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Abstract

Severalreverseengineeringtechniquesclassify softwae
systencomponentinto subsystemsThesetechniquesare
designedo discoversuchclassficationswhenthe classifi-
cationsare unknown.Thetechniquesre testedand evalu-
ated,howeverpy matchingthe classificationgheyrecover
againstexpectedtlassfications. Severalsuchtechniques
may be compaed by experimentallyevaluatingtheir per-
formanceon the samesetof softwae systemsTwo things
are neededto ensue experimentepeatability: (1) a set
of “r eal-world” softwae systemavhoseexpectedsubsys-
tem classificationsare known,and (2) an objectivecrite-
rion to quantitativelydeterminethe similarity of subsys-
tem classifications. This paper contributesto both needs
by identifying a setof widely usedand easily accessible
softwae systemsvhosemodular decompositioreither is
documentecbr can be easily inferred from their design
philosophy,and by presentinga measue to quantitatively
determinethe congruencéetweerhierarchical subsystem
classifications.

1 Intr oduction

Several reverse engineeringtechniqueshave been de-
signedto classify the componentsof a software system
into subsystemsvith the intent of aiding reengineeringr
programunderstanding.Such a technique,called a sub-
systemclassificationrecoverytechnique(SCRYI), takesas
its input someinterconnectiorrelationsbetweenthe com-
ponentsof a programandoutputsa classificationof these
componentdnto subsystems.The classificationmay be
performedto discoverthe modulararchitectureof undoc-
umentedlegacy code[15, 17, 18], or to group program
componentshatarerelatedto the sameerror[11], or sim-
ply to imposea structureupon an otherwiselarge, com-
plex, and unstructureddata[4, 16].

To date, at leastfourteentechniqueshave beenpro-
posedfor classifying software subsystemg14]. These
techniqueshave beenempirically evaluatedby their de-
signers,typically within the contextof their laboratories
or projects. This paperis part of our continuing effort
to comparativelyevaluateSCRTs. In an earlierwork, the
first author of this paperhas presenteda unified frame-
work to describeSCRTs using a consistentterminology
andnotation[14]. This paperestablishesomeof the pa-
rametersnecessaryo validateand compareSCRIs using
controlled experiments.

The subsystenclassification(SC) problem belongs
to the generalproblem of classifying the elementsof a
population. This classof problemshasbeenstudiedfor
over 100 years, spanningthe fields of the life sciences,
the social sciences,medicine, the earth sciences,and
engineering. In the contextof computing, classification
problemshave beeninvestigatedin the realm of pattern
recognitionandinformationretrieval. Thereis, therefore,
a rich body of literature investigatingvarious aspectsof
classificationproblems. In spite of this fact, thereis no
classificationtechniquethat, if directly appliedto a new
classificatiorproblem,will guarantegoodresults. Thisis
becauseclassfication techniquesare essentiallyheuristic
andrely uponknowledgespecificto the problemdomain.

There is no single, general purpose classfication
techniqueput researchinto classificatiorproblemshasled
to classeof techniquesi.e., generictemplatesthat may
be customizedfor individual applications. Researchers
havealsoidentifieda setof genericpropertiegshatmay be
usedto evaluateclassfication techniques Onesuchprop-
erty that is also relevantfor evaluatingSCRIs is: How
effective is a SCRT in recoveringthe expectedtlassfica-
tions?

Evaluatingthe effectivenessof a SCRI is no differ-
ent than evaluatingthe effectivenesof any other heuris-



tic technique. To do so, a program,or a technique,is

subjectedto severaldifferent inputs and its outputsare
comparedagainstthe expectedutputs. Testingthe effec-

tivenessf suchtechniquesequireseitherthe existenceof

a setof datafor which the expectedresultsare known or

the existenceof an oracle—a mechanismdifferent from

the programitself—that can provide the expectedoutput
[12]. A comparator—a mechanismio comparethe output
of a programandthe expecteutput—is alsorequiredto

evaluatethe resultsof a test. WhentestingSCRTs, so far

therolesof the oracleandthe comparatohavemostoften

beencombinedinto one by havingthe similarity between
an outputclassificationandthe expectedclassificationas-
sessedy atester typically a systemanalyst,a maintainer
of the subjectprogram,or the designerof the SCRT. Such
an assessmeris typically doneby having a testercom-

parean outputclassificationwith a “mental model” of the

correspondingexpectedclassfication [16, 25].

