
Malware and Machine Learning

Charles LeDoux and Arun Lakhotia

Abstract Malware analysts use Machine Learning to aid in the fight against
the unstemmed tide of new malware encountered on a daily, even hourly, basis.
The marriage of these two fields (malware and machine learning) is a match made
in heaven: malware contains inherent patterns and similarities due to code and code
pattern reuse by malware authors; machine learning operates by discovering inherent
patterns and similarities. In this chapter, we seek to provide an overhead, guiding
view of machine learning and how it is being applied in malware analysis. We do
not attempt to provide a tutorial or comprehensive introduction to either malware or
machine learning, but rather the major issues and intuitions of both fields along with
an elucidation of the malware analysis problems machine learning is best equipped
to solve.

1 Introduction

Malware, short for malicious software, is the weapon of cyber warfare. It enables
online sabotage, cyber espionage, identity theft, credit card theft, and many more
criminal, online acts. A major challenge in dealing with the menace, however, is its
sheer volume and rate of growth. Tens of thousands of new and unique malware are
discovered daily. The total number of new malware has been growing exponentially,
doubling every year over the last three decades.

Analyzing and understanding this vast sea of malware manually is simply impos-
sible. Fortunately for the malware analyst, very few of these unique malware are truly
novel. Writing software is a hard problem, and this remains the case whether said
software is benign or malicious. Thus, malware authors often reuse code and code

C. LeDoux (B) · A. Lakhotia
Center for Advanced Computer Studies, University of Louisiana at Lafayette,
PO Box 44330, Lafayette, LA 70504, USA
e-mail: charles.a.ledoux@gmail.com

A. Lakhotia
e-mail: arun@louisiana.edu

© Springer International Publishing Switzerland 2015
R.R. Yager et al. (eds.), Intelligent Methods for Cyber Warfare,
Studies in Computational Intelligence 563, DOI 10.1007/978-3-319-08624-8_1

1

2 C. LeDoux and A. Lakhotia

patterns in creating new malware. The result is the existence of inherent patterns and
similarities between related malware, a weakness that can be exploited by malware
analysts.

In order to capitalize on this inherent similarity and shared patterns between
malware, the anti-malware industry has turned to the field of Machine Learning, a
field of research concerned with “teaching” computers to recognize concepts. This
“learning” occurs through the discovery of indicative patterns in a group of objects
representing the concept being taught or by looking for similarities between objects.
Though humans too use patterns in learning, such as using color, shape, sound, and
smell to recognize objects, machines can find patterns in large swaths of data that
may be gibberish to a humans, such as the patterns in sequences of bits of a collection
of malware. Thus, Machine Learning has a natural fit with Malware Analysis since
it can more rapidly learn and find patterns in the ever growing corpus of malware
than humans.

Both Machine Learning and Malware Analysis are very diverse and varied fields
with equally diverse and varied ways in which they overlap. In this chapter, we seek to
provide a guiding, overhead cartography of these varied landscapes, focusing on the
areas and ways in which they overlap. We do not seek to provide a comprehensive
tutorial or introduction to either Malware or Machine Learning research. Instead,
we strive to elucidate the major ideas, issues, and intuitions for each field; pointing
to further resources when necessary. It is our intention that a researcher in either
Malware Analysis or Machine Learning can read this chapter and gain a high-level
understanding of the other field and the problems in Malware that Machine Learning
has, is, and can be used to solve.

2 A Short History of Malware

The theory of malware is almost as old as the computer itself, tracing back to lec-
tures by von Neumann in late 1940s on self-reproducing automata [1]. These early
malware, if they can be called as such, did nothing significantly more than demon-
strate self-reproduction and propagation. For example, one of the earliest malware
to escape “into the wild” was called Elk Cloner and would simply display a small
poem every 50th time an infected computer was booted:

Elk Cloner : The program with a personality

I t will get on al l your disks
I t will in f i l t ra te your chips
Yes it ’s Cloner!

I t will stick to you like glue
I t will modify ram too
Send in the Cloner!

Malware and Machine Learning 3

The term computer virus was coined in early 1980s to describe such
self-replicating programs [2]. The use of the term was influenced by the analogy of
computer malware to biological viruses. A biological virus comes alive after it infects
a living organism. Similarly, the early computer viruses required a host—typically
another program—to be activated. This was necessitated by the limitations of the
then computing infrastructure which consisted of isolated, stand-alone, machines.
In order to propagate, that is infect currently uninfected machines, a computer virus
necessarily had to copy itself in various drives, tapes, and folders that would be
accessed by different machines. In order to ensure that the viral code was executed
when it reached the new machine, the virus code would attach itself to, i.e. infect,
another piece of code (a program or boot sector) that would be executed when the
drive or tape reached another machine. When the now infected code would later
execute, so would the viral code, furthering the propagation.

The early viruses remained mostly pranks. Any damage they caused, such as crash-
ing a computer or exhausting disk space, was largely unintentional and a side effect of
uncontrolled propagation. However, the number and spread of viruses quickly grew
to enough of a nuisance that it led to the development of first anti-virus companies in
the late 1980s. Those early viruses were simple enough that they could be detected
by specific sequences of bytes, a la signatures.

The advent of networking, leading to the Internet, changed everything. Since
data could now be transferred between computers without using an external storage
device, so could the viruses. This freedom to propagate also meant that a virus no
longer needed to infect a host program. A new class of malware called worm emerged.
A worm was a stand alone program that could propagate from machine to machine
without necessarily attaching to any other program.

Malware writing too quickly morphed from simple pranks into malicious vandal-
ism, such as that done by the ILOVEYOU worm. This worm came as an attachment
to an email with the (unsurprising) subject line “ILOVEYOU”. When a user would
open the attachment, the worm would first email itself to the user’s contacts and
then begin destroying data on the current computer. There were a number of similar
malware created, designed only to wreak havoc and gain underground notoriety for
their authors. These “graffiti” malware, however, soon gave way to the true threat:
malware designed to make money and steal secrets.

Malware today has little if any resemblance to the malware of past. For one,
gone are the simple days of pranks and vandalism conducted by bored teenagers and
budding hackers. Modern malware is an well-organized activity forming a complete
underground economy with its own supply chain. Malware is now a tool used by large
underground organizations for making money and a weapon used by governments
for espionage and attacks. Malware targeted towards normal, everyday computers
can be designed to steal bank and credit card information (for direct theft of money),
harvest email addresses (for selling to spammers), or gain remote control of the
computer. The major threat from malware, however, comes from malware targeted not
towards the average computer, but towards a particular corporation or government.
These malware are designed to facilitate theft of trade or national secrets, steal
crucial information (such as sensitive emails), or attack infrastructure. For example,

4 C. LeDoux and A. Lakhotia

Stuxnet was malware designed to attack and damage various nuclear facilities in
Iran. These malware often have large organizations (such as rival corporations) or
even governments behind them.

3 Types of Malware

Whenever there is a large amount of information or data, it helps to categorize and
organize it so that it can be managed. Classification also aids in communication
between people, giving them a common nomenclature. The same is true of malware.
The industry uses a variety of methods to classify and organize malware. The classi-
fication is often based on the method of propagation, the method of infection, and the
objective of the malware. There is, however, no known standard nomenclature that
is used across the industry. Classifications sometimes also come with legal impli-
cations. For instance, can a program that inserts advertisements as you browse the
web be termed as malicious. What if the program was downloaded and installed by
the user, say after being enticed by some free offering? To thwart legal notices the
industry invented the term potentially unwanted program or PUP to refer to such
programs.

Though there is no accepted standard for classification of malware in the industry,
there is a reasonable agreement on classifying malware on their method of propaga-
tion into three types: virus, worm, and trojan (short for Trojan horse).

Virus, despite being often used as a synonym for malware, technically refers to a
malware that attaches a copy of itself to a host, as described earlier. Propagation by
infecting removable media was the only method for transmission available prior to
the Internet, and this method is still in use today. For instance, modern viruses travel
by infecting USB drives. This method is still necessary to reach computer systems
that are not connected to the Internet, and is hypothesized as the way Stuxnet was
transmitted.

A trojan propagates the same way its name sake entered the city of Troy, by hiding
inside something that seems perfectly innocent. The earliest trojan was a game called
ANIMAL. This simple game would ask the user a serious of questions and attempt to
guess what animal the user was thinking of. When the game was executed, a hidden
program, named PERVADE, would install a copy of itself and ANIMAL to every
location the user had access to. A common modern example of a trojan is a fake
antivirus, a program that purports to be an anti-virus system but in fact is a malware
itself.

A worm, as mentioned earlier, is essentially a self-propagating malware. Whereas
a virus, after attaching itself to a program or document, relies on an action from a
user to be activated and spread, a worm is capable of spreading between network
connected computers all by itself. This is typically accomplished one of two ways:
exploiting vulnerabilities on a networked service or through email. The worm CODE
RED was an example of the first type of worm. CODE RED exploited a bug in a
specific type of server that would allow a remote computer to execute code on the

Malware and Machine Learning 5

server. The worm would simply scan the network looking for a vulnerable server.
Once found, it would attempt to connect to the server and exploit the known bug.
If successful, it would create another instance of the worm that repeated the whole
process. The ILOVEYOU worm, discussed earlier, is an example of an email worm
and spread as an email attachment. When a user opened the attachment, the worm
would email a copy of itself to everyone in the user’s contact list and damage the
current machine.

While the above methods of propagation are the mostly commonly known, they
by no means represent all possible ways in which malware can propagate. In general,
one of two methods are employed to get a malware onto a system: exploit a bug in
software installed on the computer or exploit the trust (or ignorance) of the user of
the computer through social engineering. There are many different types of software
bugs that allow for arbitrary code to be executed and almost as many ways to trick
a user into installing a malware. Complicating matters further, There is no technical
reason for a malware to limit its use to only one method of propagation. It is entirely
conceivable, as was demonstrated by Stuxnet, for a malware to enter a network
through email or USB, and then spread laterally to other machines by exploiting
bugs.

4 Malware Analysis Pipeline

The typical end goal of malware analysis is simple: automatically detect malware
as soon as possible, remove it, and repair any damage it has done. To accomplish
this goal, software running on the system being protected (desktop, laptop, server,
mobile device, embedded device, etc.) uses some type of “signatures” to look for
malware. When a match is made on a “signature”, a removal and repair script is
triggered. The various portions of the analysis “pipeline” all in one way or another
support this end goal [3, 4].

The general phases of creating and using these signatures are illustrated by Fig. 1.
Creating a signature and removal instructions for a new malware occurs in the “Lab.”
The input into this malware analysis pipeline is a feed of suspicious programs to
be analyzed. This feed can come from many sources such as honeypots or other
companies. This feed first goes through a triage stage to quickly filter out known
programs and assign an analysis priority to the sample. The remaining programs
are then analyzed to discover what it looks like and what it does. The results of the
analysis phase are used to create a signature and removal/repair instructions which
are then verified for correctness and performance concerns. Once verified, these
signatures are propagated to the end system and used by a scanner to detect, remove,
and repair malware.

Each of the various phases of the anti-malware analysis process is attempting to
accomplish a related, but independent task and thus has its own unique goals and
performance constraints. As a result, each phase can independently be automated
and optimized in order to improve the performance of the entire analysis pipeline.

6 C. LeDoux and A. Lakhotia

Fig. 1 Phases of the malware analysis pipeline

In fact, it is almost a requirement that automation techniques be tailored for the
specific phase they are applied in, even if the technique could be applied to multiple
phases. For example, a machine learning algorithm designed to filter out already
analyzed malware in the triage stage will most likely perform poorly as a scanner.
While both the triage stage and the scanner are accomplishing the same basic task,
detect known malware, the standard by which they are evaluated is different.

4.1 Triage

The first phase of analysis, triage, is responsible for filtering out already analyzed
malware and assigning analysis priority to the incoming programs. Malware ana-
lysts receive a very large number of new programs for analysis every day. Many
of these programs, however, are essentially the same as programs that have already
been analyzed and for which signatures exist. A time stamp or other trivial detail
may have been changed causing a hash of the binary to be unique. Thus, while the
program is technically unique, it does not need to reanalyzed as the differences are
inconsequential. One of the purposes of triage is to filter these binaries out.

In addition to filtering out “exact” matches (programs that are essentially the
same as already analyzed programs), triage is typically also tasked with assigning
the incoming programs into malware families when possible. A malware family is
a group of highly related malware, typically originating from common source code.
If an incoming program can be assigned to a known malware family, any further
analysis does not need to start with zero a priori knowledge, but can leverage general
knowledge about the malware family, such as known intent or purpose.

A final purpose of the triage stage is to assign analysis priority to incoming
programs. Humans still are and most likely will remain an integral part of the analysis
pipeline. Like any other resource, what the available human labor is expended upon
must be carefully chosen. Not all malware are created equal; it is more important

Malware and Machine Learning 7

that some malware have signatures created before others. For example, malware that
only affects, say, Microsoft Windows 95 will not have the same priority as malware
that affects the latest version of Windows.

