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ABSTRACT

The previous efforts in the use of machine learning for mal-
ware detection have assumed that malware population is
stationary i.e. probability distribution of the observed char-
acteristics (features) of malware populations don’t change
over time. In this paper, we investigate this assumption
for malware families as populations. Malware, by design,
constantly evolves so as to defeat detection. Evolution in
malware may lead to a nonstationary malware population.
The problem of nonstationary populations has been called
concept drift in machine learning. Tracking concept drift is
critical to the successful application of ML based methods
for malware detection. If the evolution causes the malware
population to drift rapidly then frequent retraining of classi-
fiers may be required to prevent degradation in performance.
On the other hand, if the drift is found to be negligible, then
ML based methods are robust for such populations for long
periods of time.

We propose two measures for tracking concept drift in
malware families when feature sets are very large–relative
temporal similarity and metafeatures. We illustrate the use
of the proposed measures with a study on 3500+ samples
from three families of x86 malware, spanning over 5 years.
The results of the study show negligible drift in mnemonic
2-grams extracted from unpacked versions of the samples.
The measures can likewise be applied to track drift in any
number of malware families. Tracking drift in this manner
also provides a novel method for feature type selection, i.e.,
use the feature type that drifts the least.

1. INTRODUCTION
Recently machine learning (ML) based methods have have

been proposed for developing malware detectors [35, 1, 24,
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29, 31]. ML-based methods promise to improve upon the
state-of-the-art by being less laborious. Frequently AV an-
alysts manually analyze new malware to determine their
unique characteristics and then handcraft methods for de-
tection. By contrast, ML-based detectors are trained using
a collection of malware samples and the system automati-
cally learns the characteristics that distinguish each sample
(or a class).

Though ML-based methods are promising, their success is
predicated on an important assumption that may not hold
when applied to malware. They assume that the training
data is sampled from a stationary population. In other
words, they assume that the data source (rather, the proba-
bility distribution of their observed characteristics) does not
change over time. Malware does not fit this profile. The
entire population of malware is constantly evolving either in
response to external pressures—new technologies and new
detectors—or due to internal pressures—the need for new
capabilities. The evolution of malware in response to new
detectors has a direct impact on many observed character-
istics. This raises questions about whether a collection of
malware identified today may be a representative of mal-
ware that may be generated tomorrow. The previous efforts
in the use of ML in malware detection have assumed that
malware population is stationary. Since malware is known
to evolve in order to evade detection, this assumption needs
investigation.

The term“concept drift”has been used in ML literature to
describe a non-stationary population [39, 38]. Concept drifts
are classified as either “real” or “virtual”. In real concept
drift, there is a change in statistical distribution of data as
well as change in concept. In contrast, a virtual concept
drift, as is the case for spam and malware, the distribution
of data may vary, but not the concept. Many methods have
been proposed in ML literature to detect and track drift as
well as adapt the classifier to drift [38].

In this paper, we propose two measures to track drift in
static features of malware. Static features were chosen, in-
stead of dynamic features, because the predominant meth-
ods currently used by malware authors to prevent detection
of their products is to scramble their static properties, which
in turn is because historically malware detectors have sig-
nificantly relied on static features. Hence, in the current
generation of malware we expect drift, if it exists, to be
more pronounced in static features. Drift can be tracked
or monitored by tracking each feature individually and then
observing an overall trend. Although, static features like
n-grams are easy and efficient to extract, they are usually



very large in number, even after feature selection, thus mak-
ing it infeasible to track each one of them individually. We
solve this problem by using two types of feature summary
measures—relative temporal similarity and metafeatures.

We then apply the proposed methods to track concept
drift in real world malware populations. The findings of this
type of study are critical to the successful application of
ML-based methods for malware detection. If the evolution
causes the malware population to drift rapidly then frequent
retraining of classifiers may be required to prevent degrada-
tion in performance. On the other hand, if the drift is found
to be negligible, then ML-based methods may be robust for
such populations so long as training data poisoning attacks
like boiling frog attacks [34] do not happen. Tracking drift
in malware can also give clues to the kind of evolution in
malware that causes the observed drift.

Studying drift in malware poses a challenge – what consti-
tutes a malware population? There is no predefined notion
of what constitutes a malware. While there are classes of
malware, such as, virus, worms, Trojans, backdoors, etc.
none of these classes define a population in the sense that
a random sample of it can be used for statistical analysis.
We resolve this issue by considering a malware “family” as a
population. The notion of malware family is used by the
anti-malware companies to define a collection of samples
that share some characteristics, such as, sharing certain code
base. Though the term “malware family” is quite fuzzy, in
that two malware samples may not always be placed in the
same family by two different AV analyst, yet such group-
ing is used in the industry for sharing data and information
about malware. GData Software recently reported that the
number of malware families have remained relatively con-
stant over the years where as the number of variants within
a family has been growing rapidly [14]. This report sug-
gests that it may be prudent to study concept drift within
malware families.

