

Normalizing Metamorphic Malware Using Term Rewriting

A Thesis

Presented to the

Graduate Faculty of the

University of Louisiana at Lafayette

In Partial Fulfillment of the

Requirements for the Degree

Master of Science

Rachit Mathur

Fall 2006

© Rachit Mathur

2006

All Rights Reserved

Normalizing Metamorphic Malware Using Term Rewriting

Rachit Mathur

APPROVED:

__________________________ __________________________
Arun Lakhotia, Chair William R. Edwards
Associate Professor Associate Professor
of Computer Science of Computer Science

__________________________ __________________________
Anthony Maida C. E. Palmer
Associate Professor Dean of the Graduate School
of Computer Science

To Mom, Dad and dearest brother

Acknowledgments

I thank my advisor, Dr. Arun Lakhotia, for his valuable guidance, extraordinary

support, inspiration, and encouragement. This thesis would never have been conceptualized

without the ideas and motivation that he provided me. I greatly appreciate his patience and

the trust he showed in me throughout my thesis. He was always there to support me both

morally and academically whenever I was in a fix. My gratitude for him cannot be expressed

in a paragraph.

I am grateful to Dr. Andrew Walenstein and Mohamed Chouchane without whose

timely advice this thesis would not have materialized. I thank my parents and my brother

for their never-ending encouragement, trust, and support during my lows and my highs in

the research period. Thanks to Aditya Kapoor, Eric Uday, Michael Venable, and Enamul

Karim who gave me helpful feedback during all times in my thesis and shared intriguing

discussions about the challenges I faced.

Finally, I would also like to thank my roommates Gautham Konthum, Arshad

Azeem, and Rajesh Sharma for their constant words of support and encouragement in the

last two years and the good food they cooked for me.

Table of Contents

1 Introduction . 1

1.1 Motivation . 1

1.2 Research objectives . 2

1.3 Research contributions . 2

1.4 Organization of the thesis . 3

2 The normalizer construction problem (NCP) 5

2.1 The normalization problem . 7

2.2 Term rewriting background . 10

2.3 NCP as a term rewriting problem . 12

2.3.1 Modeling the metamorphic engine 12

2.3.2 The normalizer construction problem (NCP) 14

3 A strategy for solving NCP . 16

3.1 Reorienting procedure: termination . 16

3.2 Completion procedure: confluence . 17

4 Approximated solutions to NCP . 21

4.1 Completion procedure failure and alternate completion methods 21

4.2 Normalizer that calculates conditions incorrectly 22

4.3 Priority scheme for implementing approximated solution 24

5 Case study . 26

5.1 Subject and preparation . 26

5.2 Materials and protocol . 27

5.3 Results . 30

5.4 Discussion . 31

6 Relations to other work . 34

7 Conclusions and future work . 36

Appendix . 38

References . 44

Abstract . 45

Biographical Sketch . 46

vii

List of Tables

1 Example application of the rule reorienting procedure 18

2 Rule set N , the result of the completion procedure 20

3 Test set used for case study . 27

4 Results using prioritized, non-completed normalizer 30

5 Rule set used by the mutation engine of W32.Evol 39

6 Rule set used by the mutation engine of W32.Evol 40

7 Rule set used by the mutation engine of W32.Evol 41

List of Figures

1 Detecting metamorphic worm variants using signature for each variant 2

2 Detecting metamorphic variants using a normal form 3

3 Examples of rewrite rules from W32.Evol . 8

4 Example rule set transforming arithmetic expressions 11

5 Sample metamorphic transformation pattern as a rewrite rule 13

6 Metamorphic transformation as a rewrite rule 13

7 Completion step for M t

2
and M t

3
. 19

8 Two rules needed to complete the normalizing set for W32.Evol. 29

1 Introduction

1.1 Motivation

Malicious programs like worms, viruses, and trojans are collectively known as

“malware” [1]. Malware is called “metamorphic” when it is able to construct offspring that

differ from itself [2]. The method typically used by existing metamorphic malware is to

create a copy of itself and then mutate the copy. The collection of mechanisms a malware

uses to mutate this copy are referred to as its “metamorphic engine.” W95.RegSwap, for

example, was an early metamorphic virus whose metamorphic engine rewrote the code by

consistently substituting the registers used throughout [2].

The reason metamorphic engines were developed, of course, was to enable malware to

avoid detection by malware scanners [3]. One of the primary techniques used by malware

scanners is to match invariant patterns of data, code, or behavior. Any such distinguishing

pattern can be called a “signature.” The threat that metamorphic malware poses for all

signature matching techniques is that it reduces or removes invariants the match relies upon.

In the worst case, the malware scanner would require a signature for every variant, as shown

in Figure 1. While W95.RegSwap could be matched using a more general signature [2], more

powerful metamorphic engines could create many more variants—possibly unbounded

quantities—each of which bear little obvious resemblance to the original. Indeed,

metamorphic engines have been evolving in such a direction [2, 4]. Recent thought on the

matter is that current scanning techniques, by themselves, will not be able to counteract

more powerful self-transformation methods [5].

Figure 1: Detecting metamorphic worm variants using signature for each variant

1.2 Research objectives

One method for recognizing metamorphic malware is to re-transform every possible

program variant into a single common form or, at least, a much smaller number of variants.

As a first approximation one may think of the goal is to “undo” the metamorphic changes to

recover the original program. However in reality the true aim is not to recover an original

program, but rather a “normal” form which is representative of the class of all programs

that are being considered equivalent; the process of creating this normal form is called

“normalization.” If the normalization is successful the prevalent signature-matching

techniques can be leveraged to detect metamorphic malware, as shown in Figure 2.

1.3 Research contributions

This thesis shows how to construct normalizers for metamorphic programs. Theories

and techniques from the field of term rewriting [6] are employed in this effort. Term

rewriting is a general model of computation involving sets of rules, each of which specify

how to rewrite some terms using other equivalent terms. A normalizer can be constructed

from a term rewriting model of a metamorphic engine by judiciously reverting the direction

of some of the rewrite rules and adding additional rules to guarantee a unique normal form.

2

Figure 2: Detecting metamorphic variants using a normal form

The main contributions of this research are in:

1. formalizing the normalizer construction problem (NCP) using term rewriting;

2. proposing a strategy for solving this problem; and

3. demonstrating that certain relaxations of correctness conditions may still yield an

effective normalizer while avoiding potentially costly or fallible static program analysis.

1.4 Organization of the thesis

Chapter 2 defines the NCP after reviewing related work and introducing the necessary

term rewriting definitions. It lists the critical problems involved in creating a useful

normalizer, including the problems of ensuring termination, confluence, and the correctness

of the equivalence relations induced by the normalizing rule set. Chapter 3 defines a strategy

for solving the NCP. First, a method for reorienting rules is described that creates a

normalizing rule set such that termination is ensured. Second a strategy is described for

making the normalizer confluent by applying a completion procedure. Chapter 4 discusses

how to generalize the strategies from Chapter 3 in cases where one or more of the

3

correctness or confluence properties cannot be assured. The result is an approximated

normalizer that may still yield sufficiently useful results for the purposes of signature

matching. Chapter 5 reports on a case study using a normalizer for W32.Evol created using

the proposed approach. It demonstrates the feasibility of the strategy and the potential

usefulness of the approximated normalizer. Chapter 6 discusses the related work. Chapter 7

concludes the thesis and lists several important open research problems. The appendix

provides the rules used by the mutation engine of W32.Evol.