The performance concerns for the triage phase are (1) ensuring that programs
being filtered out truly should be removed and (2) efficient computation in order to
achieve very high throughput. Programs filtered out by triage are not subjected to
further analysis and thus it is very important that they do not actually need further
analysis. Especially dangerous is the case of malware being filtered out as a benign
program. In this case, that particular malware will remain undetectable. Marking
a known malware or a benign program as malware for further processing, while
undesirable, is not disastrous as it can still be filtered out in the later processing stages.
Along the same lines, it is sufficient that malware be assigned to a particular family
with only a reasonably high probability rather than near certainty. Finally, speed is
of the utmost importance in this stage. This stage of the analysis pipeline examines
the largest number of programs and thus requires the most efficient algorithms.
Computationally expensive algorithms at this stage would cause a backlog so great
that analysts would never be able to keep up with malware authors.

4.2 Analysis

In the analysis phase, information about what the program being analyzed does, i.e.
its behavior, is gathered. This can be done in two ways: statically or dynamically.

Static analysis is performed without executing the program. Information about
the behavior of the program is extracted by disassembling the binary and converting
it back into human readable machine code. This is not high level source code, such as
C++, but the low level assembly language. An assembly language is the human read-
able form of the instructions being given directly to the processor. ARM, PowerPC,
and ×86 are the better known examples of assembly languages. After disassembly,
the assembly code (often just called the malware “code” for short) can be analyzed
to determine the behavior of the program. The methods for doing this analysis con-
stitute an entire research field called program analysis and as such are outside the
scope of this chapter. Nielson et al. [5] have a comprehensive tutorial to this field.

Static analysis can theoretically provide perfect information about the behavior of
a program, but in practice provides an over approximation of the behaviors present.
Only what is in the code is what can be executed, thus the code contains everything
the program can do. However, extracting this information from a binary can be
difficult, if not impossible. Perfectly solving many of the problems of static analysis
is undecidable.

As an example of the problems faced by static analysis, binary disassembly is
itself an undecidable problem. Binaries contain both data and code and separating
the two from each other is undecidable. As a result some disassemblers treat the entire
binary, including data, as if it were code. This results in a proper extraction of most
of the original assembly code, along with much code that never originally existed.

8 C. LeDoux and A. Lakhotia

There are many other methods of disassembly, such as the recent work by Schwarz
et al. [6]. While these methods significantly improve on the resulting disassembly,
none can guarantee correct disassembly. For instance, it is possible that there exists
“dead code” in the original binary, i.e. code that can never be reached at runtime.
In an ideal disassembly, such code ought to be excluded. Thus all of static analysis
operates on approximations. Most disassemblers used in practice do not guarantee
either over approximation or under approximation.

Dynamic analysis, in contrast with static analysis, is conducted by actually exe-
cuting the program and observing what it does. The program can be observed from
either within or without the executing environment. From within uses the same tools
and techniques software developers use to debug their own programs. Tools that
observe the operating system state can be utilized and the analyzed program run in
a debugger. Observation from without the execution environment occurs by using a
specially modified virtual machine or emulator. The analyzed program is executed
within the virtual environment and the tools providing the virtualization observe and
report the behavior of the program.

Dynamic analysis, as opposed to static analysis, generally provides an under
approximation of the behaviors contained in the analyzed program, but guarantees
that returned behaviors can be exhibited. Behaviors discovered by dynamic analysis
are obviously guaranteed to be possible as the program was observed performing
these behaviors. Only the observed behaviors can be returned, however. A single
execution of a program is not likely to exhibit all the behaviors of the program as
only a single path of execution through the binary is followed per run. A differing
execution environment or differing input may reveal previously unseen behaviors.

4.3 Signatures and Verification

While the most common image conjured by the phrase “malware signatures” is
specific patterns of bytes (often called strings) used by an Anti-Virus system to detect
a malware, we do not use the term in that restricted sense. What we mean by signature
is any method utilized for determining if a program is malware. This can include the
machine learning system built to recognize malware, a set of behaviors marked as
malicious, a white list (anything not on the white list is marked as malicious), and
more. The important thing about a signature is that it can be used to determine if a
program is malware or not.

Along with the signatures, instructions for how to remove malware that has
infected the system and repair any damage it has done must also be created. This
is usually done manually, utilizing the results of the analysis stage. Observe what
the malware did, and then reverse it. One major concern here is ensuring that the
repair instructions do not cause even more damage. If the malware changed a registry
key, for example, and the original key is unknown, it may be safest to just leave the
key alone. Changing it to a different value or removing it all together may result

Malware and Machine Learning 9

in corrupting the system being “protected.” Thus repair instructions are often very
conservative, many times only removing the malware itself.

Once created, the signatures need to be verified for correctness and, more impor-
tantly, for accuracy. Even more important than creating a signature that matches the
malware is creating a signature that only matches the malware. Signatures that also
match benign programs are worse than useless; they are acting like malware them-
selves! Saying that benign programs are actually malware, called a false positive,
is an error that cannot be tolerated once the signatures have been deployed to the
scanner.

4.4 Application

Once created, the signatures are deployed to the end user. At the end system, new
files are scanned using the created signatures. When a file matches a signature, the
associated repair instructions followed.

The functionality of the scanner will depend on the type of signature created.
String based signatures will use a scanner that checks for existence of the string in
the file. A scanner based on Machine Learning signatures will apply what has been
learned through ML to detect malware. A rule based scanner will check if the file
matches its rules, and so on and so forth.

5 Challenges in Malware Analysis

One of the fundamental problems associated with every step of the malware analysis
pipeline is the reliance on incomplete approximations. In every stage of the pipeline,
the exact solution is generally impossible. Triage cannot perfectly identify every
part of every program that has already been identified. Analysis will generate either
potentially inaccurate or incomplete information. All types of signatures are limited.
Even verification is limited by what can be practically tested.

Naturally, malware authors have developed techniques that directly attack each
stage of the analysis pipeline and shift the error in the inherent approximations to their
favor. Packing and code morphing are used against triage to increase the number of
“unique” malware that must be analyzed. Packing, tool detection, and obfuscation are
used against the analysis stage to increase the difficultly of extracting any meaningful
information.

While the ultimate goal of the malware authors is obviously to completely avoid
detection, simply increasing the difficulty of achieving detection can be considered a
“win” for the malware authors. The more resources consumed in analyzing a single
malware, the less total malware that can be analyzed and detected. If this singular
cost is driven high enough, then detection of any but the most critical malware simply
becomes too expensive.

10 C. LeDoux and A. Lakhotia

5.1 Code Morphing

The most common and possibly the most effective attack against the malware analysis
pipeline targets the first stage: triage. The attack is to simply inundate the pipeline
with as many unique malware as possible. Unique is not used here to mean novel,
i.e. does something unique; here it simply means that the triage stage considers it
something that has not been analyzed before. Analysis stages further down the pipe
from Triage are allowed to be more expensive because it is assumed Triage has
filtered out already analyzed malware, severely reducing the number of malware the
expensive processes are run on. By slipping more malware past Triage and forcing
the more expensive processes to run, the cost of analysis can be driven up, possibly
prohibitively high.

One of the ways this attack is accomplished is through automated morphing of
the malware’s code into a different but semantical equivalent form. Such malware
is often called metamorphic or polymorphic. Before infecting a new computer, a
rewriting engine changes what the code looks like through such means as altering
control flow, utilizing different instructions, and adding instructions that have no
semantic effect. The changes performed by the rewriting engine only change the
look or syntax of the code and leave its function or semantics intact. The result is
that each “generation” of metamorphic malware is functionally equivalent, but the
code can be radically different.

While several subtle variations in definitions exist, we view the difference between
metamorphic and polymorphic malware as where the rewriting engine lies. Metamor-
phic malware contains its own, internal rewriting engine, that is, the malware binary
rewrites itself. Polymorphic malware, on the other hand, have a separate mutating
engine; a separate binary rewrites the malware binary. This mutating engine can
either be distributed with the malware (client side) or kept on a distributing server
and simply distribute a different version of malware every time (server side).

Metamorphic malware is more limited than polymorphic malware in the transfor-
mations it can safely perform. Any rewriting engine is going to contain limitations
as to what it can safely take as input. If the engine is designed to modify the con-
trol flow of the program, for example, it will only be able to rewrite programs for
which it can identify the existing control flow. Since metamorphic malware contains
its own rewriting engine, the output of the rewriting engine must be constrained to
acceptable input. Without this constraint, further mutations would not be possible.
Polymorphic malware, however, does not contain this constraint. Since the rewriting
engine is separate and can thus always operate over the exact some input, the output
does not need to be constrained to only acceptable input.

Malware and Machine Learning 11

5.2 Packing

Packing is a process whereby an arbitrary executable is taken and encrypted and
compressed into a “packed” form that must be uncompressed and decrypted, i.e.
“unpacked”, before execution. This packed version of the executable is then pack-
aged as data inside another executable that will decompress, decrypt, and run the
original code. Thus, the end result is a new binary that looks very different from the
original, but when executed performs the exact same task, albeit with some additional
unpacking work. A program that does packing is referred to a packer and the newly
created executable is called the packed executable.

Packing directly attacks Triage and static analysis. While packing a binary does not
modify any of the malware’s code, it drastically modifies the binary itself, potentially
even changing a number of statistical properties. If there is some randomization
within the packing routine, a binary that appears truly unique will result every time
the exact same malware is packed. Unless the Triage stage can first unpack the binary,
it will not be able to match it to any known malware.

Packing does more than simply complicate the triage stage, it also directly attacks
any use of static analysis. As discussed in Sect. 4.2, the first step in static analysis
is usually to disassemble the binary. Packing, however, often encrypts the original
binary, preventing direct disassembly. A disassembler will not be able to mean-
ingfully interpret the stored bits unless it is first unpacked and the original binary
recovered.

The need to unpack a program (recover the original binary) is usually not a straight
forward task—hence the existence of a challenge. As one might expect, there exists
very complex packers intentionally designed to foil unpacking. Some packers, for
example, only decrypt a single instruction at a time while others never fully unpack
the binary and instead run the packed program in a virtual machine with a randomly
created instruction set.

It might seem that simply detecting that an executable was packed would be
sufficient to determine that it was malware. There are, however, legitimate uses for
packing. First, packing is capable of reducing the overall size of the binary. The
compression rate of the original binary is often large enough that even with the
additional unpacking routine (which can be made fairly small), the packed binary
is smaller in size than the original binary. Of course, when size is the only concern,
the encryption part of packing is unnecessary. So, perhaps detecting encryption is
sufficient? Unfortunately, no. Encryption has a legitimate application in protecting
intellectual property. A software developer may compress and encrypt the executables
they sell and ship to prevent a competitor from reversing the program and discovering
trade secrets.

12 C. LeDoux and A. Lakhotia

5.3 Obfuscation

While packing attempts to create code that cannot be interpreted at all, obfuscation
attempts to make extracting meaning from the code, statically or dynamically, as dif-
ficult as possible. In general, obfuscation refers to writing or transforming a program
into a form that hides its true functionality. The simplest example of a source code
obfuscation is to give all variables meaningless names. Without descriptive names,
the analyst must determine the purpose of each variable. At the binary level, examples
of obfuscation include adding dead code (valid code that is never executed), inter-
leaving several procedures within each other, and running all control flow through a
single switch statement (called control flow flattening). An in depth treatment of code
obfuscation, including methods for deobfuscating the code, is given by Collberg and
Nagra [7].

5.4 Tool Detection

A major problem in dynamic analysis is malware detecting that it is being analyzed
and modifying its behavior. Static analysis has a slight advantage in that the analyzed
malware has no control over the analysis process. In dynamic analysis, however,
the malware is actually being executed and so can be made capable of altering its
behavior. Thus, malware authors will often check to see if any of the observation
tools often used by malware analysis are present, and if so, perform only benign
activities. For example, a malware may check to see if it is being run by a debugger
and if so, exit. This effectively makes the malware invisible to dynamic analysis.

There are two types of checks that can be done by malware: check for a class of
tool and check for a specific tool. There are specific types of tools normally used to
observe malware in dynamic malware analysis such as debuggers and virtualization.
When these tools are used, they usually leave some detectable artifact in the system.
For example, in both cases of using a debugger or a virtualized environment, it will
be necessity be the case that executing at least some instructions will take longer
that if running unobserved. If a malware can detect this discrepancy, through a timer,
perhaps, it can detect it is being observed.

Easier than checking for a class of tools, however, is to just check for the specific
set of the most widely used tools. Finding a single check that can detect all tools of
a particular type is difficult, and the test can be unreliable. A (usually) simpler test
is to check for the existence of a specific tool. For example, an executing program
could check if it is being run under one of the most common debuggers, Olly Debug,
by looking for a process named ollydbg.exe. As a natural limitation of software,
the number of mature, commonly used commercial or open source analysis tools
available is relatively limited. Thus, a malware author can implement a number of
simple checks and prevent a large portion of analysis. Naturally, the tool authors can
remove the detected artifact, but completely eliminating every trace of a executing
program is near impossible. As tool authors remove one artifact, malware authors
can use another, resulting in a never ending game of cat and mouse.

