =

card.getSavings();p8

}
// Change line below
op_fn(acct);

cout << “Other transaction?”;
cin >> another;

}
}

eject_card ();
} // end main
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‘if(card.hasChip() == False)’. Then, bank cards with chip appeared on the 

market. To take advantage of the information found on the bank card chip, the source code 

was modified to become that displayed in Figure 17. The maintenance performed in order to 

produce the current code consisted of the following steps: 

1. Introduce the following if-condition ‘if (card.hasChip()==False)’. 

2. Duplicate the code in the then and the else part of that if-statement. 

3. Adapt the source code in the else part to make use of the extra information found in 

bank cards with chip.  

We now illustrate the fact that merely considering the coverage of all the M-R paths 

is not enough to guarantee safe predictions.  

Let us consider the four ATM software functions: withdraw from checking, withdraw 

from savings, deposit in checking, and deposit in savings. One could create more precise 

software functions that specify whether these transactions are performed with a regular 

magnetic bank card or with a chip bank card. However, for the user the difference in the 

bankcards does not affect the functionality of the ATM. In turn, we decide not to change the 

list of software functions. 

Let us now explain the p1, p2, p3, p4, p5, p6, p7, and p8 shown in bold in Figure 17. 

Every pi points to an M-R paths. Each M-R paths consists of a path from the beginning of the 

source code until pi, which is the last executable statement of the M-R path pi. After pi, the 

M-R path terminates with two vertices: the corresponding loop End followed by Global End. 

To cover the eight M-R paths, we only need the four system tests in Table 6 where 

the actual tis are:  

•  t1: withdraw $100 from savings (with a regular magnetic bank card) 
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•  t2: deposit $100 in checking (with a regular magnetic bank card) 

•  t3: withdraw $100 from checking (with a chip bank card) 

•  t4: deposit $100 in savings (with a chip bank card) 

Table 6 also shows that the four system tests activate the four software functions, 

withdraw from checking, withdraw from savings, deposit in checking, and deposit in savings. 

Thus, these four system tests cover all eight M-R paths and all four software functions. 

We now show that even with such coverage, our method still computes unsafe 

predictions. Let us assume that a maintenance exercise proposes to modify the line of source 

code indicated with the comment in bold in Figure 17. Let us refer to this source code 

component as c. 

Our method first identifies that t3 and t4 exercised c. In turn, t3 and t4 respectively 

activate software functions withdraw from checking and deposit in savings. Hence, our 

method infers that only these two software functions are potentially affected by a change in c. 

This is incorrect since the other two software functions withdraw from savings and deposit in 

checking can also potentially be affected. The execution of the two following system tests 

activates withdraw from savings and deposit in checking and also exercises source code 

component c.  

•  t5: withdraw $100 from savings (with a chip bank card) 

•  t6: deposit $100 on checking (with a chip bank card) 

Table 6: Exercise and Activate relationships sampled during the system tests tis. 

Input Software functions applied M-R paths exercised 
 t1 { withdraw from savings } { …, p1, p4 } 
 t2 { deposit on checking } { …, p2, p3 } 
 t3 { withdraw from checking } { …, p5, p8 } 
 t4 { deposit on savings } { …, p6, p7 } 
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In conclusion, our generic and specific illustrations show that measuring single M-R 

path coverage is not enough to guarantee safe predictions. In the next section, we define 

another more thorough source code coverage to remedy this problem. 

3.4.3.2.2 Coverage of sets of M-R paths 

In order to define this new type of coverage, we first observe that a system test 

exercises not a single M-R path but a set of M-R paths. Hence, our new coverage is built 

using sets of M-R paths.  

Definition: •  A complete path in the (untransformed) ICFG is a finite sequence of 

control flow edges that starts by the edge from Global Start and terminates 

by the edge to Global End, and there is a corresponding string of balanced 

parentheses. 

•  A combination of M-R paths is complete if the union of all the M-R paths 

in the combination corresponds to a complete path in the (untransformed) 

ICFG.  

Lemma: The set of all valid combinations of M-R path is finite. 

Proof: There are a finite number of M-R paths. Thus, the set of all combinations of 

M-R paths (or the power set of M-R paths) is also finite. The set of all 

complete combinations of M-R paths is a subset of the power set of M-R 

paths; therefore, it is finite. 

In this work, we limit our effort to identifying a set of properties needed for 

guaranteeing that our method computes safe predictions. We leave for future work the 

computation that extracts all the complete combinations of M-R paths from the power set of 

M-R paths. In fact, before developing such a method, we have another problem to solve.  
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Even for small systems, the number of M-R paths is huge. The number of complete 

combinations of M-R paths is even larger. It is therefore totally unpractical to require a set of 

system tests to exercise all complete combinations of M-R paths. One way to solve this 

problem is by executing a limited number of system tests to obtain a few Potentially Affect 

relationships between software functions and source code. We refer to these few 

relationships as seeds. Using these seeds, heuristics would then infer new correspondences 

between these software functions and the unexercised M-R paths. Developing the needed 

heuristics is also left for the future. Currently, we direct our attention to identifying a 

property that a set of system tests must have for the seeds to be reliable. Indeed, in order for 

heuristics to infer new correct correspondences, seeds must be reliable. The work presented 

in Chapter 4 is our attempt at providing a set of criteria for selecting a set of system tests that 

will then be exercised to collect seeds of value.  

Before giving our criterion X of source code coverage, we observe that the conditions 

of different branches and different loops are sometimes related. Due to these dependences, 

certain complete paths in the (untransformed) ICFG can never be executed. We say that such 

complete paths are unrealizable. It is possible for a complete combination of M-R paths to be 

associated only to unrealizable complete paths. Statically computing the unrealizable paths is 

unsolvable, for some important information may depend on the value of inputs. As 

mentioned in the paragraph above, in the future, we intend to develop heuristics for inferring 

new correspondences for a few seeds. These heuristics will solve the problem of unrealizable 

paths. Indeed, these heuristics will be able to associate software functions to a set of M-R 

paths corresponding to unrealizable paths if needed. For the moment, we assume that 

combinations of M-R paths that only correspond to unrealizable paths are removed from the 
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set of complete combinations. This ensures that every complete combination of M-R paths 

has a corresponding realizable path. In turn, we know that for every complete combination of 

M-R paths, there must exist a system test that exercises that particular complete combination.  

Therefore, our criterion X of source code coverage requires the following: 

Criterion X 
of source 
code 
coverage  

Every complete combination of M-R paths must be exercised by the execution 

of at least one system test. 

3.4.4 Reaching our new goal 

Showing that restriction Z and criterion X allow reaching our goal requires a proof 

that 

1. There exists a finite set of system tests that satisfies criterion X of source code 

coverage and criterion Y of software function coverage for all software functions that 

respect restriction Z. This part is shown in Section 3.4.4.1. 

2. When a set T of system tests satisfies criterion X and Y, the Exercise and Activate 

relationships sampled using T guarantee that our method computes safe predictions for 

the category of software functions that respect restriction Z. This part is shown in Section 

3.4.4.2. 

Let us first recall criteria X, Y and restriction Z. 

Criterion X 
of source 
code 
coverage  

Every complete combination of M-R paths must be exercised by at least one 

system test. 

Criterion Y 
of software 
function 
coverage 
 

Every software function must be activated by at least one system test. 
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Restriction Z 
on software 
functions 

For every software function f, every time f is activated there exists a set E of 

trace elements such that 

If a system test t exercises all trace elements of E then t 
activates f,  
And 
No execution of a system test t' exercises all trace 
elements of E without activating f. 

3.4.4.1 Satisfying the first point of our new goal 

To show that there exists a finite set of system tests that satisfies criterion X of source 

code coverage and criterion Y of software function coverage, we proceed as follows. First, 

we show that there exists a finite set T of system tests whose execution satisfy criterion X. 

Second, we show that for all software functions that respect restriction Z, satisfying criterion 

X implies satisfying criterion Y. Hence, the finite set T of system tests that satisfied criterion 

X also satisfies criterion Y. 

Lemma: There exists a finite set of system tests whose execution 
satisfies criterion X of source code coverage. 

Proof: Criterion X specifies that  
Every complete combination of M-R paths must be 
exercised by at least one system test. 

1. We know that there exists a finite number of valid combinations of M-
R paths. 

2. By definition, we also know that for every valid combination C of M-R 
paths, there exists a system test whose execution exercise C.  

3. From 1 and 2, there exists a finite set of system tests that exercise all 
complete combinations of M-R paths. 
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Lemma: For all software functions that respect Z, the set T of 
system tests that satisfies criterion X also satisfies 
criterion Y.  

Proof: Criterion Y specifies that  
Every software function must be activated by at least 
one system test. 