Besides studying drift in individual malware families, we
also narrow the population further to unpacked malware.
This constraint was guided by prudence. Most packed mal-
ware encrypt their payload and randomly vary the key. Since
encryption results in statistically garbled data it would be
counterproductive to look for pattern or drift in it. How-
ever, once the code is decrypted it would be reasonable to
expect some pattern that is retained across variants.

The results of our study show negligible drift in mnemonic
2-grams extracted from 3500+ unpacked malware samples
belonging to three real world malware families and span-
ning over 5 years. There were three pieces of evidence in-
dicating negligible drift in these families. First, we found
that the similarity (cosine similarity) of later variants in a
family with respect to a randomly picked early variant did
not change significantly (Figure 2). Second, we found that
some metafeatures for instruction mnemonic characteriza-
tion were stable in samples over time (Figure 3). Third,
results from retraining experiments show that a retrained
classifer had almost the same accuracy as the original clas-
sifier (Table 6). We would like to point here that the negligi-
ble drift observed in our study is not indicative of negligible
drift in most real world malware in general. Our results may
have been influenced by the limited dataset and the choice
of features. However, the study does give a trend in the
chosen malware families.

On the surface the results may appear counter-intuitive

since malware has been believed to be evolving rapidly to
evade various detection methods. However, it appears from
the results of our study that the families we investigated
use two independent evolution mechanisms–evolution of the
protection layer, a la due to the packer and evolution of
the behavior, a la the actual malicious logic. If one can re-
move or peek through the protection layer, one can access
malware code whose statistical properties do not vary sign-
ficantly over time. Our study also indicates that ML clas-
sifiers trained on static features extracted out of samples
from such families need not be trained frequently without
any drop in performance.

Though detection of novel classes in malware data streams
has been studied before [28], to the best of our knowledge
this is the first work on tracking of concept drift in malware.
The main contributions of this paper are:

• It proposes a similarity based method for tracking con-
cept drift in malware.

• It proposes to track metafeatures to solve the problem
of tracking large number of static features in malware.

• It presents results of tracking concept drift in three
real world malware families.

• It studies the relationship between concept drift in
malware and malware evolution.

The rest of the paper is organized as follows. Section 2
gives some backgound on concept drift and an overview of
related works. Section 3 discusses different types of evolu-
tion in malware and their possible impact on concept drift.
Section 4 describes our proposed methods for tracking drift
in malware. Section 5 presents our empirical study of con-
cept drift in real world malware families. Section 6 discusses
some limitations of our proposed method and our empirical
study and also gives some directions for future work. Section
6 concludes the paper.

2. BACKGROUND AND RELATED WORK
ML-based works on malware detection have not consid-

ered the applicability of some of the assumptions of the ML
method to malware. In the following we describe the context
in which one of these assumptions appear and then explain
the notion of concept drift and related works.

Supervised machine learning methods have their origin
in statistical classification [11]. Statistical classification is
a special type of statistical estimation problem where the
conditional probability distribution function p(C|X) is es-
timated for all classes C given the data attributes are ex-
pressed as a vector X. Statistical estimation itself is con-
cerned with generalizing about the population from a sam-
ple [19]. For example, if a population is of size N , then a
sample S = (s1, s2, . . . , sn), where n << N , can be used
to estimate, within an error bound, the mean and variance
of a Gaussian population. This is an example of paramet-
ric estimation where the type of the distribution function
f(X; λ̄) (e.g. Gaussian) is assumed and the problem is re-
duced to finding the parameters λ̄ = {λ1, λ2, . . . , λn} (e.g.
mean,variance) of the distribution. In contrast, nonpara-
metric estimation makes no assumption about the type of
probability distribution function.

A basic assumption in statistical estimation is that the
data is sampled from a stationary population—a population



that does not change over time. In supervised classification,
if the population of one or more classes changes over time,
estimation should be done again using a new sample (train-
ing data) to update the conditional distribution p(C|X) with
respect to the changed populations of classes. In machine
learning literature, the stationarity assumption of statistics
is stated as part of the IID assumption. IID means that data
is independent and identically distributed. The second part
of the IID assumption–identically distributed data– means
that all the data is coming from the same population.

The problem of nonstationary populations has been called
concept drift in machine learning literature. Concept drift
is defined as any change in the conditional probablity distri-
bution p(C|X) over time [21, 41]. From Bayes theorem,

p(C|X) =
p(X|C)p(C)

p(X)

Hence, concept drift can result from change in p(X|C) or
p(C). Sometimes, change in p(X|C) may not affect class
membership due, for example, to symmetric drift in opposite
directions. Hence, change in p(X|C) is also called virtual
drift. Since, change in class priors p(C) alone may change
p(C|X), any observable change in p(C|X) is called real drift.

Drift can be gradual or sudden. Different methods have
been proposed in literature to handle both kinds of drift
[38]. In general, there are two types of approaches to handle
concept drift [13]:

• Direct adaptive. The classifier adapts at regular
intervals of time without verifying the occurrence of
concept drift. These methods include fixed size time
windows on training data and instance weighting [38,
22].