A systemanalyst,a maintainerof a subjectprogram,
or the SCRI designerare valuable oracles,but not ex-
plicitly representinghe classficationstheyexpectrenders
suchmethodsof testingnon-repeatableThat s, it does
not guaranteethat the sametesterwould give the same
assessmerdt a differenttime, or thattwo differenttesters
would give the sameresult.

Even if the expectedclassificationswere explicitly
representedJsinghumantestersas comparatorsalsoren-
dersthe resultsnon-repeatable.This is becauseSCRTs,
beingheuristicsarenotlikely to producepreciselythe ex-
pectedclassifications.Hence,a SCRI may be evaluated
by how similar the classificationdt recoversareto those
expected.A manualassessmerdf the degreeof similar-
ity betweerclassificationss subjectto humanerrorasthe
size of the classificationsincrease.

Repeatabilityis a fundamentalrequirementfor sci-
entific experiments. At the very minimum, experiments
should be repeatablewithin a single laboratory. Ideally,
they should be repeatableby different researchgroups.
Until now, the evaluationof SCRTs has beenrendered
non-repeatablavithin a laboratorybecause:(1) the ex-
pectedclassificationsavere not explicitly representedand
(2) the comparisorof the classificationwasnot objective.
SCRT evaluatiorhasalsobeennon-repeatablacrosamul-
tiple laboratoriedbecauséheyhavemostoftenbeentested
with subjectprogramsthat were proprietary,thus making
the datainaccessiblgo otherresearchers.

To aid in the designof repeatableexperimentsfor
evaluatingSCRTs that recovermodular subsystemsthis
paperproposes:(1) a setof subjectprograms,and (2) a
measureof congruencehat may be usedasa comparator
of classfications. Theproposedubjectprogramshavethe
propertythat they are widely used,are easily accessible,
and,aboveall, their expectedsubsystentlassificationsare

known or can be easily inferred basedupontheir design
philosophy. Theseprogramshavethe potentialto become
benchmarkdor evaluatingSCRIs.

The restof this paperis organizedinto the following
sections. In Section2 we discussthe proposedset of
benchmarkprogramsfor evaluatingSCRTs. In Section
3 we establisha measurementheory basedframework
for developingour congruencaneasure.ln Section4 we
preseniour measureof congruencéetweenSCs. Finally,
in Section5 we presentour conclusions.

2 Proposedsubject programs

Choosingsubjectprogramsfor experimentallyeval-
uating programanalysistools requiresbalancingat least
three constraints. First, the subjectprogramsshould be
representativeof real-world programsin order to draw
meaningfulinferencesfrom the data gathered. Second,
thereshouldexist oraclesthatgive the expectedesultsof
the analysesagainstwhich the output of the tool may be
evaluated. Third, the subjectprogramsshouldbe acces-
sible to other researchers.

Thesethreeconstraintsare difficult to satisfy simul-
taneouslyespeciallywhenthe programsareto beusedfor
the comparativeevaluationof SCRIs. Thereare at least
four reasons.First, theremay not be a consensusimong
researchersn what constitutesa representativeampleof
real-world programs.For example,cana randomsample
of public domainprogramsbe treatedas a representative
sampleof proprietaryprograms? Second,there may not
beaconsensusn the oraclesto beused. Third, assuming
a consensuss achievedon the first two reasonsmaking
progresstoward satisfyingone constraintmay negatively
affect the other. Thatis, we may find a randomsample
of real-world programs but not haveoraclesthat provide
theresultsexpectedrom analyzingthem. Last, the analy-
sesor tools implementingvarious SCRTs may havebeen
designedor differentprogramminglanguagesmaking it
impossibleto evaluatehemon a commonsetof programs.