1. By contradiction, let us assume there exists a software function f that 
was not activated by T. 

2. From restriction Z, we know that every software function f is 
associated to at least one set E of trace elements. Moreover, every e in E is 
a node (source code components), a branch (pair of source code 
components), a B-L path (an acyclic intra-procedural sequence of source 
code components), or a M-R path (an inter-procedural sequence of source 
code components). We also know that for every node, branch, and B-L 
path there exists an M-R path that contains it.  

3. Let E1,…, En be the sets of trace element associated with f. 
4. CASE 1: For a set Ei in E1, .., En, there exists a valid combination C of 

M-R paths that contains all trace elements of Ei. In such a case, from our 
restriction Z and criterion X, we know f must have been activated. This 
contradicts our assumption in point 1. 

5. CASE 2: For every set Ei, all trace elements of Ei are never found in a 
valid combination C of M-R paths.  

1. In such a case, there is no realizable path for which software 
function f is activated. In other words, every set Ei’s describes an 
unrealizable path.  

2. Hence, software function f can actually never be performed by the 
system.  

3. By definition of software function, software function f must be a 
task performed by the system. 

4. From point above, f is not a software function. This contradicts our 
assumption in point 1 that states that f is a software function. 

6. Both cases above contradict point 1; hence, the set T of system tests 
must satisfy criterion Y. 

 

From the two lemmas above, we can infer that the first point of our goal is satisfied. 

In other words, there always exists a finite set T of system tests that satisfies criterion X of 

source code coverage, and criterion Y of software function coverage for all software 

functions that respect restriction Z. 
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3.4.4.2 Satisfying the second point of our new goal 

We now must show that:  

IF a set T of system tests satisfies criterion X of source code coverage  

     and criterion Y of source code coverage  

THEN when Exercise and Activate relationships are sampled using T, our 

method computes safe predictions for all software functions that respect 

restriction Z. 

In our proof, we assume that the set T of system tests that satisfies criteria X and Y is 

provided and that the Exercise and Activate relationships resulting from the execution of T 

have also been sampled. Thus, our attention focuses on the latter part of the statement above. 

That is, we want to show that our method computes safe predictions for all software 

functions that respect restriction Z.  

Instead of showing that every prediction is safe, we use a proof by contradiction. In 

other words, we suppose that our method computes an unsafe prediction for a particular spot 

in a source code component c. Then, we show that our supposition cannot be true. 

In order for our method to compute an unsafe prediction, the following scenario must 

take place. Our method computes a set A of software functions as being potentially affected 

by a change to source code component c. However, a software function f that respects 

restriction Z is also potentially affected by a change to c, and f is not in set A.  
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Assumptions: 1. The execution of set T of system tests satisfies criterion X, that is, it all 
complete combinations of M-R paths are exercised. 

2. The implementation participation assumption is true. That is, if a 
source code component c participates in the implementation of software 
function f then there must exist a system test t that exercises c and activates 
f. 

3. Set T is used to sample Exercise and Apply relationships, and then, 
Potentially Affect relationships are inferred by joining the Exercise and 
Apply relationships sampled. 

Theorem: When a set T of system tests satisfies criterion X and Y, then the Exercise and 
Activate relationships sampled using T guarantees that our method computes 
safe predictions for the category of software functions that respect restriction 
Z. 
 

Proof: We proceed by contradiction.  

1. Let set A of software functions be a prediction computed using the 
Potentially Affect relationships for a source code component c. Moreover, 
let us assume that A does not contain a software function f and f is 
potentially affected by a change in source code component c.  

2. If f is potentially affected by a change in c then source code component 
c must participates in the implementation of f.  

3. From assumption 2, there must exist a system test i that activates 
software function f and exercises source code component c. 

4. From restriction Z, we know that if i activates f, there must exist an 
associated set Ef of trace elements such that ∀ e∈ Ef are exercised when i is 
executed. 

5. From 3 and 4 above, i exercises all the trace elements efs∈ Ef and 
exercises c. Hence, there must exist a realizable complete path that 
contains every trace element in Ef and also contains c.  

6. Hence, there exists a complete combination C of M-R paths where each 
trace element in Ef is found in at least one M-R path of C and where c is 
also found in at least one M-R path of C.  

7. From assumption 1, our set T of system tests must contain a system test 
j that exercised C. j may or may not be equal to i. In any case, j exercises 
C, which exercised every trace element in Ef ; hence, j must activate f.  

8. From 7, based on a system test j, our method must have included f in its 
prediction.  

9. Point 8 contradicts point 1; hence, under the stated assumptions, our 
method must compute safe predictions for all software functions that 
respect restriction Z. 
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3.5 Assessment of our solution  

In Chapter 2, we point out that the quality of a solution is determined by safety, 

precision, and practicality. In particular, does the solution allow our method to compute safe 

predictions? Precise predictions? Are the criteria required by the solution practical?  

Concerning the first factor of safety of predictions, we find that our solution is 

satisfying. In fact, we have found a set of conditions under which our method computes safe 

predictions for a well-defined, broad set of software functions.  

Our restriction on software functions seems adequate for our solution to be 

considered practical. That is, many software functions of many software systems naturally 

respect the restriction. On the other hand, a further analysis of the coverage conditions 

required by our solution shows that it is currently not practical. In particular, the source code 

coverage criterion requires that the system tests exercise all complete combinations of M-R 

paths. Although the number of complete combinations of M-R paths is finite, their number is 

large, even for small systems. It is therefore unrealistic to require the exercise of all these 

possibilities.  

Although currently impractical, our solution provides a finite bound to the problem of 

computing Potentially Affected relationships. As mentioned earlier in this chapter, we plan on 

developing a technique where a limited number of system tests are first executed to collect 

some Potentially Affect relationships (seeds) between software functions and source code. 

Then, some heuristics will use the seeds to infer new Potentially Affect relationships between 

software functions and unexercised complete combination of M-R paths. For heuristics to 

compute reliable relationships, the seeds must provide reliable information. In other words, 

before developing the heuristics needed for inferring new Potentially Affect relationships, we 
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must first find a technique to obtain safe and precise seeds. The next chapter works in that 

direction. It specifies a set of criteria for selecting a few system tests that will hopefully 

provide safe and precise Potentially Affect relationships between software functions and 

source code. 

The last qualitative factor of a solution is whether or not it enables finding precise 

predictions. The solution developed in this chapter neither focuses nor mentions precision of 

predictions. Its objective was only geared toward computing safe predictions. Nevertheless, if 

all valid combinations of M-R paths are related to software functions, we know that much of 

the precision of predictions will be lost. Hence, the heuristics mentioned above will not only 

have to infer new Potentially Affect relationships, but they will also have to be tailored to 

maintain an acceptable level of precision for predictions. In particular, instead of inferring 

new Potentially Affect relationships for all complete combinations of M-R paths, the 

heuristics will need to eliminate the complete combinations of M-R paths whose exercise 

decrease precision while not adding to safety of predictions. 

In conclusion, our solution shows that our method computes safe predictions for a 

well-defined, broad set of software functions using only coverage information. On the 

positive side, the coverage needed for computing safe predictions is reachable by a finite set 

of system tests. However, that set of system tests is of unpractical size. Moreover, our current 

solution makes no guarantee as to the precision of predictions.  

In the next chapter, we propose a new solution that remedies the disadvantages of our 

current solution. In particular, our new solution wants to improve on the precision of 

predictions and makes sure that these results can be obtained using a small number of system 

tests. We concede that our new solution cannot guarantee safe prediction; however, safety 
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remains acceptable. This new solution can be used directly by our method for computing 

Potentially Affect relationships. However, the original indent is for this new solution to 

provide a few reliable Potentially Affect relationships (seeds). Then, these seeds can be used 

by heuristics for inferring new Potentially Affect relationships of high reliability for the entire 

source code, even the one not covered by the seeds. 



4 A practical application of our method 

In this chapter, we define criteria for selecting a few system tests that provide reliable 

Potentially Affect relationships. We know that with just a few system tests, the safety and the 

precision of predictions are not guaranteed. However, we want the information captured in 

the sampled Potentially Affect relationships to be as safe and as precise as possible. In any 

case, applying our method this way is practical since it only requires a few system tests. The 

information obtained by these few system tests may be used directly. However, the original 

intent is for these system tests to provide seed information that heuristics will be able to use 

to infer new reliable Potentially Affect relationships. 

This chapter is organized as follows. First, we present a set of criteria for selecting 

system tests. Then, we perform a case study to evaluate the criteria in the context of our 

method.  

4.1 Criteria for system test selection 

When identifying the criteria needed for system test selection, the guidelines are the 

following: 

1. Few system tests must be needed to satisfy these criteria. 

2. We prefer qualitative over quantitative coverage. By quality, we mean coverage that 

allows our method to compute safe and precise predictions.  