• Detect and adapt. The concept drift is detected by
monitoring or tracking certain indicators of drift. If the
drift is detected, then the classifier adapts according
the extent and direction of the drift. There are three
types of indicators for monitoring or tracking concept
drift [23]:

– Properties or features of data: Some properties or
individual features of data are tracked over time
to detect drift. The scale and direction of change
can be determined easily based on the values of
features [21, 9].

– Classifier parameters: Some classifiers like Sup-
port Vector Machines have parameters that vary
with drifting concepts. These parameters can be
monitored over time to detect concept drift [9].

– Classifier performance measures: Various classi-
fier performance measures like accuracy, preci-
sion, recall etc. can be monitored w.r.t training
windows to detect drift. A significant decrease in
the performance is an indicator of concept drift.

Early work on concept drift was theoretical in nature and
based on computational learning theory [25, 18]. Widmer
[39] described concept drift in a non-theoretical setting and
proposed window-based adaptive methods for retraining to
handle concept drift. The impact of concept drift on the
performance of classifiers was studied by Kelly et al. [21].
Kelly et al. tracked individual features over time to em-
pirically detect concept drift. More rigorous approaches for

detecting concept drift using test statistics exist in statistics
literature [12, 16, 9].

There has been some work on handling concept drift in
spam. Delany et al. [8, 7, 6] describe a lazy-learning based
approach to handle concept drift in spam. Fdez-Riverola
et al. [10] improve Delany et al.’s work by introducing a
term relevance score to track concept drift. These works use
direct adaptive approaches to handle drift. An empirical or
statistical study of properties of spam and spam features
directly showing the occurrence of concept drift is absent in
these works.

Studies on classification of executables using machine learn-
ing [35, 1, 24, 29, 31] have used static datasets. Works
on malware clustering have also used static datasets, and
have not taken into account the temporal changes in char-
acteristics of malware [2, 3]. Malware phylogeny generation
[20] has also been atemporal in nature. Masud et al. [28]
proposed a new ensemble based method to detect malware
in evolving data streams. Evolving data streams are data
streams in which new concepts may appear over time. Con-
cept evolution in data streams may occur in addition to and
independent of concept drift.

To the best of our knowledge, there has not been any
work on monitoring concept drift in malware domain. We
believe montoring or tracking concept drift can give signifi-
cant insights into evolution of malware. These insights can
be helpful in determining the right type of features for de-
tecting drifting malware.

3. MALWARE EVOLUTION AND IMPACT

ON CONCEPT DRIFT
Malware, like any other software, evolves due to changes

in the environment in which it survives and operates. Many
of these evolutionary changes occur to avoid detection by AV
scanners [32]. The technology used by AV scanners usually
exerts pressure at certain points in malware to evolve and
evade detection. Evolution could also be due to changes
in the environment in which malware is created. Broadly
speaking malware evolution, as impacting the byte sequences
in a binary, may be classified into three types: natural, envi-
ronmental, and polymorphic. We describe each one of these
types and their possible impact on concept drift.

3.1 Natural evolution
Natural evolution in malware occurs due to changes re-

sulting from adding features, making bug fixes, porting to
a new environment, as such. The changes in the binary are
a reflection of changes in the code made by a programmer.
Variations introduced in a binary due to natural evolution
are expected to be introduced relatively infrequently. That
is, successive versions of binaries are expected to show high
similarity, except when the code base undergoes significant
refactoring. Similarly, the similarity of an early version of
a binary with that of future version is expected to degrade
slowly. Hayes et al. [17] argued that malware can be ex-
pected to to evolve by gradual accumulation of capabilities
(the so-called “creeping feature” problem in software [26])
and through a model of “punctuated equilibrium” in which
small changes are usually made between versions but oc-
casionally abrupt changes are made. These “punctuations”
are typically explained as being due to accumulated “main-
tainance debt” that lead to mass refactoring.



3.2 Environmental evolution
Environmental evolution happens due to changes in the

software development environment, such as, evolution in the
compiler, or using different compiler switches, or using a
different compiler itself. Changes in the libraries that are
linked to the malware can also lead to significant change in
the overall code base of malware. These changes are not a
result of changes to the malicious software base itself. The
drift due to environmental evolution is expected to be infre-
quent and separated in time since changes to the underlying
software development environment are relatively slow. Com-
piler updates are often separated by months, if not years.
Decision of changing compilers are much more infrequent.
Rosenblum et al. [33] give a method of identifying com-
piler provenance given the binary. Their work shows there
is enough information in a binary to determine the compiler
used to generate the binary. Hence, changes in version of
compilers and libraries can introduce noticeable changes at
binary level.