4

2 The normalizer construction problem (NCP)

Metamorphism in malware was developed as a way to defeat the signature-based

methods used by malware scanners. If a virus or worm creates an exact copy of itself each

time it propagates, the task of recognizing it is clearly made easier than if it at least

occasionally changes. The biological analogy is that genetic variation within individuals of a

species (or between related species) makes identification harder. In the case of biological

viruses, for example, a virus with a single strain can be fought with a single antibody, but if

it mutates into multiple strains it forces the body’s immune system to fabricate new

antibodies for each strain. The virus with multiple strains is also able to infect widely even if

individuals have partial resistance to certain strains.

Early viruses and worms tried to increase genetic variation within their populations

by using such tricks as selecting from multiple behaviors and modifying the encryption

scheme used to encode or “pack” the programs. These were examples of what are termed

“polymorphic” worms and viruses [5]; the word literally translates as “many forms.”

Although the number of forms increased via polymorphism, they were closely related, since

these worms and viruses did not perform complicated transformation of their code bodies.

Malware scanners were presented some new hurdles but these were possible to overcome

since, at the very least, the fact that the code bodies were not rewritten means that they

were at some point there and ready to be recognized. Beginning in 1998, however,

metamorphic malware appeared that would rewrite the main bodies of the code. This

development had been expected. Cohen had observed that a program can reproduce either

exactly or with “mutations” [7].

Some metamorphic worms of viruses could conceivably use metamorphism to evolve

in unpredictable ways; indeed, research in the artificial life paradigm seeks to enable

evolution in artificial life forms. Nevertheless, to date, nearly all of the metamorphic worms

and viruses are not designed to truly evolve. Rather, metamorphism is employed primarily

as a means to increase genetic variety while maintaining a common identity for all the forms.

Specifically, it is typically a goal for a metamorphic engine to ensure its mutations are

programs that are functionally equivalent to the original. That is, the metamorphic engines

strive to be semantics-preserving. When a metamorphic engine is added to any given

malicious payload program it can generate a collection of equivalent programs, each of which

have potentially different code bodies.

Even if the metamorphic engines preserve semantics, they can create enough mischief

to pose difficult problems for malware scanners. The fact that all variants are semantically

equivalent provides limited help since deciding program equivalence is known to be an

undecidable problem in the general case. Moreover, Chess and White [8] showed that

detecting that a program has the property than any one of its instances “potentially

produces” any other instance is also undecidable. Spinellis [9] offered a proof that correctly

detecting evolving bounded-length viruses is NP complete. While a complete and general

solution may be too costly or simply impossible, it does not follow that the simpler problem

of merely recognizing some malware variants is infeasible.

One possible approach is to define pattern-based signatures of malicious activity and

then build tools that can find such signature activity in every (or at least most)

implementations of them. An example of such an approach is given by Christodorescu

et al. [10]. A second possible approach is to generalize the matching so that at least certain

metamorphic transformations will not destroy the match. The work by Karim et al. [11] is in

this vein. They define a similarity function between programs that matches code even when

certain permutations have been performed on it. While this is a specific form of generalizing

the match to allow for code mutations, it nonetheless shows that it may be possible to

6

account for specific transformations by suitable alteration of the match methods.

A third general approach is to reduce the number of variants that need to be

considered by normalizing the programs. The remainder of this chapter defines this problem.

A motivating example is first described in Section 2.1; the required term rewriting

background is introduced in Section 2.2, and NCP is formalized in 2.3.

2.1 The normalization problem

Semantics-preserving program-to-program transformations can be used to normalize

programs and thus reduce the variation in the input to the signature matching schemes.

Effectively, this prunes the search space for a pattern matcher, simplifying the recognition

problem. Such an approach was introduced by Lakhotia and Mohammed [12]. They defined

a collection of semantics-preserving transformations called “zeroing” transformations. These

would impose order and regularity on the input program. Unfortunately, while their system

can reduce the number of variations there may still be an enormous number of them. A

potential weakness in their approach is that the specific transformations of the metamorphic

engine are not considered, so the transformations are generic and not tailored to normalizing

a specific collection of related programs.

Instead of trying to define generic transformations, however, it might be feasible to

define transformers specific to a metamorphic engine. Once a metamorphic engine is released

it can be studied, and it may be possible to use the knowledge gained to revert all of its

outputs to a known variant. More specifically, the goal would be to build a normalizer that

could take any program variant constructed by the metamorphic engine and transform it in

such a way that if two normal forms are equal it implies the programs are equivalent. With

such a normalizer in hand a single signature could be developed for the normal form of a

virus or worm. Suspect programs could then first be normalized and if the normal form is

7

matched to the signature we can be sure that the suspect program was equivalent.

While the scheme is prima facie sound, there are several potential hurdles to this

approach, since simply “reversing” the transformations of the metamorphic engine is not a

sufficient strategy. We illustrate this fact here using an example from the metamorphic worm

W32.Evol, which contains a metamorphic engine that has dozens of ways of rewriting code. It

operates by selecting rules to perform in a randomized fashion. Examples of W32.Evol rewrite

rules are shown in Figure 3. The disassembly of the parent’s Intel x86 code is shown in the

left column and the corresponding transformed offspring code in the right column. In the

figure, the parts of the code that are changed in the offspring are shown in bold face.

Parent Offspring (transformed)

push eax push eax

mov [edi], 0x04 push ecx
(a) jmp label mov ecx, 0x04

mov [edi], ecx
pop ecx
jmp label

push 0x04 mov eax, 0x04
(b) mov eax, 0x09 push eax

jmp label mov eax, 0x09

jmp label

mov eax, 0x04 mov eax, 0x04

(c) push eax push eax

jmp label mov eax, 0x09
jmp label

Figure 3: Examples of rewrite rules from W32.Evol

In example (a), the metamorphic engine has replaced an immediate mov into a mov

from a register. This transformation does not change the semantics of the code: both

versions do the same thing, only in slightly different ways. In the transformed code, the

register ecx needed to be disturbed in order to change the mov immediate instruction. If ecx

8

is known to be dead (its value is not needed later), at that point the transformation would

not change how the program works. Any existing value of ecx, however, is preserved by the

push and subsequent pop immediately surrounding the two middle mov instructions.

W32.Evol adds these push/pop blocks each time it makes such a transformation because it

does not first determine whether ecx is live or dead at any point. If it failed to add these

blocks, the result could be semantically different and is likely to not work correctly.

In example (b), the push immediate instruction has been changed to a mov immediate

into a temporary register followed by a push from that register. Like the transformation in

(a), this transformation is semantics preserving. However, its correctness relies on the fact

that the register eax is being overwritten before its use following the push in the original

program and is therefore not live at that point.

In example (c), a “junk” statement (i.e., one with no effect on the computation) mov

eax, 0x09 is inserted. It is not possible to discern that this is a junk statement without

knowing a specific property of the W32.Evol program as a whole: that immediately after a

push eax, the program guarantees that the eax register is dead and can be altered in any

way without affecting the running of the program.

The transformation examples in Figure 3 help introduce several potential problems in

developing a normalizer. There is, at minimum, a technical hurdle of specifying an

appropriate transformation system for this type of normalization problem. W32.Evol’s

metamorphic engine can perform the transformation in (a) no matter the value of the

immediate constant, so the normalization system must be able to express variant

substitutions such as this. In addition, the transformations in (b) and (c) can be performed

only when certain conditions can be guaranteed to hold. The transformation system must be

able to formalize this condition-specific transformation.

Apart from the mechanics, though, there are potentially deeper problems as well.

9

Consider, for instance, the mov eax, 0x04 ; push eax ; mov eax, 0x09 sequence. The

transformations in both (b) and (c) can produce the sequence. If one were to choose to

revert to the code in (b) instead of (c) (or vice versa), will this decision affect the results?