The second point applies specifically to source code coverage. For software function 

coverage on the other hand, we know that every software functions must be activated at least 

once. In fact, given the way our method computes predictions, we know that nothing can be 

predicted about nonactivated software functions. In contrast, for source code coverage, we 
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know that a few system tests can only exercise a limited amount of paths in the source code. 

Instead of trying to spread out the source code coverage achieved by these system tests, like 

software testing often requires, we prefer that the source code components exercised by the 

system test stay concentrated. This would usually guarantee safer and precise prediction by 

our method. Therefore, instead of trying to maximize coverage of source code components, 

we prefer that the exercise of source code remains focused.  

Consequently, we specify our criteria for system test selection as follows. 

1. Every software function of the system must be activated during at least one system 

test. When using Sonar to compute predictions, this criterion translates to the following:  

each software function found in Sonar’s software function specification file must be 

activated by at least one system test.  

2. When possible and appropriate, different system tests must reuse the same data 

values. 

3. System tests must avoid composition of software functions as much as possible; i.e., 

they should only activate one software function when possible. However, we know that 

some software functions require the prior activation of other software functions. In such 

case, software function composition is acceptable and required in order to satisfy 

criterion 1.  

4. Criteria 1 above must be satisfied with the least amount of system tests possible. 

Criteria 1 and 2 increase the size of the set of system tests that will be used for 

sampling Exercise and Activate relationships. In contrast, criteria 3 and 4 restrict the number 

of system tests that will be selected. Using such guidelines, we make the set of system tests a 
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controlled dependent variable of our studies. We refer to the set of four criteria above as the 

test selection criteria.  

4.2 Assessing our test selection criteria through case study 

We now assess the level of prediction safety and correctness when computed by our 

method with the Exercise and Activate relationships sampled from a set of system tests that 

satisfy our test selection criteria. A prediction is correct or exact if it is 100% safe and 100% 

precise. This study uses Sonar to compute the predictions. We repeated the study on two 

software systems, in particular scalc and bool.  

We present our case study as follows. In Section 4.2.1, we state our objective. In 

Section 4.2.2, we explain the protocol followed for the study. In Section 4.2.3, we present the 

two software systems, scalc and bool. Moreover, we enumerate a broad list of software 

functions for both systems. In Section 4.2.4, we present our results, and in Section 4.2.5, we 

draw conclusion of our studies. 

4.2.1 Objectives of the study 

In our study, we measure whether or not predictions are safe and if they are exact. 

Therefore, concerning safety, we find that a prediction is safe or unsafe. Similarly, we find 

that a precision is either correct or incorrect. In other words, in our study, to be considered 

safe and exact, a prediction must be 100% safe and 100% exact respectively. 

When conducting the case study, it is unpractical to verify whether all of Sonar’s 

predictions are safe and exact. In fact, even for small systems the number of source code 

components exercised is in the hundreds. Hence, we compute predictions for a pool of 

twenty-five randomly selected source code components, and then we infer the results for the 
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rest of the exercised source code components. The fact that we do not compute predictions 

for all exercised source code components introduces some level of uncertainty in our claims. 

We want this uncertainty factor to remain very low, 1% or less. In turn, we now state our 

goal for the case study of scalc and of bool as follows. 

Goal: We want to determine with more that 99% certainty that for software system 

Z, Sonar computes X% of safe predictions and Y% of exact predictions when 

Exercise and Activate relationships are sampled with a set of system tests that 

satisfy our test selection criteria. 

Assumption: We assume that our study does not contain any error of the following type: A 

result computed by Sonar is said to be unsafe (or unprecise) when it is actually 

safe (or precise.) Thus, we are assuming a 0% β error factor. 

Dependent variables 

The dependent variable is the set of system tests used to sample Exercise and Activate 

relationships. However, thanks to our test selection criteria, we specify some control on this 

dependent variable. 

4.2.2 Protocol used in the study 

Here are the steps followed during the study: 

1. For the software system selected, we do the following: 

a. Compile the selected software system in order to produce an instrumented 

executable version. 

b. Create a list of software functions for the software system selected. 

c. Identify a set of system tests that satisfies our test selection criteria and then 

execute each system test with the instrumented executable. 



 97

2. Collect the set of all source code components covered then randomly select twenty-

five of these source code components. Finally, we identify the file name and the 

beginning line-column position of each of the twenty-five source code components. 

3. Perform an initial manual analysis for each of the twenty-five positions. In particular, 

for a position p, we refer to the list of software functions and mark each software function 

we believe is potentially affected by a change at p. For this initial analysis, we do not run 

the system. We only read the source code and use the grep command to navigate in 

source code files. 

4.  Let Sonar compute its prediction for each of the twenty-five positions. 

5. Compare the manual predictions with those computed by Sonar. For a particular 

position, if for a given source code position a manual prediction and Sonar’s prediction 

are the same, we assume that they are both correct (that is, safe and precise). If two 

predictions are different then we perform the next two steps of the protocol. 

6. Perform a second more thorough manual analysis. During this second manual 

analysis, we are permitted to execute the system, instrumented manually with print 

statements in order to determine an execution’s dynamic behaviors. If needed, we adjust 

the first manual predictions. At this point, we believe that all of the manual predictions 

are exact. 

7. Given the second manual exact prediction, we now determine whether or not Sonar’s 

predictions are safe and then whether or not they are exact.  

These last two steps do not need to be performed when the first manual predictions 

agree with Sonar’s predictions. In fact, in such cases, we assume that Sonar’s prediction was 

safe and precise; hence, it is correct. On the other hand, for the other cases where step 5 finds 
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that two predictions are different then, we now compare Sonar’s prediction to our second 

manual prediction. After all these steps, we are able to determine whether or not Sonar’s 

predictions are safe and whether or not they are exact for each of the twenty-five source code 

components. 

One may argue that our second manual analysis is influenced by Sonar’s prediction 

since we already compared the prediction of a first manual analysis with that of Sonar’s. 

However, this influence is irrelevant. In this case, the important factor is that we do not 

change Sonar’s predictions. In fact, in step 7, we compare the new manual predictions to 

Sonar’s predictions created in step 4. In other words, during steps 6 and 7, manual 

predictions may be changed in order to correct them, but Sonar’s prediction may not be 

changed by sampling additional Exercise and Activate relationships. 

The only valid argument on the validity of our study is that our second manual 

analysis may still be incorrect and that further adjustment of the manual predictions must be 

performed. This reasoning might be true for large systems. However, as we will see in the 

next section, the two software systems selected for the study have source code of small size 

(between 2,000 and 5,000 lines of source code including comments). We therefore believe 

that the assumption that “predictions obtained by our second manual analysis are correct” is 

fair for small size source code.  

 

 

4.2.3 The two software systems studied: scalc and bool 

4.2.3.1 scalc 
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scalc is an interactive spreadsheet program that uses the curses library to allow the 

user to move around the spreadsheet with the arrow keys. scalc is written in C++ and is 

based on a well-crafted object-oriented design that separates the GUIs from the core 

computation of the spreadsheet. Furthermore, the computation is separated between the 

calculator engine and the spreadsheet document. The source code size is about two thousand 

lines including comments. 

scalc provides the software functions to perform the following tasks: (1) move around 

the spreadsheet, (2) load an existing spreadsheet, (3) save a spreadsheet, (4) clear a 

spreadsheet, (5) recalculate (or reevaluate) a spreadsheet, (6) toggle the auto reevaluation of a 

spreadsheet between on and off, and finally (7) edit cell of the spreadsheet.  

scalc distribution comes with the file README.txt, which I used for creating the list 

of software functions presented in Table 7. The left column of the table lists the names of the 

software functions and presents them in a tree-like format. For example, the software 

function right appears as a child of motion meaning that right is a particular type of motion. 

The right column provides a short description of each software function. 

Table 7: List of software functions of the scalc software. 

 Software functions Description of the software functions 
SCALC

1 + Motion Function that refers to motion
from cell to cell in the
spreadsheet.

2 + Right Motion associated to the right
arrow key.

3 + Left Motion associated to the left
arrow key.

4 + Down Motion associated to the down
arrow key.

5 + Up Motion associated to the up
arrow key.

6 + Load Function that refers to the
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loading of an existing
spreadsheet.

7 + Load Process Once the user has selected the
function load spreadsheet, the
user decides to proceed with
loading an existing spreadsheet.

8 + Load Cancel Cancel loading of spreadsheet
and return to current
spreadsheet.

9 + Save Function that refers to the
saving of the current
spreadsheet.

10 + Save Process Once the user has selected the
function save spreadsheet, the
user decides to proceed with
saving the current spreadsheet.

11 + Save Cancel Cancel saving of the current
spreadsheet and return to it.

12 + Clear Clear all cells of the current
spreadsheet.

13 + Process Proceed with clearing the
current spreadsheet.

14 + Cancel Cancel the clearing operation.

