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Abstract
Severalreverseengineeringtechniquesclassify software
systemcomponentsinto subsystems.Thesetechniquesare
designedto discoversuchclassificationswhentheclassifi-
cationsareunknown.Thetechniquesare testedandevalu-
ated,however,bymatchingtheclassificationstheyrecover
againstexpectedclassifications. Severalsuchtechniques
maybe compared by experimentallyevaluatingtheir per-
formanceon thesamesetof software systems.Two things
are neededto ensure experimentrepeatability: (1) a set
of “r eal-world” software systemswhoseexpectedsubsys-
temclassificationsare known,and (2) an objectivecrite-
rion to quantitativelydeterminethe similarity of subsys-
tem classifications.This paper contributesto both needs
by identifying a set of widely usedand easily accessible
software systemswhosemodular decompositioneither is
documentedor can be easily inferred from their design
philosophy,andby presentinga measure to quantitatively
determinethecongruencebetweenhierarchical subsystem
classifications.

1 Intr oduction

Several reverseengineeringtechniqueshave been de-
signedto classify the componentsof a softwaresystem
into subsystemswith the intentof aiding reengineeringor
programunderstanding.Sucha technique,called a sub-
systemclassificationrecoverytechnique(SCRT), takesas
its input someinterconnectionrelationsbetweenthecom-
ponentsof a programandoutputsa classificationof these
componentsinto subsystems.The classificationmay be
performedto discoverthe modulararchitectureof undoc-
umentedlegacy code[15, 17, 18], or to group program
componentsthatarerelatedto thesameerror [11], or sim-
ply to imposea structureupon an otherwiselarge, com-
plex, and unstructureddata[4, 16].

To date,at leastfourteentechniqueshavebeenpro-
posedfor classifying software subsystems[14]. These
techniqueshave beenempirically evaluatedby their de-
signers,typically within the contextof their laboratories
or projects. This paper is part of our continuing effort
to comparativelyevaluateSCRTs. In an earlierwork, the
first author of this paperhas presenteda unified frame-
work to describeSCRTs using a consistentterminology
andnotation[14]. This paperestablishessomeof the pa-
rametersnecessaryto validateandcompareSCRTs using
controlled experiments.

The subsystemclassification(SC) problem belongs
to the generalproblem of classifying the elementsof a
population. This classof problemshasbeenstudiedfor
over 100 years,spanningthe fields of the life sciences,
the social sciences,medicine, the earth sciences,and
engineering. In the context of computing,classification
problemshavebeeninvestigatedin the realm of pattern
recognitionandinformationretrieval. Thereis, therefore,
a rich body of literature investigatingvariousaspectsof
classificationproblems. In spite of this fact, thereis no
classificationtechniquethat, if directly appliedto a new
classificationproblem,will guaranteegoodresults.This is
becauseclassification techniquesare essentiallyheuristic
andrely uponknowledgespecificto theproblemdomain.

There is no single, general purposeclassification
technique,but researchinto classificationproblemshasled
to classesof techniques,i.e., generictemplates,that may
be customizedfor individual applications. Researchers
havealsoidentifieda setof genericpropertiesthatmaybe
usedto evaluateclassification techniques.Onesuchprop-
erty that is also relevantfor evaluatingSCRTs is: How
effective is a SCRT in recoveringthe expectedclassifica-
tions?

Evaluatingthe effectivenessof a SCRT is no differ-
ent thanevaluatingthe effectivenessof any otherheuris-
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tic technique. To do so, a program,or a technique,is
subjectedto severaldifferent inputs and its outputsare
comparedagainstthe expectedoutputs.Testingthe effec-
tivenessof suchtechniquesrequireseithertheexistenceof
a setof datafor which the expectedresultsareknown or
the existenceof an oracle—a mechanismdifferent from
the programitself—that can provide the expectedoutput
[12]. A comparator—a mechanismto comparetheoutput
of a programandtheexpectedoutput—is alsorequiredto
evaluatethe resultsof a test. WhentestingSCRTs, so far
therolesof theoracleandthecomparatorhavemostoften
beencombinedinto oneby havingthe similarity between
an outputclassificationandtheexpectedclassificationas-
sessedby a tester, typically a systemanalyst,a maintainer
of thesubjectprogram,or thedesignerof theSCRT. Such
an assessmentis typically doneby having a testercom-
parean outputclassificationwith a “mentalmodel” of the
correspondingexpectedclassification [16, 25].

