
(c) 2003 IEEE. Personal use of this material is permitted. However, permission to
reprint/republish this material for advertising or promotional purposes or for creating new
collective works for resale or redistribution to servers or lists, or to reuse any copyrighted
component of this work in other works must be obtained from the IEEE.

Accepted toSCAM 2006: The 6th IEEE Workshop on
Source Code Analysis and Manipulation, Sep. 27–29,
2006, Philadelphia, PA, U.S.A.

Normalizing Metamorphic Malware Using Term Rewriting

Andrew Walenstein, Rachit Mathur, Mohamed R. Chouchane & Arun Lakhotia
Center for Advanced Computer Studies

University of Louisiana at Lafayette
arun@louisiana.edu, walenste@ieee.org

Abstract

Metamorphic malware — including certain viruses
and worms — rewrite their code during propagation.
This paper presents a method for normalizing multiple
variants of metamorphic programs that perform their
transformations using finite sets of instruction-sequence
substitutions. The paper shows that the problem of con-
structing a normalizer can, in specific contexts, be for-
malized as a term rewriting problem. A general method
is proposed for constructing normalizers. It involves
modeling the metamorphic program’s transformations
as rewrite rules, and then modifying these rules to cre-
ate a normalizing rule set. Casting the problem in terms
of term rewriting exposes key challenges for construct-
ing effective normalizers. In cases where the challenges
cannot be met, approximations are proposed. The nor-
malizer construction method is applied in a case study
involving the virus called “W32.Evol”. The results
demonstrate that both the overall approach and the ap-
proximation schemes may have practical use on realis-
tic malware, and may thus have the potential to improve
signature-based malware scanners.

1 Introduction

Malicious programs like worms, viruses, and Tro-
jans are collectively known as “malware” [14]. In 1989,
Cohen [8] anticipated thatmetamorphicmalware would
one day be created, that is, the malware would be able
to transform its own code so as to create variants of it-
self [13]. Six years later, such metamorphic malware
began to appear. Variants created by metamorphic mal-
ware might still behave like the original program, but
their code would be different. For example, an early
metamorphic virus calledW95.RegSwap rewrote itself

so that some of the general-purpose registers it used
were swapped [13]. More recent metamorphic viruses
perform a host of very complicated transformations, in-
cluding code substitution, insertion of irrelevant instruc-
tions, reordering of instructions, and more [16].

The main reason metamorphism was introduced to
malware, of course, was to try to evade detection from
malware scanners. Malware scanners typically rely on
signaturesto detect malware. In general, a signature
could be any sort of pattern of data, code, or behavior, al-
though typical scanners use relatively simple patterns of
bytes, code, or calling behavior. A signature is effective
if it matches malware yet is extremely unlikely to match
any benign program. If a benign program is matched, a
false positiveis created. Malware scanner writers typi-
cally try to avoid false positives. The signatures they use
may thus be highly specific to the malicious program the
signature is intended to match.

Metamorphic malware can potentially cause serious
difficulties for signature-based scanners. A given signa-
ture may not match all variants of a metamorphic pro-
gram, so multiple signatures may be required, as shown
in Figure 1. In the worst case a different signature is
required for every possible variant. However, metamor-
phic programs may create an unbounded number of vari-
ants. To be able to detect all variants, something must be
done to keep the number of required signatures down to
a tractable quantity.

One approach is to make the pattern matching
more capable. Indeed, this was done to catch early
metamorphic malware. For example, in the case of
W95.RegSwap the scanners at the time were enhanced to
use wild-card based matching, allowing them to match
variants regardless of their specific assignment of regis-
ters [16]. Also, malware scanners started using emula-
tion to match dynamic behavior, which can stay constant
even if the code changes. Although dynamic behavior

1

Figure 1. Detect using unique signatures

pattern scanning has been successful, it is not without
limitations. It is costly, and there are various tricks that
can be used to foil the emulation-based scanners.

An alternative approach is exemplified by the meth-
ods of Lakhotia and Mohammed [12]. The general ap-
proach, illustrated in Figure 2, is tonormalizethe in-
put to the scanner, i.e., to reduce the number of possible
variants it needs to recognize, and thus reduce the power
needed in the matching techniques, or else reduce the
number of signatures needed to match the malicious pro-
grams. In the ideal case, the normalizer will transform
all possible variants into a single “normal” form.

For this approach to succeed in general, one must be
able to construct suitable normalizers. We call this the
“Normalizer Construction Problem” or NCP. As a proof-
of-concept, Lakhotia and Mohammed [12] developed a
generic normalizer forC programs. It removed program
variations via program transformations such as expres-
sion reshaping, renaming of variables, and instruction
reordering. While they were unable to reduce the pro-
grams to a single form, they reported 10183 to 1020 re-
duction in the space of variants. Though this is an im-
portant first step, the problem of constructing effective
normalizers, in general, is still an open problem.