15 + Recalculate Recalculate the content of each
cell of the spreadsheet.

16 + Toggle Auto calc Toggle the auto recalculate of
the spreadsheet to ON or OFF.
When this switch is ON, the
spreadsheet updates all the
required values after the
edition of a cell. It only
calculates the value of the
current cell if the switch is
OFF.

17 + Cell edit Enter in the cell edition mode.

18 + Cancel edition Cancel any edition to this cell,
restore its old value, and
return to current spreadsheet.

19 + Process Edition Update the value of the cell to
the newly edited value.

20 + Text The format of the new value is
TEXT.

21 + Math.
expression

The format of the new value is a
mathematical expression that
requires evaluation.

22 + Number The expression contains a number

23 + Arith.
Exp

The expression is an arithmetic
expression (contains +, -, /, or
* operators).
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24 + Function The expression contains a
function such as sin, cos, tan,
atan, sqrt, etc.

25 + Cell ref. The expression contains a cell
reference.

4.2.3.2 bool 

bool Version 0.1.1 can be downloaded from the GNU Software Foundation website 

(http://www.gnu.org/directory/Bool.html). bool is command-line driven and allows the user 

to search for a Boolean-expression pattern in a list of files. bool is written in C, and its source 

code size is about five thousand lines including comments. The implementation is procedural 

in nature. The man page, which was used to create the list of software functions in Table 8, 

specifies that bool takes three types of parameters: 

1. Flags (or options) allow the user to activate different software functions such as 

ignore case, count number of matches, etc. 

2. A pattern in the form of a Boolean expression made of character strings grouped 

using Boolean operators AND, OR, plus NEAR (default 10 words a part).  

3. A series of files that are matched against the Boolean pattern. Files may be in text or 

html format.  

These three parameters may be used when creating a list of software functions for 

bool. Furthermore, the man page explains that in addition to performing regular matching of 

patterns, bool also performs special matching when a pattern is split on different lines. In 

particular, for a text file, when a pattern starts at the end of one line and terminates at the 

beginning of the next line, bool finds a match. However, if there are several new lines that 

split the pattern in a text file then bool considers there to be no match. For html files, the 

rules are different. The determinant factors are html tags. For example, a pattern that is split 

by text formatting tags such as bold <B> and new line will still be considered matches; 

http://www.gnu.org/
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however, when the pattern is found in the file but split by tags such as new paragraph (<P>) 

or new heading, there is no match. For example, for the pattern ‘Pattern’, bool finds a match 

for the html excerpt <B>P<\B>attern; however, there is no match with <P>Pat</P>tern. 

Given that the man pages explain these different type of matching, one may define 

software functions in relation to regular matching and special matching (pattern found on 

several lines). These software functions are special because they embed the notion of 

success. In other words, the software functions find a pattern with a regular match or find a 

pattern with a special match, which means that the pattern must be found in the input files. 

So, unlike software functions based on the three types of input parameters accepted by bool, 

these last types of software functions are not directly visible from the command line. This 

explains why we have found that the manual analyses involving regular and special matches 

were much harder than for the other types of software functions. In addition, since both 

regular and special match imply success, we also list the software function fail search. 

However, we find that it does not make sense to differentiate between a fail search of regular 

pattern and a fail search of special pattern (a failure is a failure regardless).We briefly explain 

how software functions can be specialized with an example, and then we present the software 

functions in Table 8. When creating a list of software functions for bool, one may be more or 

less precise by specifying a software function in terms of one, two, or all three of the types of 

parameters plus whether it is a regular or a special match. For example, going from general to 

specific (1) the software function find regular match, (2) find regular match in an html file, 

(3) find regular match in an html file with a case insensitive search, and (4) find regular 

match in an html file with a case insensitive search for an ANDed Boolean expression. 

Table 8: List of software functions of the bool software. 

 Software functions Description of the software 
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functions 
   

Bool

1 + One-word pattern
search

Successful search file(s) for
a one-word pattern.

2 + Text file Successful search text
file(s) for a one-word
pattern.

3 + Regular file Successful search text
file(s) for a one-word
pattern and the file(s) do
not contain split patterns.

4 + Count Successful search text
file(s) for a one-word
pattern and print the numbers
of matches.

5 + Ignore case Successful case-insensitive
search of text file(s) for a
one-word pattern.

6 + N matches Successful search text
file(s) for N first
occurrence of a one-word
pattern.

7 + Fixed string Successful search text
file(s) for a fixed one-word
pattern (ignore the
particular meaning of and,
or, near).

8 + Special file Successful search of text
file(s) for a one-word
pattern where the file
contains the particular
pattern split on two lines.

9 + Fail Unsuccessful search of text
file(s) for a one-word
pattern.

10 + Html file Successful search html
file(s) for a one-word
pattern.

11 + Regular File Successful search html
file(s) for a one-word
pattern and the files do not
contain split patterns.

12 + Count Successful search html
file(s) for a one-word
pattern and print the numbers
of matches.

13 + Ignore case Successful case-insensitive
search of html file(s) for a
one-word pattern.

14 + N matches Successful search html
file(s) for N first
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occurrence of a one-word
pattern.

15 + Fixed string Successful search html
file(s) for a fixed one-word
pattern.

16 + Special file Successful search html
file(s) for a one-word
pattern where the file
contains the particular
pattern split on two lines.

17 + Fail Unsuccessful search of html
file(s) for a one-word
pattern.

18 + AND’ed Search Successful search for an
AND’ed pattern.

19 + Text file Succssful search a text file
for an AND’ed pattern.

20 + Html file Successful search a html file
for a AND’ed pattern.

21 + OR’ed Search Successful search for a OR’ed
pattern.

22 + Text file Successful search a text file
for an OR’ed pattern.

23 + Html file Successful search a html file
for a OR’ed pattern.

24 + NEAR’ed Search Successful search for a
pattern that contains a
NEARed expression.

25 + Text file Successful search a text file
for a NEAR’ed pattern.

26 + Html file Successful search a html file
for a NEAR’ed pattern.

4.2.4 Result of the study on scalc and on bool 

After our set of system tests, nineteen system tests for scalc and twenty-one system 

tests for bool, we found that 419 and 508 source-code components were exercised for scalc 

and for bool, respectively. We then randomly selected twenty-five source-code components 

for each of the two systems. Finally, we identified the file name and the beginning line-

column position of each of these twenty-five randomly selected source-code components. 

Table 9 presents the two lists of twenty-five spots of source code.  
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Table 9: List of spots in the source code used for our case study. 

 scalc bool 
1 Calculator.cpp, 185, 5 Kw.c, 545, 17 
2 Document.cpp, 271, 21 Ac.c, 348, 7 
3 Document.cpp, 231, 5 Ac.c, 205, 11 
4 Textview.cpp, 114, 9 Ac.c, 318, 3 
5 Document.cpp, 272, 2 Kw.c, 657, 23 
6 Document.cpp, 286, 5 Kw.c, 440, 5 
7 Calculator.cpp, 235, 26 Ac.c, 327, 11 
8 Textview.cpp, 83, 25 Kw.c, 619, 54 
9 Textview.cpp, 87, 18 Sgml.c, 554, 3 
10 Calculator.cpp, 307, 3 Html.c, 531, 3 
11 Textview.h, 59, 23 Kw.c, 574, 19 
12 Textview.cpp, 60, 1 Html.c, 404, 11 
13 Textview.cpp, 492, 5 Kw.c, 334, 3 
14 Textview.cpp, 632, 5 Sgml.c, 180, 7 
15 Textview.cpp, 243, 5 Kw.c, 178, 7 
16 Calculator.cpp, 172, 1 Mem.c, 127, 1 
17 Textview.cpp, 84, 25 Sgml.c, 555, 27 
18 Textview.cpp, 437, 9 Kw.c, 452, 7 
19 Calculator.cpp, 454, 5 Kw.c, 680, 23 
20 Textview.cpp, 628, 5 Kw.c, 421, 11 
21 Calculator.cpp, 558, 5 Text.c, 124, 11 
22 Document.cpp, 84, 25 Ac.c, 407, 3 
23 Textview.cpp, 220, 1 Html.c, 453, 3 
24 Textview.cpp, 75, 5 Ac.c, 122, 1 
25 Calculator.cpp, 364, 16 Ac.c, 368, 1 

4.2.4.1 Results for scalc 

After performing a first manual analysis, we run Sonar. Table 10 presents the results 

of our first manual analysis as well as those computed by Sonar. Each row starts with a 

number that cross-references to the particular source code position of interest listed in Table 

9. An empty cell in the Sonar column means that Sonar’s prediction is the same as the 

manual prediction. The rows in bold indicate a discrepancy in the two predictions.  

Table 10: Comparison of the results of a manual analysis and of Sonar for scalc. 