A systemanalyst,a maintainerof a subjectprogram,
or the SCRT designerare valuableoracles,but not ex-
plicitly representingtheclassificationstheyexpectrenders
suchmethodsof testingnon-repeatable.That is, it does
not guaranteethat the sametesterwould give the same
assessmentat a differenttime, or that two differenttesters
would give the sameresult.

Even if the expectedclassificationswere explicitly
represented,usinghumantestersascomparatorsalsoren-
ders the resultsnon-repeatable.This is becauseSCRTs,
beingheuristics,arenot likely to producepreciselytheex-
pectedclassifications.Hence,a SCRT may be evaluated
by how similar the classificationsit recoversare to those
expected.A manualassessmentof the degreeof similar-
ity betweenclassificationsis subjectto humanerrorasthe
size of the classificationsincrease.

Repeatabilityis a fundamentalrequirementfor sci-
entific experiments.At the very minimum, experiments
shouldbe repeatablewithin a single laboratory. Ideally,
they should be repeatableby different researchgroups.
Until now, the evaluationof SCRTs has been rendered
non-repeatablewithin a laboratorybecause:(1) the ex-
pectedclassificationswerenot explicitly represented,and
(2) thecomparisonof theclassificationwasnot objective.
SCRT evaluationhasalsobeennon-repeatableacrossmul-
tiple laboratoriesbecausetheyhavemostoftenbeentested
with subjectprogramsthat wereproprietary,thusmaking
the datainaccessibleto other researchers.

To aid in the designof repeatableexperimentsfor
evaluatingSCRTs that recovermodularsubsystems,this
paperproposes:(1) a set of subjectprograms,and (2) a
measureof congruencethatmaybe usedasa comparator
of classifications.Theproposedsubjectprogramshavethe
propertythat they are widely used,are easily accessible,
and,aboveall, their expectedsubsystemclassificationsare

known or can be easily inferred basedupon their design
philosophy.Theseprogramshavethepotentialto become
benchmarksfor evaluatingSCRTs.

Therestof this paperis organizedinto the following
sections. In Section2 we discussthe proposedset of
benchmarkprogramsfor evaluatingSCRTs. In Section
3 we establisha measurementtheory basedframework
for developingour congruencemeasure.In Section4 we
presentour measureof congruencebetweenSCs.Finally,
in Section5 we presentour conclusions.

2 Proposedsubject programs

Choosingsubjectprogramsfor experimentallyeval-
uating programanalysistools requiresbalancingat least
three constraints. First, the subjectprogramsshould be
representativeof real-world programsin order to draw
meaningful inferencesfrom the data gathered. Second,
thereshouldexistoraclesthatgive theexpectedresultsof
the analysesagainstwhich the outputof the tool may be
evaluated.Third, the subjectprogramsshouldbe acces-
sible to other researchers.

Thesethreeconstraintsaredifficult to satisfysimul-
taneously,especiallywhentheprogramsareto beusedfor
the comparativeevaluationof SCRTs. Thereare at least
four reasons.First, theremay not be a consensusamong
researcherson whatconstitutesa representativesampleof
real-worldprograms.For example,cana randomsample
of public domainprogramsbe treatedasa representative
sampleof proprietaryprograms?Second,theremay not
bea consensuson theoraclesto beused.Third, assuming
a consensusis achievedon the first two reasons,making
progresstowardsatisfyingoneconstraintmay negatively
affect the other. That is, we may find a randomsample
of real-worldprograms,but not haveoraclesthatprovide
theresultsexpectedfrom analyzingthem. Last, theanaly-
sesor tools implementingvariousSCRTs may havebeen
designedfor differentprogramminglanguages,making it
impossibleto evaluatethemona commonsetof programs.

Such disagreements,trade-offs, or experimentation
difficulties are common to experimentsin any domain.
Theydo notdiminishtheneedfor usingstandardtestdata,
but theyinsteademphasizethatcarefulattentionshouldbe
paid to choosingsuchdata,and that the resultsfrom any
experimentusing this datashouldbe analyzedwithin the
context of theselimitations.