Can we guarantee only a single normal form will be produced for any variant? Is it possible

that transforming a non-malicious program would yield a false match? Without appropriate

understanding of how the transformation systems work, it will be impossible to answer these

questions or to build a correct normalizer. The following subsections provide an overview of

some necessary background from the term rewriting literature and show that we can

formalize the normalizing transformer construction problem.

2.2 Term rewriting background

Term rewriting systems are widely studied and good references exist (e.g., Baader and

Nipkow [6]); this section only briefly reviews definitions and results needed for later sections.

Term rewriting system. A term rewriting system, T , consists of a set of rewrite rules. A

rule is denoted s→ t, where s and t are terms (described below). Figure 4 shows a

simple example of a term rewriting system.

Terms, subterms, atomic, and ground. Terms are composed of constants, variables,

functions, or functions on terms. For example, the term multiply(2, add(3, 1)) is built

using the binary functions add and multiply and the constants 1, 2, and 3. A term t

may contain other terms (called subterms of t). The term 2 and the term add(3, 1) are

subterms of multiply(2, add(3, 1)). An atomic term is one that does not contain

subterms. For example, 2 and x are atomic. A ground term is one that does not

contain variables.

Reduction relation (→T). Any term rewriting system T induces a relation →T on terms,

10

also represented as → where obvious. Given terms s and t, →T is defined as follows: s

→T t holds if and only if for some rewrite rule s′ → t′, s has, as a subterm, an instance

of s′ that, if replaced with its corresponding instance of t′, turns s into t; that is,

applying rule s′ → t′ to s transforms it into t. A conditional term rewriting system may

have conditions attached to the rules. Conditions are normally expressed as predicates

and written as p|R, where R is a rule. This means that rule R may be applied only

when the condition p holds. Clearly an unconditional term rewriting system is simply

the special case of a conditional term rewriting system with each predicate being true.

Equivalence relation (
⋆
←→). The equivalence relation,

⋆
←→, is the reflexive symmetric

transitive closure of the relation → induced by T . Because
⋆
←→ is an equivalence

relation, it partitions the set of terms into equivalence classes. Given a T , we use the

notation [x]T to refer to the equivalence class of a term x, as defined by
⋆
←→.

Normal form. If a term t is not related to any other term under →T , then t is said to be

in normal form with respect the rewriting system T . NormT (x) is the set of terms in

[x]T in normal form. The term add(2, 2) is in normal form with respect to the example

rewriting system shown in Figure 4, and add(1, add(1, 1)) is related to add(1, 2) under

the relation induced by this system (by application of the second rule).

Termination. T is terminating if there exists no infinite descending chain of the form

a→ b → c · · ·. Determining termination is, in general, undecidable.

Confluence. Let w, x, y and z denote arbitrary terms. Suppose there is a sequence of

add(1, 1)→ 2
add(1, 2)→ 3
add(0, 3)→ 3

Figure 4: Example rule set transforming arithmetic expressions

11

applications of rewriting rules that reduces x to y and another sequence that reduces x

to z. The system is confluent if y and z are joinable. Two terms y and z are said to be

joinable if there is a sequence of applications of rewriting rules that reduces y and z to

some term w. Determining confluence is, in general, undecidable.

Convergence. A term rewriting system is convergent if it is confluent and terminating. If a

term rewriting system is convergent, then membership in an equivalence class becomes

decidable and each equivalence class has a unique normal form.

2.3 NCP as a term rewriting problem

Using the term rewriting theory of Section 2.2 we can formally restate the

normalization problem introduced in Section 2.1. This is done by modeling the metamorphic

engine as a term rewriting system and then posing the NCP problem as one of constructing

an equivalent term rewriting system with three specific properties.

2.3.1 Modeling the metamorphic engine

It may be possible to formalize a metamorphic engine as a term rewriting system by

considering assembly statements as terms, treating operations as functions, and considering

its operands either constants (which must match exactly) or variables (which allow

patterend matches). For example, consider the mov ecx, 0x04 statement from Figure 3.

When writing this program fragment in a rewrite rule it can be modeled using the term

mov(reg1, 0x04). In this case mov is the function, reg1 is a variable, and 0x04 is a constant.

To match this rule, the specific constant would need to be matched. Figure 5 depicts an

example of how rules might typically be written in a term rewriting formalism.

In modeling the metamorphic engine, we make the explicit assumption that the

12

mov (reg1, reg2) −→

{ push (reg3);
mov (reg3, reg2);
mov (reg1, reg3);
pop (reg3); }

Figure 5: Sample metamorphic transformation pattern as a rewrite rule

metamorphic engine must preserve semantics and, furthermore, each rule preserves

semantics. The rule in Figure 5 has no condition attached to it, meaning its conditions for

firing are always true, and the left hand side must be equivalent to the right hand side at

any time. This is true for the potential rules in Figure 3(a), modulo issues that are

considered unimportant such as code size and location. Other rewrite rules need to be

conditioned to be able to encode such transformations as the ones shown in Figure 3(b) and

Figure 3(c). In particular, the conditions attached to the rules need to ensure that the rules

cannot fire if by doing so they would not preserve semantics.

Using a scheme like this, we were able to formally model the metamorphic engine in

W32.Evol. One of the rewrite rules is depicted in Figure 6. This rule corresponds to the

transformation shown in Figure 3(a). For simplicity we will write such rules in the assembly

language form rather than the term rewriting form of Figure 5. In the figure, IMMED is a

variable, which can match a constant. In particular, it can match the 0x04 constant from

Figure 3(a).

mov [edi], IMMED −→

push ecx
mov ecx, IMMED

mov [edi], ecx
pop ecx

Figure 6: Metamorphic transformation as a rewrite rule

13

2.3.2 The normalizer construction problem (NCP)

Suppose one has formalized a metamorphic engine as a term rewriting system, as

described above. Call this term rewriting system M . M induces an equivalence relation and

so partitions programs into equivalence classes [x]M . If M happens to be convergent then

the problem of determining equivalence for variants of a metamorphic program is, in

principle, solvable. Given a malicious sample s and a sample program p one can determine

whether p is a variant of s, i.e., whether p ∈ [s]M . To do this a term rewriting system can

apply rewrite rules to p and s until they match. If M is convergent it is confluent, and if it is

confluent then p and s will be joinable if they are equivalent and not joinable if not. This

malware recognizer could therefore produce neither false positives (no non-equivalent

programs would join s) nor false negatives (all equivalent p would eventually join).

In practice, however, it is unlikely that M is convergent; otherwise the metamorphic

engine will only serve to progress the malware towards a single form, thereby defeating the

goal of metamorphism. Moreover, even if M were convergent, the process of rewriting p and

s until they join is not a feasible malware detection scheme not least because it requires the

distribution of the original malicious sample s. However, M can be useful if it can be

modified to create a new term rewriting system which is convergent.

The problem of doing this is what we call NCP: the normalizer construction problem.

It involves constructing a convergent rule set N from M such that the the equivalence

classes of M are equal to the equivalence classes of N . Using the definitions of convergent,

this means the following properties must hold:

Equivalence. For all programs x, [x]M = [x]N . If M and N are not equivalent wrt x then

one of the following conditions would hold: (a) ∃k.k ∈ [x]M ∧ k 6∈ [x]N or (b)

∃k.k 6∈ [x]M ∧ k ∈ [x]N . The first condition leads to false negatives and the second one

14

to false positives.

Termination. Clearly a successful normalizer must halt, which means that N must be

guaranteed to have no rules that could cause an infinite chain of application. The rule

in Figure 5, for example, would do so since the right hand side contains a match to the

left hand side.