Pos. Manual Results Sonar’s results that help correct manual 
results 

1 Whole cell editing sub tree + Recalculate Whole cell editing sub tree 
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2 Load processed  
3 Save processed  
4 Visual display affected All software functions  
5 Load processed  
6 Load processed  
7 Edit cell reference + Edit function Edit cell reference + Edit function + 

Edit cell with text 
8 Motion up  
9 Whole Cell editing subtree  
10 Edit number Edit number + edit arith. exp  
11 Visual display affected  
12 Visual display affected  
13 Toggle auto-recalculate All software functions  
14 Whole load subtree Only Load processed affected 
15 All visual display affected All software functions  
16 Load processed + Recalculate  
17 Motion down  
18 Visual display affected Only Visual display after a cell 

edition 
19 Whole edit expression processed sub-

tree 
Whole edit expression processed sub-
tree except edition of cell reference 

20 Load processed  
21 Whole edit expression processed subtree  
22 Clear sheet processed Clear sheet processed+ Load 

processed 
23 Motion right  
24 Visual display affected All software functions 
25 Whole edit expression processed subtree Whole edit expression processed 

subtree except edition of cell 
reference 

Table 10 shows that there are twelve discrepancies and thirteen predictions that are 

the same between the manual analysis and Sonar’s. As indicated in our protocol, we assume 

that the thirteen same predictions are exact. However, for the inconsistent predictions, we 

now perform a second manual analysis to determine whether Sonar’s predictions are unsafe 

or safe and exact or inexact. Conversely, this also helps determine when the first manual 

analysis is unsafe or safe and exact or inexact. In Table 11, rather than only showing the case 

of discrepancies, we present Table 10 with all the correct results, and then we indicate 

whether Sonar’s predictions are CORRECT, UNSAFE, or SAFE. For safe and unsafe results, 
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we also give the extra and missing software functions, respectively. Moreover, to indicate a 

change in a manual result from the first to the second analysis, we italicized the results in 

Table 11. In other words, this points out when our first manual analysis was wrong. It 

happened in four cases, respectively in rows 7, 14, 18, and 22. 

Table 11: Estimation of Sonar’s results for scalc. 

Pos. Correct Results from second analysis Sonar’s results  
1 Whole cell editing sub tree + Recalculate UNSAFE: Missing recalculate 
2 Load processed Correct 
3 Save processed Correct 
4 Visual display affected Correct: indicates all affected 
5 Load processed Correct 
6 Load processed Correct 
7 Edit cell reference + Edit function + Edit 

cell with text 
Correct 

8 Motion up Correct 
9 Whole Cell editing sub-tree Correct 
10 Edit number SAFE: indicates edit arith. Exp affected 
11 Visual display affected Correct (none affected) 
12 Visual display affected Correct (none affected) 
13 Toggle auto-recalculate SAFE: indicates all affected 
14 Load processed Correct 
15 All visual display affected Correct: indicates all affected 
16 Load processed + Recalculate Correct 
17 Motion down Correct 
18 Visual display of cell edition affected Correct: indicates all edit cell sub-tree 
19 Whole edit expression processed sub-tree UNSAFE: Missing edit cell reference 
20 Load processed Correct 
21 Whole edit expression processed sub-tree Correct 
22 Clear sheet processed + Load processed Correct 
23 Motion right Correct 
24 Visual display affected Correct: indicates all affected 
25 Whole edit expression processed sub-tree UNSAFE: Missing edit cell reference 

First, we note that three of Sonar’s predictions are unsafe (1, 19, and 25). Second, two 

predictions (10 and 13) are safe but not exact. Finally, the remaining twenty predictions made 

by Sonar are correct. For results (4, 15, 18, and 24), we find that the results are correct; 

however, some additional interpretation is needed. The correct results indicate that only the 
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visual display of the application is affected. Currently, Sonar cannot make the difference 

between the visual and the computational aspect of a software function. Hence, Sonar 

highlights a software function independent of whether its computational or visual aspect is 

affected. Programmers do not usually have problems determining if the source code they are 

analyzing deals with the computational part or the user interface (UI) part of a system. The 

tough part of the programmer’s job is to determine the particular software functions to which 

a particular source code component relates. Consequently, in these four cases, we find that 

Sonar’s predictions are safe and correct.  

The results above only provide information for 25 of the 419 source-code components 

exercised. However, we can use the binomial distribution to estimate what the predictions 

would be for the remaining 396 source-code components. The binomial distribution can be 

used when a trial, in this case a prediction computed for a source code component, is 

independent of the others. This is also known as Bernoulli trials. In our case, predictions are 

independent of the proximity between source code components. Two source code 

components may generate different predictions whether they are near each other or not. 

Hence, predictions for different source code components are Bernoulli trials.  

Finally, using the binomial distribution, we can determine the X and Y of our 

objective. 

 

 

 

Goal: We want to determine with more that 99% certainty that for software system 

Z, Sonar computes X% of safe predictions and Y% of exact predictions when 
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Exercise and Activate relationships are sampled with a set of system test that 

satisfy our test selection criteria. 

We may say that for the scalc software and our 19 system tests that satisfy our test 

selection criteria 

•  X = 70%. We know with more than 99% certainty that 70% of Sonar’s predictions for the 

remaining 396 source code components would be safe 

•  Y = 60%. We know with more than 99% certainty that 60% of Sonar’s predictions for the 

remaining 396 source code components would be exact. 

4.2.4.2 Results for bool 

As for scalc, we first performed a first manual analysis on bool for each of the 

twenty-five source-code components. Second, we let Sonar compute its predictions for the 

same source code components. Table 12 presents the results of both predictions using the 

same convention than for scalc, in particular, discrepancies in predictions are in bold. 

Table 12: Comparison of the results of a manual analysis and of Sonar for bool. 
Pos. Manual Results Sonar’s results that help correct 

manual results 
1 All but 2 unsuccessful search (text/html Fail)  
2 All  
3 All  
4 All  
5 Text & Html count number of matches  
6 Text & Html find a fixed string  
7 All  
8 OR all sub-tree  
9 All Html search  
10 All Html search Except unsuccessful Html 

search, and count number of 
matches in Html file 

11 All Except count number of matches All Except count number of 
matches and failed search 

12 All Html search All Html search except failed 
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html search 
13 All but search a fixed string  
14 All Html search  
15 All but search a fixed string  
16 None  
17 All Html search  
18 Text & Html find a fixed string  
19 Text & Html find n matches All except unsuccessful search, 

and count number of matches 
20 All All but count number of 

matches 
21 All text search  
22 Text find a special match + failed text search  Text find a special match 
23 All Html search All Html search except count 

number of matches in Html file 
24 All  
25 All  

Table 12 shows that there are seven discrepancies and eighteen predictions where our 

first manual analysis gives the same predictions as Sonar’s. As indicated in our protocol, we 

assume that the eighteen same predictions are exact. On the other hand, for the inconsistent 

predictions, we now perform a second manual analysis to determine whether Sonar’s 

predictions are unsafe or safe and exact or inexact. Rather than providing the results for the 

inconsistent predictions, we give Table 13 with all twenty-five results computed after our 

second analysis. These results are now assumed to all be exact. We can then compare them 

with Sonar’s. For safe and unsafe results, we also give the extra and missing software 

functions. Moreover, to show that a prediction from our first manual analysis has been 

changed by our second analysis, we italicized it. In other words, this points out when our first 

manual analysis was wrong. It happened in four cases, in rows 10, 19, 20, and 23. 

Table 13: Estimation of Sonar’s results for bool. 
Pos. Correct Results Sonar’s results that help correct 

manual results 
1 All but failed text/html search  Correct 
2 All Correct 
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3 All Correct 
4 All Correct 
5 Text & Html count number of matches Correct 
6 Text & Html find a fixed string Correct 
7 All Correct 
8 OR all sub-tree Correct 
9 All Html search Correct 
10 All Html search except unsuccessful Html search, 

and count number of matches in Html file 
Correct 

11 All Except count number of matches UNSAFE: Missing text/html 
failed search 

12 All Html search UNSAFE: Missing failed html 
search 

13 All but search a fixed string Correct 
14 All Html search Correct 
15 All but search a fixed string Correct 
16 None Correct 
17 All Html search Correct 
18 Text & Html find a fixed string Correct 
19 All except failed search, and count number of 

matches 
Correct 

20 All but count number of matches Correct 
21 All text search Correct 
22 Text find a special match + failed text search  UNSAFE: Missing failed text 

search 
23 All Html search except count number of matches  Correct 
24 All Correct 
25 All Correct 

First, we note that three of Sonar’s predictions are unsafe (11, 12, and 22). Second, 

the remaining twenty-two predictions are exact. Surprisingly, all twenty-two predictions are 

safe and imprecise.  