This paper presents a method for solving the NCP for
a specific class of metamorphic programs. The method
utilizes techniques from term rewriting [3]. In particu-
lar, the NCP is cast in terms of a problem of constructing
term rewriting systems that meet specific criteria. This
approach can be applied to metamorphic programs that
(1) substitute instruction sequences with equivalent in-
struction sequences, or (2) insert irrelevant code, i.e.,
code that has no bearing on the overall computation per-
formed by the program. When all of a metamorphic
program’s transformations are known, we show that in
some cases it is possible to create a “perfect” normalizer:
i.e., it transforms all variants into a single normal form,
and no non-variant is transformed into the same form.
The paper also introduces two approximations that can

Figure 2. Detect using a normal form

be made when such a perfect normalizer is either not
possible or not feasible. A case study demonstrates the
general feasibility of both the approaches.

Section 2 gives some background information on
term rewriting, and outlines the critical issues that need
to be addressed when solving the NCP. Section 3 pro-
poses a strategy for solving the NCP by applying acom-
pletion procedureto an extracted metamorphic rule set.
Section 4 introduces approximations that can be utilized
when the method of Section 3 are not able to generate
the “perfect” normalizer. Section 5 describes a case
study that evaluates the general feasibility of the ap-
proach using theW32.Evol virus. Section 6 lists rela-
tions to other work. Conclusions are drawn in Section 7.

2 Term rewriting and the NCP

Metamorphic malware are typically decomposable
into two components: ametamorphic engine, which
performs source-to-source transformations on programs,
and apayload, which is the body of code that the en-
gine is applied to. This separation makes it possible to
attach a single metamorphic engine to a variety of dif-
ferent payloads. Good metamorphic engines are known
to be difficult to create, and this may explain why there
are so few of them, and why they evolve slowly [15].

Given these facts, one might wonder whether it is
possible to extract all the transformations of a given
metamorphic engine and then simply “reverse” all the
transformations. That is, ifA → B appears in the
metamorphic engine, could one not create a normalizer
that simply appliesB → A? Assume thatS is the
set of possible variants created through transformations
of some metamorphic engineM . The basic insight is
that any element inS must have been created through
some sequence of transformationsT = m1, m2, . . ., so

if one simply reverses the transformations inT then one
would remove the variations, yielding the original pro-
gram again.

While the scheme may appearprima faciesound, it
will not work in general. This is illustrated below in an
example using the virusW32.Evol. Select examples of
its transformations are shown in Figure 3. The disas-
sembly of the parent’s code is shown in the left column
and the corresponding transformed offspring code in the
right column. The parts of the code changed in the off-
spring are shown in bold face.

The transformation shown in Figure 3(a) replaces
themov [edi], 0x04 instruction with a code segment
that saves the value of registerecx by pushing it onto
the stack, moves0x04 into ecx, and then into the mem-
ory location pointed to byedi, and finally restores the
previous value ofecx by popping it from the stack back
into ecx. The transformation shown in Figure 3(b), re-
places thepush 0x04 instruction with a code segment
that moves0x04 into registereax, which it then pushes
onto the stack. The transformation shown in Figure 3(c)
inserts an irrelevant statement (i.e. one that has no ef-
fect on the computation)mov eax, 0x09. The first
transformation is unconditionally semantics-preserving:
the meaning of the program stays the same no matter
when the rule is applied. The last two are semantics-
preserving under the condition that registereax is not
live at the point where either of them is applied.

Inspection of the transformation rules shown in Fig-
ure 3 reveals some problems that can arise when one
applies the rules in reverse. Consider, for instance, the

Parent Offspring (transformed)

push eax push eax
mov [edi], 0x04 push ecx

(a) jmp label mov ecx, 0x04
mov [edi], ecx
pop ecx
jmp label

push 0x04 mov eax, 0x04
(b) mov eax, 0x09 push eax

jmp label mov eax, 0x09
jmp label

mov eax, 0x04 mov eax, 0x04
(c) push eax push eax

jmp label mov eax, 0x09
jmp label

Figure 3. Three sample rules from W32.Evol

add(1, 1) → 2 ; add(1, 2) → 3 ; add(0, 3) → 3

Figure 4. Sample rewrite rules

hypothetical sequence
mov eax, 0x04; push eax; mov eax, 0x09

which can be part of the output of either rule in Fig-
ure 3(b) or Figure 3(c). The normalizer must be able to
decide which of rules (b) and (c) to apply in reverse. If
it cannot, the result of its transformations may not be
a single normal form. Worse still is if it applies the
wrong rule and either transforms a non-variant into a
variant, or a variant into a non-variant. For example,
if the mov eax, 0x09 in the hypothetical sequence is
not a junk instruction, then applying rule (c) in reverse
yields a different program, meaning it should not be in
S, and the rule application is incorrect.

The above issues of transformation ordering and nor-
mal forms are dealt with elegantly by term rewriting sys-
tems. The following subsections review relevant back-
ground from term rewriting literature, and then the the-
ory is recruited to formalize the NCP in terms of con-
structing a convergent rule set with three specific prop-
erties.

2.1 Term rewriting background

This section briefly reviews definitions and results
from term rewriting literature [3] that we will use in later
sections.