Such disagreementstrade-ofs, or experimentation
difficulties are commonto experimentsin any domain.
Theydo notdiminishthe needfor usingstandardestdata,
buttheyinsteademphasizehatcarefulattentionshouldbe
paid to choosingsuchdata,and that the resultsfrom any
experimentusing this datashouldbe analyzedwithin the
contextof theselimitations.

We haveidentifieda setof softwaresystemdhatmay
be usedto evaluateSCRTs that recoverfrom C programs
subsystemclassfications representingmodules Notice
the emphasison modules. The programsare not being
proposedto evaluateSCRTs that recover other subsys-
tem classfications. The programsetis constrainedo the
evaluationof modular SCRTs becausave haveidentified
an oraclefor eachprogramthat gives its expectedmod-



ClassAssignments

ClassProjects

layered source
real-world systems

scatteed source
real-world systems

Sizein LOC 500-2000 3000-5000 20,000+ 20,000+

Specifications Controlled Controlled Uncontrolled Uncontrolled

Module hierarchy Controlled Not controlled Not controlled Not controlled
Documented May be extracted Not obvious

Numberof programs| 3 setsof 15 to 20 3 setsof 5to 10 5to 10 3to5

programs(*) programs(**)
Sample lexical analyzer hypertext SGEN,WPIS, FSF programs
examples/mblems | expressiorevaluator | softwaremetrics FIELD, LSL/LCL Unix utilities

graphtraversal

room scheduler

* All programsin a set implementthe samespecfication and design.

** All programsin a set implementthe same specification.

WPIS: Wisconsin ProgramIntegration systemfrom University of Wisconsin[10]

[22, 23]

FIELD: Friendly IntegratedEnvironmentfor Learningand Developmentfrom Brown University [21]
LSL/LCL: Larch SharedLanguageand Larch C InterfaceLanguagefrom DEC SoftwareResearciCenter[9, 8]

SGEN: SynthesizerGeneratorfrom Gramma€ch, Inc.

FSF: Free Software Foundation
Unix is a registeredtrademarkof AT&T

Table 1. Summary of characteristics of proposed subject programs.

ule classification. We constrainourselvesto identifying
C programsbecauseC is currently a de facto standard
in the industry. We believe this fact makesC a good
choicefor experimentatiorsincetoday’snew systemsare
tomorrow’s legacy systems. The sourcecode and docu-
mentationfor all of the programswe identify is accessible
eitherfor free or for a fee. Hence,the only constraintthat
remainsto be satisfiedis whetherthe subjectprograms
form a representativessampleof real-world programs.

The fact that oraclesexist that provide the modular
classificationof thesesystemsamplies that they are likely
to bewell-designedandhencenot a representativeample
of real-worldprograms.However,thesesubjectprograms
mayberepresentativef well-designednodularprograms.
We contendthata SCRT will bemoreeffectivein recover-
ing modularsubsystem$or programswith bettermodular
designsas opposedo ill-designedprograms. Otherwise,
it will violate the garbage-ingarbage-ouprinciple. As-
sumingthis contention,our subjectprogramsmay be used
to establishupperboundson the effectivenesof SCRTs.

We classify the proposedsubjectprogramsinto four
categories: class assignments class projects layered-
source systems,and scatteed-souce systems. Table 1
summarizessome of the salient characteristicof these
programs.

The class assignmentsand projectswe proposeas
subjectprogramshavebeendevelopedas part of a senior
level software engineeringcourse at the University of

SouthwesterrLouisiana, Lafayette, LA. They have the

characteristichat they canbe partitionedinto setsof size

greaterthanone,with all programsin a setimplementing
the same specification. The use of class assignments
and projectswith identical specificationsis commonin
softwareengineeringexperimentg2, 11]. We introduce
two differences:

1. The classassignmentimplementingthe samespecifi-
cation alsoimplementthe samedesign(a designpro-
vided by the instructor).