Malware and Machine Learning 13

5.5 Difficulty Obtaining Verification Data

An important part of the verification stage is obtaining “ground truth” information.
This ground truth can simply be thought of as the correct answer. If evaluating
a new technique’s ability to detect malware, then the ground truth would be the
labeling of each executable as malware or benign. If evaluating a classifier’s ability
to separate malware into families, the ground truth would consist of the labeling of
each executable with the family it belongs to. The ground truth is needed to determine
the correctness of the labels assigned by a machine learning system and to measure
its performance.

Obtaining this ground truth is typically an expensive and error prone process.
This is because the ground truth usually must be determined manually. Creating the
labeling for executables often requires a human analyst to examine the program and
give an expert opinion. This takes time and, as with any human judgment, is subject
to potential errors. While this may not seem like an issue when the labeling is simply
“malware” and “not malware,” the challenge increases significantly when labeling
a malware with its family. This task may involve manually, albeit with support of
tools, viewing and comparing large amounts of information—such as disassembled
code, strings, and API calls—for correct labeling. This is complicated by the fact
that different malware families share similar characteristics, such as using the same
method to trap keystrokes. In such cases, human judgment, inaccuracies, and fatigue
may lead to errors in labeling.

6 Machine Learning Concepts

In general, the purpose of machine learning algorithms is to “teach” a program to
recognize some type of concept [8]. The concept learned and the way it is taught are
of course specific to both the exact machine learning algorithm and the application
of the program. In the malware domain, these concepts can be as broad as “malware”
or as focused as “implements x.” They can be as abstract as “worm” or concrete as
“written by Bob Doe.” The concepts that can be recognized, and the applications of
this recognition, are practically limitless.

The set of all concepts that can be learned by a particular machine learning algo-
rithm is referred to as the concept space. This is not a set picked out by a researcher,
but the theoretical set of all possible concepts for the particular machine learning
algorithm selected. A single algorithm is not capable of learning just any concept
from the universe of all concepts, but only a comparatively small subset of this infinite
universe.

14 C. LeDoux and A. Lakhotia

6.1 Features

Machine learning algorithms do not directly digest raw malware, but rather first
extract features that provide an abstract view of the malware. These features can be
thought of as the “language” of the classifier; a way for describing malware to a
given machine learning algorithm. For example, features for representing fruit may
include things such as shape, color, and whether or not it is firm. An apple would then
have the features “shape= round, color= red, firm=yes” while a banana would have
the features “shape= long, color=yellow, firm=no”. An example feature type used
in malware is the set of system calls made. The types of features used to represent
malware are discussed in more detail in Sect. 7.

Defining the type of feature used by a machine learning algorithm is a crucial
design decision as the feature space (the set of all possible features that can be
taken as input) defines the concept space (the set of all possible concepts that can
be learned). Only concepts that are capable of being represented or described by
the type of features selected by the designer can be learned by the algorithm. For
example, features that describe a binary will not, barring black magic, represent the
concept “apple.” Thus, it is important that the defined features create a concept space
containing the concept to learn. Even more important, however, is that the concept
space contain as little else as possible. If the concept space is too large, learning the
desired concept becomes a “needle in the haystack” problem.

6.2 Classification and Clustering

In malware, the two basic tasks machine learning is used for are classification and
clustering. Classification attaches one of a predetermined set of labels to an unknown
program. Each of these labels represents a class or category of objects. Thus, assign-
ing a label to a program is akin to marking that program as belonging to a specific
class; hence the term classification. The simplest example of classification is labeling
a program as malicious or benign. Clustering, on the other hand, partitions the given
group of programs into clusters of related programs. The criteria for “related” is
usually a similarity function that measures how much two programs resemble each
other.

The general pipeline for performing classification in malware analysis is given
in Fig. 2. This process has two stages: learning and classification. Both stages begin
by extracting the feature representation of the malware. In the learning phase, the
malware additionally contain attached labels providing the “correct answer” for clas-
sification. In other words, malware, and consequently features, are labeled with the
concept they exemplify. A learning algorithm takes these features and labels and
creates a model to represent the learned concepts. This model can be thought of as
a function that takes a feature representation of a malware as input and outputs the
concept that the malware best matches, i.e. a label. Classification, then, is simply

Malware and Machine Learning 15

Fig. 2 General classification process

Fig. 3 General clustering
process

applying this function to an unknown malware. The details of what a model is and
how it operates are specific to the exact type of learning algorithm used and thus out
of scope for this chapter.

The basic idea of clustering is to put malware into clusters such that malware
within a given cluster are more closely related to each other than with malware
outside the cluster. The basic process used to accomplish this is given in Fig. 3.
Clustering, like classification, first begins by extracting feature representations of
the malware. Clustering, however, does not contain a learning phase or utilize labels.
The set of features is given directly to a clustering algorithm that partitions the input
set into clusters of related malware. Like classification, the exact methods of defining
“related” and partitioning are varied and out of scope for this discussion.

16 C. LeDoux and A. Lakhotia

While both classification and clustering effectively partition a given group of
malware, there are a number of key differences between the two tasks. Classification
uses a predefined (usually human defined) set of labels; clustering uses the number
of groupings that best fit the given notion of “related.” Classification focuses on
attaching labels to a single malware at a time; clustering operates on whole groups
of malware. Labels in classification directly correspond to concepts (the concept
to learn is “named” by the label); concepts represented by clusters are not named
and are thus not always apparent (besides the overly-general “related to each other”
concept).

As an illustrative example, let us consider the difference between classifying and
clustering a group of binaries into malware families. The first difference is in the
method of processing the binaries. After the learning stage, classification will exam-
ine each binary one at a time and attach a family name to it. Clustering, on the other
hand, will immediately begin operating on the entire collection at once, returning
a partitioning of the binaries into groups without labels. The second difference is
the number of families that the binaries can be grouped into. In classification, this
number is pre-specified and the learning algorithm can learn no more and no less
than this number. Clustering, however, can theoretically create as many groups as
there are binaries (one binary per group). It may, for example, split what an analyst
considered one family into two sub-families. The final major difference is in inter-
preting the learned concepts. It is obvious how the labels of classification correspond
to malware families; the labels were created by the analyst after all. The same is not
necessarily true of clustering. Not only can the number of families differ from what
is expected by the analyst, but none of the groups are labeled and so discovering
which groups map to which family is not always straightforward.

A special case of clustering often used in malware analysis, called near neighbor
search, is to find programs that are similar to a given “query” program. Knowing what
an unknown malware is similar to has a number of uses, the most immediate being
a leveraging of existing knowledge. If the unknown malware is 90 % similar to an
already existing malware, only the 10 % dissimilar portion must be analyzed. Thus,
for this and other reasons it is common to want to find the group of known malware
that are very (very here being a relative term) similar to an unknown malware of
interest. This is conceptually the same as creating a clustering of similar malware
and discarding all clusters except the one containing the unknown malware. (Efficient
near neighbor search algorithms, of course, do not actually create the clusters that
will be discarded.)

6.3 Types of Learning

While the utilized feature type defines the concept space (Sect. 6.1), it is the type
of learning algorithm that defines how this concept space is searched. There are
a large number of machine learning algorithms, but they can generally be broken

Malware and Machine Learning 17

up into several categories based on how they learn concepts: Supervised Learning,
Unsupervised Learning, Semi-Supervised Learning, and Ensemble Learning.

Supervised Learning (Sect. 8) can be described as “learning by example.” Super-
vised Learning is often considered synonymous with classification (as supervised
learning is often the type of learning algorithm used for classification) and follows
the classification pipeline laid out in Fig. 2. The labeled features are fed to the learn-
ing algorithm as examples of what each concept looks like. The model is built based
upon these examples and the concepts learned correspond the to labels provided.

Unsupervised Learning (Sect. 9) is learning without the “correct answer” given
by labels. This form of learning is often considered synonymous with clustering and
follows the clustering pipeline put forth in Fig. 3. Instead of forming a model of
predefined concepts, unsupervised learning groups objects together based on a given
concept of “relatedness” or “similarity.” The idea is that objects within a cluster
should be more closely related (more similar) to each other than objects outside the
cluster. After clustering, every group of objects will represent some concept, though
there are no labels or names attached to the represented concept.

Semi-supervised Learning (Sect. 11) combines both supervised and unsuper-
vised learning. Semi-Supervised learning operates over a group of object where
some, but not all, of the objects contain “correct answer” labels. The typical appli-
cation of this sort of learning algorithm is to perform clustering and use the labels
that do exist to improve the final clustering result.

Ensemble Learning (Sect. 12) is learning from a collection of classifiers or clus-
ters. For a classifier ensemble, a number of classifiers are trained with their associated
models. To classify a new malware, the results of applying all the created models are
combined into a single classification. Cluster ensembles work similarly. A number
of clusterings of the data are independently created and then merged to create a final
clustering.

While Classification and Clustering are often used as synonyms for Supervised and
Unsupervised Learning, a distinction can be made. Classification and clustering are
tasks, while supervised and unsupervised learning are types of learning algorithms.
It is possible to perform classification using an unsupervised learning algorithm.
Given a set of malware, clusters can be formed in an unsupervised method (without
using any labels), labels attached to the clusters after they have been formed, and
classification done by assigning a new malware the label of the most similar cluster.
This classification would be unsupervised learning because the concepts (the clus-
ters) were learned without any labels being utilized. The labels were simply names
attached to already learned concepts.

7 Malware Features

As initially discussed in Sect. 6.1, the type of feature defined and utilized in any
machine learning application is of utmost importance. Features are the input to the
machine learning algorithm and define the concept space, i.e. the space of all possible

18 C. LeDoux and A. Lakhotia

concepts that can be modeled by this algorithm. If the desired concept cannot be
modeled, the features are useless. Similarly, if the concept space is too large, then
learning how to model the desired concepts is analogous to finding a needle in a
haystack. Thus the great importance of defining high quality features.

Just as the types of malware analysis can be divided into static and dynamic, so
too can malware features. Static features [9] are features extracted from the binary of
the malware without executing it, i.e. through static analysis. While this can refer to
the actual bits of the binary or structural information contained in the header, it more
commonly refers to features extracted from the disassembled binary. A disassem-
bled binary is created by converting the bits of the binary back into human readable
machine code (assembly language, not high level source such as C). Various trans-
formations on this disassembly are then performed to create many different types of
features.

Dynamic features [10], on the other hand, are features extracted by executing the
malware and observing what it does, i.e. through dynamic analysis. There are several
levels of abstraction that dynamic features can exist at ranging from a trace of the
instructions executed in the processor to a predefined set of behaviors watched for.

Static and dynamic features have the issues discussed in Sect. 4.2. It is usually
impossible to perfectly extract the precise of feature representation for a given
malware and thus approximations are used. Static features often result in an over
approximation and dynamic features often result in an under approximation. Take
for example, the defined feature type “the set of system calls that can be made by the
program.” Static analysis will usually extract almost all of the actual system calls
that belong in the true set of features, but will also include potentially many system
calls that the program will never actually execute. Features extracted by dynamic
analysis are guaranteed to be in the true feature set, but not all system calls will be
observed and recorded.

7.1 Binary Based Features

The simplest static features are structural features based directly on the raw binary.
That is, features that treat the binary as nothing more than an executable file and
do not attempt to extract any information more abstract than what the structure of
the binary is. These types of features have been based on sequences of bytes in the
binary, information contained in the binary’s header, and the strings visible in the
binary.

7.1.1 N-Gram and N-Perm

One of the most common types of binary based static features is the byte n-gram.
N-grams are a feature commonly used in text classification and they are created by
sliding a window n characters long across a document and recording the unique strings

Malware and Machine Learning 19

Table 1 Byte code 2-grams
and 2-perms

Byte code 2-grams 2-perms

0f0e ‘0f0e’ ‘0e0f’ ‘0e0f’‘0fb4’‘0eb4’

0f0e ‘0eb4’ ‘b40f’

b40f

found (a technique often referred to as shingling or windowing in text classification
literature). For example, the 2-grams for the string ‘ababc’ are ‘ab’, ‘ba’, and ‘bc’.
In the malware context, the n-grams are created over the byte code representation of
the binary. N-grams were introduced to malware classification by members of the
IBM TJ Watson Research Center [11–14].

A modification on n-grams proposed by Karim et al. [15] was n-perms. N-grams
are extremely brittle, especially when n in large. Simply removing, adding, or swap-
ping a few instructions can have a major impact on the set of n-grams retrieved.
Karim et al. [15] proposed to treat all permutations of a single n-gram as equal.
Thus, in the example given earlier, the string ‘ababc’ with 2-grams ‘ab’, ‘ba’, and
‘bc’ would only have 2-perms of ‘ab’ and ‘bc’. The 2-grams ‘ab’ and ‘ba’ would be
considered equal and only ‘ab’ stored.