Confluence. If N is confluent then the order of application is not important.

If all of these properties are met, a correct malware recognition system might be built

on top of signature matching techniques. For any given program sample p, the rules of N

can be applied until the result is irreducible. If N is terminating, the applications are

guaranteed to stop. If N is both terminating and confluent, the same normal form will be

produced for any two programs p and q that are equivalent under [q]N , and different normal

forms will be produced otherwise. If [x]M = [x]N for all x, then no false positives or false

negative matches would occur. With such an N , one applies it to a known virus or worm

sample s to create its normal form NormN(s) and then builds a signature for it. Then for

any suspicious program p one creates NormN(p) and checks for a match to a signature.

15

3 A strategy for solving NCP

Assuming one is given the term rewriting model of the metamorphic engine M , the

challenge of NCP is to construct a new rule set N such that the equivalence classes induced

by N and M are equal and N is convergent. Here we give a strategy for constructing such

an N . The strategy involves the application of two procedures to M : a reorienting procedure

which seeks to ensure it is terminating, and then a completion procedure [13] that seeks to

ensure it is confluent. The completion procedure itself may not terminate. However, should

it terminate it will yield a solution to the NCP.

3.1 Reorienting procedure: termination

The first step is to apply a reorienting procedure to M to create a terminating rule set

M t. Reorienting means changing the direction of a transformation. For example, x→ y is

reoriented by turning it into y → x. Since x→ y means that x is considered equivalent to y,

reorienting the rule will not change the equivalence classes induced by →. Reorienting any

rule in M to construct an M ′ will therefore never result in a case where [x]M 6= [x]M ′ .

To solve the NCP, not just any reorienting procedure will do. The procedure needs to

ensure that the reoriented M will always terminate on any given input. The naive strategy

for constructing M t is to reorient every rule from M . One can think of this as constructing

the “undo” rule set: for every rule in M reversing the directions should “undo” each

metamorphic change. This procedure, however, does not guarantee termination. For

example, if M = {a→ b, b→ a}, then reorienting both rules will yield a rule set that is still

non-terminating (a can be rewritten to b and vice versa forever). In order to ensure the

result is terminating, the reorientation procedure must be based on a well-founded reduction

ordering > on the terms. Given such a >, M ′ can be constructed such that

∀a→ b ∈M ′.a > b. The construction is simple and linear: go through the set and reorient

any rule a→ b if b > a. Since each rule in this M ′ would serve to reduce the terms (according

to ordering >) and since > is well founded, then M ′ is guaranteed to always terminate [6].

Really, any well-founded ordering would do. For the term language we have used in

our prototype we can define a well-founded > using a length-reducing lexicographic ordering,

as follows. Let len(x) be length of term x, where len(x) is the number of atomic subterms it

contains. Then leave a→ b if a > b, otherwise reorient it. Thus for rules of unequal length

we simply reorient the rule if the term on the right is longer than the term on the left. If

both sides of a rule are of equal length, we consider the particular instance where the rule

matches a string, which would of course be all ground terms, and reorient towards the

lexicographically first pair. This definition ensures that the > is a well-founded reduction

order for our rule sets.

Figure 1 shows an example of reorienting a set of rules. Figure 1(a) shows the initial

rules for M and 1(b) shows the M t that results from reorienting M according to the

length-reducing lexicographically first ordering. Note that the rules are conditional rewrite

rules. The post condition column Ci specifies the condition that must be true at the end of

corresponding li, for all conditional rewrite rules. The Ci for an unconditional rule is always

true denoted by a T in the figure. As an example of reorientation, consider row M1. The

length of l1 is 1 and that of r1 is 4, so it must be reoriented.

3.2 Completion procedure: confluence

Given the terminating M t, testing if it is confluent is decidable [6]. If the confluence

test is successful, it would mean that the system is convergent. From the previous step we

already know the equivalence constraint is satisfied, which means that both the constraints

specified in the previous section are satisfied and such an M t will solve the NCP and the

17

Table 1: Example application of the rule reorienting procedure
Rule Post Condition
Mi Ci li → ri

M1 push eax

T mov [Reg1+Imm], Reg2 → mov eax, Imm

mov [Reg1+eax], Reg2

pop eax

M2 eax is dead push Imm → mov eax, Imm

push eax

M3 eax is dead push eax → push eax

mov eax, Imm

M4 T NOP →

(a) M , the original rule set

Rule Post Condition
M t

i
Ci li → ri

M t
1 push eax

T mov eax, Imm → mov [Reg1+Imm], Reg2

mov [Reg1+eax], Reg2

pop eax

M t
2 eax is dead mov eax, Imm → push Imm

push eax

M t
3 eax is dead push eax → push eax

mov eax, Imm

M t
4 T NOP →

(b) M t, the reoriented rule set

18

Critical Pairs

2mov eax, imm

push eax

mov eax, imm

push imm

mov eax, imm

push eax
mov eax, imm

push imm

M’

M’2

3

New RuleM’

Figure 7: Completion step for M t

2
and M t

3

output will be the desired N . If the confluence test fails then M t would contain what are

called critical overlaps [6, 13] in the rules. The left hand sides of a pair of (not necessarily

distinct) rules are said to critically overlap if the prefix of one matches the suffix of the other

or if one is a subterm of the other.

The M t shown in Figure 1(b) has two critical overlaps: (1) M t

1
and M t

2
overlap at

push eax, and (2) M t

2
and M t

3
overlap at push eax. These critical overlaps indicate conflicts in

the rule set that may make the set non-confluent. In this example, a case can occur where

either of M t

2
or M t

3
might be applied, and the resulting irreducible forms may not be

equivalent. Note that while M t

1
and M t

3
may seem at first to have a critical overlap at push

eax ; mov eax, Imm, it is not critical if we take into account the corresponding post

conditions. In particular, M t

3
requires the eax register to be dead, yet for M t

1
, after the mov

eax, Imm is performed it must be the case that eax is never dead, and hence there is no

possibility for the potential overlapping rules to be applicable simultaneously.

In cases where M t is terminating but non-confluent, a completion procedure can be

applied to try to make it confluent. A completion procedure attempts to add rules to a rule

set such that all members of the same equivalence class are joinable. It is an undecidable

problem, in general, to ensure convergence of a rule set. However, it is possible to test for

19

Table 2: Rule set N , the result of the completion procedure
Rule Post Condition
Ni Ci li → ri

N1 push eax

T mov eax, Imm → mov [Reg1+Imm], Reg2

mov [Reg1+eax], Reg2

pop eax

N2 eax is dead mov eax, Imm → push Imm

push eax

N3 eax is dead push eax → push eax

mov eax, Imm

N4 T NOP →

N5 eax is dead push Imm1 → push Imm1

mov eax, Imm2

N6 T push Imm1

mov eax, Imm2 → mov eax, Imm1

mov [Reg1+eax], Reg2 mov [Reg1+Imm2], Reg2

pop eax

confluence on a terminating set, so it is possible to apply a completion procedure and simply

test to see whether it worked. This is the strategy suggested here.

In our case we applied the completion procedure of Knuth and Bendix [13]. This

procedure successfully completed the full M t for W32.Evol. The procedure searches for

critical overlaps and then adds rules that connect the two potentially distinct and irreducible

forms. Figure 7 illustrates the process of completing for the critical overlap between M t

2
and

M t

3
. The new rule, as shown, connects the two irreducible terms push Imm; mov eax, Imm and

push Imm. Repeatedly applying this procedure to all critical overlaps from Table 1

terminated, giving us the desired N as appears in Table 2.

