
What is the appropriate abstraction for
understanding and reengineering a software system?

Arun Lakhotia

The Centerfor AdvancedComputerStudies
University of SouthwesternLouisiana

Lafayette, LA 70504
(318) 482-6766,-5791 (Fax)

arun@cacs.usl.edu

Appeared in the “Reverse Engineering Newsletter,” IEEE Computer
Society, Number 7, Sep 1994, pp. 1-2.

To understanda softwaresystemfor maintainingit a model— requirement,design,or some
other view — is createdby abstractingcertaindetailsaway from the sourcecode. The model
playsa centralrole in anyautomatedsupportfor softwaremaintenance.Thechoiceof abstraction
— the notationor techniqueusedto representa model— thereforebecomesa crucial decision
in the developmentof any maintenancetool.

In building a researchagendaon tools to support software maintenance,I like other
researchersin the sameboat, have often wonderedwhat the most appropriateabstractionof
a softwaresystemwould be. Having weighedthe prosandconsof variousabstractions,I have
come to the realizationthat there is no such thing as the abstraction. More specifically, the
appropriatenessof an abstractiondependson severalfactors,two of which are:

1. the maintenancetask being performedand
2. the applicationdomainof the software.

My observationsareelaboratedin the following discussionfollowed by the implications.

Observations

Themostappropriateabstractionof asoftwaresystemvariesbaseduponthemaintenancetask
beingperformed.This is true evenwhenthe softwaresystemis held constant.The information
neededto debuga programis substantiallydifferent from that neededwhen introducinga new
feature.If you agreethatdebuggingis a diagnosticprocessoftenperformedusinga hypothesize-
and-testcycle,thenanabstractionthatenablestheverificationof a hypothesisis moreappropriate
thanonethatdoesnot. However,for makingchangesto aprogram,suchasaddinga newfeature,
an abstractionthat permits “conceptassignment”and impact analysisis more useful. On the
otherhand,if the needis to reengineera system,as for instancewhenmigrating from CMS-2
or JOVIAL to ADA, abstractionsthat enablerestructuringand redesignof the code(assuming
this is the intent of the reengineeringtask) would be preferred.

1



Notice that I havenot said which abstractionis useful for which task,becausethe choice
furtherdependsupontheapplicationdomainof thesoftwaresystem.If a programthatcomputes
the trajectoryfor a surface-to-surfacemissile is being modified to computethe trajectoryfor a
surface-to-airmissile, the specificmathematicalformulaeusedin the computationmay be the
appropriateabstractions.Theseformulaewould alsobe the preferredabstractionsfor verifying
that the code indeed computestrajectory using the formulae specified in the requirements.
However, if the need is to modify the algorithm to make it more efficient, one may need
entirely different abstractions(suchas algorithm schemas).

Theboundariesof applicationdomainarevery fuzzy, sinceevenwithin thesameapplication
domain, the choiceof abstractionmay differ basedon the specific application. For instance,
mathematicalformulaemay be relevantin a businessapplicationcomputingmortgage,but not
in an applicationcomputinginsurancepremiums,where decisionchartsor decisiontreesare
more appropriate.

If different abstractionsmay be appropriatefor applicationsin the samedomain, it is also
possiblethat different components(e.g.,proceduresor modules)of the sameapplication(e.g.,
program)may bestbe abstractedusing different notations. An obviousexampleis a compiler
wherethe tokenizermay be abstractedusinga regularautomaton,the parsermay be abstracted
using BNF rules, the (non-optimized)codegeneratorusing attributegrammars,and the whole
compilerusingarchitecturalnotationscomposingthe abstractionsof its components.

Implications

Let us evaluatethe implications of my observations. While it is common practice for
researchersanddevelopersto tout that their tool is a panacea,it is equallycommonknowledge
that this is very rarely true. My observationsprovide criteria for tool designersand tool users
to assessa tool: (a) What are the specific maintenanceactivities the tool may be usedfor?
and (b) What is domainof its application? It is not absolutelynecessaryto enumerateall the
applicationdomainssincethoseimplicitly get definedby the tool users.However,enumerating
maintenanceactivities is not quite that straightforward.For instance,the commonclassification
of maintenanceactivitiesasperfective,adaptive,andcorrectiveis too coarsegrainedto be used
for evaluatinga maintenancetool.