3.3 Polymorphic evolution
Polymorphic evolution occurs due to changes imposed by

semantics-preserving program transformations in the form
of automated obfuscations [5]. Typically, these transforma-
tions are done by packers and protectors. The intent of
polymorphic evolution is to create artificial diversity so as
to evade detection [5, 15]. Polymorphic evolution is the only
real means of generating a large number of variants of a pro-
gram with high diversity. The high diversity is due to the
use of encryption with different keys or compression with
different parameters. Since packing converts most of the
code into encrypted or compressed data, the drift in data
itself is random and useless to track. Hence, any useful drift
tracking should be on unpacked malware. The evolution in
unpacked malware can be attributed to factors decsribed in
Sections 3.1 and 3.2.

4. MEASURES FOR TRACKING CONCEPT

DRIFT IN MALWARE
We now describe the measures we propose for tracking

concept drift in malware. These measures were developed
to address the specific challenges posed by malware. Static
features are one of the most commonly used features in ML-
based malware detection and clustering. They can be ef-
ficiently extracted and can be parameterized by the type
of static object and the size of the object. For example,
n-grams can be extracted for different values of n and for
bytes, instruction mnemonics,or CFG nodes as grams. A
major challenge in tracking concept drift using static fea-
tures in malware is that the number of n-grams is usually
very large. For a typical malware executable the number of
n-grams can quickly run into millions. It is not feasible to
track such a large number of features individually. The mul-
tivariate tests for drift detection [9] do not scale up to tens
of thousands of features. Hence, the methods required for
tracking concept drift in malware should use measures that
summarize the information in features that can be tracked
over time. The pattern of change in the measure should give
the indication of the kind of drift. We propose two such
measures for detecting concept drift in malware. In addi-
tion, we also describe a modification of the use of retraining
performance as an indicator of concept drift.

4.1 Relative temporal similarity
We propose tracking the similarity score between executa-

bles to get a sense of the direction and pattern of concept
drift. Some methods have been proposed in software engi-
neering literature to measure similarity of versions of large
software systems. For instance, Yamamoto et al. [40] gave a
method for measuring source code based similarity between
versions of large open source systems like BSD Unix. Their
method uses line matchings in source code for computing
similarity. The method we propose, in contrast, uses sim-
ilarity between executables. Similarity score between two
executables represented as feature vectors, captures at a
macro level the feature based commonalities between sam-
ples. Two commonly used similarity scores are cosine sim-
ilarity and Jaccard index [4]. The similarity score summa-
rizes the commonality between numerous features from the
two samples into a single scalar. The similarity score can
be computed for time ordered pairs of samples obtained
by combining a base sample with every temporally suc-
cessive sample. More precisely, let (P1, P2, . . . , Pn) be the
temporal order on executables based on their PE header
timestamp and (φ1, φ2, . . . , φn) be the corresponding tem-
poral order on the feature representation of executables.
Let sim : Xn × Xn → Z be some similarity function and
σ1 = sim(φ1, φ2), σ2 = sim(φ1, φ3), σ3 = sim(φ1, φ4),. . .,
σn−1 = sim(φ1, φn) be the similarity scores for temporally
ordered pairs of executables, then the (1, i) temporal similar-
ity string σ1, σ2, . . . , σn−1 can be used to infer the direction
of concept drift.

Some of the drift patterns resulting from different proper-
ties of the (1, i) temporal similarity string σ1, σ2, . . . , σn−1

are:

• Monotonically decreasing : This occurs when σ1 < σ2 <
. . . < σn−1

• Recurring : This occurs when the values in the tem-
poral similarity string oscillate between certain lower
and upper bounds.

• Stable: The variation in the values of similarity is
within a small interval.

• Split stable: The similarity values lie at two or more
different levels and the values in each level are stable.

Each of the properties of the temporal similarity string de-
scribed above characterizes a type of drift.

We evaluated the (1, i) relative similarity measure by track-
ing drift in naturally evolving malware. Natural evolution
should result in a monotonically decreasing pattern. We
tracked the (1, i) relative temporal similarity in Agobot sam-
ples. Hayes et al. [17] simulated natural evolution in sam-
ples of malware family Agobot by turning on and off the
features in the Agobot kit. The features used by Hayes et
al. in generating these samples are shown in Figure 1. Each
new sample was generated by adding a new feature to the
set of already existing features. We used the samples gener-
ated by Hayes et al. The similarity plot is shown in Figure
1. The similarity decreases monotonically as expected.

4.2 Metafeatures
Certain properties of features can be considered as fea-

tures of features. We call such featuresmetafeatures. Metafea-
tures summarize information from a large number of fea-
tures. For example, metafeatures of n-grams can be the



ID Value Description

1 BOT COMPNICK Use computer name as nick name
2 BOT SECLOGIN Enable login by channel messages

3 BOT RANDNICK Assign random nickname to bot
4 BOT MELSERVER Melt original server file
5 BOT TOPICCMD Execute topic commands

6 DO SPEEDTEST Do speedtest on startup
7 DO AVKILL Enable AV software disabling

8 DO STEALTH Enable stealth mode
9 AS ENABLED Enable Autostart

10 AS SERVICE Install as service
11 IDENTD ENABLED Enable the server
12 CDKEY WINDOWS Get Windows CD keys

13 SPAM AOL ENABLED Enable AOL spamming
14 SNIFFER ENABLED Enable sniffer

15 INST POLYMORPH Polymorph on installation

Table 1: Agobot features

Figure 1: Similarity in Agobot samples

number of unique n-grams in an executable, the n-gram with
highest frequency in an executable, etc. Tracking or moni-
toring metafeatures is easier than tracking large number of
individual features. Another advantage of tracking metafea-
tures is that they can be more resilient to noise in data.