20

4 Approximated solutions to NCP

When the strategy described in Section 3 works, the resulting normalizer is

guaranteed to be convergent. This was shown to be, in many respects, an ideal situation:

not only would there be only one normal form to build signatures for, but N would also

come with a guarantee that each equivalence class has a distinct normal form, eliminating

the potential for false matches. Nevertheless, in some cases it may not be feasible or

desirable to construct or correctly execute a convergent normalizer.

Two cases are considered here: (1) when the completion procedure fails to terminate

with a confluent rule set and (2) when one uses an implementation of the normalizer that

does not calculate the conditions correctly for the conditional rules. We call these

“approximated” solutions to NCP because they fail to meet at least one of the requirements

for an exact solution. The advantages and disadvantages of these approximations are

analyzed, and a strategy is outlined for dealing with the approximation at the term

rewriting system implementation level by implementing a priority scheme.

4.1 Completion procedure failure and alternate completion

methods

Section 3 noted that the completion procedure is not guaranteed to terminate with a

confluent rule set. Even though it completed successfully in the case of W32.Evol’s

metamorphic engine, one may still encounter a case where an alternative approach is

required.

One possibility is to simply use the (possibly partially completed) M t as the

normalizer without a guarantee of confluence. One cost of doing so is that the equivalence

classes induced by M t may have multiple irreducible normal forms; that is, there may exist

an x such that |NormMt(x)| > 1. Whether this fact poses a serious problem for application

in a malware scanner may depend upon the normalizer or the particular metamorphic

program itself. For instance, it might happen that all of the irreducible forms in NormMt(s)

for some malware sample s are highly similar. The similarity between the normal forms may

allow all of them to be matched using a small number of signatures—possibly a single

signature. Hence while having a confluent normalizer is a laudable goal, it may not always

be necessary to achieve it. The case study in Section 5 provides some support for this

possibility.

A second approach is to apply an ad hoc completion. An analyst would have to

examine M t and add rules to create N ′ that the analyst believes will produce a single normal

form for each equivalence class. There is a risk that the analyst will be unable to complete

the rule set and, because of this, fail to guarantee confluence. In this case the risk may be

the same as not completing it at all. There is also a risk that the analyst will mistakenly add

a rule that compromises the equivalence constraint leading to the creation of false positives

or false negatives. The consequences of this risk are described in more detail below.

4.2 Normalizer that calculates conditions incorrectly

Modeling W32.Evol’s metamorphic engine required the use of a conditional term

rewriting formalism. In W32.Evol’s case the conditions attached to the rules were all either

true or register liveness conditions. Register liveness is an analysis that can typically be

performed statically, although in the general case it requires complicated analyses, including

control flow and points-to information [14]. In the general case, these costs are likely to be

exorbitant for an ordinary malware scanner to perform. Perhaps worse, it might not be

feasible to calculate the required condition information correctly using known static analysis

techniques.

22

In the case of register liveness, for example, accurate control flow information may be

needed, yet this is not always possible to extract statically. That said, Lakhotia and

Singh [15] note that the metamorphic engine must be able to perform the necessary analysis

if it is to behave correctly on itself as input. This constraint may serve to limit the

conditions that need to be checked in the normalizer.

W32.Evol’s metamorphic engine does not, in fact, perform any liveness analysis even

though its engine correctly knows about the liveness conditions. It avoids having to worry

about costly or complicated liveness analysis by making use of hidden properties of the

malicious payload program it is attached to. For example, M3 of Figure 1 has a condition

attached to it that stipulates eax must be dead at the end of the push or the rule cannot be

applied. In fact, W32.Evol makes assumption that allow it to ignore the condition.

Specifically, it assumes that eax must be dead after such a push, and that nowhere in the

body of W32.Evol is the value in eax needed after it is pushed and before it is set again. It

also makes use of the fact that none of its other rewrite rules invalidate this very

assumption. For W32.Evol this is a reasonable tactic since it is not expected to apply the rule

set to any arbitrary program, only the malicious payload which has been carefully crafted to

ensure these assumptions hold. A normalizer, on the other hand, is expected to be run on

arbitrary programs, so it must calculate the conditions correctly. And we already noted that

this is not always feasible or possible to do.

For the above reasons, one may wish to develop a normalizer N ′ for M that is not

guaranteed to calculate the conditions correctly. The effective result is that the induced

equivalence relationship no longer correctly reflects the true program equivalences, i.e.,

[x]M 6= [x]N ′ . There are several important cases.

In the case where no conditions are checked, [x]M ⊆ [x]N ′ . To see this, note that for

any term a, b, if a reduces to b under M , it must also reduce to b under N ′ since every rule

23

executable under M is also executable under N ′ since the conditions are not checked. Thus

[x]M is at least contained in [x]N ′ . This guarantees that no false negatives will occur: the set

of programs considered equivalent for a given malicious program s under M will also be

considered equivalent under N ′. [x]N ′ may also contain programs not equivalent under [x]M .

To see this, note that there may exist a rule r = p|a→ b in M that cannot execute in some

condition because p does not hold. If p is not checked by N ′ then r can be executed when

the condition does not hold. This can add a new term to [x]N ′ and so [x]N ′ ≥ [x]M . As a

result, N ′ may lead to false positives since programs not equivalent according to M are

considered equivalent according to N ′.

In the case where conditions are checked erroneously, we can only say that

[x]M 6= [x]N ′ . The case where conditions are not checked at all is merely a special case where

the condition is considered true all the time. If, however, a condition check is erroneous and

reports false when it should report true, then there might exist conditions where certain

rules executable in M that are not executable in N ′. In such cases, there may be programs

equivalent under M that are not equivalent under N . Thus a normalizer that cannot check

conditions correctly can yield both false negatives as well as false positives.

4.3 Priority scheme for implementing approximated solution

It was noted above that if conditions are not checked then false positives may result.

We have experimented with a simple priority scheme for rule application that is designed to

reduce the likelihood of producing false results. This priority scheme was used in the

prototype in the case study described in the following section.

The priority scheme is constructed as follows. The initial set of rules in N ′ is first

partitioned into two subsystems such the one has all unconditional rules while the other has

conditional ones. Call these rule subsets N ′

U
and N ′

C
, respectively. Consider the rule set in

24

Figure 2. Then N ′

U
= {N1, N4, N6} and N ′

C
= {N2, N3, N5}. The normalization process

proceeds by applying rules from N ′

U
until the result is irreducible. Then N ′

C
is checked for a

rule that can apply. If one (any one) can be applied, it is and the procedure loops back into

applying all N ′

U
until the result is again irreducible. The process loops in this fashion until

no more rules from either set can be applied.

This system is equivalent to a scheme with a priority-sensitive application order such

that all the rules in N ′

U
have higher priorities than any rule in N ′

C
(any rule in N ′

U
that is

still applicable will be fired before any rule in N ′

C
). There is a simple intuitive justification to

this simple priority scheme: we know the rules in N ′

U
preserve semantics, whereas application

of any rule in N ′

C
may not. Keeping the unsafe rules at a lower priority means that every safe

applications will be tried before an unsafe one. As a result, some improper rule applications

may be avoided because a higher priority rule will block its application. This should reduce

the number of programs incorrectly considered equivalent to the malicious program.

25

5 Case study

A case study was performed to evaluate the effectiveness of the two approximated

solutions described in Chapter 4. Specifically, we sought to evaluate how well the methods

worked in the case where critical overlaps prevented the system from generating a unique

normal form, and how well the priority scheme worked when applying the rules without

checking conditions. The study sought to quantitatively measure the number of distinct

normal forms created due to the approximations and to qualitatively assess the similarity of

the resulting normal forms.