It follows, therefore,that thereis a needfor classifying,at variouslevel of details,the tasks
performedby a maintenanceprogrammer. While tasks,such as conceptassignment,tracing
a request,impact analysis,converting a global variable to a parameter,etc., may be found
scatteredin the literature,a comprehensiveanalysisandclassification of thesetaskshasyet to
beperformed.The importanceof suchananalysisis evidentin that it is analogousto enterprise
modelling — though the latter has a much broaderscope— a prerequisiteto reengineering
an enterprise.Brooks’ identificationof variousroles in a Chief Programmerteamis one such
analysis,albeit at a macro level.

The cross-productof applicationdomainsandmaintenancetasks,assumingwe canclassify
theelementsof each,is likely to bevery large. Onemay, therefore,extrapolatethat thenumber

2



of relevantabstractionsmay also be large. While that is possibletheoretically,in my opinion
it would not be the casein practice.Very often the sameabstractionmay be useful for a large
numberof tasksand/orfor a large numberof applicationdomains.For instance,mathematical
formulaemay clearly be usedin scientificandengineeringapplication.They may alsobe used
in certainbusinessapplicationprograms,e.g.,mortgagecomputation.

While we await an analysisand classificationof maintenancetasks,it may be prudentto
identify somemaintenancetasksandhypothesizeabstractionssuitablefor them. The following
is one such hypothesis.

For activities (such as reuse and reengineering) requiring an understanding of what a software
system does, abstractions that were (or should have been) used in the forward engineering
of the system should also be most effective to recover by reverse engineering.

Thoughnotadirectimplicationof my observations,thehypothesisis basedon themnevertheless.
Notice the emphasison what. It constrainsthe statementfor maintenanceactivities requiring
an understandingof what a softwaresystemdoes. (Not all maintenanceactivities requiresuch
knowledge.) To illustrate, the hypothesissaysthat, if decisionchartsare the most appropriate
abstractionsfor theinitial developmentof a system,thentheyshouldalsobethemostappropriate
abstractionsto berecoveredby reverseengineering.Similarly, if anapplicationis modelledusing
Finite StateMachinesthenits implementationis bestunderstoodusingFinite StateMachines.

An implication of my observationsand the abovehypothesisis:

Even if two programs are written in the same language, the same abstractions may not be
useful in understanding them for the purpose of reuse and reengineering.

Statedanotherway, it doesnot makesenseto say that a tool helpsin understandingprograms
in C (or for that matterFORTRAN or Pascal). This is becausethe abstractionsusedduring
forward engineeringare dependentupon a software’s applicationdomain. For example, in
telephonyapplicationsHarel’sSatechartsor Petri-netsareusedto modela system’sbehavior,in
businessapplicationsER modelsanddecisiontablesareused,andin scientificandengineering
applicationsexpressionsand formulaeare used. Thus,neitherclichés (the genericabstractions
currentlyusedby programunderstandingcommunity),nor expressions,nor decisiontableswould
be aseffective asStatechartswhenunderstandinga telephoneswitchingsystem,irrespectiveof
the implementationlanguage.Similar statementsmaybemadefor programsin otherapplication
domains.

Where does this leave us? So far the program understandingcommunity has focussed
on recoveringabstractionssuch as programclichés, logic or set-theoreticexpressions,cross-
referencedatabases,control flow graphs,and abstractsyntax trees. Theseabstractionsdiffer
in the amountof information they hide as well as the effort involved in recoveringthem. Of
these,only logic or set expressionsare (to the bestof my knowledge)used,by someforward
engineeringmethodsat the requirementsanddesignlevel. Thereareseveralotherabstractions,
suchasFinite StateMachines,Statecharts,decisiontrees,decisioncharts,dataflowdiagrams,ER
diagrams,OO diagrams,SADT actigrams,to namea few, usedfor representingrequirementsor
designby varioussystematicsoftwaredevelopmentmethods.If my observations,implications,

3



andhypothesescould be generalizedto representthe view of othersaswell, it may be prudent
for thecommunityto directresearchin recoveringsuchspecific abstractionsof softwaresystems.

References – omitted

Biography

Dr. Arun Lakhotiais anAssistantProfessorwith theCenterfor AdvancedComputerStudies
andthe Director of SoftwareResearchLaboratoryat the University of SouthwesternLouisiana,
Lafayette.He receivedhis Ph.D.from CaseWesternReserveUniversity,Cleveland,in 1989. His
researchinterestsarecenteredaroundissuesrelatedto improvingtheproductivityof programmers
andreliability of their programs.He is currentlydirectingtwo projects,first to recoverdataflow
orienteddesignsandthe secondto recoverobjectsfrom sourcecodeof legacysystems.He has
contributedto researchin methodsand tools for developinglogic programs;partial evaluation
of logic programs;interproceduralflow analyses;and softwaremetrics.

4