Examples of byte code and the corresponding n-grams and n-perms are given
in Table 1. The byte code is the hexadecimal representation of a binary. The 2-
grams are created by sliding a window of size two across the individual bytes and
recording unique sequences. The 2-grams are shown in the order encountered. The
2-perms are created by internally sorting each 2-gram. So, for example, the 2-gram
‘0f0e’ becomes the n-perm ‘0e0f’. This has the desired effect of normalizing all
permutations. In this example, there are four 2-grams, but only three 2-perms.

7.1.2 PE Header Based

A common source of structural information for creating features is the PE header. The
PE Header is the data structure in a Windows executable that holds the information
needed by the loader to place the program into memory and begin execution. Thus
most of the information in the PE header relates to the locations and sizes of important
pieces of the binary. For example, the loader needs to know the number, location,
and size of the sections of the binary.1 There are also a number of important data
structures that the loader needs to be able to find, such as the import table. The import
table is a list of the various external libraries that will need to be loaded into this
program’s address space.

Using the structural information provided by the PE Header in the triage analysis
stage turns out to be quite effective. The information in the PE Header is very quick
to extract (the OS does this every time the program is executed) and robust against

1 Binaries are not one big blob, but separated into sections of logically related code and data. At a
minimum, there will be two sections: one designated for data and the other for code.

20 C. LeDoux and A. Lakhotia

minor changes in the binary. Compiling a program twice may result in binaries unique
by hash because of trivial changes, but both binaries would contain almost identical
PE Header information. This approach was proposed by Wang et al. [16].

Walenstein et al. [17] examined this effectiveness of using header information as
features. They were especially interested in learning how much the information in the
header contributed to the accuracy obtained when using byte based n-grams. When
n-grams are computed over the entire binary, the header information is implicitly
captured. What they found was that not only was header information quite useful in
discovering malware variants, but that it also contributed a good deal to the usefulness
of byte based features. Walenstein et al. [17], however, cautioned that it would be
trivial for malware authors to remove or modify most, if not all, of the identifying
information in the PE header and so this information should not be solely relied upon.

A non-structural feature that has been used from the PE header is the set of
libraries and functions listed in the import table [18]. The import table is a data
structure pointed to by the PE header and contains the list of functions from external
libraries that are required by the program. Since external libraries are obviously
external to the binary, hard coded addresses of the library functions cannot be used
in the program. This is where the import table comes in. For each required function,
the import table contains an entry with the name of the function and an address for
the function. At load time, the loader pulls the libraries into the program’s address
space and writes the correct address to each entry in the import table.

The list of imported library functions contains a wealth of information. When
dealing with well known libraries, such as libc or the set of Windows system calls,
the intended task of each function is, well, known. For example, if functions from
crypt32.dll (dll is short for dynamic link library) are imported, it is likely that this
program performs cryptography tasks. Thus, if the import table hasn’t been tampered
with (usually a bad assumption in malware, but still true often enough), it can provide
a nice high level idea of the types of behaviors the program is intended to perform.

7.1.3 Strings

A final type of feature based on the binary is strings. This was first explored by Schultz
et al. [18] and is quite simply any sequence of bytes that can be validly interpreted
as a printable sequence of characters. This idea was later refined by Ye et al. [19]
to only include “interpretable” strings, that is only strings that make semantic sense.
Ye et al. [19] posited that strings such as “8ibvxzciojrwqei” provided little useful
information.

Table 2 illustrates the difference between strings and interpretable strings. The
column to the left is the byte sequences found in the binary. The middle column is
the result of treating the byte sequences as ASCII characters. Finally, the last column
indicates whether the string would be considered interpretable.

Malware and Machine Learning 21

Table 2 Strings and interpretable strings

Bytes String Interpretable?

44 65 74 65 63 74 65 64 20 6d 65
6d 6 F 72 79 20 6 C 65 61 6b 79 81
0 A 00

“Detected Memory leaks! n” �

47 65 74 4 C 61 73 74 41 63 74 69
76 65 50 6 F 70 75 70 00

GetLastActivePopup �

31 39 32 2e 31 36 38 2e 38 33 2e 31
35 33

192.168.83.153 �

3b 33 2b 23 3e 36 26 1e ;3+# 6.& χ

77 73 72 65 77 6e 61 66 34 79 6 F
77 33 69 37 35

wsrewnaf4yow3i75 χ

7.2 Disassembly Based Features

While structural information is useful for finding malware that looks the same, it
isn’t always useful for discovering malware that behaves the same. Using the list of
imported library functions is a good, but limited first step. Ideally, we could convert
the binary back into its original source code, complete with comments, and extract
features from there. This, however, is a hopeless endeavor as much of the information
is lost when the source code is compiled. Comments and variable names, for example,
are usually completely tossed away and thus unrecoverable. As a next-best option, a
disassembly of the binary (described below) is used.

Many static features begin with a disassembly stage, but perform further abstrac-
tions on the disassembly before extracting features. These types of features will be
discussed in later sections. Here, we describe what disassembly is and the features
that are extracted directly from it.

7.2.1 Disassembly

Disassembling a binary refers to extracting its assembly code (often simply referred to
as “code” or “disassembly” for short). Assembly is a low level programming language
that describes in human readable terms the actions of the processor. Recovering the
assembly code is a matter of parsing the binary and mapping the bytes back into
the human readable terms. The mapping between bytes and assembly instructions
is one to one, but due to the complexity of the most prevalent architecture (the ×86
family), statically accomplishing this task is not as straightforward as it may seem. It is
further complicated by malware authors taking deliberate steps to break disassembly
[20, 21]. Despite these complications, robust tools have been developed that can
provide surprisingly accurate results.

It may seem that an easy way to extract the disassembly of a binary is to do it
dynamically instead of statically. In other words, execute the binary and record the

22 C. LeDoux and A. Lakhotia

instructions as interpreted by the processor. This has been done [22–24], but what
results isn’t a full disassembly of the binary, but rather an instruction trace. Only
the instructions that were actually executed by the processor will be disassembled
and recorded. A single execution path through dynamic analysis is likely to only
encounter a small percentage of the full binary. When it is desired to extract the full
disassembly of the binary, it is still best done statically.

An example of disassembly is given below in Table 3. At the far left is the C
program from which the binary was compiled. It is a simple program that does nothing
useful; it just increments a variable ten times. Next are the instruction addresses and
the bytes that comprise the individual instructions. The disassembled instructions
are presented next to and on the same line as the byte code representation of the
instructions.

The first three instructions set up the stack (the place in memory the variables are
stored). The registers ebp and esp are the base pointer and stack pointer. The base
pointer points to the base of the stack and the stack pointer points to the top. The next
three instructions (addresses 80483ba–80483c8) initialize the variables i and j. The
variable j in placed on the stack first (memory address [ebp-8]), i second (memory
address [ebp-4]). Variable i is set to zero twice because this is the case in the source
code (when it is initialized and when the loop starts). The top of the loop is at address
80483d1 where j is incremented by 1, followed by an increment of i and a check if i
is equal to 9 (less than 10 condition in the source). If it is not, control flow is returned
back to the top of the loop. If i is equal to 9, then the final instructions are executed,
exiting the program.

Table 3 Example disassembly

Source code Address Byte code Disassembly

int main() { 80483b4 55 push ebp

int j = 0; 80483b5 89 e5 mov ebp, esp

int i = 0; 80483b7 83 ec 10 sub esp, 0x08

for (i=0; i< 10; i++){ 80483ba c7 45 f8 00 00 00 00 mov [ebp-8], 0

j++; 80483c1 c7 45 fc 00 00 00 00 mov [ebp-4], 0

} 80483c8 c7 45 fc 00 00 00 00 mov [ebp-4], 0

} 80483cf eb 08 jmp 80483d9

80483d1 83 45 f8 01 add [ebp-8], 1

80483d5 83 45 fc 01 add [ebp-4], 1

80483d9 83 7d fc 09 cmp [ebp-4], 9

80483dd 7e f2 jle 80483d1

80483df c9 leave

80483e0 c3 retn

Malware and Machine Learning 23

7.2.2 Opcodes and Mnemonics

One of the most common types of features directly based on the disassembly is
opcodes [25–29] or mnemonics [30, 31] of the disassembled instructions, usually in
ngram or nperm form. The opcode of an instruction is the first byte or two that tells
the CPU what type the instruction is (ex. add, move, jump) and the types of operands
to expect (register, memory address). A mnemonic is simply the human readable
symbol that represents the opcode. Several opcodes will map to the same mnemonic
because a mnemonic does not contain the operand information of the opcode. For
example, the mnemonic for adding two values together is add, but there are around
eight different opcodes for this one add mnemonic.

Examples of opcodes and mnemonics are given in Table 4. The assembly and
corresponding byte codes are given first, followed by the instruction’s opcode and
mnemonic. All the instructions listed have unique opcodes, but there are only two
unique mnemonics: push and mov. For push instructions, the opcode tells the proces-
sor which register to push onto the stack. The opcode will be 50+ a number repre-
senting which register was pushed. In a mov, the opcode indicates the kind of move
that will occur. For example, opcode 8b indicates that the move will be from register
to register, while opcode 89 tells the processor that the move will be from a register
into a memory location. The next byte in the instruction tells the processor which
register combinations will be used. The byte ‘ec’ explicitly indicates that the contents
of esp will be moved into ebp. Byte 45 means the contents of eax will be moved into
the address specified by the value currently in ebp plus a one byte offset; the next
byte is this offset.

Using opcodes or mnemonics abstracts away the exact operands used for the
instructions. This enables code that differs in only the relative jump addresses, for
example, to produce the same set of features. The noise of structural based features
is thus reduced without much loss of information. Obviously, mnemonics abstracts
the features further than opcodes because opcodes still contain information of the
types of operands. An instruction adding two registers will have a different opcode
but the same mnemonic as an instruction adding a register address and an immediate
(constant).

Table 4 Example opcodes and mnemonics

Assembly Bytes Opcode Mnemonic

push eax 50 50 push

push ebp 55 55 push

mov ebp, esp 8b ec 8b mov

mov [ebp, oxf8], eax 89 45 f8 89 mov

24 C. LeDoux and A. Lakhotia

7.3 Control Flow Based

The control flow of a program is the way in which execution, or control, is capable of
passing through the program. Control refers to the part of a program that is currently
executing, i.e. is in control. Control flow, then, is the various execution paths that can
be taken through the program.

Control flow information can either be captured globally or locally. In general, the
complete information regarding all possible paths that can be taken through every
single part of the program is too great and too complicated to be of use. Thus, global
control flow is typically captured by recording how different pieces of the program
interact with one another. Within each piece, local control flow will then be separately
recorded. In malware, this is done using a call graph and control flow graphs. A call
graph records which functions call each other and a control flow graph records for a
single function the possible execution paths through that function.

7.3.1 Callgraph

A callgraph is a directed graph depicting the calling relationships between the proce-
dures of the program, i.e. which procedures contain calls to which other procedures.
A callgraph does not give information on how control flows through the procedure
itself, just how it is transferred between procedures. This provides a coarse, high
level overview of the flow of control and data through the entire binary. The use of
call graphs for malware analysis was first proposed by Carrera and Erdelyi [32] and
further refined by Briones and Gomez [33] and Kinable and Kostakis [34].

An example call graph with the C source it was derived from is given in Fig. 4.
The call graph was derived from source code because this makes the concept easier
to comprehend, but the exact same concepts apply at the assembly level as well.
This source has five functions: main, doAwesome, doMoreAwesome, doWork, and
doAwesomeWork. Each of these five functions is represented by a single node on the
call graph. An edge between two node represent a “calls” relationship. For example,
the edge between main and doWork represents the relationship “main calls doWork.”
Loops indicate recursion, such as the loop from doMoreAwesome onto itself. The
function doMoreAwesome recursively calls itself until sufficient awesome has been
achieved.

While a callgraph can be constructed statically or dynamically, it is usually done
statically. This is because the purpose of a call graph is generally to show which
functions can call which other functions, not to only show that a function did call
another function in a single execution path. Static analysis is more capable than
dynamic analysis in extracting this full call graph. Dynamic analysis will only be
able to determine calling relationships that it actually witnesses.

Malware and Machine Learning 25

void doAwesome() {
// Does Awesome

}
void doMoreAwesome() {

// F i r s t doAwesome
doAwesome() ;
i f (Need More Awesome) {

doMoreAwesome() ;
}

}
void doWork() {

// Do work
}
void doAwesomeWork() {

// F i r s t do work
doWork() ;
// Then make i t awesome
doMoreAwesome() ;

}
i n t main () {

doAwesomeWork() ;
}

(a) (b)

Fig. 4 Example callgraph

7.3.2 Control Flow Graph

At a finer grain than the call graph is the control flow graph (CFG) [35]. A CFG is
a graph of the control flow within a single procedure. Just as a call graph provides a
view of control flow at the binary level, a CFG provides this view at a procedure level.
The CFG is created by first breaking the sequential code of the procedure into discrete
blocks called basic blocks. Basic blocks are constructed such that if control reaches
the block, every instruction within the block is guaranteed to execute; basic blocks
have a single entry and a single exit point. Edges in the CFG represent decisions
made about the sequence of instructions to execute. For example, an if statement
will create two edges, one representing the “TRUE” path, the other the “FALSE”
path.