2. That the classassignmentsind projectsadhereto the
principlesof modulardesignis ensuredy performing
a strict quality check consistingof designand code
reviews.

Though the class assignmentsand projects are by no
meansrepresentativeof real-world programs,they are
nonethelessraluable. They enablethe studying of the
effect on subsystemclassificationsdue to variationsin
designand/orimplementationdecisions,while factoring
out the effect of changedsn specifications.

The lasttwo categorieof programs—layered-source
and scattered-source—armdeed real-world programs.
These programsdefinitely satisfy some important real-
world need since they are being actively used and
maintained. The categorizationinto layered-sourceand
scattered-sourcés basedupon the organizationof the
source code in their distribution kits. In the layered-
sourcesystem,the codefor eachmoduleis either placed



into a separatdile [9, 8, 21] or in multiple files contained
in a separatalirectory[10, 22, 23]. The directoriesmay
befurtherorganizedinto hierarchiegepresentindjbraries.
Therefore,the physical organizationof the sourcecode
itself servesas an oraclefor their expectedmoduleclas-
sification. Additionally, someof the systemsusenaming
conventionsdesignedto identify componentsbelonging
to a module. For instance,the namesof all interface
functionsin a given module havea commonunique pre-
fix [9, 8]. Such conventionsprovide anothersource of
the expectedclassificationsand have already beenused
as an oracle by someresearchergor evaluatingSCRTs,
as illustrated by the following quote:
“The two capital letters preceding each of the Fortran
procedure names designate the subsystem in which the
designers placed the routine.” [11, Section IIl.E.2, page
755]

The scattered-sourcsystems asthe namesuggests,
do not follow any obvious convention either in orga-
nizing the sourcecode or in the naming of its compo-
nents.Nonethelesghesesystemalo performusefulfunc-
tions and are extensivelydeployed. Additionally, the au-
thors/maintainer®f theseprogramsare easily accessible
and may be utilized as oracles.

3 A framework for the congruencemeasure

This sectionestablishesa frameworkfor developingour
congruenceaneasure.The frameworkhasbeeninfluenced
by Basili and Rombach’sGoal/Question/Metrid GQM)
paradigm[1], Fenton’'smeasuremertheory basedframe-
work for software measureq7], and a presentationby
Bollmann [3].

A measue is comprisedof three components: (1)
an empirical relational systemconsistingof objectsand
empiricalrelations,(2) a numericalrelationalsystem,and
(3) a homomorphicmap from the empirical relational
systemto the numericalrelational system. This can be
restatedas: a measue is an assignmenbf a numberto
one or more entities such that certain inferencesabout
the entitiesmay be madeby using the numbersassigned
to theminsteadof using the entitiesthemselveg7]. The
framework of a measureconsistsof: (1) the purposeof
the measurgor the goal of defining the measure)(2) the
inferencego be madeusingthe measurgor the questions
it should help to answer),(3) the attributesof the entity
to be measuredand (4) the empirical relationsthat the
measureshould preserve.A measurds meaningfulonly
in the contextof the framework for which it is defined
(e.g.,it makesno senseo saythatthe temperatures two
feet). In therestof this sectionwe describehe framework
for our congruencemeasure.

The primary purposeof our congruencemeasures
to provide a capability to quantitatively compare SCs

recoveredby SCRIs. Our congruenceneasurequantifies

the degreeto which componentgroupedtogetherin one

SC are also groupedtogetherin anotherSC.

Definition: Two componentsare said to be differ-
ently placedin two SCsif theyarein the samesubsystem
in oneSChutin differentsubsystem the otherSC[20].