The results above only provide information for 25 of the 508 source-code components 

exercised. However, we can use the binomial distribution to estimate what the predictions 

would be for the remaining 483 source-code components. In particular, we can determine the 

X and Y that make our hypothesis below correct. 

Goal: We want to determine with more that 99% certainty that for software system 
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Z, Sonar computes X% of safe predictions and Y% of exact predictions when 

Exercise and Activate relationships are sampled with a set of system tests that 

satisfy our test selection criteria. 

We may say that for the bool software and our 21 system tests that satisfy our test 

selection criteria 

•  X = 70%. We know with more than 99% certainty that 70% of Sonar’s predictions for the 

remaining 483 source code components would be safe 

•  Y = 70%. We know with more than 99% certainty that 70% of Sonar’s predictions for the 

remaining 483 source code components would be exact. 

4.2.5 Conclusion of study 

Although scalc and bool are very different in nature—the first is object-oriented and 

interactive while the second is procedural and command-line driven—the results of our study 

remain very similar. In both cases, safety of predictions is around 70%, and the level of 

correctness varies of only 10% (between 60% and 70%) between the two systems. Thus, 

when Exercise and Activate relationships are sampled with a set of system tests that satisfy 

our test selection criteria, the safety and the correctness of predictions does not vary 

dramatically between the two systems selected. This is encouraging. If these results repeated 

on several other systems, we would be able to infer that the way a system is implemented 

does not influence Sonar’s predictions (when system tests satisfy our test selection criteria). 

However, the current rate of safety (70%) and correctness (between 60 and 70%) 

must be improved before we can use these results as a basis for inferring new Potentially 

Affect relationships. Our future work will therefore not only focus on testing Sonar and our 

test selection criteria with other software systems but also on developing a technique to 
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improve the current level of safety and of correctness of predictions. This may be done 

through refinement. After Exercise and Activate relationships are first sampled with a set of 

system tests that satisfy our test selection criteria, more system tests are selected for further 

refinement of the sampled Exercise and Activate relationships. Another solution is to create 

new test selection criteria.  

A particular area that needs help from Sonar is that of large software systems. 

However, currently we have no way to guarantee the correctness of manual results when 

systems are large. For such systems, assuming the correctness of predictions is not 

acceptable. A promising direction is to study the help provided by Sonar’s predictions instead 

of studying the rate of safety and correctness of Sonar’s predictions. In other words, although 

we cannot guarantee the safety and the correctness of Sonar’s results, can we determine if 

Sonar’s predictions teach new information to the programmer? The information below shows 

that such studies are in fact possible, and they are likely to produce very useful results. 

Our case study has a very interesting side effect. In fact, if we look back at our first 

and second manual predictions, we find that for systems scalc and bool four predictions 

manually computed during our first analysis are wrong; therefore, they were updated by our 

second manual analysis. In many environments, programmers can only investigate the source 

code using the technique used by our first manual analysis. In particular, programmers do not 

have the time to manually instrument the source code (with print statements) and execute the 

system to determine certain dynamic behaviors. In these environments, programmers are 

limited to code review assisted with text search tools (such as grep) in order to determine the 

ripple effect of a source code change on the software functionality. As the results of our case 

studies on scalc and bool show, results of the first manual analysis were wrong four times.  



 114

When further analyzing these results, we observe that when the first manual analyses 

are wrong, those of Sonar are correct. This is true for the four cases of both scalc and bool. 

We definitely want to find out if that trend generalizes. If it does generalize, it will indicate 

that when the manual analysis is difficult and the programmer has a greater risk to commit an 

error, Sonar has a high probability to compute the correct predictions, or at least a safe 

prediction. Hence, the use of Sonar with Exercise and Activate relationships sampled from 

system tests that satisfy our test selection criteria would be computing predictions of great 

assistance to programmers. This approach of studying the usefulness of Sonar’s predictions 

seems to be a promising direction, especially for large systems. 



5 Related Works 

To introduce related works, we reuse the E-R diagram presented in Chapter 1. Several 

researchers have worked on relating software specifications to source code. From Figure 18, 

we see three possible ways to relate software specification to source code: (1) one direct 

approach, (2) two transitive approaches through design and constraints, or (3) using system 

tests.  

Antoniol et al. propose a direct approach. They directly map the functional 

requirements to the source code. Their technique uses the similarity between the 

requirements document vocabulary and the names of identifiers in the source code in order to 

relate software functions (or functional requirements) to source code components [Antoniol 

et al. 2000]. They performed a case study on a real-world system that showed that their 

method traded off quite a bit of precision to get safe results. They found that to get safe 

predictions they had to allow for a very low level of precision (12%). In other words, all 
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Software Function
(related to

Functional Requirements)

ExerciseActivate

Satisfy Implement
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Figure 18: E-R diagram of software components and their relations. 
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software functions affected are part of the predictions; however, only one out of eight 

predictions is truly affected. When they tried to improve the precision, the safety of 

predictions suffered dramatically. For example, when predictions are safe at 50% (half of the 

affected software functions are not in the prediction), they found that the precision of the 

prediction is at 54% (half of the software functions in a prediction are really not affected). 

These percentages indicate that their method does not currently produce good results on real-

world systems. Moreover, their method can only study its reliability through empirical 

studies. That is, there is no framework to study the general theoretical reliability of their 

method. On the other hand, our method has enabled us to theoretically study the safety of 

predictions. Moreover, from our case study, we found that our method seems to be more 

accurate than that of Antoniol et al. However, their method has less setup costs than our 

method since system tests are not required. Furthermore, with their method, a programmer 

can query from any part of the source code, independent of whether this source code is 

executable or not. In our case, the programmer can only query the source code components 

that were exercised by a system test. 

A second technique for relating software specifications to source code uses design 

and/or formal constraints. In Figure 18, the two relations of interest are Satisfy and 

Implement. Commercial companies such as Rational™ or TogetherSoft™ have pushed this 

approach. Gates et al. also propose a similar model where formal constraints in the form of 

logic rules enable inferring relationships from source code to requirements [Gates and Della-

Piana 1997, Gates and Li 1998, Gates and Teller 2000]. When correctly applied, these 

methods are sound and give good predictions. The downside is the setup cost. These methods 

require the existence of a well-defined software development process where design and/or 



 117

logic rules are created during the initial software development cycle and, more importantly, 

are maintained in subsequent cycles of development and maintenance. Such maintenance 

must not only update the design and/or logic rules but also update their Satisfy relationships 

with software requirements. The manual effort of maintaining Satisfy relationships requires 

tedious work. Over time, errors are likely to be introduced, which compromises the integrity 

of Satisfy relationships. Developing a method that automates computing Satisfy relationships 

may prove to be very challenging. In contrast, our method can be applied to software projects 

that did not start with a rigorous process requiring design and logic rules to be created. In our 

case, only system tests are needed to enable the application of our method. Currently, it is 

still more common to find companies with up-to-date test suites for their software products 

rather than with up-to date requirements document, design, and source code all in-sync. In 

any case, product and practice suggested by Rational are gaining acceptance in the software 

industry. Thus, in the future, our method may be combined with that of the Rational Unified 

Process. Our method for predicting Potentially Affect relationships can then help verify the 

integrity of Satisfy relationships. In particular, after a software maintenance has been tested 

with an instrumented version of the system, the Potentially Affect relationships computed by 

system testing can be used to point out the Satisfy relationships that need updating between 

requirements and design components.  

The third method, which is ours, requires system tests. Several efforts prior to ours 

have used system tests to relate software functions to source code. However, they all 

compute relationships between software functions and source code to go from a software 

function to source code. In particular, they provide heuristics to locate the implementation of 

a particular software function in the source code. In other words, the query starts from a 
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software function, and the result predicts the source code components that implement that 

software function. These methods do not answer the same question as ours. However, since 

they also relate software functions to source code using system tests, it is important for us to 

present them.  

Parikh and Zvegintzov were the first to propose comparing the execution traces of 

system tests to find information with potential relevance to specific software maintenance 

[Parikh and Zvegintzov 1983]. In particular, they proposed to compare the exercise traces of 

system tests that activate the software functions directly related to the proposed maintenance 

with the exercise traces of similar system tests that do not activate the software functions 

related to the maintenance. Segments of source code related to the first exercised trace but 

not to the second are potential locations where the maintenance could take place. A 

programmer can start investigating the source code from these segments. Wilde and Scully, 

Reps et al., and Wong et al. implemented a tool to facilitate using this approach [Wilde and 

Scully 1995, Reps et al. 1997, Wong et al. 1999]. Wilde and Scully implemented Software 

Reconnaissance, and Wong et al. implemented χSuds. Both tools represent exercised traces 

using node profiles. Reps et al.’s technique proposed to represent exercised traces using 

acyclic intraprocedural paths (B-L paths) to identify Y2K related problem in the source code. 