Wehaveidentifieda setof softwaresystemsthatmay
be usedto evaluateSCRTs that recoverfrom C programs
subsystemclassifications representingmodules. Notice
the emphasison modules. The programsare not being
proposedto evaluateSCRTs that recoverother subsys-
tem classifications. The programset is constrainedto the
evaluationof modularSCRTs becausewe haveidentified
an oraclefor eachprogramthat gives its expectedmod-
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ClassAssignments ClassProjects layered source
real-world systems

scattered source
real-world systems

Sizein LOC 500-2000 3000-5000 20,000+ 20,000+

Specifications Controlled Controlled Uncontrolled Uncontrolled

Modulehierarchy Controlled Not controlled
Documented

Not controlled
May be extracted

Not controlled
Not obvious

Numberof programs 3 setsof 15 to 20
programs(*)

3 setsof 5 to 10
programs(**)

5 to 10 3 to 5

Sample
examples/problems

lexical analyzer
expressionevaluator
graphtraversal

hypertext
softwaremetrics
room scheduler

SGEN,WPIS,
FIELD, LSL/LCL

FSFprograms
Unix utilities

* All programsin a set implement the samespecification and design.
** All programsin a set implement the samespecification.
WPIS: WisconsinProgramIntegrationsystemfrom University of Wisconsin[10]
SGEN: SynthesizerGeneratorfrom GrammaTech, Inc. [22, 23]
FIELD: Friendly IntegratedEnvironmentfor Learningand Developmentfrom Brown University [21]
LSL/LCL: Larch SharedLanguageand Larch C InterfaceLanguagefrom DEC SoftwareResearchCenter[9, 8]
FSF: Free Software Foundation
Unix is a registeredtrademarkof AT&T

Table 1. Summary of characteristics of proposed subject programs.

ule classification. We constrainourselvesto identifying
C programsbecauseC is currently a de facto standard
in the industry. We believe this fact makesC a good
choicefor experimentationsincetoday’snew systemsare
tomorrow’s legacysystems.The sourcecodeand docu-
mentationfor all of theprogramswe identify is accessible
eitherfor freeor for a fee. Hence,theonly constraintthat
remainsto be satisfiedis whetherthe subjectprograms
form a representativesampleof real-worldprograms.

The fact that oraclesexist that provide the modular
classificationof thesesystemsimplies that theyarelikely
to bewell-designedandhencenot a representativesample
of real-worldprograms.However,thesesubjectprograms
mayberepresentativeof well-designedmodularprograms.
WecontendthataSCRT will bemoreeffectivein recover-
ing modularsubsystemsfor programswith bettermodular
designsas opposedto ill-designedprograms.Otherwise,
it will violate the garbage-in,garbage-outprinciple. As-
sumingthis contention,our subjectprogramsmaybeused
to establishupperboundson the effectivenessof SCRTs.

We classify the proposedsubjectprogramsinto four
categories: class assignments, class projects, layered-
source systems,and scattered-source systems. Table 1
summarizessomeof the salient characteristicsof these
programs.

The classassignmentsand projectswe proposeas
subjectprogramshavebeendevelopedaspart of a senior
level software engineeringcourse at the University of

SouthwesternLouisiana, Lafayette, LA. They have the
characteristicthat theycanbe partitionedinto setsof size
greaterthanone,with all programsin a set implementing
the same specification. The use of class assignments
and projectswith identical specificationsis common in
softwareengineeringexperiments[2, 11]. We introduce
two differences:
1. The classassignmentsimplementingthe samespecifi-

cation also implementthe samedesign(a designpro-
vided by the instructor).

2. That the classassignmentsand projectsadhereto the
principlesof modulardesignis ensuredby performing
a strict quality check consistingof designand code
reviews.

Though the class assignmentsand projects are by no
meansrepresentativeof real-world programs, they are
nonethelessvaluable. They enablethe studying of the
effect on subsystemclassificationsdue to variations in
designand/or implementationdecisions,while factoring
out the effect of changesin specifications.