Terms, subterms, atomic, and ground. For ap-
propriately chosen domains,termsare constants, vari-
ables, functions, or functions on terms. The term
multiply(2, add(3, 1)), for example, is built using the
binary functionsadd andmultiply on integers and the
constant integers1, 2, and3. A termt may contain other
terms (calledsubtermsof t). An atomicterm is one that
does not contain subterms. Aground term is one that
does not contain variables.

Term rewriting system (TRS). A term rewriting sys-
temis a set of rewrite rules. Arewrite rules→ t maps
terms to termt. A conditionalTRS is one that has con-
ditions attached to its rules. The notationp|R means
that ruleR may be applied only when conditionp holds.
Figure 4 shows a simple example of an unconditional
TRS.

Reduction relation (→T). A TRS T induces a rela-
tion→T on terms, also denoted→ where clear from the
context. Given termss andt,→T is defined as follows:
s→T t holds iff, for some rewrite rules ′ → t′, s has as

a subterm an instance ofs′ which, if replaced with its
corresponding instance oft ′, turnss into t.

Normal form. If a termt is not related to any other
term under→T , thent is said to be innormal formwith
respect the rewriting systemT . NormT (x) is the set of
terms in[x]T which are in normal form. For the TRS
in Figure 4, the termadd(2, 2) is in normal form , and
add(1, add(1, 1)) →T add(1, 2) by application of the
rule mappingadd(1, 1) to 2.

Termination. A TRS T is terminating if there exists
no infinite descending chain of the forma→ b→ c · · ·.

Confluence. Let w, x, y and z denote arbitrary
terms. Suppose there is a sequence of applications of
rewriting rules that reducesx to y and another sequence
that reducesx to z. The system is confluent ify andz

are joinable. Two termsy andz are said to bejoinableif
there is a sequence of applications of rewriting rules that
reducesy andz to some termw. Confluence of a TRS
is in general undecidable.

Convergence. A TRS isconvergentif it is confluent
and terminating. If a TRST is convergent then it can
be used to decide membership in any of the equivalence
classes defined by the reflexive symmetric transitive clo-
sure

�←→ of the relation→ it induces on terms.
Equivalence relation (�←→). The symbol

�←→ de-
notes the equivalence relation that is the reflexive sym-
metric transitive closure of the relation→ induced byT .
This equivalence relation partitions the set of terms into
equivalence classes. Given a TRST , [t]T denotes the
equivalence class of termt under

�←→.

2.2 NCP as a term rewriting problem

The normalizer construction problem, introduced in-
formally in Section 1, can now be formalized as follows.

Modeling the metamorphic engine. A metamorphic
engine is modeled as a TRS. An instruction is a term that
consists of a function (the opcode mnemonic) applied to
one or more variables or constants (the register, variable,
and immediate operands). A program, or a code seg-
ment, is a term obtained by applying aconcatenate
function to such terms. Figure 5 gives an example of
how a transformation rule of a metamorphic engine is
captured as a rewrite rule.

The rule in Figure 5 is not a conditional one: its left
hand side, if interpreted as a code segment, is semanti-
cally equivalent to its right hand side, no matter its con-
text. This is also true for the first rule of Figure 3. Other
rewrite rules may need to be conditioned in order to ac-

mov (reg1, imm)

−→
{ push (reg2);

mov (reg2, imm);
mov (reg1, reg2);
pop (reg2); }

Figure 5. Code substitution rewrite rule

curately model the condition-sensitivity of transforma-
tions such as those shown in Figure 3(b) and Figure 3(c).
We used a conditional rewriting system to capture the
transformation rules in our case study (Section 5). For
simplicity, we will henceforth write rules in assembly
language with embedded term variables, rather than in
the function application form shown in Figure 5.

Let M denote the TRS modeling the transformation
engine of our target metamorphic program. The equiva-
lence relation induced byM partitions terms (modeling
programs) into equivalence classes. IfM is convergent,
then it can be used to decide whether two termsx and
y belong to the same equivalence class by verifying that
their normal forms with respect toM are equal. A con-
vergentM implies that any sequence of transformations
of any variant will eventually result in the a-priori com-
putable normal form of the program.

A convergentM therefore essentially defeats the pur-
pose of metamorphism, as the malicious program will
fail to create distinct variants once it transforms itself
into its normal form. A convergentM also provides
a potential way for the scanner to recognize the pro-
gram (i.e., by applying the malware’s ownM until it
converges to the normal form). Thus it is reasonable to
expect malicious engines to be non-convergent. To build
a normalizer, it must be made convergent.

NCP in term rewriting terms. Given a metamorphic
rewrite systemM , construct a rewrite systemN that sat-
isfies the following properties:

Equivalence: ∀x.[x]M = [x]N .
Termination: N must be terminating.
Confluence: N must be confluent.
The equivalence condition states that for any termx,

neither∃y.y ∈ [x]M ∧ y �∈ [x]N nor∃y.y �∈ [x]M ∧ y ∈
[x]N holds. This implies that, for any termx, the terms
that are related tox under the reflexive symmetric tran-
sitive closure ofM remain related tox under the reflex-
ive symmetric transitive closure ofN , and vice versa.
The termination condition requires that the relation→N

have no cycles or thatany sequence of applications of
the rules ofN to some termt will eventually halt. It also
implies thatN is normalizing, meaning that every term
has at least one normal form. The confluence condition

implies that if a normal form for some term is reached,
then this normal form is unique.