Only Wilde and Scully studied issues related to the theoretical aspect of their heuristics, but 

to do so, they assumed the existence of an infinite number of system tests. On the other hand, 

we have proposed a method to compute safe results for a large category of software functions 

where only a finite number of system tests is required. Hence, unlike Wilde and Scully’s 

method, our analysis remains tractable.  

 



6 Conclusion and future directions 

This research has explored a method to identify the software functions potentially 

affected by a change at a selected spot of the source code. This method uses system tests to 

infer relationships between software functions and the source code of a software system. In 

particular, the system tests sample Exercise and Activate relationships between the system 

tests and the source code components and between the system tests and the software 

functions, respectively. Our method then consists of joining the Exercise and Activate 

relationships information to detect the ripple effects from a change in the source code on 

software functions. 

We found the conditions needed for our method to guarantee safe predictions for a 

large class of software functions. Some of these conditions specify the source code coverage 

that the system tests must achieve; in particular, all complete sets of interprocedural paths as 

defined by Melski and Reps (M-R paths) must be exercised. Although a finite number of 

system tests can achieve this coverage, no practical number of system tests can do it. 

However, this source code coverage criterion proposes a finite limit to our problem of safely 

predicting the software functions potentially affected by a source code change. Later works 

may use this limit as a stopping criterion for their algorithm. Since there are a finite number 

of complete sets of M-R paths, solutions will always be tractable. For example, we plan to 

develop a method where a few system tests are used to compute seeds Exercise and Activate 

relationships. These seeds will then be used to propagate information pertaining to software 

function to all complete sets of M-R paths. Actually, further research is needed to reduce the 

complete sets of M-R paths so that the predictions will remain safe and the level of precision 
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will improve. In fact, when all complete sets are covered, we know that the predictions will 

be safe but highly imprecise.  

We developed Sonar, a prototype tool that implements our method. Our case studies 

used Sonar on small real systems. For these studies, we created a new set of test selection 

criteria that were always satisfied by a few system tests. These criteria are generic; therefore, 

more case studies on different software systems can be done to further test our test selection 

criteria. Although our results are better than the method of Antoniol et al., they are still not 

good enough to be used as seeds by a propagation technique such as the one described in the 

previous paragraph. In fact, seeds relationships may only be used if we are highly confident 

that the information propagated is safe and fairly precise. Currently, our two case studies 

have shown that predictions are safe only 70% of the time. The percentage of safe predictions 

would need to be in the upper nineties in order to qualify as good seeds.  

Although our results are not good enough for programmers to rely only on them, our 

case studies have shown that programmers’ manual analyses would benefit from our 

predictions. In particular, a side effect of our studies has illustrated that each time the 

programmer made an error in the manual predictions Sonar computed safe predictions. If this 

tendency generalizes, it would definitely show that our method is useful to programmers 

when they are manually performing difficult crucial analyses on how a change at a particular 

spot of the source code impacts a software application’s functionality. 

We now develop three types of future works. The first task is to improve Sonar. We 

intend to tailor a program profiling technique that helps compute the Exercise relationships 

between a partial execution of a system test and a partial exercise trace. Indeed, Exercise now 

relates a system test to its complete exercise trace. In the case of interactive programs, a 
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system test often activates a sequence of several unrelated software functions. It may be 

useful to partition the execution of such a system test and only relate each partial execution to 

its corresponding partial exercise trace. Such partitioning will likely improve the precision of 

Sonar’s results. Creating a relation between the partial execution of system tests and partial 

exercise traces would be fairly straightforward for systems that run as single-process, but, in 

the case of multiprocess or multithreaded programs, it becomes much harder to create 

relationships between partial execution. Since interactive programs with GUI often run in 

multiple threads, it would be crucial for the new profiling technique to handle such cases. 

Annotated grammar used to compute Activate relationships may assist the partitioning of a 

system test into segments that correspond to its unrelated software functions. Recursion in 

the rules of a feature grammar such as the one of the bank ATM presented in Chapter 2 may 

help indicate the cycles in source code that determine the break points, that is, where a 

software function terminated and another started executing. 

We are also interested in implementing Sonar for analyzing Java programs. At the 

moment, it is limited to the study of C and C++ programs. In the case of Java programs, we 

could use the built-in profiling interface JVMPI to help compute Exercise relationships. 

The second task is to improve on our current method for computing predictions by 

not only using dynamic analysis but also using static analysis. We already mentioned this 

direction earlier in this chapter when describing the use of seeds relationships and a 

propagation technique. In particular, the goal is to dynamically obtain a few seeds 

relationships that compute predictions with a high degree of safety and precision for a limited 

number of source code components. In parallel, we can develop heuristics to propagate the 
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information of seeds relationships throughout the rest of the source code based on static 

analysis.  

The third future task consists of conducting more experiments with Sonar to verify if 

our claims generalize on large systems. In particular, we would like to collaborate with the 

software industry and verify whether our claims remain true on real-world systems. 

However, when studying the application of our method on a large project, it may not be 

feasible to determine whether predictions are safe and precise. A more relevant question is: 

are predictions providing new information to programmers? And is the new information 

important to the point that it will avoid the introduction of bugs in a future release of a 

software system? In parallel, we plan to perform a comparative study on the effort required 

for particular maintenance in relation to the coupling between software functions in source 

code. This could then define software metrics to be incorporated in Sonar.  

Our desire is to help programmers in the process of modifying a program. So far, 

programmers determine the ripple effect of source code modification on software function 

using ad hoc techniques made of code and documentation review and, when possible, of 

exercise traces review. Currently, we know that our method may not be capable of 

guaranteeing safe and precise predictions when using only a reasonable set of system tests. 

However, we find it important that we can bring new information to the table. In particular, if 

the new information is important to the point that it will avoid the introduction of bugs in a 

future release of a software system then our method is worth applying. 



7 References 

[Agrawal 1999] H. Agrawal, “Efficient coverage testing using global dominator graphs,” 

SIGSOFT Software Engineering Notes, vol. 24, 1999, pp. 11-20. 

[Agrawal, et al. 1993] H. Agrawal, R. A. DeMillo, and E. H. Spafford, “Debugging with 

dynamic slicing and backtracking,” Software - Practice and Experience, vol. 23, 

1993, pp. 589-616. 

[Aho et al. 1986] A. V. Aho, R. Sethi, and J. D. Ullman, Compilers, Principles, Techniques, 

and Tools. Addison Wesley, January 1986. 

[Albrecht and Gaffney 1983] A. J. Albrecht and J. E. Gaffney, “Software Function, Source 

Lines of Code and Development Effort Prediction: A Software Science 

Validation,” IEEE Trans. Software Eng., November 1983, pp. 639-648. 

[Antoniol et al. 2000] G. Antoniol, G. Camfora, A. De Lucia, G. Casazza, and E. Merlo, 

“Tracing Object-Oriented Code into Functional Requirements”, in Proc. of the 

8th International Workshop on Program Comprehension (IWPC’00), Limerik, 

Ireland, June 10-11, 2000, pp. 79-86. 

[Ball and Larus 1996] T. Ball and J.R. Larus, “Efficient Path Profiling,” in Proc. of 29th 

Annual IEEE/ACM International Symposium on Microarchitecture (MICRO-29), 

Paris, France, December 2-4, 1996, pp. 46-57. 

[Ball 1998] T. Ball, “On the limit of control flow analysis for regression test selection,” in 

Proc. of the ACM/SIGSOFT International Symposium on Software Testing and 

Analysis, Clearwater Beach, FL, March 2-5, 1998, pp. 134-142. 



 124

[Balzer 1969] R. M. Balzer, “EXDAMS—Extensible Debugging and Monitoring System,” in 

AFIPS Proceedings of the Spring Joint Computer Conference 34, Washington, 

D.C., 1969, pp. 125-134. 

[Beck 1999] Ken Beck, Extreme Programming Explained: Embrace Change. Reading, MA: 

Addison Wesley, October 1999. 

[Binkley 1995] D. Binkley, “Reducing the cost of regression testing by semantics guided test 

case selection,” in Proc. of the Conference on Software Maintenance 1995 

(CSM95), Opio (Nice), France, October 17-20, 1995, pp. 251-260. 

[Camuffo, et al. 1990] M. Camuffo, M. Maiocchi, and M. Morselli, “Automatic software test 

generation,” Information and Software Technology, vol. 32, 1990, pp. 337-346. 

[Celentano, et al. 1980] A. Celentano, S. C. Reghezzi, P. D. Vigna, C. Ghezzi, G. Gramata, 

and F. Savoretti, “Compiler Testing using a Sentence Generator,” Software - 

Practice and Experience, vol. 10, 1980, pp. 987-918. 