An example of creating a CFG is given in Fig. 5. The Assembly from which the
CFG is created is given on the left and the corresponding CFG on the right. The
assembly code initializes a variable at memory location ebp-8 and adds the value of
eax to it 10 times. The is equivalent to multiplying eax by 10 and storing the value
in the variable. The first basic block, consisting of two moves and a jump, initializes
the variables and jumps to the loop condition at the end. The beginning of the new
basic block will not be immediately after the jump instruction, but rather where the
jump instruction goes to. In this case the basic block will start at the condition check.
This condition check will exit if the counter stored at memory location ebp-4 is equal
to 9. Otherwise it will go to code that adds eax and increments the counter before
returning back to the check.

26 C. LeDoux and A. Lakhotia

0 : mov [ebp −8] , 0
1 : mov [ebp −4] , 0
2 : jmp 5
3 : add [ebp −8] , eax
4 : add [ebp −4] , 1
5 : cmp [ebp −4] , 9
6 : j l e 3
7 : r e tn

(a) (b)

Fig. 5 Example control flow graph (CFG)

This example illustrates how the single entry, single exit property breaks apart the
code into basic blocks. Just because instructions are sequential without a branching
instruction between them does not mean that they will all be in a basic block together.
The add instructions and condition check in addresses 3–6 are sequential, but they
are broken into two basic blocks because the jump at address 2 branches into the
middle of this sequence.

7.4 Semantics Based

In any programming language there are infinitely many ways to accomplish any given
task, even a task as simple as assigning zero to a variable. As discussed in Sect. 5,
this fact is often used by malware authors to create differing versions of malware
that accomplish the same goal. In response, malware analysts have created features
that do not rely on what the code is but rather what the code does, i.e. its semantics.

7.4.1 State Change

In static analysis, semantics is often defined as the effect executing the code will have
on the hardware state [36–38], i.e. the change in values stored in registers and memory.
Not every change need be recorded but rather the end result of a given portion of code.
The size of these portions differ, but generally it is either a basic block [37, 38] or a
procedure [36]. Computing the effect of executing a basic block is straightforward
as, barring exception handling, execution flows through successive instructions in
the block. The semantics of a block follows from the functional composition of
semantics of individual instructions. Doing the same for a procedure, however, is not
straightforward, especially, as is usually the case, when its CFG has branches and
loops.

Malware and Machine Learning 27

There are two methods of representing semantics: (a) enumerated concrete seman-
tics and (b) symbolic expressions. In the first method the semantics is represented as
a set of pairs of specific, concrete input and output states. For instance, the pair (eax
= 5, ebx = 20) may represent that when executed with the value 5 in the register
eax, the program upon termination will have the value 20 inebx. A set of such pairs,
of course with significantly more complex input and output states, would represent
the semantics of the code. Using symbolic expressions instead, the semantics may
be represented succinctly as a single expression. For instance, the expression ebx
= pre(eax)* 4 may represent that the value of ebx upon termination is the 4
times the value of eax at the start.

The benefit of using enumerated concrete semantics is that two different ways
of effecting the same change of state will have exactly same input and output pairs.
Alternatively, even a single difference in the input and output pair would imply a dif-
ferent semantics. The challenge, of course, is that a program may have exponentially
large space of input, making it infeasible to compute and represent such semantics.
On the other hand, symbolic expressions offer the advantage that a single expres-
sion may represent the entire semantics. However, since one cannot guarantee that
two equivalent program always produce the same expression—this would solve the
Halting Problem—differences in the semantic expression need not imply that the
underlying code has different semantics.

The two different methods of representing, as well as computing, semantics have
been used respectively by Jin et al. [37] and Lakhotia et al. [38]. Jin et al. [37] address
the issue of exponentially large input space by randomly sampling the space. They
pre-generate a large number of input states and use them to compute the semantics
of all basic blocks. Each basic block is executed using the same set of input states
and the corresponding output state recorded. A basic block can then be represented
by a hash of all of its output states.

Lakhotia et al. [38] use symbolic interpretation to compute the semantics of blocks,
without assigning any concrete values. Rather than execute a basic block with spe-
cific inputs, [38] execute it with symbolic inputs. Furthermore, they use algebraic
properties, such as the distributive law, and simplifications to map expressions into
a canonical form when possible. For example, they simplify the expression (eax
+ 4) * 5 to eax * 5 + 20. This ensures that, for a large set of operations,
all expressions that are functionally equivalent resolve to the same symbolic repre-
sentation. After computing the symbolic output values, Lakhotia et al. [38] further
abstract the semantics by converting the concrete register names and numbers into
logical variables. This type of feature they call the “juice” of the basic block and
term it “GenSemantics.”

Tables 5 and 6 respectively illustrate how the features of [37, 38] work. In both
tables, the left column contains two functionally identical basic blocks. Both tables
contain the same two blocks. The two presented blocks both assign 3 to eax, set the
value of edx to ecx, and multiply by 3 the value of ebx + 4. The first block uses a
multiply instruction; the second block uses a series of adds to have the same effect.

Table 5 ([37]) shows the result of executing the two basic blocks on two sets of
input values. The columns labeled Input 1 and Input 2 show the input states, as values

28 C. LeDoux and A. Lakhotia

Table 5 Features by Jin et al. [37]

Basic block Input 1 Output 1 Input 2 Output 2

add ebx,4 eax = 33 eax = 3 eax = 62 eax = 3

mov eax,3 ebx = 4 ebx = 21 ebx = 7 ebx = 33

mul ebx,eax ecx = 25 ecx = 58 ecx = 72 ecx = 54

mov ecx,edx edx = 58 edx = 58 edx = 54 edx = 54

add ebx,4

mov eax,3 eax = 33 eax = 3 eax = 62 eax = 3

mov ecx,ebx ebx = 4 ebx = 21 ebx = 7 ebx = 33

add ebx,ecx ecx = 25 ecx = 58 ecx = 72 ecx = 54

add ebx,ecx edx = 58 edx = 58 edx = 54 edx = 54

mov ecx,edx

Table 6 Features by Lakhotia et al. [38]

Basic block Semantics GenSmantics

add ebx,4

mov eax,3 eax = 3 A = N1

mul ebx,eax ebx = pre(ebx) * 3 + 12 B = pre(B) × N1 + N2

mov ecx,edx ecx = pre(edx) C = pre(D)

add ebx,4

mov eax,3

mov ecx,ebx eax = 3 A = N1

add ebx,ecx ebx = pre(ebx) * 3 + 12 B = pre(B) × N1 + N2

add ebx,ecx ecx = pre(edx) C = pre(D)

mov ecx,edx

in the registers eax, ebx, ecx, and edx. The columns labeled Output 1 and Output 2
show the corresponding states after executing the blocks.

As can be seen in the example, the outputs of the two blocks are exactly the
same when using the same set of input values. It is important that the same list of
input values be used across all blocks in all binaries that are going to be compared.
As should be obvious, only features created with the same list of inputs can be
meaningfully compared. Thus, as in this example, there will often be more generated
values than needed because we have to generate enough values so that all possible
basic blocks will have enough input values.

Table 6 gives [38] features extracted from the same two blocks. The middle col-
umn provides the initial semantics extracted through symbolic execution and simpli-
fication. The notation pre(x) represents the value of x when the basic block was
reached; it is a symbolic notation for the input value. The right column contains the
generalized semantics.

Chaki et al. [36] tackles the problem of computing the semantics at the level of
the procedure instead of at the basic block level. Computing a single expression

Malware and Machine Learning 29

that represents the semantics of an entire expression becomes significantly more
challenging, more so if the semantics is to be in a canonical form to ease compari-
son. For instance, computing the semantics of a loop would involve computing an
expression that represents its fixed point. However, if a single path through the pro-
cedure is selected, the semantics can be computed as straightforwardly as in basic
blocks. This is what [36] do. Given a single path through the procedure, they compute
features very similar to the GenSemantics of [38]. This process is repeated for all
bounded paths through the procedure. For unbounded paths, due to cycles, a bounded
depth first traversal is used to limit the length of the path traversed. The features from
all the traversed paths are unioned together to represent the whole procedure.

7.4.2 API Calls

Another way of defining the semantics of a program is through the set of API calls
the program makes. An API call refers to when a program calls a function provided
by some library, often the system library. The system library is a library of functions
provided by the operating system to perform tasks that only the operating system
has permissions to perform directly, such as writing a file to disk. Other well known
libraries include the standard C library, encryption libraries, and more. If a program
makes an API call to a well known and widely distributed library, then the purpose
of that call can easily be determined.

When the order in which API calls are made is preserved in an API trace, the
semantic information becomes even stronger. Sequences of API calls can be used to
potentially determine the presence of high level behaviors [22, 39] such as “walks
through a directory” or “copies itself to disk.”

The set or trace of API calls provides a “behavioral profile” of the binary being
examined. This idea was first proposed by bailey et al. [40] and later formalized by
Trinius et al. [41]. Trinius et al. [41] designed what they called a Malware Instruction
Set (MIST) for representing various layers of semantic information present in API
calls. The layers are ordered from most to least abstract. Each “instruction” in MIST
represents a single API call.

The first layer of a MIST instruction contains a category for the API call and the
operation performed by the call. The category represents the type of object the API
call operates on. For example, an API call that writes a file to disk would be in a
“File System” category, one that opens a socket in a “Network” category, and an API
that edits a registry value would be in a “Registry” category. The operation is, as the
name implies, what was done to the object. The “File System” category, for example,
has operations such as “open_file”, “read_file”, “write_file”. Every category has a
pre-specified set of possible operations. Both the category and operation are derived
from the name of the API call.

Subsequent layers of a MIST instruction are derived from the parameters to the
API call and ordered by the expected variability of their values. For example, an API
call that manipulates a file will contain as one of its parameters the name of the file to
manipulate. From this file path, we can separate out two parts, the path and the name.

30 C. LeDoux and A. Lakhotia

The path will have a lower variability than the file name. A binary that writes to the
windows directory is likely to write to the windows directory on every execution.
However, the names of the files may well be different for every execution, since its
common for malware to randomly generate filenames. Thus, the file path has a lower
expected variability than the file name and is put at a higher level.

7.5 Hybrid Features

In an effort to increase the accuracy of classification, various authors have utilized
feature fusion: combining multiple types of features to created hybrid features.

The first to use feature fusion was Masud et al. [42]. They combined features
from three different levels of abstraction: binary n-grams, derived assembly features
(DAF), and system calls. Binary n-grams are the same as described in Sect. 7.1.
The feature on the next level of abstraction is the DAF. A DAF is basically just the
disassembled binary n-grams. A DAF is created by extending the n-gram on the front
and the back as needed to fit instruction boundaries and then disassembling these
instructions. At the highest level of abstraction are system calls. The names of the
system calls present in the header of the executable were extracted and used.

Lu et al. [43] combine static and dynamic features. The static features chosen were
the names of system calls present in the binary of the executable and the dynamic fea-
tures were expert defined behaviors commonly seen in malicious programs. Several
examples of the behaviors searched for are packing the executable, DLL injection,
and hiding files. There were twelve such features defined. These static and dynamic
feature sets were fused by taking the union of the feature sets.

Islam et al. [44] simply combined two features they considered useful in an attempt
to make an even more useful feature set. They take the union of function length
frequency and printable string feature sets. Function length frequency is the number of
functions a program has of a given length. It was found by Islam that malware within
the same family tend to have functions of around the same length, thus motivating the
use of function length frequency as a feature. Printable strings are simply sequences
of bytes which can be interpreted as valid ASCII strings.

LeDoux et al. [45] takes a different approach. Whereas the above cited works all
combined mutually exclusive feature sets, LeDoux et al. fuses features that are very
similar, but collected in different ways. The hypothesis being that the differences
present between two feature sets that should be identical is itself a feature and can
help identify malware that is intentionally obfuscated against one of the methods of
collecting features.

Malware and Machine Learning 31

8 Supervised Learning

Supervised Learning describes a class of learning algorithms that build a model used
in classification (see Sect. 6.2). These algorithms learn the concepts represented by
the model by examining labeled examples of the concepts. The label provides the
“correct answer,” that is the concept that is being exemplified. This training data
(the labeled examples) is often referred to as the ground truth. After the model has
been learned, a never before seen example of a learned concept can be classified by
matching it to the learned model.

The method of learning and classifying used by Supervised Learning can concep-
tually be thought of as teaching a child different types of animals by showing him
flash cards and telling him the name of the animal. “This is a horse. This is a dog.
This is another horse. This is a cat.” By looking at many examples of horses, dogs,
and cats, the child builds up an internal representation of each animal type. Then
when shown a picture of a never before seen dog, and asked to “classify it”, the child
will be able to respond “It is a dog.”