The last two categoriesof programs—layered-source
and scattered-source—areindeed real-world programs.
Theseprogramsdefinitely satisfy some important real-
world need since they are being actively used and
maintained. The categorizationinto layered-sourceand
scattered-sourceis basedupon the organization of the
source code in their distribution kits. In the layered-
sourcesystem,the codefor eachmoduleis eitherplaced
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into a separatefile [9, 8, 21] or in multiple files contained
in a separatedirectory [10, 22, 23]. The directoriesmay
befurtherorganizedinto hierarchiesrepresentinglibraries.
Therefore,the physical organizationof the sourcecode
itself servesas an oraclefor their expectedmoduleclas-
sification. Additionally, someof the systemsusenaming
conventionsdesignedto identify componentsbelonging
to a module. For instance,the namesof all interface
functionsin a given modulehavea commonuniquepre-
fix [9, 8]. Such conventionsprovide anothersourceof
the expectedclassificationsand have alreadybeenused
as an oracle by someresearchersfor evaluatingSCRTs,
as illustratedby the following quote:

“The two capital letters preceding each of the Fortran
procedure names designate the subsystem in which the
designers placed the routine.” [11, Section III.E.2, page
755]

The scattered-sourcesystems,as the namesuggests,
do not follow any obvious convention either in orga-
nizing the sourcecode or in the naming of its compo-
nents.Nonetheless,thesesystemsdo performusefulfunc-
tions andareextensivelydeployed.Additionally, the au-
thors/maintainersof theseprogramsare easily accessible
and may be utilized as oracles.

3 A framework for the congruencemeasure

This sectionestablishesa framework for developingour
congruencemeasure.The frameworkhasbeeninfluenced
by Basili and Rombach’sGoal/Question/Metric(GQM)
paradigm[1], Fenton’smeasurementtheorybasedframe-
work for software measures[7], and a presentationby
Bollmann [3].

A measure is comprisedof three components:(1)
an empirical relational systemconsistingof objectsand
empiricalrelations,(2) a numericalrelationalsystem,and
(3) a homomorphicmap from the empirical relational
systemto the numericalrelational system. This can be
restatedas: a measure is an assignmentof a numberto
one or more entities such that certain inferencesabout
the entitiesmay be madeby using the numbersassigned
to them insteadof using the entitiesthemselves[7]. The
frameworkof a measureconsistsof: (1) the purposeof
the measure(or the goal of defining the measure),(2) the
inferencesto bemadeusingthemeasure(or thequestions
it shouldhelp to answer),(3) the attributesof the entity
to be measured,and (4) the empirical relationsthat the
measureshouldpreserve.A measureis meaningfulonly
in the context of the framework for which it is defined
(e.g.,it makesno senseto saythat the temperatureis two
feet). In therestof this sectionwe describetheframework
for our congruencemeasure.

The primary purposeof our congruencemeasureis
to provide a capability to quantitatively compareSCs

recoveredby SCRTs. Our congruencemeasurequantifies
the degreeto which componentsgroupedtogetherin one
SC are also groupedtogetherin anotherSC.

Definition: Two componentsare said to be differ-
entlyplacedin two SCsif theyarein thesamesubsystem
in oneSCbut in differentsubsystemsin theotherSC[20].

To completetheframework,we nowdescribetheem-
pirical relationsthat the congruencemeasureshouldpre-
serve. The congruencemeasureshouldassigna numeric
value to a pair of SCssuch that it quantifies how simi-
lar the two SCsare, and a higher numericvalue should
denotea greatersimilarity of the two SCs. Thus, our
measureshouldsatisfy the following relations:
R1. The numericvalueshouldbe normalized,i.e., be in

the range
�

to � , inclusive, so that two congruence
valuescan be meaningfullycompared.

R2. The value assignedshould be proportional to the
number of componentscommon to both SCs, i.e.,
if the numberof componentsclassifiedby both of
the SCsis low, their congruenceshouldalsobe low.

R3. The valueassignedshouldbe inverselyproportional
to thenumberof commoncomponentsthatarediffer-
entlyplaced,i.e.,ahighnumberof pairsof differently
placedcomponentsshouldyield low congruence.
Theuseof the term“proportional” in theseempirical

relations makes them approximations. The conditions
when the measureassignsextremevalues,i.e.,

�
and � ,

will help to illuminate the intuition behindthe measure:
• The value � shouldbe assignedto a pair of SCsif and

only if the two SCsare completelycongruent,i.e., the
SCsclassifythesamesetof componentsandno pair of
componentsaredifferently placedin the two SCs.

• The value
�

shouldbe assignedto a pair of SCsif and
only if they have nothing in common, which means
either the two SCs have at most one componentin
commonor all pairsof componentscommonto thetwo
SCsare differently placed.