[Cusumano and Selby 1995] Michael A. Cusumano and Richard W. Selby. Microsoft 

Secrets: How the World’s Most Powerful Software Company Creates 

Technology, Shapes Markets, and Manages People. New York, NY: Simon & 

Schuster, December 1998. 

[Davis 1993] Alan M. Davis, Software Requirements: Objects, Functions, and States. Upper 

Saddle River:NJ, Prentice Hall, 1993. 

[Deprez and Lakhotia 2000] J-C. Deprez and A. Lakhotia, “A formalism to automate 

mapping from features to code,” in Proc. of the 8th International Workshop on 

Program Comprehension 2000 (IWPC2000), Limerick, Ireland, June 10-11, 

2000, pp. 69-78. 



 125

[Erdem, et al. 1998] A. Erdem, W. L. Johnson, and S. Marella, “Task oriented software 

understanding,” in Proc. of the Thirteenth International Conference on 

Automated Software Engineering, Honolulu, HI, October 13-16, 1998, pp. 230-

239. 

[Ernst et al. 1997] Michael Ernst, Greg J. Badros, and David Notkin, “An Empirical Analysis 

of C Preprocessor Use, ” technical report UW-CSE-97-04-06, University of 

Washington, Seattle, WA, April 22, 1997. 

[Fischer 1977] K. F. Fischer, “A test case selection method for the validation of software 

maintenance modifications,” in Proc. of Computer Software and Applications 

1977 (COMPSAC'77), New York, NY, 1977, pp. 421-426. 

[Fischer, et al. 1981] K. F. Fischer, F. Raji, and A. Chruscicki, “A methodology for retesting 

modified software,” in Proc. of the National Telecommunications Conference B-

6-3, November, 1981, pp. 1-6. 

[Gates and Della-Piana 1997] A. Gates and C. Della-Piana, “The identification of integrity 

constraints in requirements for context monitoring,” in Proc. of the 1997 IEEE 

International Conference and Workshop on Engineering of Computer-Based 

Systems (ECBS'97), Monterey, CA, March 24-28, 1997, pp. 498-505. 

[Gates and Li 1998] A. Gates and S. Li, “Software Faults and their Detection through 

DynaMICs,” in Proc. of the International Association of Science and Technology 

for Development (IASTED) Software Engineering Conference, Las Vegas, NV, 

October 28-31, 1998, pp. 323-327.  

 



 126

[Gates and Teller 2000] A. Q. Gates and P. J. Teller, “DynaMICs: An Automated and 

Independent Software-Fault Detection Approach, ” in Proc. of the Fourth IEEE 

International High Assurance Systems Engineering Symposium, Washington, 

D.C., November 1999, pp. 11-19. 

[Griswold et al. 1996] W.G. Griswold, D.C. Atkinson, and C. McCurdy. “Fast, flexible 

syntactic pattern matching and processing, ” In Proc. 4th Workshop on Program 

Comprehension, Berlin, Germany, March 28-31, 1996, pp. 144-153. 

[Hanson 1978] D. R. Hanson, “Event associations in SNOBOL4 for program debugging,” 

Software - Practice and Experience, vol. 8, 1978, pp. 115-129. 

[Harrold and Soffa 1989] M. J. Harrold and M. L. Soffa, “Interprocedural data flow testing,” 

in Proc. of the Third Testing, Analysis, and Verification Symposium, Key West, 

FL, December 13-15, 1989, pp. 158-167. 

[IEEE 1983] IEEE Standard for Software Test Documentation, ANSI/IEEE STD 829, 1983. 

[Melski and Reps 1998] D. Melski and T. Reps, “Interprocedural path profiling, ” TR-1382, 

Computer Sciences Department, University of Wisconsin, Madison, WI, 

September 1998. 

[Melski 2002] David Melski, “Interprocedural path profiling and the interprocedural express-

lane transformation,” Ph.D. dissertation, Computer Sciences Department, 

University of Wisconsin, Madison, WI, 2002. 

[Parikh and Zvegintzov 1983] G. Parikh and N. Zvegintzov, Tutorial on Software 

Maintenance. Silver Spring, MD: Computer Society Press, 1983. 

[Purdom 1972] P. Purdom, “A Sentence Generator for Testing Parsers,” BIT, vol. 12, 1972, 

pp. 366-375. 



 127

[Reps, et al. 1997] T. Reps, T. Ball, T. M. Das, and J. Larus, “The use of program profiling 

for software maintenance with applications to the Year 2000 Problem,” Lecture 

Notes in Computer Science, vol. 1301, 1997, pp. 432-449. 

[Rothermel and Harrold 1997] G. Rothermel and M. J. Harrold, “A safe, efficient regression 

test selection technique,” ACM Transaction on Software Engineering and 

Methodology, vol. 2, 1997, pp. 173-210. 

[Sommerville 1992] I. Sommerville, Software Engineering, 4th edition. Reading, MA: 

Addison Wesley, 1992. 

[Spadafora and Bazzichi 1982] I. Spadafora and F. Bazzichi, “An automatic generator for 

testing compiler,” IEEE Transaction on Software Engineering, vol. 

8, 1982, pp. 343-353. 

[Tolmach and Appel 1990] A. P. Tolmach and A. W. Appel, “Debugging standard ML 

without reverse engineering,” in Proc. of the 1990 ACM Conference on LISP and 

Functional Programming, Nice, France, June 27-29, 1990, pp. 1-12. 

[Wilde and Gust 1992] N. Wilde and T. Gust, “Locating User Functionality in Old Code,” in 

Proc. of Conference on Software Maintenance, Orlando, FL, November 9-12, 

1992, pp. 200-205. 

[Wilde and Scully 1995] N. Wilde and M. C. Scully, “Software Reconnaissance: Mapping 

Program Features to Code,” Software Maintenance: Research and Practice, vol. 

7, 1995, pp. 49-62. 

 

 



 128

[Wong, et al. 1999] W. E. Wong, S. S. Gokhale, J. R. Horgan, and K. S. Trivedi, “Locating 

program features using execution slices,” in Proc. of the Second IEEE 

Symposium on Application-Specific Systems and Software Engineering 

Technology, Richardson, TX, March 24-27, 1999, pp. 194-203. 

[Wong, et al. 1997] W. E. Wong, J. R. Horgan, S. London, and H. Agrawal, “A study of 

effective regression testing in practice,” in Proc. of the Eighth IEEE 

International Symposium on Software Reliability Engineering, Albuquerque, 

NM, November 2-5, 1997, pp. 522-528. 

[χAtac] Telcordia Technologies Inc. Telcordia Software Visualization and Analysis Toolsuite 

(χSuds)—User’s Manual, first edition. Morristown, NJ: Telcordia Technologies 

Inc., 1998. Available at http://xsuds.argreenhouse.com/html-

man/xsudsTOC.html, (χAtac belongs to the χSuds toolsuite).  

 

 

 

http://xsuds.argreenhouse.com/html-man/xsudsTOC.html
http://xsuds.argreenhouse.com/html-man/xsudsTOC.html


Deprez, Jean-Christophe. Bachelor of Science, University of Southwestern Louisiana, 1994; 
Master of Science, University of Southwestern Louisiana, 1997; Doctor of 
Philosophy, University of Louisiana at Lafayette, Spring 2003 

Major: Computer Science 
Title of Dissertation:  Detecting Ripple Effects of Program Modifications on a Software 

System’s Functionality 
Dissertation Director: Dr. Arun Lakhotia 
Pages in Dissertation: 141; Words in Abstract: 298 

   ABSTRACT 

When changing a line of source code, a programmer needs to know how changing 

that line may affect the end-user functionality of the software system. In this dissertation, we 

explore a method that uses system tests to relate software functions (units of software 

functionality) to source code. This method can be used to predict the software functions 

potentially affected by a change at a particular spot in the source code. The quality of a 

prediction is measured in terms of its safety and its precision. These two attributes are 

respectively addressed by answering the following questions: Are all potentially affected 

software functions predicted, and are all software functions predicted potentially affected?  

We define a source code coverage criterion in terms of sets of inter-procedural paths. 

When a system test that satisfies this criterion is used, our method guarantees safe predictions 

for a large class of software functions. For most systems achieving such source code 

coverage may require an exponential number of system tests. Moreover, the precision of 

predictions is not guaranteed. Consequently, we create a new set of test selection criteria on 

the basis that all these new criteria must always be satisfied by a small number of system 

tests. Case studies on two software systems, namely scalc and bool, show that sets of system 

tests that satisfy our new criteria enable our method to compute safe predictions 70% of the 

time and safe and precise predictions between 60–70% of the time. 
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These results are not at a level where our method would supersede a programmer’s 

manual analysis. However, they complement manual predictions by improving a 

programmer’s confidence in the result of her/his manual analysis. Incidentally, during our 

two case studies, we observed that our method always corrected the programmer when he 

made a wrong manual prediction.  
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