One of the limitation of classifiers built using supervised learning is that they will
only be able to attach a label it has already learned and must attach one of these
labels. Supervised learning can only explicitly learn concepts it is told about through
the labels in the training data. Neither is it able to provide an “I don’t know” answer.
It must attach one of its learned labels. To extend our earlier example further, if our
child is only shown pictures of horses, cats, and dogs, and then asked to “classify”
a picture of a lion, he will respond “cat,” not lion. If shown a picture of a tractor,
however, the child will be able to respond “I don’t know.” A classifier built using
supervised learning would respond “horse.”

Another potential issue with supervised learning specific to the malware domain
is the reliance on the ground truth labels. In malware analysis, ground truth can
often only be reliably determined through manual reverse engineering and analysis
of the binary by a human expert. The expert makes a judgment call based upon his
experience and assigns an appropriate label to the binary. This process is expensive
in terms of time and resources required, thus restricting the number of labels that
can be reasonably generated. The required level of expertise for performing this task
limits the reasonable size of ground truth even further (crowd sourcing can’t solve
this problem). As an added detriment, any process that relies on human decisions is
prone to error, regardless of the level of expertise of the human. Training a Supervised
Classifier on improperly labeled data can lead to very poor performance.

The main application of supervised learning to malware analysis has been in
attempting to built automated malware detectors [46], in triage [47], and in evaluating
the quality of malware features. The original intention of supervised learning in
malware was to build a classifier that could act as the scanner on the end system.
However, the false positive rate of these classifiers tend to be too high. A false positive
is when the classifier labels a benign program as malware. On the end system, the
false positive rate must be extraordinarily low as constantly labeling valid programs

32 C. LeDoux and A. Lakhotia

as malware will at best annoy the user into not using the scanner and at worst break
the system by removing critical system files.

While not useful as a scanner, supervised learning has been of use in triage [47].
Supervised Learning can be used to build a classifier that identifies if a new, incom-
ing program belongs to any of the already known and analyzed malware families.
Knowing which family malware belongs to makes any manual analysis needed an
easier prospect because the analyst does not have to start from nothing, but can lever-
age knowledge of what that family of malware does and how it usually operates. A
higher false positive rate can be tolerated in the triage stage than in a scanner because
the results are still verified later on.

A final use of supervised learning in malware is for controlled test and comparison
of the quality of malware features. Due to the fact that Supervised Learning required
that data with ground truth exists, determining performance metrics for classification
is straightforward. A portion of the labeled data is set aside for testing purposes and
the rest of the data used for creating the model. The testing data is classified using the
created model and labels assigned by the model are compared against the ground truth
labels to determine accuracy of classification. To compare the quality of features, the
accuracy of classification can be compared. Features that are of a higher quality will
result in a higher accuracy.

9 Unsupervised Learning

Unsupervised Learning [34, 48–51] algorithms learn concepts without the use of
any labeled data. Labeled data may be used to perform a post hoc evaluation of the
learned concepts, but they are in no way used for learning. Concepts are learned
in unsupervised algorithms by clustering together related objects in such a way that
objects within a cluster are more similar to each other than objects outside the cluster.
Each cluster then represents a single concept. What this concept is, however, is not
always easy to discover.

In order to determine which binaries are related and so belong in the same clus-
ter, unsupervised learning algorithms rely on measuring the similarity of malware.
A comprehensive overview of the various similarity functions that can be used to
compare binaries is given by Cesare and Xiang [52]. It is important to note that sim-
ilarity metrics do not directly measure the similarity of two binaries, but rather the
similarity of the binary’s features. The same pair of binaries may have very different
similarities depending on the choice of feature type. Take, for example, two malware
with dissimilar implementation but an almost identical set of performed system calls.
Features that rely mostly on the implementation, such as opcode n-grams, will result
in measuring a low similarity. Features that only look at system calls, however, will
result in the exact opposite: high similarity.

One of the major issues with clustering is that many of the most common clustering
algorithms require a priori knowledge of the number of clusters to create; the number
of required clusters is a parameter to the clustering algorithm. When it is known how

Malware and Machine Learning 33

many malware families are present in the data set, it is common practice to use this
number as the number of clusters. However, while the number of families present
in a laboratory sample of malware may be determined, the same cannot be said of
the sets of malware encountered “in the wild.” If the incorrect number of clusters is
selected, performance will quickly degrade.

Fortunately, not all unsupervised algorithms require prespecifying the number of
clusters to create. Representative of these algorithms, and the most commonly used,
is hierarchical clustering. Hierarchical clustering can be either agglomerative or
divisive. Agglomerative Hierarchical clustering works by iteratively combining the
two most similar items into a cluster. Items include both the individual objects and
already created clusters. So a single iteration could consist of putting two objects into
a cluster of size two, adding an object to an already existing cluster, or combining
two clusters together. This process is repeated until everything has been put into
a single cluster. Each step is tracked, resulting in a hierarchical tree of clusters
called a dendrogram. Divisive hierarchical clustering works similarly, but starts with
everything in a single cluster and iteratively splits clusters until everything is in a
cluster of size one.

Hierarchical clustering changes the problem from needing to know a priori the
optimal number of clusters to knowing when to stop the agglomerative (or divisive)
process, i.e. where to cut the tree. This is determined using a type of metric known
as a clustering validity index [53]. While a number of such indices exist, they are all
a measure of some statistic regarding the similarity of objects within the clusters, the
distance between objects in different clusters, or a combination of the two. A number
of these metrics were evaluated by [50] for performance in the malware domain using
a particular feature type.

10 Hashing: Improving Clustering Efficiency

In applications of clustering in malware, there are two inherent performance bottle
necks: large feature space and the requirement to compute all pairwise similarities.
The number of features generated for each individual malware is usually quite large.
A single malware can have thousands, even hundreds of thousands of features rep-
resenting itself. This has a two fold effect. First, it drives up the time cost of doing
a single similarity computation. Second, storing this massive amount of features
requires an equally massive amount of memory. Either a specialized computer with
the required amounts of memory must be used, or the majority of the time spent
computing similarities will be in swapping the features to and from disk.

Compounding the time and space requirements of clustering is the complexity of
a typical clustering algorithm. Even efficient algorithms run at O(n2) due to the need
to compute the similarity between every pair of objects.2 This is tolerable for small to

2 Objects don’t need to be compared with themselves and similarity functions are (typically)
symmetric, so the actual number of comparisons required is (n2 − n)/2).

34 C. LeDoux and A. Lakhotia

medium sized datasets, but severely limits the scalability of clustering. Parallelism
can help up to a point, but handling millions of malware requires more efficient
approaches.

The solutions being explored for both of the above problems are the same: hash-
ing. Feature hashing based on Bloom filters [54] is being used to both reduce the
memory overhead and the time a single similarity comparison takes. The number
of required pairwise comparisons is being reduced or even eliminated by perform-
ing clustering based on a shared hash value. A few explorations have been made in
using cryptographic hashes [51, 55, 56]. More commonly, however, Locality Sensi-
tive Hashing is being used as a “fuzzy hash” to reduce the complexity of clustering
[37, 48]. In some instances, constant time is even achieved [37]!

10.1 Feature Hashing

To reduce the memory requirement and time for a single similarity comparison,
[54] present a method for hashing features into a very small representation using
Bloom filters [57]. A Bloom filter is a probabilistic data structure used for fast set
membership testing. It consists of a bit vector of size m with all bits initially set to
zero and k hash functions, h1, h2,hk , that hash objects into integers uniformly
between 1 and m, inclusive. In practice, these k hash functions are approximated by
simply splitting the MD5 into k even chunks, taking the modulo of each chunk with
m, and then treating each resulting value as the result of one of k hash functions. To
insert object × into the bloom filter, for each hi (x), set the bit at position hi (x) to
one. Object y can then be tested for membership by checking that all bits at positions
hi (x) for each i from 1 to k is set to one.

Jang et al. [54] perform feature hashing by inserting all features for a single binary
into a bloom filter with only one hash function. The decision to use only one hash
function was made in order to facilitate fast and intuitive similarity comparisons.
Similarity between malware can be quickly approximated by measuring the number
of shared and unique bits in each binary’s corresponding bloom filter. In addition,
only the bloom filters need to be stored, not every single feature, thus reducing the
total storage requirement. Jang et al. [54] experienced compression rates of up to 82
times!

10.2 Concrete Hashes

Cryptographic hashes such as MD5 and SHA-1 are widely used to filter out exact
binary duplicates. However, hashes at this level are not robust; changing a single bit
can result in a dramatically different hash. Several approaches have been taken to
improve this robustness by taking hashes of different types of features instead of the
raw bits of the binary.

Malware and Machine Learning 35

Wicherski [51] attempted to use the information stored in the PE header of a binary
to define a hash for the purpose of filtering out duplicate binaries. The information
in the PE header was utilized to make the hash robust against minor changes in the
binary. For example, if the only difference between two binaries is a time stamp in
the header, the binaries should be considered equal. To create this hash, [51] takes a
subset of bits from several PE header fields, concatenates them together (in a fixed,
reproducible ordering) and takes the SHA-1 of this bit sequence.

Wicherski [51] does not use all bits from all PE header fields, but rather judicially
selects both the fields and bits used in the construction of the hash. The fields used
are image flags such as whether the binary is a DLL, the Windows subsystem the
binary is to be run in, the initial size of the stack and the heap, the initial address
each section of the binary is loaded into memory at, the size of each section, and
the flags for each section that indicate permissions and alignment. For each PE field
included in the hash, only a subset of the full bits in the field are utilized. The exact
bit range used for each field is chosen such that a change in one of bits indicates a
major structural change in the binary. For example, the first 8 bits of the 32 bit initial
stack size are almost always 0, and there is often minor changes in the lower bits in
polymorphic malware.

In a different approach, [55, 56] use cryptographic hashes of functions in order
to discover when malware is sharing code. The only modification made by Cohen
and Havrilla [56] to the code before hashing is that all constants, such as jump
and memory access addresses, are zeroed out. A cryptographic hash of the string
representation of the code of the procedure is then taken. LeDoux et al. [55] use
the abstractions defined by Lakhotia et al. [38] and described in Sect. 7.4. For each
basic block in a procedure, the feature of Lakhotia et al. [38] is computed. A hash
of the procedure is created by sorting and concatenating all the basic block features
together and taking a cryptographic hash.

10.3 Locality Sensitive Hashing

To improve upon the robustness of concrete cryptographic hashes, MinHash, a type
of Locality Sensitive Hash (LSH) [58] is being utilized in several different ways. A
MinHash is a hash functions with the property that hashes of two arbitrary objects
will be equivalent with a probability equal to the Jaccard Similarity between the
objects. In other words, if two binaries are 90 % similar, there is a 90 % chance
that they will produce the same LSH. Jaccard Similarity is a method for measur-
ing the similarity of two sets and is defined as |A ∩ B|/|A ∪ B|, the size of the
intersection divided by the size of the union. Two arbitrary MinHashes, then, will
collide with a probability equal to the Jaccard Index of the two hashed objects,
P(MinHash(A) = MinHash(B)) = |A ∩ B|/|A ∪ B|.

To create a MinHash of a set, an ordering over the universe of objects that can
be placed in the set must be defined. This ordering can be arbitrary, but it must be
fixed. A very simple example ordering is just “the order in which I first encountered

36 C. LeDoux and A. Lakhotia

the object” (this ordering does, however, need to be remembered across all sets that
are to be compared). After this ordering is defined, several random permutations of
the ordering are selected. A MinHash is then the minimum elements of the set as
defined by the selected random order permutations.

For an illustrative example of MinHash, take the sets A = 1, 2, 3 and B = 4, 5, 6
with the ordering defined numerically. To create the MinHash, we first randomly
select a number of permutations of the ordering, let’s say these are 5, 4, 2, 1, 3 and
3, 1, 4, 5, 2. Then the MinHash of set A is 2,1 and that of B is 5, 4.

There are two ways in which MinHashes are being used in malware analysis: for
direct clustering and as a filter to reduce the complexity of clustering. The computed
MinHashes can be used to define a clustering that has constant time complexity. Two
binaries are considered to be in the same cluster if and only if they have the same
MinHash. This was an approach taken by Jin et al. [37].

Rather than directly clustering, MinHashes can also be used as a filter to drastically
reduce the size of n so that the clustering complexity of O(n2) becomes bearable.
Bayer et al. [48] first utilized this approach in the malware space. They defined many
MinHashes by selecting a different set of random permutations for each MinHash.
Malware were first put into an initial cluster if any of the MinHashes matched. Bayer
et al. [48] would then computed the Jaccard Similarity for only pairs of binaries in the
same cluster. The resulting similarities were then used to create a final clustering.
Since n now refers to the number of object in a single cluster, O(n2) becomes a
tolerable performance.

11 Semi-supervised Learning

Halfway between Supervised and Unsupervised Learning is the wonderful world of
Semi-supervised Learning. As the name implies, Semi-supervised Learning utilizes
both labeled and unlabeled data. It is usually used for clustering with the available
labels helping decide both the number and shape of clusters to create.