5.1 Subject and preparation

W32.Evol was selected as a test subject. It is an experimental Windows virus which

appeared in 2000. We obtained a copy of the 12288-byte long first generation sample from

the “VX Heavens” archive [16]; henceforth we will refer to this sample as the “Eve” sample.

Its main body of code consists of 2182 assembler lines.

W32.Evol was considered to be a suitable subject for our study. First, it is not a

serious threat to handle in our secure environment. Second, it creates sufficient variation in

its mutated offspring that static signature based techniques fail: at the time of this writing

we believe it is being matched by emulation [2]. It employs a metamorphic engine which

generates mutations by instruction substitution. Some of these substitutions introduce

arithmetic on immediate constants; these mutation rules, alone, can yield 232 different

varieties at each possible mutation site. Even ignoring all variations in constants and

registers, by examining its possible mutation sites and its mutation methods we

conservatively estimate that it could reasonably generate on the order of 10686, 101339, and

101891 variations in its second, third, and fourth generations, respectively. It is a

Table 3: Test set used for case study

Generation Eve 2 3 4 5 6

Sample count 1 9 7 4 4 1

Average size (LOC) 2182 3257 4524 5788 6974 8455

representative example of a virus with a sophisticated mutating engine. Third, as we noted

in the examples from previous sections, W32.Evol’s metamorhpic engine includes

transformations that are sensitive to semantic conditions and contains rules with critical

overlaps. This provides a good test for the sufficiency of the proposed NCP solution

strategies.

One drawback of using W32.Evol is that it can be difficult to prepare enough mutated

samples. As noted by Symantec [17], the mutated forms are tough to obtain because the

virus is buggy and is highly selective in its mutation. Manipulating it in a debugger in a

secure environment allowed us to bypass its various bugs and checks (such as an entry point

calculation bug), and in that way we were able to coax it to generate 72 different variants,

spread into six different generations. We created an ad hoc sample of 26 of the 100 variants

from multiple families across the six generations as follows. Each of the samples was

prepared by disassembling the main code using the objdump1 disassembler. The average

length of each of the sampled generations is shown in the above table in terms of number of

non-blank lines of assembly. Our prototype required the immediate-mode constants to be

represented in decimal format, which we achieved by altering objdump appropriately.

5.2 Materials and protocol

The procedure we used is as follows:

1GNU Binutils, version 2.16.1, see gnu.org.

27

1) construct a set of term-rewriting rules M that represent W32.Evol’s mutating operations;

2) construct the normalizing set N using the methods described in Section 3, but without

completing it;

3) implement the N in a prioritized term-rewriting system that does not check conditions,

as described in Section 4.3;

4) complete N in an ad-hoc manner and implement in a second prototype using the priority

scheme and not checking conditions; and

5) feed each of the samples to the two prototypes to generate the normal forms, and collect

output and timing information.

Our materials and more procedural details are described below.

Construct M : Extraction of the mutating rules was done by hand using a combination of

code reading and code tracing in a debugger. This yielded 55 rules of which only 1 rule was

length reducing. The normalizing set consisted of 55 rules of which 15 did not participate in

any overlap; the rest had 84 overlaps among each other. There were only three unique

overlaps; for example, a lot of the 84 overlaps were over push eax, i.e., involving push eax

suffix of one rule and prefix of another, and were counted as one unique overlap.

Construct N : The normalizing set was constructed as described in Sections 3 and 4.

Specifically, M t was constructed from M using the reorienting procedure. The rule set was

partitioned into conditional and unconditional subsets as described in Section 4.3. Next M t

was completed in an ad-hoc manner to form NC . All of the overlaps in N t were inspected to

determine how to manually complete the rule set. It was determined that adding the two

rules shown in Figure 8 would complete N and generate a single normal form for the species

28

members. The first rule reduces sequences of immediate moves to register eax to the final

move. It is normally semantics preserving in any context since the moves removed have no

effect. The second rule removes a move and is not semantics preserving in general; i.e., it is

conditional. As a result, while the normal form for the species is expected to be unique, if

such patterns exist in the Eve sample, they will be missing in the normal form as is noted in

Section 4.2.

[1]
mov eax, immed1

mov eax, immed2
−→ mov eax, immed2

[2]
push immed

mov eax, op
−→ push immed

Figure 8: Two rules needed to complete the normalizing set for W32.Evol.

Implement normalizers: A prototype transformer was implemented using the TXL

programming language [18].2 Translating most of the rules of N into TXL was

straightforward, as they either contained ground terms or their non-ground terms could be

turned into non-terminals in TXL. Several of the rules in N required arithmetic processing.

These were successfully translated using TXL’s conditional term rewriting facilities. For

example, an arithmetic substitution expression of

mov eax, x → mov eax,x-y ; add eax, y

could be translated into a TXL rule similar to

mov eax, X → mov eax, Y ; add eax, Z where X=Y+Z

The transformer for the completed rule set NC was implemented with minor changes

to the first prototype.

2TXL system version 10.4 (8.1.05).

29

Table 4: Results using prioritized, non-completed normalizer

1 Generation Eve 2 3 4 5 6

2 Average size of original (LOC) 2182 3257 4524 5788 6974 8455

3 Maximum sizes of normal form (LOC) 2167 2167 2184 2189 2195 2204

4 Average size of normal form (LOC) 2167 2167 2177 2183 2191 2204

5 Lines not in common 0 0 10 16 24 37

6 Percentage in common 100.00 100.00 99.54 99.27 98.90 98.32

7 Execution time (CPU seconds) 2.469 3.034 4.264 6.327 7.966 11.219

8 Transformation counts 16 533 980 1472 1902 2481

5.3 Results

Table 4 quantifies the results from the uncompleted normalization prototype. Row

four of Table 4 indicates the average length of the normal forms of the variants after

normalizing with the prioritized scheme. Note that the normal form of Eve is smaller than

the original Eve. This is due to two factors. First, much of the reduction in size is due to

transformations in N that happen to be length reducing. These are unconditionally

semantics-preserving, which means that the equivalence class is preserved. A simple example

is nop removal. Second, there are conditional length reducing rules applied and we are not

performing any analysis to check for conditions. By manual inspection, we found these to

occur at 2 sites out of the 2182 original lines of code. Row five simply lists how many of

these extra lines, on average, are left. It was calculated using the diff program and

counting the number of lines that differed from the normal form of Eve. Row six shows the

average raw percentage of sequence commonality between the normal form of Eve and the

normal form of the sample variant.

Rows seven and eight of Table 4 record execution information for the prototype. Row

7 of the table lists timing statistics collected by averaging the times for 10 runs for a single

30

sample from each generation. Row 8 of the table records the average number of

transformation rules that were executed in normalizing the sample.

The second prototype with the completed normalizing rule set NC created a single

normal form of 2166 lines for all 26 samples.

5.4 Discussion

The results suggest that for a realistic metamorphic virus it is possible to effectively

normalize the variations sufficiently well that simple signature matching can be made

effective. The discussion that follows centers on the sufficiency of the two prototypes, the

tradeoffs illustrated by the two normalization choices, and our own qualitative assessments

of the difficulty of constructing the normalizing rule sets.

The main question about the normalization scheme is whether the approximation

methods would be sufficient in normalizing realistic metamorphic programs containing

difficult overlapping and conditional rules. Table 4 shows that the prioritized scheme creates

similar normal forms for all of the samples. To us, it seems likely that relatively simple

signature matching would be sufficient to recognize the normalized W32.Evols.