3 A strategy for solving NCP

Henceforth,M denotes the rewriting system model-
ing the transformation module of our target metamor-
phic malware. A normalizer for the malware may be
constructed by first applying areorienting procedureto
M to ensure termination and then acompletion proce-
dure[10] to the resulting system. If the completion pro-
cedure halts, it returns a rewriting system that satisfies
the equivalence and confluence properties and hence is
a solution to the NCP. SinceM is modeled as a TRS,
this NCP solution works for the class of metamorphic
engines that can be modeled using a conditioned TRS,
namely, those that implement semantics-preserving in-
struction substitution types of transformations, includ-
ing junk-inserting transformations.

3.1 Ensuring termination

While a rewrite rule relates equivalent terms, the
term-rewriting system may apply the rule only in one
direction. A reorienting procedure determines the direc-
tion in which a rule may be applied such that the reduc-
tion procedure of the term-rewriting system is guaran-
teed to terminate. To ensure that a set of reoriented rules
M t is terminating it is sufficient to show that for every
directed rulex→ y ∈ M t, x > y, for somereduction
order> on terms [3].

We used the well-founded length-lexicographic or-
dering [3] to order the elements of our set of terms. The
reorientation procedure traversesM and reorients the
rules whose right hand sides are length lexicographically
greater than their left hand sides. The resulting system
M t is terminating because any sequence of application
of its rules will decrease the length-lexicographic size
of the term being reduced. Figure 6(a) shows a frag-
ment of an example rewriting system, and Figure 6(b)
shows the output of the reorienting procedure on input
that fragment. RuleM1 was reoriented becauser1 is
length-lexicographically greater thanl1.

Since the reflexive symmetric transitive closure of
M t is identical to that ofM , the set of equivalence
classes defined by the former closure is identical to
that defined by the latter; in other words,∀x.[x]M =
[x]Mt . Hence,M t satisfies the termination and equiva-
lence properties which are part of the requirements for a
rewriting system to solve the NCP.

Rule Post Condition li
Mi Ci → ri

M1 mov [reg1+imm], reg2

T → push eax

mov eax, imm

mov [reg1+eax], reg2

pop eax

M2 eax is dead push imm

→ mov eax, imm

push eax

M3 eax is dead push eax

→ push eax

mov eax, imm

M4 T NOP

→

(a)M , the original rule set

Rule Post Condition li
M t

i Ci → ri

M t
1 push eax

T mov eax, imm

mov [reg1+eax], reg2

pop eax

→ mov [reg1+imm], reg2

M t
2 eax is dead mov eax, imm

push eax

→ push imm

M t
3 eax is dead push eax

mov eax, imm

→ push eax

M t
4 T NOP

→

(b) M t, the reoriented rule set

Figure 6. Reorienting example

3.2 Ensuring confluence

Confluence is decidable for finite terminating term
rewriting systems [3]. If a TRS is not confluent then
additional rules may be added to it to make the system
confluent. The process of adding rules to make a TRS
confluent is called acompletion procedure. The result-
ing confluent TRS is calledcompleted. The problem of
completing a TRS is undecidable.

The Knuth-Bendix completion procedure (KB) is the
most prevalent method used in term-rewriting litera-
ture [10]. It adds rules to resolvecritical overlapsbe-
tween rules. For finite terminating ground term rewrit-
ing systems, the left hand sides of a pair of (not neces-
sarily distinct) rules are said to critically overlap if the
prefix of one is identical to the suffix of the other, or if
one is a subterm of the other. Critical overlaps indicate

conflicts in a rewriting system that may make the sys-
tem non-confluent [3]. For the example in Figure 6(b),
M t

1 andM t
2 critically overlap atpush eax. The same

is true forM t
2 andM t

3. KB resolves such critical over-
laps by repeatedly adding rules to the system in fashion
similar to that shown in Figure 7. KB is not guaranteed
to terminate. However, if it does terminate then the TRS
it produces will be confluent. A detailed discussion of
this procedure is available in [3, 10].

Critical Pairs

2mov eax, imm

push eax

mov eax, imm

push imm

mov eax, imm

push eax
mov eax, imm

push imm

M’

M’2

3

New RuleM’

Figure 7. Completion step for M t
2 and M t

3

For the TRS ofW32.Evol if the left hand side of some
rule has, as a suffix, the prefix of the left hand side of
some other rule, it is not enough to conclude that the
rules critically overlap. Neither is it sufficient for the
left hand side of some rule to be a subterm of the left
hand side of another. This is due to the fact that ei-
ther of the rules may be conditional. It may even be
the case that the condition of one is a negation of the
other’s. RulesM t

1 and M t
3 in Figure 6(b) overlap at

push eax ; mov eax, imm. This overlap does not
create any conflicts between the rules becauseM t

3 can
be applied only when registereax is dead whileM t

1 can
be applied only wheneax is live.