To completethe framework,we now describeheem-
pirical relationsthat the congruencemeasureshouldpre-
serve. The congruenceneasureshould assigna humeric
value to a pair of SCssuchthat it quantfies how simi-
lar the two SCsare, and a higher numeric value should
denotea greatersimilarity of the two SCs. Thus, our
measureshouldsatisfy the following relations:

R1. The numericvalue shouldbe normalized,i.e., bein
the range( to 1, inclusive, so that two congruence
valuescan be meaningfully compared.

R2. The value assignedshould be proportionalto the
number of componentscommonto both SCs,i.e.,
if the numberof componentslassifiedby both of
the SCsis low, their congruenceshouldalsobe low.

R3. The value assignedshouldbe inverselyproportional
to the numberof commoncomponentshatarediffer-
ently placed,.e., a highnumberof pairsof differently
placedcomponentshouldyield low congruence.
The useof the term“proportional” in theseempirical

relations makes them approximations. The conditions

when the measureassignsextremevalues,i.e., 0 and 1,

will helpto illuminate the intuition behindthe measure:

» Thevaluel shouldbe assignedo a pair of SCsif and
only if the two SCsare completelycongruent,.e., the
SCsclassifythe samesetof componentsand no pair of
componentsre differently placedin the two SCs.

» Thevalue( shouldbe assignedo a pair of SCsif and
only if they have nothing in common, which means
either the two SCs have at most one componentin
commonor all pairsof component£ommonto the two
SCsare differently placed

RelationsR2 and R3 conflict when the number of
componentscommonin two SCsis high and all pairs
of componentsre differently placed. However, the fact
that theseempirical relationsare approximateand havea
potentialconflict doesnot lessentheir utility since,asob-
servedby Fenton,”. .. the empiricalrelationswhich nec-
essarilyprecedeobjective measuremenare normally es-
tablishedinitially in approximatdorm by subjectivemea-
sures.”[7, pagel9]. “Oncewe haveidentified anattribute
anda meansof measuringt, we beginto accumulatelata.
Analyzing the resultsof this processleadsto the clarifi-
cationandreevaluatiorof the attribute. This in turn leads
to improvementdn the accuracyof measuremenand an
improvedscale.”[7, pagel8]. We expectour measurgdo
evolve also, but we believethis to be an importantstart.
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Figure 1. Example dendrogram HSCs.

4 Measure of congruencebetweenSCs

We now presentour measureof congruencéetweenSCs.
The sectionis organizedas follows. Section4.1 summa-
rizes the structureof the type of SCscomparedby our

congruencemeasure.ln Section4.2 a notion of distance
betweerpairsof componentwithin a classificationis de-
veloped. Thesepairwisedistancesareusedin Section4.3

to computethe distancebetweentwo SCs,takinginto ac-
countonly the componentglassifiedby both of the SCs.
This distancemeasuresatisfiesthe empirical relation R1

andtheinverseof relationR3in Section3. Finally, in Sec-
tion 4.4 a measurecalled the intersectionratio is defined
to satisfyrelationsR1 andR2. The congruenceneasures

thendefinedasa function of theintersectiorratio andthe

complementof the distancemeasureo satisfy empirical
relationsR1, R2, and R3.

4.1 Structure of SCs

A SCcreatesa setof subsystemsvhereeachsubsystenis
a setof programcomponentsWe restrictour measurdo
hierarchicalsubsystentlassificationdHSC). A HSCis a
classificationthat may be representedsa treewith inter-
mediatenodesinterpretedasrepresentingubsystemsind
with leaf nodesinterpretedasrepresentingprogramcom-
ponents. The subsystemassociatedvith an intermediate
node consistsof all of the componentst the leaf of the
subtreerootedat that node. A HSC hasthe propertythat:
A programcomponentcorrespondingo a leaf node
belongsto the subsystemsassociatedwith all of its
ancestors.
and as corollaries:
» The subsystentorrespondindgo the root nodecontains
all of the programcomponentglassifiedby the HSC.

* If two programcomponentdelongto a subsystemthen
they belongto everylarger subsystentontainingeither
of them (since the size of the subsystemdncreases
monotonicallyasa HSC tree is ascended).