The results permit evaluation in terms of added and removed information. The

prioritizing prototype leaves extra lines of code in the normal form. These were not removed

in normalization in order to avoid removing meaningful lines of code. They are all junk and

a def-use analysis should be enough to detect this and remove them. As seen in row six of

Table 4 the spurious lines in the normal form are few in relation to the overall size. The

unique normal form for the complete rule set is missing many lines and is not semantically

equivalent to W32.Evol because context-sensitive transformations were applied in

inappropriate contexts. For these, too, the overall difference from the original form is very

low in the end.

31

Regarding the normalization choices, the differences in normal form length illustrate

the tradeoff between the prioritization and rule completion strategies. The normal form of

the Eve of the prioritized version is 2167 lines long, while the length of the normal form for

the complete rules, NC , is 2166. The difference indicates the number of locations in which

meaningful lines of code from Eve were removed due to the completion rules of NC . While

this has the potential to create false positives, it seems unlikely to us that any benign

program would yield an exact sequence match to this normal form of W32.Evol.

Our subjective experience was that once M was constructed, the strategy from

Section 4 was relatively easy to perform. The key was understanding the need to focus on

the critically overlapping and conditional rules. The manual completion rules were generated

over the course of two days after discussing the possibilities and briefly experimenting with

different options.

One might be tempted to find fault with the fact that the normalization technique

depends upon having a formalization of the metamorphic engine to begin with. This means

the technique cannot be expected to find malicious programs for which the metamorphic

engine is unknown. This may not be be a significant problem. Already, signature matching

cannot detect novel malware either, but it has proved to be a suitable technology when

signature database are able to be updated frequently. One could also argue that the

construction of the model of the metamorphic engine can be difficult and costly. This also is

likely to be cost that is either acceptable or unavoidable. First, we note that metamorphic

engines evolve slowly—much slower than the worms and viruses evolve—since they are very

difficult to write correctly and few malicious programmers worldwide have done so [5]. Once

an initial model is constructed, any changes can be tracked more easily. Second, the cost of

constructing M is most of the cost of constructing N ; we cannot imagine how the

normalization rules could be constructed more cheaply than by studying the metamorphic

32

engine first to learn its secrets.

It is not possible to generalize from a single case study with any confidence.

Nonetheless it appears likely that for some subset of metamorphic programs, a syntactic

normalizer built according to the strategy in Section 4 will normalize all variants sufficiently

well for ordinary signature matching to succeed well enough.

33

6 Relations to other work

Ször and Ferrie [2] give a list of both current and potential metamorphic

transformations. They describe emulation based detection techniques used by industrial

anti-virus scanners. Stepan improves upon dynamic emulation by dynamically retargeting a

binary to the host CPU [19]. Recent work by Ször [5] gives a more exhaustive list of

metamorphic transformations and suggests that most current technologies would not be able

to handle the threat posed by metamorphic viruses. Perriot [20] and Bruschi et al. [21]

suggest using code optimization to normalize metamorphic variations, similar to Lakhotia

and Mohammed [12], and since they do not model the rules of metamorphic engine, they are

similarly limited.

The normalizers we construct are able to determine whether a program belongs to

the equivalence class of a semantically equivalent program (according to the rewrite rules of

the metamorphic virus). Our work therefore relates well to other efforts that try to find

malicious behaviors in arbitrary code by looking for semantically- or behaviorally-equivalent

fragments. Section 2 already noted that the work by Christodorescu et al. [10] is related in

this way. The work by Kruegel et al. [22] is similarly related in that they try to find mutated

variants of identical behavior in polymorphic worms. Their approach differs in that they use

structural information and perform matching based on signatures comprised of control flow

graphs. Unlike the techniques in this thesis, their technique has the potential to find matches

in programs not “genetically” related by transformation by a particular metamorphic engine.

However, their techniques have little hope of finding equivalent forms with different control

flow graphs, whereas the normalization methods explored here have that potential. Sung

et al. [23] present a static signature based malware detection scheme; they use the sequence

of Windows API calls to form a signature and then use similarity measures to match the

signature of a given executable against that of known malicious executables from an existing

signature database. They have shown promising results in detecting variants of malware such

mass mailing worms, but their approach is not suitable for metamorphic variant detection.

35

7 Conclusions and future work

This thesis defined the NCP and defined strategies that can be employed to construct

normalizing transformers when given a formal description of a metamorphic engine. These

techniques take a step forward towards being able to counteract the threat metamorphic

engines pose to malware scanning. Traditional signature matching methods do not have a

suitable solution to counter the metamorphic engines, and without a significant advance in

program matching they cannot be expected to have a suitable solution. Normalization,

however, has the potential to counter a metamorphic engine by normalizing all possible

variants into a single normal form, from which standard signature matching can be, once

again, effective.

The normalization strategy was shown to be fallible in the sense that the strategy

does not invariably lead to a convergent normalizer. Yet the case study also provided a

demonstration that in certain cases this may not matter, since multiple normal forms may

not present a problem as long as the normal forms associated with the malicious program

are similar enough.

As future work, we would like to investigate further the implications of condition

evaluation while applying conditional rules; such a system might not require multiple

priority stages. In particular it will be interesting to compare the run-times for normalizers

that perform conditional analysis with multiple stage normalizers that do not check for

conditions. A possible approach could be to perform conditional analysis only once and then

leave it up to the rules in rewrite system to carry forward the results of conditional analysis

as the code is transformed. A metamorphic rule cannot replace random instructions by

another set of random instructions; this limits the number of ways in which rules can be

formed. Work can be done in this direction to investigate the implications of this constraint

on possible overlaps and completion procedure for metamorphic assembly transforms

modeled as rewrite rules.

In conclusion, the term rewriting approach to constructing normalizers has the

potential to counter the threat posed by metamorphic malware and make tried-and-true

signature matching techniques applicable once again. Our case study demonstrates that the

strategy being proposed can yield effective normalizers (it has the potential to be completely

automated). The case study suggests that even approximated normalizers might yield

sufficiently good results, meaning they have some potential to be turned into efficient

implementations in real malware scanners.

37

Appendix

Table 5, Table 6 and Table 7 list the rules of the metamorphic engine of W32.Evol; the

corresponding rules of the normalizer can be easily obtained by reorienting these rules as

described in Chapter 3.

Table 5: Rule set used by the mutation engine of W32.Evol
P.C.
Ci li → ri

push Reg2

T A Reg1|[Reg1+Offset], Val|Reg3 → mov Reg2, Val|Reg3

A Reg1|[Reg1+Offset], Val|Reg3

pop Reg2

T stos(b|d) → mov [edi], al|eax

add edi, 1|4

T lods(b|d) → mov al|eax, [esi]

add esi, 1|4

push eax

T movs(b|d) → mov al|eax, [esi]

add esi, 1|4

mov [edi], al|eax

add edi, 1|4

pop eax

push Reg3

T mov [Reg1+|-Offset], Reg2 → mov Reg3, Reg1

add|sub Reg3, Val1

mov|cmp [Reg3|Val2], Reg2

pop Reg3

push Reg3

T mov [Reg1+Offset], Reg2 → mov Reg3, Reg2

mov Reg1+|-Offset], Val|Reg3

pop Reg3

push Reg3

T mov [Reg1]|Reg1, Reg2 → mov Reg3, Reg2

mov Reg1]|Reg1, Reg3

pop Reg3

push Reg2

T mov Reg1|[Reg1+Offset], Val1 → mov Reg2, Val1

mov Reg1|[Reg1+Offset], Reg2

pop Reg2

39

Table 6: Rule set used by the mutation engine of W32.Evol
P.C.
Ci li → ri

push Reg3

T mov Reg1, [Reg2+Val] → mov Reg3, [Reg2+Val]