Figure 7 illustrates how the completion procedure
is used to resolve the critical overlap betweenM t

2

and M t
3 of Figure 6. A rule mapping the irreducible

termpush imm; mov eax,imm to the irreducible term
push imm is added to the system. The completion pro-
cedure terminated on input the rewriting system of Fig-
ure 6 and returned the confluent system of Figure 8.

4 Approximate solutions to the NCP

If the two-step procedure of Section 3 succeeds, it
yields a tool for deciding membership in each of the
equivalence classes defined by the reflexive symmet-
ric transitive closure ofN . Each of these equivalence
classes, including that composed of the variants of the
malware, contains a unique normal form. GivenN and a
suspect program, the scanner would simply use the rules
of N , in any order, to reduce the suspect program until

Rule Post Condition li
Ni Ci → ri

N1 push eax

T mov eax, imm

mov [reg1+eax], reg2

pop eax

→ mov [reg1+imm], reg2

N2 eax is dead mov eax, imm

push eax

→ push imm

N3 eax is dead push eax

mov eax, imm

→ push eax

N4 T NOP

→
N5 eax is dead push imm

mov eax, imm

→ push imm

N6 T push imm

mov eax, imm

mov [reg1+eax], reg2

pop eax

→ mov eax, imm

mov [reg1+imm], reg2

Figure 8. Completed rules

a normal form is reached. If this normal form is equal
to that of the metamorphic malware from whichN was
computed, the scanner would determine that the suspect
program is, without a doubt, a variant of the malware.
Non-variants of the metamorphic malware do not reduce
to the malware’s normal form.

Unfortunately, since KB is not guaranteed to termi-
nate, the normalizer may or may not be generated by
this method. Furthermore, since the conditions attached
to each rule are extracted after a manual analysis of the
engine’s code, they may be inaccurate or incomplete. As
a result, even if the normalizer is finally generated by the
completion procedure, its correctness will depend en-
tirely on that of these conditions. Moreover, the condi-
tions may be costly, difficult, or impossible to calculate
in the general case (e.g., accurate register liveness).

These observations motivate the search for approxi-
mate solutions to the NCP. Three potential approxima-
tions are introduced in this section, and arguments in
their favor are raised. An initial evaluation of their feasi-
bility was conducted in the study described in Section 5.

4.1 Failure to complete

Since the completion process—which repeatedly
adds rules toM t—may or may not halt, a running time
limit and a maximum number of rule count is normally

imposed on the completion procedure. If the comple-
tion procedure does not terminate within a “reasonable”
amount of time, or if the repeated addition of rules yields
a rule set that is simply too large to be useful for nor-
malization purposes, then it may be reasonable to pre-
empt the procedure and use the non confluentM t as
the normalizer. The non-confluence of the terminating
systemM t implies that some, or all, of the equivalence
classes induced by its reflexive transitive closure (which
is also that ofM) may contain multiple irreducible nor-
mal forms.

This implies that the malware’s equivalence class
may have more than one normal form. The actual num-
ber of these normal forms depends entirely on the mal-
ware code and on its transformation system. This set
may nevertheless be helpful as an approximate solution,
for it may be the case that some, or all, of these normal
forms are similar enough. In such a case, all but one of
these similar normal forms can be dropped from the set
of the malware’s normal forms.

Alternatively, an analyst can completeM t in anad-
hoc manner by manually choosing and adding rules to
M t to create some normalizerN ′ which the analyst be-
lieves will produce a single normal form.

4.2 Incorrect condition evaluation

The process of analyzing and extracting the condi-
tions under which rules are to be applied is one that
require costly program analyses, such as control flow
analysis and points-to analysis [2]. These analyses may
fail to return accurate results due to the undecidability
of some of the problems, and due to the nearly ubiqui-
tous use of obfuscation techniques designed specifically
to thwart static analysis techniques.

It may be reasonable, however, to approximate the
condition checking. For example, a default decision on
liveness might be taken when the liveness is not calcula-
ble precisely within an allotted time. Or perhaps no con-
dition checking is performed at all. The drawback to us-
ing such a normalizer is that its transformations may not
be semantics-preserving and may transform malicious
code into non malicious code and vice versa. In practi-
cal terms the issue is whether these errors are likely to
create false positives or false negatives in the matching.

4.3 Priority scheme

According to Visser [18], arule application strategy
can be imposed on a non convergent term rewriting sys-
tem to make it behave like a convergent one. This result

motivated our design and use of a simple priority scheme
to reduce the likelihood of false matches. A simple pri-
ority scheme was implemented for use in the case study
described in Section 5. It works as follows.