While there are a number of existing Semi-supervised learning algorithms [59],
there currently exists only one instance of such an application in malware. Santos
et al. [60] use a Semi-Supervised Learning algorithm known as “Learning with Local
and Global Consistency” (LLGC) [61] to classify binaries as malicious or benign.

LLGC first starts with a directed, weighted graph representation of the data. The
nodes of the graph are binaries being clustered and the weighted edges are the simi-
larity values between the binaries. Every node keeps track of how much it “believes”
it belongs to a particular label by attaching a weight to the different labels. When
the graph is first constructed, unlabeled data has zero belief in any of the labels and
labeled data has perfect belief in its label. So a binary labeled “malware” will start
with a weight of 1 for the label “malware” and a weight of 0 for the label “benign.”
An unlabeled binary will have a weight of 0 for both labels.

LLGC relies on two assumptions to create clusters. The first is that similar objects
are likely to have the same label (“Local” consistency). The second is that objects

Malware and Machine Learning 37

in the same cluster are likely to have the same label (“Global” consistency). LLGC
uses these two assumptions to “spread” beliefs through the initial graph. Nodes with
higher similarity with each other will be incrementally updated so that their weights
assigned to labels more closely mirror each other. The incremental updates continue
until weights attached to labels converge. Each node is then assigned the label it has
the highest weight attached to, i.e. the label it has the highest belief in.

12 Ensembles

Similar to the way in which features can be combined to create a more accurate clas-
sification, different learning algorithms can be combined to produce a single, more
accurate learner. Such a learner is referred to as an ensemble. There are several ways
in which classifiers can be combined [62]: voting, stacking, bagging, and boosting.

One of the simplest methods of creating an ensemble is voting [63–65]. This sim-
ply consists of creating a number of independent classifiers, running them separately,
obtaining the different outputs, and then using some type of voting mechanism to
determine which of the outputs to accept as the final answer. This voting mechanism
most often takes the form of majority vote (simply select the answer that the most
classifiers returned). Other forms of voting include weighted majority vote, a veto
vote [64] where a “special” classifier can veto the decision of the majority, and a
trust-based vote [65] where voting takes into account how much each individual
classifier is “trusted” to provide a correct answer.

The above voting strategies really only apply to learning algorithms that perform
classification and do not apply to clustering. A majority vote, for example, doesn’t
make sense for clustering as the number of possible ways to cluster is practically
unbounded. It is unlikely that any two partitioning created by two different clustering
algorithms will be the same. Instead, a consensus partition [66, 67] is used. Consensus
partitioning can conceptually be thought of as a voting scheme for clustering. Like in
voting ensembles, the first step is to cluster the data several times using independent
methods each time. In the “combining phase” a new partitioning of the data is created
that maximizes the “consensus” between each independent clustering. There are a
number of ways that have been proposed to create this consensus clustering using
graph based, combinatorial, or statistical methods. Various ways of creating this
consensus clustering are covered by Strehl and Ghosh [68] and Topchy et al. [69].

Stacking [43, 70–72] is a type of ensemble in which a set of classifiers are con-
nected in series, with each classifier taking as input the output of the classifier before
it in the series. A simple example of such a classifier is [43] and their system called
SVM-AR, depicted in Fig. 6. In this system, [43] first use a supervised classifier to
decide if an executable is malicious or benign. After a decision is made, a trained
rule-based classifier is used to “check” the results. If the supervised classifier said the
executable was malware, the executable is checked against the rules for determining
if an executable is benign. If any of these rules match, then final decision is “benign.”
A similar process is applied if the supervised classifier says the executable is benign.

38 C. LeDoux and A. Lakhotia

Fig. 6 SVM-AR by Lu et al. [43], an example stacking ensemble

Bagging [19] is an ensemble technique that instead of combining several different
kinds of learners, uses the same learning algorithm, but trains the algorithm on ran-
dom bootstrapped samples of the training data. There is a class of learning algorithms
known as unstable algorithms. In unstable learning algorithms, slight changes in the
training data can lead to very different models. Bagging seeks to solve this by com-
bining many models created on slightly different data. The differing data is created
through bootstrapped sampling of the original training data. A bootstrap sample is a
random sample taken with replacement. Thus each bootstrapped sample will contain
duplicates and be missing some of the original data. The learned models are usually
combined through voting.

Boosting [46, 72] is meant to be an improvement over bagging. Like bagging,
boosting combines many differently trained instances of the same learning algorithm.
Where boosting differs is in the way the various training data sets are selected.
Bagging selects training sets at random. Boosting selects training sets such that
training focuses on data the already trained classifiers are getting incorrect. This
results in building classifiers that specialize on specific portions of the data. Each
individually trained classifier may have weak performance overall, but be extremely
accurate on a specific subset of the data. Combining a number of such specialized
classifiers (by voting, usually) results in more accurate ensemble overall.

References

1. Neumann, J.V. : Theory of Self-reproducing Automata. IEEE Trans. Neural Networks. 5(1),
3–14 (1994)

2. Cohen, F.: Computer viruses. PhD thesis, University of Southern California (1985)
3. Measuring and optimizing malware analysis: An open model. L.L.C,Technical report, Securosis

(2012)
4. Schon, B., Dmitry, G., Joel, S.: Automated sample processing, Technical Report, Mcafee

AVERT, Auckland, New Zealand (2006)

Malware and Machine Learning 39

5. Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis. Springer, Berlin (1999).
ISBN 9783540654100

6. Schwarz, B., Debray, S., Andrews, G.: Disassembly of executable code revisited. In: Proceed-
ings of Ninth Working Conference on Reverse Engineering, IEEE, 2002, pp. 45–54

7. Collberg, C., Nagra, J.: Surreptitious Software: Obfuscation, Watermarking, and Tamperproof-
ing for Software Protection. Pearson Education (2010). ISBN 9780321549259

8. Mitchell, T.M.: Machine Learning. McGraw-Hill, New York (1997). ISBN 0070428077
9780070428072 0071154671 9780071154673

9. Shabtai, A., Moskovitch, R., Elovici, Y., Glezer, C.: Detection of malicious code by applying
machine learning classifiers on static features: a state-of-the-art survey. Inf. Sec. Tech. Rep.
14(1), 1629 (2009)

10. Egele, M., Scholte, T., Kirda, E., Kruegel, C.: A survey on automated dynamic malware analysis
techniques and tools. ACM Comput. Surv. 44(2), 6:1–6:42 (2008). ISSN 0360–0300. doi:10.
1145/2089125.2089126

11. Arnold, W. Tesauro, G.: Automatically generated WIN32 heuristic virus detection. In: 2000
Virus Bulletin International Conference, pp. 51–60. The Pentagon, Abingdon, Oxfordshire,
OX14 3YP, England, Virus Bulletin Ltd (2000)

12. Kephart, J.O., Arnold, B.: Automatic extraction of computer virus signatures. In: Ford, R. (ed.)
4th Virus Bulletin International Conference, pp. 178–184, Abingdon, England, Virus Bulletin
Ltd (1994)

13. Kephart, J.O., Arnold, B.: A biologically inspired immune system for computers. In: Fourth
International Workshop on the Synthesis and Simulation of Living Systems, pp.130–139 (1994)

14. Kephart, J.O., Sorkin, G.B., Arnold, W.C., Chess, D.M., Tesauro, G.J., White, S.R.: Biologically
inspired defenses against computer viruses. In: IJCAI 95, pp. 985–996 (1995)

15. Karim, M.E., Walenstein, A., Lakhotia, A., Parida, L.: Malware phylogeny generation using
permutations of code. J. Comput. Virol. 1(1), 13–23 (2005)

16. Wang, T.-Y., Wu, C.-H., Hsieh, C.-C.: Detecting unknown malicious executables using portable
executable headers. In: Fifth International Joint Conference on INC, IMS and IDC, NCM 09,
pp. 278–284 (2009). doi:10.1109/ncm.2009.385

17. Walenstein, A., Hefner, D.J., Wichers, J.: Header information in malware families and impact
on automated classifiers. In: 2010 5th International Conference on Malicious and Unwanted
Software (MALWARE), p. 1522 (2010). doi:10.1109/malware.2010.5665799

18. Schultz, M.G., Eskin, E., Zadok, F., Stolfo, S.J.: Data mining methods for detection of new
malicious executables. In: Proceedings of 2001 IEEE Symposium on Security and Privacy, S
P 2001, pp. 38–49 (2001). doi:10.1109/secpri.2001.924286

19. Ye, Y., Chen, L., Wang, D., Li, T., Jiang, Q., Zhao, M.: SBMDS: an interpretable string based
malware detection system using SVM ensemble with bagging. J. Comput. Virol. 5(4), 283–293
(2008). ISSN 1772–9890, 1772–9904. doi:10.1007/s11416-008-0108-y

20. Kruegel, C., Robertson, W., Valeur, F., Vigna, G.: Static disassembly of obfuscated binaries.
In: Proceedings of the 13th USENIX Security Symposium, pp. 255–270. Usenix (2004)

21. Linn, C., Debray, S.: Obfuscation of executable code to improve resistance to static disassembly.
In: Proceedings of the 10th ACM Conference on Computer and Communications Security, pp.
290–299, ACM Press, New York, NY, USA (2003)

22. Christodorescu, M., Jha, S., Kruegel, C.: Mining specifications of malicious behavior. In:
Proceedings of the 1st India Software Engineering Conference, ISEC ’08, p. 514, New York,
NY, USA (2008). ACM. ISBN 978-1-59593-917-3. doi:10.1145/1342211.1342215

23. Debray, S. Patel, J.: Reverse engineering self-modifying code: Unpacker extraction. In: 2010
17th Working Conference on Reverse Engineering (WCRE), pp. 131–140 (2010). doi:10.1109/
WCRE.2010.22

24. Sharif, M., Lanzi, A., Giffin, J., Lee, W.: Automatic reverse engineering of malware emulators.
In: 2009 30th IEEE Symposium on Security and Privacy, pp. 94–109 (2009). doi:10.1109/SP.
2009.27

25. Alazab, M., Kadiri, M.A., Venkatraman, S., Al-Nemrat, A.: Malicious code detection using
penalized splines on OPcode frequency. In: Cybercrime and Trustworthy Computing Workshop
(CTC), 2012 Third, pp. 38–47 (2012). doi:10.1109/CTC.2012.15

http://dx.doi.org/10.1145/2089125.2089126
http://dx.doi.org/10.1145/2089125.2089126
http://dx.doi.org/10.1109/ncm.2009.385
http://dx.doi.org/10.1109/malware.2010.5665799
http://dx.doi.org/10.1109/secpri.2001.924286
http://dx.doi.org/10.1007/s11416-008-0108-y
http://dx.doi.org/10.1145/1342211.1342215
http://dx.doi.org/10.1109/WCRE.2010.22
http://dx.doi.org/10.1109/WCRE.2010.22
http://dx.doi.org/10.1109/SP.2009.27
http://dx.doi.org/10.1109/SP.2009.27
http://dx.doi.org/10.1109/CTC.2012.15

40 C. LeDoux and A. Lakhotia

26. Bilar, D.: Opcode as predictors for malware. Int. J. Electron. Sec. Digit. Forensics 1(2), 156–168
(2007)

27. Hu, X., Bhatkar, S., Griffin, K., Shin, K.G.: MutantX-S: scalable malware clustering based on
static features. In: USENIX Annual Technical Conference (USENIX ATC 13), pp. 187–198
(2013)

28. Moskovitch, R., Feher, C., Tzachar, N., Berger, E., Gitelman, M., Dolev, S., Elovici, Y.:
Unknown malcode detection using opcode representation. Intell. Secur. Inform. 48, 204–215
(2008)

29. Runwal, N., Low, R.M., Stamp, M.: Opcode graph similarity and metamorphic detection. J.
Comput. Virol. 8(1–2), 37–52 (2012). ISSN 1772–9890, 1772–9904, doi:10.1007/s11416-012-
0160-5

30. Chouchane, M.R., Lakhotia, A.: Using engine signature to detect metamorphic malware. In:
Proceedings of the 4th ACM Workshop on Recurring Malcode, WORM ’06, pp. 73–78, New
York, NY, USA (2006). ACM. ISBN 1-59593-551-7. doi:10.1145/1179542.1179558

31. Hu, X., Chiueh, T.-C., Shin, K.G.: Large-scale malware indexing using function-call graphs.
In: Proceedings of the 16th ACM Conference on Computer and Communications security, pp.
611–620 (2009)

32. Carrera, E., Erdelyi, G.: Digital genome mapping: advanced binary malware analysis. In:
Proceedings of the 2004 Virus Bulletin Conference, pp. 187–197 (2004)

33. Briones, I., Gomez, A.: Graphs, entropy and grid computing: automatic comparison of malware.
Virus Bulletin, 1–12 (2008). http://pandalabs.pandasecurity.com/blogs/images/PandaLabs/
2008/10/07/IsmaelBriones-VB2008.p

34. Kinable, J., Kostakis, O.: Malware classification based on call graph clustering. J. Comput.
Virol. 7(4), 233–245 (2011). ISSN 1772–9890, 1772–9904, doi:10.1007/s11416-011-0151-y