Although severalmodular SCRTs generateHSCs, the hi-
erarchyof a HSC doesnot necessarilycorrespondto a
modulehierarchy(suchasthatdueto inheritance).On the
contrary,a HSC actually gives not one, but severalmod-
ule subsystemclassfications with a relative corfidence
level assignedto eachsubsystem. A lower corfidence
level is associatedvith a subsystencorrespondingo a
nodecloserto the root node. Assumethat the difference
betweenthe confidencelevels of any pair of parentand
child intermediatenodesis constant,say 1, and that the
confidencdevel of theroot nodeis 0, thenthe corfidence
level of eachintermediatenode correspondgo the dis-
tanceof that nodefrom theroot, i.e., its depth. We refer
to suchHSCsas simple HSCs.

There are some HSCs in which the differencebe-
tweenthe confidencelevels of pairs of parentand child
intermediatenodesis not constant. SuchHSCsare com-
monly called dendograms[13]. In a dendrograma nu-
mericcorfidencelevelis assignedo eachsubsystemsuch
that the confidencelevel monotonicallyincreasedrom a
child nodeto a parentnode. A simple HSC may be con-
sideredasa specialtype of dendrogranby usingthedepth
of an intermediatenode as its confidencelevel. Hence-
forth, we will assumehatall HSCsare dendrograms.

Figure 1 presentsa diagrammaticrepresentatiorof
two dendrogramHSCsreferredto asX andY. Thefirst
HSC classfies the componentsA..G' and J, while the
secondneclassifieshecomponentsi..GG and K. They-
axisin eachof thesediagramsshowsthe confidencdevel
for the respectiveclassfication. The length of segments



A B C D FE F G J

M; | L(M;) Subsystenat M; M; | L(M;) Subsystenat M;
My 0.6 {4,B,C} Moy 0.75 {4, B}
Mia 0.8 {E,F} Maya 0.75 {C,D}
M3 0.4 {D,E,F,G} Mos 0.8 {E,F}
My 0.3 {A,B,C,D,E,F G,J} Moy 0.6 {A,B,C, D}
Moy 0.55 {E F,G K}
Mos 0.3 {A,B,C,D,E, F.G, K}
X Y
Table 2. Subsytems corresponding to the intermediate nodes of the HSCs in Figure 1.
A 0 A 0
B 06 0 B 07 0
¢ 06 06 O ¢ 06 06 0
D 03 03 03 0 D 06 06 07 0
E 03 03 03 04 O E 03 03 03 03 0
F 03 03 03 04 08 O F 03 03 03 03 08 0
G 03 03 03 04 04 04 O G 03 03 03 03 055 0556 0
J 03 03 03 03 03 03 03 0 K 03 03 03 03 055 055 055 0

A B ¢c D FE a G K

PDM X

PDM Y

Table 3. PDMs for the HSCs of Figure 1 computed using the confidence level of the nearest common ancestor of

each component pair.

along this axis betweentwo nodesis proportionalto the
differencein their confidencdevels. Table2 enumerates
the subsystemsorrespondingo the intermediatenodes
of dendrogramHSCs X andY.

4.2 Distance betweencomponentsin a HSC

A pair of componentsclassifiedby a HSC are never
differently placedsince they are always placedtogether
in the root subsystemThe booleannatureof the property
“dif ferently placed”makesit too weakto compareHSCs.
Hence,it is commonto introduce anotherproperty, the
distancebetweertwo componentsn anHSC, alsoknown
as pairwise distance.

Two pairwise distancemeasureommonly usedin
the literature are as follows. The distancebetweentwo
componentg; andp, in a HSC that classifiesboth is:
(1) the length of the shortestpath betweenp; and p»,
ignoringthe directionof theedgesn theHSC[13], or (2)
the confidencelevel of the nearestcommonancestorof
p1 andps in the HSC[6]. Thesearebut two of the many
pairwise distancemeasureghat have beenproposed[5,
19, 26].