First the initial setN ′ of rules is partitioned into two
subsetsN ′

U andN ′
C , whereN ′

U contains the uncondi-
tional rules ofN ′ andN ′

C the contains the conditional
rules ofN ′. For the rule set in Figure 8, the set of uncon-
ditional rules is{N1, N4, N6} and the set of conditional
rules is{N2, N3, N5}. A suspect code segment is nor-
malized with respect toN ′ by giving priority to rules of
N ′

U over the rules ofN ′
C . Whenever a rule fromN ′

C is
applicable on a term, it is chosen for application only if
no rule fromN ′

U is applicable.
The priority scheme capitalizes on our knowledge

that the rules inN ′
U preserve semantics, whereas those

in N ′
C may not. Assigning a lower priority to the lat-

ter guarantees that the former will be applied before any
non-semantic-preserving transformation gets applied.

5 Case study

A case study of using our exact and approximate so-
lutions to the NCP on theW32.Evol is presented below.

5.1 Subject and preparation

We obtained a copy of a 12,288-byte long variant
of an executable, infected withW32.Evol, from theVX
Heavensarchive [1]. We refer to this variant as the
Eve. The engine of this virus is a relatively sophisticated
one. It substitutes instructions with equivalent code seg-
ments, inserts irrelevant code at some sites, and replaces
immediate operands with arithmetic expressions com-
puting them. We conservatively estimated that our Eve
variant can generate at least10686 second generation
variants,101,339 third generation variants, and101,891

fourth generation variants. The payload of this partic-
ular virus makes it possible for some emulation-based
techniques to detect its variants [16].

Several factors makeW32.Evol a suitable study sub-
ject. First, we are able to make it replicate and safely
experiment on it in our secure environment. Sec-
ond, its metamorphic engine is capable of generating
enormous numbers of variants, and the variants it cre-
ates are significantly different from each other. This
makes it a realistic study subject in that it is nontrivial
to develop signatures for the entire space of variants.
Third, W32.Evol’s metamorphic engine uses a condi-
tional transformation system that contains critical over-

Gen Eve 2 3 4 5 6

ASO 2,182 3,257 4,524 5,788 6,974 8,455

MSNF 2,167 2,167 2,184 2,189 2,195 2,204

ASNF 2,167 2,167 2,177 2,183 2,191 2,204

LNC 0 0 10 16 24 37

PC 100.00 100.00 99.54 99.27 98.90 98.32

ET 2.5 3.0 4.3 6.3 8.0 11.2

TC 16 533 980 1,472 1,902 2,481

Gen=generation; ASO=average size of original (LOC); MSNF=maximum

size of normal form (LOC); ASNF=average size of normal form (LOC);

LNC=lines not in common; PC=percentage common; ET=execution time

(CPU secs); TC=transformation count

Table 1. Evaluating normalizer P0

laps; this makesW32.Evol a suitable candidate for eval-
uating and illustrating our normalization approaches.

5.2 Materials and protocol

We first extracted the transformation rules of
W32.Evol by manually reading the code, and occasion-
ally tracing its execution in a debugger. We then imple-
mented these rules as a term rewriting systemM . Next,
we used the reorienting procedure to transformM into
an initial normalizing rewriting systemN0. N0 was not
completed.N0 consisted of 55 rules, five of which did
not participate in any overlaps.

We implemented two prototype normalizers using the
priority scheme of Section 4.3. The first prototype nor-
malizer,P0, used theN0 rule set as-is, and did not per-
form any condition checking. The second prototype nor-
malizer,P1, used a rule setN1, which wasN0 with rules
added manually to complete it (i.e., ad-hoc completion).
P1 also ignored conditions.

The term rewriting systems were implemented in
TXL [9].1 W32.Evol contains two classes of rules: those
that can be applied unconditionally and those that can
be applied only when certain registers are not live. Our
rewrite system was inaccurate in that it did not have
the ability apply rules conditionally. To compensate for
our inability to verify conditions before applying a rule,
we used a prioritization scheme that applied conditional
rules only when no unconditional rule could be applied.

The two normalizers were applied to 26 different
variants spread across six generations.

1TXL system version 10.4 (8.1.05).

5.3 Results

Table 5.1 shows the evaluation results for normalizer
P0. The row labeledASNF of the table contains the av-
erage length (instruction count) of the normal forms of
the variants. The row labeledLNC lists how many lines,
on average, differ. The row labeledLNC shows the av-
erage raw percentage of sequence commonality (as mea-
sured by the common programdiff) between the nor-
mal form of the Eve, and the normal form of the sample
variant. The ones labeledET andTC record execution
information for the prototype.

The second normalizer,P1, was convergent. All vari-
ants reduced to the same 2,166-line normal form, with
similar running times.

5.4 Discussion

Because the case study is limited, hard generaliza-
tions are impossible. Nonetheless, the study serves
as a useful feasibility test, particularly of the approx-
imations. Furthermore,W32.Evol is a good represen-
tative sample, so the positive results are at least sug-
gestive of some usefulness for similar metamorphic en-
gines. Other complex metamorphic viruses, like RPME,
Zmist, Benny’s Mutation Engine, Mistfall, Metaphor,
etc [4, 17, 19, 20] have transformations similar to that of
W32.Evol, and it appears likely that for some subset of
metamorphic programs, a syntactic normalizer built ac-
cording to the strategy in Section 4 will normalize all
variants sufficiently well for ordinary signature match-
ing to succeed well enough.