More precisely, computing metafeatures involves comput-
ing an integer valued function on a subset of features ob-
tained by a projection function applied to the set of all
features. Let F = {f1, f2, . . . , fn} be the set of all fea-
tures in a set of executables where features are integer val-
ued i.e. fi ∈ Z. Then, the projected subset is given by
FΠ = {fi : ∀i ∈ ind(Π(F ))} where Π is the projection func-
tion and ind returns the set of indices of elements in the set
F . The metafeatures are then obtained by an integer val-
ued function FM : Zm → Z that takes the set of projected
features (of size m) as input.

4.3 Retraining performance
Retraining with time windows over training data and then

comparing performance has been a commonly used indicator
for detecting concept drift. However, this method is not
applicable as it is to malware. Many malware samples have
the exact same timestamp. This could be due to use of the
same payload executable for packing that generated almost
identical unpacked samples with the same timestamp. Or
it could be due to mechanically generated executables using

malware generation kits. If a significant number of samples
with the same timestamp fall in two training windows, then
performance comparison results may not be indictive of drift
even if it occurs in the most recent training data window.

We propose to use variable length training data window
such that all malware samples with the exact same times-
tamp occur in one window. The window size is increased
or decreased to fit or remove all such samples, respectively.
We beleive performance comparison using the training data
windows adjusted for samples with the exact same times-
tamp would be more robust against mechanically generated
malware in training data.

5. EMPIRICAL STUDY OF DRIFT IN MAL-

WARE FAMILIES
We conducted three studies to learn about concept drift

in malware families. These studies track drift in malware
using the methods described in Section 4. The first study,
described in Section 5.3, tracks drift using relative similarity
of malware over time. The second study, described in sec-
tion 5.4, uses two metafeatures for the same purpose. The
third study, described in Section 5.5, examines the impact
of retraining with new malware samples on the performance
of classifiers.

5.1 Dataset
The malware dataset for our experiments were provided

by an antivirus company. The dataset comprised of un-
packed samples from three malware families-Agent, Hupigon
and Pcclient. Agent is a family of trojans that have mul-
tiple components, Hupigon is a family of backdoor trojans
and Pcclient is a family of backdoor trojans with a keylog-
ger and a rootkit [30]. The samples in each family were time
ordered based on their PE header timestamp. This times-
tamp gives the time and date when the binary was created.
The timestamp characteristics of samples in each family are
given in Tables 2 and 3. Table 2 gives yearly frequency of
PE header timestamps of samples in each family. The sam-
ples are spread over 7 years in each family with the Agent
family mostly from 2008. Table 3 shows that there were
many samples with the same timestamp, probably because
they were generated at once by a malware generation kit.

The ground truth of each malware sample was verified by
majority voting on 3 different antivirus scanners. Though,
this method of filtering of samples on which most AV scan-
ners disagree has been criticized by Li et al. [27], there were
very few samples in our dataset on which the majority of
AV scanners did not agree.

5.2 Features
We used static features of executables to study concept

drift in malware. Static features are obtained by consid-
ering the executable or some abstraction of the executable
(e.g. disassembled executable) as text. N-grams are one of
the commonly used static features in malware detection [35,
1, 24] since they can be efficiently extracted. N-grams are
obtained by sliding a window of size N along the executable.
We considered two kinds of n-grams in our experiments:

• Byte 2-grams: Byte 2-grams are extracted by sliding
a 2 byte window along the executable. The feature vec-
tor of each sample contained the number of occurences
of each byte 2-gram. Although, 4-grams have been



shown to be the best performing features with bytes,
the difference in performance between 4-grams and 2-
grams is not much [24]. We chose 2-grams to keep
the number of features manageable without sacrificing
much performance. There were a total of 65,536 byte
2-grams and all were used in the experiment.