To define our congruencemeasurefor a HSC, it is
sufficient to havejust the pairwisedistancedetweenreach
pair of componentsn the HSC, for the distancemeasure

of choice. Thisinformationcanberepresentedsamatrix,
calleda PDM. A PDM is assumedo be indexedby the
componentnames. Let P representhe universeof all
component®f all softwaresystemsandlet R, represent
the domain of all non-negativereal numbers. A PDM
d hasthe signatured : P x P — R4,. We usethe
symbolPDM to denotethedomainof all pairwisedistance
matrices. R R
Table3 presentshe PDMsfor theHSCsX andY of
Figurel. The PDMsarecreatedusingthe secondpairwise
distancemeasurej.e., the confidenceevel of the nearest
commonancestorof pairsof components.

4.3 Measure of the differencebetweenHSCs

The differencebetweenHSCsmay be measuredn terms
of their correspondingpairwisedistancematrices(PDMs)
[13]. Previousworksin numericaltaxonomyhaveddined
suchmeasuredor comparingHSCsthat classify exactly
identicalsetsof componentstypically the entireuniverse.
HSCsproducedby SCRTs do not satisfy this constraint.
In the caseof SCRIs, evenif two techniquesclassify
the sametypes of program componentsthey may not
agreeupon the specific componentghey classify. This
is becausea techniqguemay not classify all of the pro-
gram componentsof a particular type, usually leaving



out componentsthat do not participatein the intercon-
nectionrelation(s)it uses[14]. A PDM is, therefore,a
partial function, i.e., it doesnot map every possiblepair
of componentgo a real numberin thatit only givesthe
pairwise distancesbetweencomponentlassifiedby the
correspondingHSC.

Definition: Let £ : PDM — 27 be the setof all
componentsn the HSC representedby a PDM. That is,
E(d) givesthe setof componentsn the HSC for which
d is a PDM. R R

For example,for PDM X and PDM Y of Ta-
ble 3, E(PDM )?) = {A,B,C,D,E,FG,J} and
E(PDM Y) = {A,B,C,D E,F G K}.

Let PDMs d; and d» representtwo HSCs of the
same program recoveredusing different SCRIs. Then
E(dy) N E(d2) givesthe setof componentslassifiedby
both d; andd,. Thus, E(PDM X) NEPDM Y)
{A,B,C,D,E,F,G}.

We adaptthe previouslydefinedmeasure®f differ-
encebetweenPDMs by constrainingthemto the domain
over which both functionsof the PDMs aredefined. The
adaptedmeasure®f differenceare statedbelow.
Definition: LetA: PDM x PDM — R beafunction
thatgivesthe normalized "difference'betweertwo PDMs:
04 A (dl,dg) =

max {|dy(z1, 22) — da(21,22)| 1 21,20 € 7}

Z di(z1,22)—d2 (21,22

o As(dy, da) = \/ZI'ZQEZ o i
VE1Z1021-1)

‘d](Z],Zg)—dg(Zl,Zg)‘

5121(12]-1)

whered; andd; arePDMsandZ is the setof components

classifiedby both of the PDMs, i.e., Z = E(d;) N E(ds).

Theseare, of course, but three of the many proposed

pairwisedistancemeasurebetweenPDMs thathavebeen

proposedin the literature[5, 19, 24, 26].

The matrix in Table 4 enumerateghe intermediate
stepsfor computing A, (PDM X, PDM Y). A cell
in this matrix representghe absolutedifferenceof the
pairwisedistancesetweera pair of componentsn HSCs
X andY. Notice thatthe components/ and K do not
appeaiin thecalculationsinceeachof themis classifiedby
only oneof theHSCs,notboth. A, (PDM X, PDM Y)
is 0.45, the maximumof the absolutedifferencesdetween
all pairwise distances.