Regarding feasibility, Table 5.1 shows that, even
without completion or condition checking, the priori-
tization scheme creates normal forms that are highly
similar—more than 98% in common. The differences
indicate the possibility of false positives or negatives.
This result was expected, as priority scheme cannot be
a complete substitute for an accurate condition-sensitive
rule set evaluator. Nevertheless, the high level of sim-
ilarity suggests the likelihood of false matches may be
low in practice. Manually inspecting the difference, we
found that incorrect rule application occurred at three
and two sites for the priority-based prototypes with and
without ad-hoc completion, respectively. The chances
seem remote that a program would be found on an ac-
tual user’s computer which is benign yet different from
W32.Evol on only three lines.

Regarding practicality, the timing information reflect
the fact that our prototypes are proofs-of-concepts: they

work on disassemblies, and are unoptimized. The time
growth curve is shallow for the sizes of samples in-
volved, taking less than five times as long on the largest
sample, which is almost four times as large. Practically
speaking, whileW32.Evol always grows in size, grow-
ing very large is not a good survival strategy, and recent
metamorphic malware try to keep the size of their code
within reasonable limits by applying ‘code-shrinking’
transforms.

One might find fault with the fact that the normaliza-
tion technique depends upon having a formalization of
the specific metamorphic engine. This means the tech-
nique cannot be expected to find malicious programs
for which the metamorphic engine is unknown. While
this certainly is an issue, the limitation may be tolerable.
Signature matching cannot detect novel malware either,
but it has proved to be a useful technology when the sig-
nature database can be updated frequently.

One might also argue that modeling the metamor-
phic engine can be too difficult, or too costly. In re-
sponse, we first note that metamorphic engines evolve
slowly—much slower than the worms and viruses them-
selves [15], so the number of new metamorphic engines
released in a year is low enough to make them amenable
for such analysis. Second, the metamorphic engines
tend to be reused, often in the form of libraries. This is
because, at least for now, only certain malware authors
have both the motivation and capability of writing trans-
formation engines with a sophistication level that forces
the use of nontrivial normalizers.

6 Relations to other work

Lakhotia and Mohammed [12] describe a different
method for constructing a static normalizer, one which
methodically transforms programs by reordering its in-
structions, renaming its variables, and reshaping its ex-
pressions. Their approach does not require one to first
extract the metamorphic rule set, but it also cannot gen-
erally normalize all variants to a single form. Bruschi
et. al [5] constructed a malware normalizer which ap-
plies standard compiler optimization techniques to nor-
malize suspect programs, and then uses “clone detec-
tion” techniques to match their normal form to that of
known metamorphic malware. Christodorescuet. al [7]
constructed a static malware normalizer targeted to undo
the transformations made (by hand) by malware authors.
It uses static analysis to detect junk code insertion, and
applies obfuscation-undoing transformations for obfus-
cations it recognizes.

The above three works share certain common at-
tributes: they require complex static analysis (e.g., con-
trol flow or liveness), and utilize transformations that
are not specific to a particular strain of malware. While
these approaches do not depend on any a-priori informa-
tion of a malware, they are nonetheless limited by the
specific techniques they utilize. These methods do not
theoretically guarantee that equivalent variants will be
mapped to the same normal form. For example, there is
no guarantee that the compiler optimization techniques
will yield the same optimized program for any two ar-
bitrary variants. A malware author can easily take ad-
vantage of the knowledge of their techniques and de-
feat them. In contrast, the present work is specific to a
metamorphic engine, but proposes that deeper semantic
analysis may not be necessary. An interesting research
question arises as to the tradeoffs and benefits of gen-
eral normalization rules versus ones targeted towards
specific metamorphic engines. It is also an interesting
question as to whether the precision offered by the com-
pleted normalizers offsets the initial cost of developing
the normalizer.

The static techniques introduced in the paper can
be contrasted with static detection techniques that use
generic behavior patterns that can detect malicious pro-
grams even in the presence of variations in their code.
Classic emulation-based techniques also look for be-
havior patterns, but they do so through dynamic meth-
ods, which may be attacked. Rather than emulation,
Christodorescuet. al [6] and Kruegelet al. [11] pro-
posed the use of static program analysis methods for de-
tecting potentially obfuscated variants of specified be-
havior patterns. Their work is, effectively, a pursuit
of a more capable pattern matcher, rather than a nor-
malization approach. The normalization and behavior-
match approaches are complementary and can be used
together.

7 Conclusions

This paper presents an approach to construct a nor-
malizer for a particular class of metamorphic malware
by leveraging concepts and results from term-rewriting
literature [3]. It was shown that metamorphic malware
which use instruction substitution transformations or in-
sert irrelevant instructions can be modeled as a condi-
tional rewrite system. The problem of constructing a
normalizer for this system then maps to the problem
of constructing a convergent rewrite system by starting
from the metamorphic engine’s rule set. The latter prob-

lem has been well-studied: its problems and require-
ments for solution are known.