• Mnemonic 2-grams: Each malware executable can
be disassembled to obtain some more information than
just bytes. Each instruction in the disassembled mal-
ware contains one or more of the instruction mnemonic,
label, registers or data. The mnemonic can be ex-
tracted from each instruction and the malware exe-
cutable can be represented as a sequence of mnemon-
ics. We extracted mnemonic 2-grams by sliding a two
mnemonic window on the mnemonic representation
of malware. We chose 2-grams over other values of
n in n-grams since they have been shown to be the
best performing features for mnemonics (more specif-
ically, opcodes) [31]. The feature vector of each mal-
ware sample was obtained by calculating the TF-IDF
for each mnemonic 2-gram. TF-IDF is a commonly
used feature weight in text categorization [36]. TF-
IDF of feature i is defined as TFi ∗ IDFi where TFi

is the term frequency and IDFi is the inverse doc-
ument frequency. Term frequency is defined as the
number of occurrences of feature i in malware sample
S normalized by the total number of features in S i.e.
TFi = |fi|/|S|. Inverse document frequency weighs
down more commonly occurring features. It is defined
as IDFi = log

10
(|S|/DFi) where DFi is document fre-

quency or the number of malware samples containing
the feature i.

Year Malware Family
Agent Hupigon Pcclient

2003 3 6 23
2004 6 10 16
2005 3 13 197
2006 4 120 27
2007 98 351 113
2008 1,656 170 400
2009 132 44 781

Table 2: Yearwise number of samples from different malware
families based on PE header timestamp

5.3 Relative temporal similarity
The purpose of this study was to track concept drift in real

world malware families using relative similarity described in
Section 4.1. We used cosine similarity as a measure of sim-
ilarity between samples. Cosine similarity [37] between two
samples represented as feature vectors A = (a1, a2, . . . , an)
and B = (b1, b2, . . . , bn) is given by

cos(A,B) =
A ·B

|A||B|

where A · B = a1b1 + a2b2 + . . . + anbn, |A| = (a2

1 + a2

2 +

. . .+ a2

n)
1/2, and |B| is defined similarly.

The (1, i) temporal similarity string was computed for
two types of static features and the patterns in the string

were studied using scatter-plots. We used byte 2-grams and
mnemonic 2-grams as features in this experiment.

5.3.1 Byte 2-grams

We computed relative similarity with byte level features
using byte 2-grams. Two treatments (not to be confused
with folds) were created to introduce randomly selected base
malware sample. Each treatment used a different base sam-
ple against which all other samples were compared. The
number of samples from each malware family in each treat-
ment are given in Table 4.

Family Byte 2-grams Mnemonic 2-grams
Tr-1 Tr-2 Tr-1 Tr-2

Agent 1,886 1,881 1,875 1,873
Hupigon 679 676 566 524
Pcclient 1,524 1,514 1,425 1,373

Table 4: Number of samples in two treatments for each fam-
ily

Our expectation was a decrease in similarity of samples
over time with the amount of decrease varying with family.
However, the results of this study (Figures 2(a),(c),(e)) do
not support a monotonically decreasing drift model. The
figure shows plots for the first treatment, the results of the
other treatment were almost identical. The y-axis in the
plots is the cosine similarity (1, i) and x-axis is the index
i of temporally ordered sample pairs. The plots in Fig-
ure 2(c),(e) indicate that at the byte level there is hardly
any decrease over time in similarity between samples in
Hupigon and Pcclient families implying negligible drift in
Hupigon and Pcclient families. However, in Agent (Figure
2(a)) there are four bands of similiarity at different levels.
The small band on the top left(cosine similarity ≈ 1) is at
the same level as the one on top right indicating high sim-
ilarity between these samples. The are two distinct bands
at cosine similarity ≈ 0.73 and 0.98, respectively. A closer
look at the bands revealed that a large number of samples
in each of these bands had identical timestamps. The first
795 samples in the band at level 0.73 had the timestamp
12/25/2008 05:34:49 followed by 248 samples with times-
tamp 12/21/2008 04:57:01. The band at level 0.98 was
amost entirely composed of 505 samples with timestamp
12/30/2008 20:59:39.

The results can be explained considering that all the sam-
ples were unpacked. Most malware found in the wild is
usually packed. Packing a malware involves converting ma-
licious code to data using encryption or compression and
attaching an unpacker that converts the data back to code
upon execution. Large number of variants can be generated
by using different encryption key or compression parameter
and there are also polymorphic packers that can generate a
different unpacker for every variant. The process of unpack-
ing a packed executable using a generic unpacker gives an
executable that is similar but not identical to the original
executable. The generic or custom unpackers used by AV
companies may introduce some artifacts that may not be
in the original executable. Hence, unpacking the variants
produced by packing the same executable will give executa-
bles with different hash signature. The results in Figures
2(a),(c),(e) indicate that the bands consist of samples that



Agent Hupigon Pcclient
# Timestamp # Timestamp # Timestamp

795 12/25/2008 05:34:49 12 03/22/2008 02:40:31 352 02/02/2009 17:47:58
505 12/30/2008 20:59:39 8 08/04/2004 01:01:37 228 02/04/2009 15:52:12
248 12/21/2008 04:57:01 127 06/13/2008 23:52:17
11 8/7/2007 10:37:35 116 01/12/2009 17:48:29
7 7/27/2009 01:27:29 108 12/03/2008 16:59:35
7 3/31/2007 03:17:56 38 02/05/2009 17:52:58

26 08/16/2008 21:47:34
23 06/13/2008 23:52:19
20 11/25/2007 06:33:11
20 02/02/2009 17:48:00

Table 3: Number of samples with the same PE header timestamp

were originally one executable but unpacking produced very
different executables that are very similar at byte level. This
implies that a single executable was packed to generate vari-
ants in Hupigon and Pcclient ((Figure 2 (c),(e)) explaining
a single high similarity band. However, three different exe-
cutables were used in Agent (Figure 2 (a)) that show up as
bands at three different levels.