35. Kruegel, C., Kirda, E., Mutz, D., Robertson, W., Vigna, G.: Polymorphic worm detection using
structural information of executables. In: Valdes, A., Zamboni, D. (eds.) Recent Advances in
Intrusion Detection, no. 3858. Lecture Notes in Computer Science, pp. 207–226. Springer,
Berlin (2006). ISBN 978-3-540-31778-4, 978–3-540-31779-1

36. Chaki, S., Cohen, C., Gurfinkel, A.: Supervised learning for provenance-similarity of binaries.
In: Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, KDD ’11, p. 1523, New York, NY, USA, 2011. ACM. ISBN 978-1-4503-
0813-7. doi:10.1145/2020408.2020419

37. Jin, W., Chaki, S., Cohen, C., Gurfinkel, A., Havrilla, J., Hines, C., Narasimhan, P.: Binary
function clustering using semantic hashes. In: Proceedings of the 11th International Conference
on Machine Learning and Applications (ICMLA), vol. 1, pp. 386–391 (2012). doi:10.1109/
ICMLA.2012.70

38. Lakhotia, A., Preda, M.D., Giacobazzi, R.: Fast location of similar code fragments using
semantic ‘juice’. In: Proceedings of the 2nd ACM SIGPLAN Program Protection and Reverse
Engineering Workshop, PPREW ’13, p. 5:15:6, New York, NY, USA (2013). ACM. ISBN
978-1-4503-1857-0. doi:10.1145/2430553.2430558

39. Pfeffer, A., Call, C., Chamberlain, J., Kellogg, L., Ouellette, J., Patten, T., Zacharias, G.,
Lakhotia, A., Golconda, S., Bay, J., Hall, R., Scofield, D.: Malware analysis and attribution using
genetic information. In: Proceedings of the 7th IEEE International Conference on Malicious and
Unwanted Software (MALWARE 2012), pp. 39–45, IEEE Computer Society Press, Fajardo,
Puerto Rico, Oct. (2012)

40. Bailey, M., Oberheide, J., Andersen, J., Mao, Z.M., Jahanian, F., Nazario, J.: Automated clas-
sification and analysis of internet malware. In: RAID07: Proceedings of the 10th International
Conference on Recent Advances in Intrusion Detection, pp. 178–197, Berlin, Heidelberg,
Springer-Verlag (2007)

41. Trinius, P., Willems, C., Holz, T., Rieck, K.: A malware instruction set for behavior-based analy-
sis, Technical Report, University of Mannheim (2009). http://citeseerx.ist.psu.edu/viewdoc/
download

42. Masud, M.M., Khan, L., Thuraisingham, B.: A hybrid model to detect malicious executables.
In: IEEE International Conference on Communications, ICC 07, pp. 1443–1448 (2007). doi:10.
1109/icc.2007.242

http://dx.doi.org/10.1007/s11416-012-0160-5
http://dx.doi.org/10.1007/s11416-012-0160-5
http://dx.doi.org/10.1145/1179542.1179558
http://pandalabs.pandasecurity.com/blogs/images/PandaLabs/2008/10/07/IsmaelBriones-VB2008.p
http://pandalabs.pandasecurity.com/blogs/images/PandaLabs/2008/10/07/IsmaelBriones-VB2008.p
http://dx.doi.org/10.1007/s11416-011-0151-y
http://dx.doi.org/10.1145/2020408.2020419
http://dx.doi.org/10.1109/ICMLA.2012.70
http://dx.doi.org/10.1109/ICMLA.2012.70
http://dx.doi.org/10.1145/2430553.2430558
http://citeseerx.ist.psu.edu/viewdoc/download
http://citeseerx.ist.psu.edu/viewdoc/download
http://dx.doi.org/10.1109/icc.2007.242
http://dx.doi.org/10.1109/icc.2007.242

Malware and Machine Learning 41

43. Lu, Y.B., Din, S.C., Zheng, C.F., Gao, B.J.: Using multi-feature and classifier ensembles to
improve malware detection. J. CCIT 39(2), 57–72 (2010)

44. Islam, R., Tian, R., Batten, L., Versteeg, S.: Classification of malware based on string and
function feature selection. In: Cybercrime and Trustworthy Computing, Workshop, p. 917
(2010)

45. LeDoux, C., Walenstein, A., Lakhotia, A.: Improved malware classification through sensor
fusion using disjoint union. In: Information Systems, Technology and Management, pp. 360–
371, Grenoble, France. Springer, Berlin Heidelberg (2012). ISBN 978-3-642-29166-1. doi:10.
1007/978-3-642-29166-1_32

46. Kolter, J.Z., Maloof, M.A.: Learning to detect and classify malicious executables in the wild.
J. Mach. Learn. Res. 7, 2721–2744 (2006)

47. Walenstein, A., Venable, M., Hayes, M., Thompson, C., Lakhotia, A.: Exploiting similarity
between variants to defeat malware. In: Proceedings of BlackHat Briefings DC 2007 (2007)

48. Bayer, U., Comparetti, P.M., Hlauschek, C., Kruegel, C., Kirda, E.: Scalable, behavior-
based malware clustering (2009). http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.
148.7690&rep=rep1&type=pdf

49. Gurrutxaga, I., Arbelaitz, O., Ma Perez, J., Muguerza, J., Martin, J.I., Perona, I.: Evaluation
of malware clustering based on its dynamic behaviour. In: Roddick, J.F., Li, J., Christen, P.,
Kennedy, P.J. (eds.) Seventh Australasian Data Mining Conference (AusDM 2008), Crpit, vol.
87, pp. 163–170, Glenelg, South Australia, Acs (2008)

50. Wang, Y., Ye, Y., Chen, H., Jiang, Q.: An improved clustering validity index for determining the
number of malware clusters. In: 3rd International Conference on Anti-counterfeiting, Security,
and Identification in Communication, 2009, ASID 2009, pp. 544–547. doi:10.1109/ICASID.
2009.5277000

51. Wicherski, G.: peHash: a novel approach to fast malware clustering. In: Proceedings of
LEET09: 2nd USENIX Workshop on Large-Scale Exploits and Emergent Threats (2009)

52. Cesare, S., Xiang, Y.: Software Similarity and Classification. Springer, Heidelberg (2012)
53. Legany, C., Juhsz, S., Babos, A.: Cluster validity measurement techniques. In: Proceedings of

the 5th WSEAS International Conference on Artificial Intelligence, Knowledge Engineering
and Data Bases, AIKED’06, pp. 388–393, Stevens Point, Wisconsin, USA (2006). World
Scientific and Engineering Academy and Society (WSEAS). ISBN 111-2222-33-9

54. Jang, J., Brumley, D., Venkataraman, S.: BitShred: feature hashing malware for scalable triage
and semantic analysis. In: Proceedings of the 18th ACM Conference on Computer and Com-
munications Security, CCS ’11, pp. 309–320, ACM, New York, NY, USA (2011). ISBN 978-
1-4503-0948-6. doi:10.1145/2046707.2046742

55. LeDoux, C., Lakhotia, A., Miles, C., Notani, V., Pfeffer, A.: FuncTracker: discovering shared
code to aid malware forensics extended abstract (2013)

56. Cohen, C., Havrilla, J.S.: Function hashing for malicious code analysis. In: CERT Research
Annual Report 2009, pp. 26–29. Software Engineering Institute, Carnegie Mellon University
(2009)

57. Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Commun. ACM
13(7), 422–426 (1970)

58. Rajaraman, A., Ullman, J.D.: Mining of Massive Datasets. Cambridge University Press, Cam-
bridge (2012). ISBN 9781139505345

59. Zhu, X.: Semi-supervised learning literature survey, Technical Report, Computer Sciences,
University of Wisconsin-Madison (2005). http://citeseerx.ist.psu.edu/viewdoc/download?doi=
10.1.1.99.9681&rep=rep1&type=pdf. Accessed 14 Mar 2013

60. Santos, I., Nieves, J., Bringas, P.: Semi-supervised learning for unknown malware detection. In:
International Symposium on Distributed Computing and Artificial Intelligence, pp. 415–422
(2011)

61. Zhou, D., Bousquet, O., Lal, T.N., Weston, J., Schlkopf, B.: Learning with local and global
consistency. Adv. Neural Inf. Process. Syst. 16, 321–328 (2004)

62. Kuncheva, L.I.: Combining Pattern Classifiers: Methods and Algorithms. Wiley-Interscience,
Hoboken (2004). ISBN 0471210781

http://dx.doi.org/10.1007/978-3-642-29166-1_32
http://dx.doi.org/10.1007/978-3-642-29166-1_32
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.148.7690&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.148.7690&rep=rep1&type=pdf
http://dx.doi.org/10.1109/ICASID.2009.5277000
http://dx.doi.org/10.1109/ICASID.2009.5277000
http://dx.doi.org/10.1145/2046707.2046742
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.99.9681&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.99.9681&rep=rep1&type=pdf

42 C. LeDoux and A. Lakhotia

63. Dahl, G., Stokes, J.W., Deng, L., Yu, D.: Large-scale malware classification using random
projections and neural networks. In: Proceedings IEEE Conference on Acoustics, Speech, and
Signal Processing, pp. 3422–3426 (2013)

64. Shahzad, R., Lavesson, N.: Veto-based malware detection. In: 2012 Seventh International
Conference on Availability, Reliability and Security (ARES), pp. 47–54 (2012). doi:10.1109/
ARES.2012.85

65. Shahzad, R.K., Lavesson, N.: Comparative analysis of voting schemes for ensemble-based
malware detection. Wireless Mob. Netw. Ubiquitous Comput. Dependable Appl. 4, 76–97
(2013)

66. Ye, Y., Li, T., Chen, Y., Jiang, Q.: Automatic malware categorization using cluster ensemble.
In: Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pp. 95–104 (2010)

67. Zhuang, W., Ye, Y., Chen, Y., Li, T.: Ensemble clustering for internet security applications.
IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 42(6), 1784–1796 (2012). ISSN 1094-6977.
doi:10.1109/TSMCC.2012.2222025

68. Strehl, A., Ghosh, J.: Cluster ensembles a knowledge reuse framework for combining mul-
tiple partitions. J. Mach. Learn. Res. 3, 583–617 (2003). ISSN 1532–4435. doi:10.1162/
153244303321897735

69. Topchy, A., Jain, A.K., Punch, W.: Clustering ensembles: models of consensus and weak
partitions. IEEE Trans. Pattern Anal. Mach. Intell. 27(12), 1866–1881 (2005). ISSN 0162–
8828. doi:10.1109/TPAMI.2005.237

70. Barr, S.J., Cardman, S.J., Martin, D.M.Jr.: A boosting ensemble for the recognition of code
sharing in malware. J. Comput. Virol. 4(4), 335–345 (2008). ISSN 1772–9890, 1772–9904,
doi:10.1007/s11416-008-0087-z

71. Menahem, E., Shabtai, A., Rokach, L., Elovici, Y.: Improving malware detection by applying
multi-inducer ensemble. Comput. Stat. Data Anal. 53(4), 1483–1494 (2009). ISSN 0167–9473.
doi:10.1016/j.csda.2008.10.015

72. Zabidi, M., Maarof, M., Zainal, A.: Ensemble based categorization and adaptive model for mal-
ware detection. In: 2011 7th International Conference on Information Assurance and Security
(IAS), pp. 80–85 (2011). doi:10.1109/ISIAS.2011.6122799

http://dx.doi.org/10.1109/ARES.2012.85
http://dx.doi.org/10.1109/ARES.2012.85
http://dx.doi.org/10.1109/TSMCC.2012.2222025
http://dx.doi.org/10.1162/153244303321897735
http://dx.doi.org/10.1162/153244303321897735
http://dx.doi.org/10.1109/TPAMI.2005.237
http://dx.doi.org/10.1007/s11416-008-0087-z
http://dx.doi.org/10.1016/j.csda.2008.10.015
http://dx.doi.org/10.1109/ISIAS.2011.6122799

	1 Malware and Machine Learning
	1 Introduction
	2 A Short History of Malware
	3 Types of Malware
	4 Malware Analysis Pipeline
	4.1 Triage
	4.2 Analysis
	4.3 Signatures and Verification
	4.4 Application

	5 Challenges in Malware Analysis
	5.1 Code Morphing
	5.2 Packing
	5.3 Obfuscation
	5.4 Tool Detection
	5.5 Difficulty Obtaining Verification Data

	6 Machine Learning Concepts
	6.1 Features
	6.2 Classification and Clustering
	6.3 Types of Learning

	7 Malware Features
	7.1 Binary Based Features
	7.2 Disassembly Based Features
	7.3 Control Flow Based
	7.4 Semantics Based
	7.5 Hybrid Features

	8 Supervised Learning
	9 Unsupervised Learning
	10 Hashing: Improving Clustering Efficiency
	10.1 Feature Hashing
	10.2 Concrete Hashes
	10.3 Locality Sensitive Hashing

	11 Semi-supervised Learning
	12 Ensembles
	References