mov Reg1, Reg3

pop Reg3

push Reg3

T mov Reg1, [Reg2]|Reg2 → mov Reg3, [Reg2]|Reg2

mov Reg1, Reg3

pop Reg3

T mov Reg, Val → mov Reg, Val1

add|sub|xor Reg, Val2

push Reg3

T lea|cmp Reg1, [Reg2+Val] → mov Reg3, Reg2

add|sub Reg3, Val1

lea|cmp Reg1, [Reg3+Val2

pop Reg3

push Reg3

T lea Reg1, [Reg2+Val] → mov Reg3, Reg1

lea Reg3, [Reg2+Val]

mov Reg1, Reg3

pop Reg3

push Reg3

T lea Reg1, [Reg2]|Reg2 → mov Reg3, Reg1

lea Reg3, [Reg2]|Reg2

mov Reg1, Reg3

pop Reg3

push Reg3

T A Reg1, Reg2 → mov Reg3, Reg1

A Reg3, Reg2

mov Reg1, Reg3

pop Reg3

eax is dead push Imm|[Reg+Offset] → mov eax, Imm|[Reg+Offset]

push eax

40

Table 7: Rule set used by the mutation engine of W32.Evol
P.C.
Ci li → ri

RegSp is dead push RegSp → push RegSp

A RegSp, Val

RegSp is dead push RegSp → push RegSp

mov RegSp, Val|[ebp+Val]

T NOP →

RegSp refers to registers eax, ecx, edx. A refers to add, or, adc, sbb, and, sub, xor

and cmp. A push-pop block will never use esp or ebp.

41

References

[1] E. Skoudis, Malware: Fighting Malicious Code, Prentice-Hall, 2004.

[2] P. Ször and P. Ferrie, “Hunting for metamorphic,” Proc. of the 11th International Virus

Bulletin Conference, 2001, pp. 123–144.

[3] C. Nachenberg, “Computer virus-antivirus coevolution,” Communications of the ACM,

vol. 40, no. 1, Jan. 1997, pp. 47–51.

[4] M. Jordon, “Dealing with metamorphism,” Virus Bulletin, Oct. 2002, pp. 4–6.

[5] P. Ször, The Art of Computer Virus Research and Defense, Symantec Press, 2005.

[6] F. Baader and T. Nipkow, Term Rewriting and All That, Cambridge University Press,

1998.

[7] F. Cohen, “Computational aspects of computer viruses,” Computers & Security, vol. 8,

no. 4, Jun. 1989, pp. 325–344.

[8] D. Chess and S. White, “An undetectable computer virus,” Proc. of Virus Bulletin

Conference, Sept. 2000.

[9] D. Spinellis, “Reliable identification of bounded-length viruses is np-complete,” IEEE

Transactions on Information Theory, vol. 49, no. 1, Jan. 2003, pp. 280–284.

[10] M. Christodorescu, S. Jha, S. A. Seshia, D. Song, and R. E. Bryant, “Semantics-aware

malware detection,” Proc. of the 2005 IEEE Symposium on Security and Privacy, May

2005, pp. 32–46.

[11] M. Karim, A. Walenstein, A. Lakhotia, and L. Parida, “Malware phylogeny generation

using permutations of code,” Computer Virology, vol. 1, no. 1–2, Nov. 2005, pp. 13–23.

[12] A. Lakhotia and M. Mohammed, “Imposing order on program statements and its

implication to av scanner,” Proc. of 11th IEEE Working Conference on Reverse

Engineering, IEEE Computer Society, Nov. 2004, pp. 161–171.

[13] D. E. Knuth and P. B. Bendix, “Simple word problems in universal algebras,”

Automation of Reasoning 2: Classical Papers on Computational Logic 1967-1970,

J. Siekmann and G. Wrightson, eds., Springer, 1983, pp. 342–376.

[14] A. Aho, R. Sethi, and J. Ullman, Compilers: Principles, Techniques, and Tools,

Addison-Wesley, 1986.

[15] A. Lakhotia and P. K. Singh, “Challenges in getting formal with viruses,” Virus

Bulletin, vol. 9, no. 1, Sept. 2003, pp. 14–18.

[16] “VX heavens,” Apr. 2006; http://www.vx.netlux.org/.

[17] P. Ször, “W32.evol,” Jul. 2000;

http://securityresponse.symantec.com/avcenter/venc/data/w32.evol.html.

[18] J. R. Cordy, “TXL – a language for programming language tools and applications,”

Proc. of the ACM 4th International Workshop on Language Descriptions, Tools and

Applications (LTDA’2004), ser. Electronic Notes in Theoretical Computer Science,

Elsevier, Dec. 2004, vol. 110, pp. 3–31.

[19] A. E. Stepan, “Defeating polymorphism: Beyond emulation,” Virus Bulletin

Conference, Virus Bulletin, Oct. 2005, pp. 40–48.

[20] F. Perriot, “Defeating polymorphism through code optimization,” Proc. of Virus

Bulletin 2003, Sept. 2003.

43

[21] D. Bruschi, L. Martignoni, and M. Monga, “Using code normalization for fighting

self-mutating malware,” Proc. of International Symposium on Secure Software

Engineering, IEEE Computer Society, Mar. 2006.

[22] C. Kruegel, E. Kirda, D. Mutz, W. Robertson, and G. Vigna, “Polymorphic worm

detection using structural information of executables,” Proc. of the 8th Symposium on

Recent Advances in Intrusion Detection (RAID’2005), ser. Lecture Notes in Computer

Science, Springer-Verlag, Sept. 2005, pp. 207–226.

[23] A. H. Sung, J. Xu, P. Chavez, and S. Mukkamala, “Static analyzer of vicious

executables (SAVE),” Proc. of the 20th Annual Computer Security Applications

Conference (ACSAC’04), Washington, DC, USA: IEEE Computer Society, Dec. 2004,

pp. 326–334.

44

Mathur, Rachit. Bachelor of Engineering, Jai Narayan Vyas University, Spring 2004;
Master of Science, University of Louisiana at Lafayette, Fall 2006

Major: Computer Science
Title of Thesis: Normalizing Metamorphic Malware Using Term Rewriting
Thesis Director: Dr. Arun Lakhotia
Pages in Thesis: 55; Words in Abstract: 191

ABSTRACT

A malicious program is considered metamorphic if it can generate offspring that are

different from itself. The differences between the offspring make it harder to recognize them

using static signature matching, the predominant technique used in malware scanners. One

approach to improving the ability to recognize these metamorphic programs is to first

“normalize” them to remove the variations that confound signature matching. This thesis

proposes modeling the metamorphic engines of malicious programs as term rewriting

systems and then formalizes the normalization construction problem as a problem of

constructing a normalizing term rewriting system such that its rule set maintains three

properties: termination, confluence, and equivalence-preservation. Risks associated with

failing to assure these three properties are outlined. A strategy is proposed for solving the

normalization construction problem. Two approximations are also defined that can help

improve normalizer performance. These are based on relaxing the confluence and

equivalence preservation requirements. A simple priority scheme is outlined for reducing the

number of false positives the approximations may produce. The results of a case study are

reported; the study demonstrates the feasibility of the proposed approaches by normalizing

variants of a metamorphic virus called “W32.Evol.”

Biographical Sketch

Rachit Mathur was born in Kota, India, on April 09, 1982. He graduated with a

Bachelor of Engineering degree with honors in Information Technology in June 2004 from

Mugneeram Bangurh Memorial Engineering College, Jai Narayan Vyas University, Jodhpur,

India. He entered the Master of Science program in Computer Science at the University of

Louisiana at Lafayette in Fall 2004. Following completion of this degree, Rachit Mathur will

be pursuing a Doctoral degree in the area of software security.