5.3.2 Mnemonic 2-grams

The use of instruction mnemonics as features for comput-
ing relative similarity can give some insight into how mal-
ware code drifts. We studied drift in mnemonic 2-grams in
the three malware families. As for byte 2-grams, two treat-
ments were created to account for the variability in results
introduced by the choice of the base sample. The number
of samples in each treatment are shown in Table 4. The
counts are smaller than those for byte 2-grams since some of
the malware executables could not be successfully disassem-
bled. Since the number of all possible mnemonic 2-grams is
very large, we used feature selection to prune the feature set.
Document frequency with a threshold of 10 was used as the
selection criteria i.e. those mnemonic 2-grams were selected
that occurred in more than 10 samples in the family. The
number of features before and after selection are given in
Table 5.

Family Total features Selected features

Agent 93,285 33,720
Hupigon 188,469 88,966
Pcclient 61,176 19,182

Table 5: Number of mnemonic 2-grams before and after
feature selection

We expected relative similarity to decrease with time for
mnemonic 2-grams as well since addition of new features,
modification of existing features and removal of old features
will change the malware code significntly over time. The re-
sults we obtained were otherwise. Figures 2 (b), (d), and (e)
show the relative similarity plots for the three malware fami-
lies in the first treatment. The results of the other treatment
were almost identical. The plots show flat split bands in all
families with the number and tightness of bands varying
with family. An intersting thing to observe is that different
bands occur throughout, without any interleaved regions.

This indicates that, at the code level, there are more than
one type of malware in each family all of which were gener-
ated throughout the time period considered. Even though,
there are few byte level differences in Hupigon and Pcclient,
there are different types of malware at code level in both
families. The plots for mnemonic 2-grams with PE header
date (month/year) on the x-axis are shown in the appendix
in Figure 4. The plots in Figure 4 also give a sense of most
active periods of a family.

Agent is the most intriguing family with byte level dif-
ferences showing as interleaved bands in Figure 2 (a) but
at the code level different bands exist simultaneously and
throughout (Figure 2 (b)). This implies that at the code
level malware exists in different forms that do not change
significantly with time. This also shows the importance of
the choice of type of features in computing relative similar-
ity. The byte level features in Agent, for example, show sud-
den drifts whereas mnemonic level features do not show any
significant drift. Another important point is what we call
similar malware executables at byte level may be different
malware programs at mnemonic level. This can be explained
in light of the fact that different instructions may use the
same registers and addresses, leading to a small change at
byte level but a signifant change at the mnemonic level.

5.4 Tracking metafeatures
There were tens of thousands of byte 2-grams and mnemonic

2-grams in each malware family (Table 5). Hence it was not
possible to track each one of them individually. We chose to
track two metafeatures of mnemonic 2-grams to get a sense
of how the raw features drift over time. The two metafea-
tures are described below:

• Term frequency of the mnemonic 2-gram with highest
document frequency : This metafeature was obtained
by first determining the mnemonic 2-gram that oc-
cured in most samples in a family. Then the term fer-
quency of this mnemonic 2-gram was tracked in sam-
ples over time. More precisely, let F be the set of all
the features in all the malware samples of the dataset
and FS ∈ F be the set of features occuring in the mal-
ware sample S. Then, the projection function Π can
be written as

Π = max
DF

(FS))

where maxDF returns the feature with highest docu-
ment frequency. Now, the integer valued metafeature



(a) Agent:Byte 2-grams (b) Agent:Mnemonic 2-grams

(c) Hupigon:Byte 2-grams (d) Hupigon:Mnemonic 2-grams

(e) Pcclient:Byte 2-grams (f) Pcclient:Mnemonic 2-grams

Figure 2: Relative similarity with byte 2-grams and mnemonic 2-grams for three malware families

function FM is TF (Π(FS)), the term frequency of the
output of Π.

• Number of unique mnemonic 2-grams: Each malware

sample consists of a subset of all mnemonic 2-grams.
Since, any mnemonic 2-gram can occur more than once
in a sample, we tracked the number of unique mnemonic
2-grams in malware samples over time. Here, the pro-



jection function Π returns the set FS and the integer
valued metafeature function FM is |FS |, the size of of
the set FS .