A general method was proposed for constructing ei-
ther exact or approximated normalizers. When the rule
set is completed, all variants are transformed into a sin-
gle normal form. This proves that it is sometimes pos-
sible to develop “perfect” normalizers for the nontrivial
class of metamorphic programs that perform semantics-
preserving instruction sequence substitutions. The case
study results suggest that this may be feasible in prac-
tice. Thus, the method has the potential to augment cur-
rent static signature based scanners to detect metamor-
phic variants. That said, it was noted that not every rule
set can be feasibly completed using an automated com-
pletion method. This identifies a weakness in any meta-
morphic normalizer that might potentially be exploited
by malware authors. Research is still needed to under-
stand the potential attacks and their possible remedies.

Finally, the approximations show that the general ap-
proach may have practical merit even when completion
and accurate condition calculation cannot be guaran-
teed. Even without completion, and even without cor-
rectly calculating conditions, the prioritization approach
yielded encouraging results on the test case. Though the
normalizer did not map the 26 variants to a single normal
form, there was over 98% similarity between the normal
forms and the original program. Since the approximated
normalizers forgo expensive analysis, they may be bet-
ter suited in a scanner requiring real-time performance.
Further research is needed to understand the practicality
of using uncompleted rule sets, and for approximating
the rule conditions.

Acknowledgements

This research was funded, in part, by a grant from the
Louisiana Governor’s Information Technology Initative.
The authors also wish to thank Michael Venable for his
help in running the case study.

References

[1] VX heavens.vx.netlux.org.
[2] A. Aho, R. Sethi, and J. Ullman.Compilers: Principles,

Techniques, and Tools. Addison-Wesley, 1986.
[3] F. Baader and T. Nipkow.Term Rewriting and All That.

Cambridge University Press, 1998.
[4] Benny. Benny’s metamorphic engine for Win32.vx.

netlux.org/29a/29a-6/29a-6.316.
[5] D. Bruschi, L. Martignoni, and M. Monga. Using code

normalization for fighting self-mutating malware. In

Proceedings of International Symposium on Secure Soft-
ware Engineering, Washington, DC, USA, 2006. IEEE.

[6] M. Christodorescu, S. Jha, S. A. Seshia, D. Song, and
R. E. Bryant. Semantics-aware malware detection. In
2005 IEEE Symposium on Security and Privacy, pages
32– 46, 2005.

[7] M. Christodorescu, J. Kinder, S. Jha, S. Katzenbeisser,
and H. Veith. Malware normalization. Technical Re-
port 1539, University of Wisconsin, Madison, Wiscon-
sin, USA, Nov. 2005.

[8] F. Cohen. Computational aspects of computer viruses.
Computers & Security, 8(4):325–344, 1989.

[9] J. R. Cordy. TXL – a language for programming lan-
guage tools and applications. InACM 4th International
Workshop on LTDA, volume 110 ofElectronic Notes in
Theoretical Computer Science, pages 3–31. Springer-
Verlag, Dec. 2004.

[10] D. E. Knuth and P. B. Bendix. Simple word problems in
universal algebras. InAutomation of Reasoning 2: Clas-
sical Papers on Computational Logic 1967-1970, pages
342–376. Springer, 1983.

[11] C. Kruegel, E. Kirda, D. Mutz, W. Robertson, and G. Vi-
gna. Polymorphic worm detection using structural in-
formation of executables. In A. Valdes and D. Zam-
boni, editors,Recent Advances in Intrusion Detection:
8th International Symposium (RAID 2005), volume 3858
of Lecture Notes in Computer Science, pages 206–226.
Springer-Verlag, 2006.

[12] A. Lakhotia and M. Mohammed. Imposing order on pro-
gram statements and its implications to AV scanners. In
Proceedings of the 11th IEEE Working Conference on
Reverse Engineering, pages 161–171, Nov. 2004.

[13] C. Nachenberg. Computer virus-antivirus coevolution.
Communications of the ACM, 40(1):47–51, Jan 1997.

[14] E. Skoudis. Malware: Fighting Malicious Code.
Prentice-Hall, 2004.

[15] P. Ször. The Art of Computer Virus Research and De-
fense. Symantec Press, 2005.

[16] P. Ször and P. Ferrie. Hunting for metamorphic. In11th
International Virus Bulletin Conference, 2001.

[17] The Mental Driller. Metamorphism in practice.vx.
netlux.org/29a/29a-6/29a-6.205.

[18] E. Visser. A survey of rewriting strategies in program
transformation systems. InWorkshop on Reduction
Strategies in Rewriting and Programming (WRS’01),
volume 57 ofElectronic Notes in Theoretical Computer
Science, 2001.

[19] Z0mbie. Automated reverse engineering: Mistfall en-
gine.vx.netlux.org/lib/vzo21.html.

[20] Z0mbie. Some ideas about metamorphism.vx.
netlux.org/lib/vzo20.html.