N Ag(dl)dz) — z1,20€7Z

4.4 Our congruencemeasute for HSCs

Definition: Theintersectionratio, I : PDM x PDM —
R4, of PDMs d; andd; is:

|E(dy) N E(d,)|

T )= B U]

A 0

B 015 0

¢ 0 0 0

D 03 03 045 0

E 0 0 0 0.1 0

F 0 0 0 0.1 0 0

G 0 0 0 0.1 015 02 0
A B C D F F G

A (PDM X,PDM 1?) _

max{|PDMf( ~ PDM }7|} = 0.45

Table 4. Calculation of A;(PDM X,PDM V) for PDMs
of Table 3. Each cell represents the absolute difference
of the pairwise distances between two components in
PDM X and PDM Y.

Theintersectiorratiois 1 whenboth of therecovered
HSCs organize the sameset of componentsand it is 0
if they organize entirely different sets of components.
Therefore whencomparingwo HSCs,a high intersection
ratio is “good’ and a low intersectionratio is “bad,”
which satisfiesour framework’s relation R2. For our
running exampleof PDM X and PDM Y of Table 3,
I()A(, Y) = g = 0.78. The congruencef two HSCscan
now be measureds follows.

Definition: The measure of congruence, i : PDM x

PDM — Ry1, of PDMs d; andds is given by:
/,L(dl,dg) = I(dl, dg) X (1 — A(dl, d2))

Generally speaking,one may chooseany of the A
functionsgivenin Sectiond.3andcomputethe PDM using
any of the techniquessuggestedn Section4.2.

Thus,u(PDM X, PDM Y) = (0.78)x(1-0.45) =
0.429 for our example.

5 Conclusions

The problemof recoveringthe modular subsystenctlas-
sification of legacy systemsis an importantissuein the
reverseengineeringof software. Severaltechniqueshave
beenproposedfor recoveringsuch subsystenctlassifica-
tions[14]. Thereis now a considerableollectionof tech-
nigues,andthe time is now right to experimentallyeval-
uate them.

To evaluatea subsystentlassificatiorrecoverytech-
nigue, one must determinethe similarity, or congruence,
of a recoveredclassificationwith an expectedclassifica-
tion. This requirestwo things: (1) the existenceof ei-
ther a set of datafor which the expectedclassfications
areknown or an oracle—a mechanisndifferentfrom the
programitself—that can provide the expectedclassifica-
tion, and(2) a comparator—a mechanismnto comparethe
output of a programand the expectedoutput—to quanti-



tatively comparethe recoveredclassificationwith the ex-

pectedclassification. This paperhas addressedoth re-

guirements.We have proposeda set of widely usedand

easily accessibleas benchmarkdor subsystenctlassifica-
tion recoverytechniquesrecoveringmodular subsystem
classificationgor programsaritten in the C programming
language.We havealso presentech measurdo quantita-
tively determinethe congruencéetweentwo hierarchical
subsystenclassifications.

Our congruencemeasureassignsa numberin the
rangeof [0..1] to a pair of hierarchicalsubsystentlassi-
fications. The higherthe congruencaneasurethe greater
the similarity betweenthe subsystentlassifications.Two
subsystentlassification@recompletelycongruentf their
congruencameasureis 1 and completelyincongruentif
their congruencemeasures 0.

Evaluatinga subsystentlassificationrecoverytech-
nigue requirescomparinga recoveredclassificationwith
an expectedclassification. The effectivenessof a tech-
nigue is determinedby the congruenceof its recovered
subsystentlassificationsvith the correspondingxpected
subsystentlassfications. This seemgo createa chicken-
and-eggproblemin that, if we know the subsystentlas-
sification of a softwaresystem,then we do not needto
recoverit. The problemis, however,superficial,because
our congruenceneasurds intendedfor usein controlled
experimentsspecifically designedto evaluatehow well
a techniqueperforms,to comparetwo techniquesor to
identify other causalfactorsaffecting the recoveredsub-
systemclassification. Under such controlled conditions,
it is quite appropriateto know the expectedsubsystem
classification. The actualdesignof theseexperimentss
beyondthe scopeof this paper.
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