The dataset and the number of mnemonic 2-grams for
this study was the same as the first treatment of the rel-
ative similarity study. The results are shown in Figure 3.
The concept drift in the first metafeature (term frequency)
is shown in Figures 3(a), 3(c) and 3(e) for the three mal-
ware families. Each of these plots show split flat bands of
samples throughout. This is in agreement with the observa-
tion from mnemonic 2-grams relative similarity study. We
can conclude that at the code level in each family there are
more than one kind of samples throughout the time interval
of samples in the dataset and that these different kinds of
samples in each family do not change significantly over time.
The drift in the second metafeature (number of mnemonic
2-grams) is shown in Figures 3(b), 3(d) and 3(e). The num-
ber of unique mnemonic 2-grams in Agent (Figure 3(b)) is
mostly between 4,000 and 5,000 and this tight band remains
flat throughout. The band in Hupigon is spread out but
it does indicate two kinds of samples at around 5,000 and
20,000. Pcclient is similar to Agent with a tight band at
around 2,500.

The two metafeatures give a general trend of the type of
drift in the malware families. The families under consider-
ation show insignificant drift. This implies the performance
of machine lerning based malware detectors can be robust
for such families.

5.5 Retraining
The purpose of this study was to detect drift on the ba-

sis of the difference in performance of classifiers trained on
original training data and new training data. We split the
dataset into original (O) and new (N) based on timestamp.
As discussed in Section 4.3, we made sure that samples in a
family with the same timestamp did not end up in different
training sets. This implied a particular cutoff timestamp
could not be used to determine the two training sets. The
training sets were variable length to accomodate all samples
with one timestamp in one of the training sets. There were
a total of 1,825 samples in the original training dataset com-
prising a mix of agent, hupigon, pcclient and benign samples.
There were 1,851 samples in the recent training dataset also
comprising of a mix of agent, hupigon, pcclient and benign
samples. The test dataset had a mix of 2,325 samples. Be-
nign samples were Windows XP system DLL files. TF-IDF
of mnemonic 2-grams were used as features, as in the rela-
tive similarity experiment. The features in the training data
were selected using a document frequency threshold of 100
to keep the number of features manageable. Four classifiers
were chosen for the experiment: IB3, J48, SVM and Naive
Bayes.

The result of this study is shown in Table 6. The classi-
fiers were trained and tested with binary (malware,benign)
as well as multiclass (agent,hupigon,pcclient,benign) data.
As can be seen from the table, with the exception of Binary
IB3, the accuracy of classifiers trained on the two datasets is
comparable. This is another evidence indicating negligible
drift since the performance can be comparable only if the
distribution of mnemonic 2-grams does not change signifi-
cantly in samples over time.

6. LIMITATIONS AND FUTURE WORK

Classifier Binary Multiclass
O N O N

IB3 70.77 44.87 93.16 91.39
J48 99.78 99.69 97.29 96.25
NB 98.62 99.00 94.79 95.01
SMO 99.87 99.95 97.63 96.90

Table 6: Accuracy of different classifiers trained on original
and recent dataset

A limitation of our study of concept drift in malware fam-
ilies is that it tracked drift in static features only. Many
types of behavioral features have been proposed for cluster-
ing and classifying malware [3, 2]. The number of behavioral
features in a malware is usually far less than the number of
static features like n-grams. Hence, it may be easier to track
the behavioral features individually. However, the extrac-
tion of behavioral features is less efficient than extracting n-
grams thus making static features more suitable in a stream
classification setting. Moreover, most malware families are
formed on the basis of some behavioral similarity. Hence,
behavioral features may not show significant temporal drift
compared to n-grams since the same behavior may have an
obfuscated implementation resulting in different n-grams.

Also our study was limited to three malware families. We
did not attempt to conduct an exhaustive study with a large
number of malware families since such a study is not only
infeasible but also the conclusions may not be an indicator
of presence/absence of drift in future families. A desired
characteristic for choosing families in a drift study is they
should have a long temporal profile, i.e., they should have
been active over several years. Although the data set in our
study was limited to three families, each family had a long
temporal profile (Table 2).

The results of our experiment give some evidence of the
impact of unpacking on malware binaries. We saw in Section
5.3 that what we thought were different unpacked binaries
may have originated from a small subset of original bina-
ries. A more controlled study to determine the nature of
the impact of unpacking is needed to confirm the relation-
ship between unpacking, evolution and drift in malware.

7. CONCLUSIONS
We proposed two measures to track concept drift in mal-

ware when the number of features is large. We studied con-
cept drift in three real world malware families and found
negligible drift in mnemonic 2-grams. The results of three
different experiments—relative similarity, metafeatures, and
retraining—provide evidence in favor of negligible drift in
mnemonic 2-grams. Though, our study was limited to three
malware families and two kinds of features, it gives a direc-
tion for further exploration of drift in malware under differ-
ent malware evolution models. The negligible drift in certain
types of features can be exploited by deploying classifiers
based on these features thus making them more robust to
evolving malware.
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APPENDIX

Figure 4 shows the results of the plot in Figures 2 (b), (d),
and (e) with PE header date (month/year) on the x-axis.
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Figure 4: Relative similarity with respect to PE header date
for mnemonic 2-grams for three malware families