RelationsR2 and R3 conflict when the numberof
componentscommon in two SCs is high and all pairs
of componentsare differently placed. However,the fact
that theseempirical relationsareapproximateandhavea
potentialconflict doesnot lessentheir utility since,asob-
servedby Fenton,“ ����� the empiricalrelationswhich nec-
essarilyprecedeobjectivemeasurementare normally es-
tablishedinitially in approximateform by subjectivemea-
sures.”[7, page19]. “Oncewe haveidentified anattribute
anda meansof measuringit, we beginto accumulatedata.
Analyzing the resultsof this processleadsto the clarifi-
cationandreevaluationof theattribute.This in turn leads
to improvementsin the accuracyof measurementandan
improvedscale.”[7, page18]. We expectour measureto
evolvealso,but we believethis to be an importantstart.
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Figure 1. Example dendrogram HSCs.

4 Measure of congruencebetweenSCs

We now presentour measureof congruencebetweenSCs.
The sectionis organizedas follows. Section4.1 summa-
rizes the structureof the type of SCs comparedby our
congruencemeasure.In Section4.2 a notion of distance
betweenpairsof componentswithin a classificationis de-
veloped.Thesepairwisedistancesareusedin Section4.3
to computethedistancebetweentwo SCs,taking into ac-
countonly the componentsclassifiedby both of the SCs.
This distancemeasuresatisfiesthe empirical relation R1
andtheinverseof relationR3in Section3. Finally, in Sec-
tion 4.4 a measurecalled the intersectionratio is defined
to satisfyrelationsR1 andR2. Thecongruencemeasureis
thendefinedasa functionof the intersectionratio andthe
complementof the distancemeasureto satisfy empirical
relationsR1, R2, and R3.

4.1 Structur e of SCs

A SCcreatesa setof subsystemswhereeachsubsystemis
a setof programcomponents.We restrictour measureto
hierarchicalsubsystemclassifications(HSC). A HSC is a
classificationthatmay be representedasa treewith inter-
mediatenodesinterpretedasrepresentingsubsystemsand
with leaf nodesinterpretedasrepresentingprogramcom-
ponents.The subsystemassociatedwith an intermediate
nodeconsistsof all of the componentsat the leaf of the
subtreerootedat that node.A HSChasthepropertythat:

A programcomponentcorrespondingto a leaf node
belongsto the subsystemsassociatedwith all of its
ancestors.

and as corollaries:
• The subsystemcorrespondingto the root nodecontains

all of the programcomponentsclassifiedby the HSC.

• If two programcomponentsbelongto a subsystem,then
theybelongto everylargersubsystemcontainingeither
of them (since the size of the subsystemsincreases
monotonicallyas a HSC tree is ascended).

Although severalmodularSCRTs generateHSCs,the hi-
erarchyof a HSC doesnot necessarilycorrespondto a
modulehierarchy(suchasthatdueto inheritance).On the
contrary,a HSC actuallygivesnot one,but severalmod-
ule subsystemclassifications with a relative confidence
level assignedto each subsystem. A lower confidence
level is associatedwith a subsystemcorrespondingto a
nodecloserto the root node. Assumethat the difference
betweenthe confidencelevels of any pair of parentand
child intermediatenodesis constant,say � , and that the
confidencelevel of the root nodeis � , thentheconfidence
level of each intermediatenode correspondsto the dis-
tanceof that nodefrom the root, i.e., its depth. We refer
to suchHSCsas simple HSCs.

There are someHSCs in which the differencebe-
tween the confidencelevels of pairs of parentand child
intermediatenodesis not constant.SuchHSCsare com-
monly called dendrograms[13]. In a dendrogram,a nu-
mericconfidencelevel is assignedto eachsubsystem,such
that the confidencelevel monotonicallyincreasesfrom a
child nodeto a parentnode. A simpleHSC may be con-
sideredasa specialtypeof dendrogramby usingthedepth
of an intermediatenodeas its confidencelevel. Hence-
forth, we will assumethat all HSCsaredendrograms.

Figure 1 presentsa diagrammaticrepresentationof
two dendrogramHSCsreferredto as

��
and

��
. The first

HSC classifies the components�����
	 and � , while the
secondoneclassifiesthecomponents�����
	 and � . They-
axis in eachof thesediagramsshowstheconfidencelevel
for the respectiveclassification. The length of segments
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Table 2. Subsytems corresponding to the intermediate nodes of the HSCs in Figure 1.
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Table 3. PDMs for the HSCs of Figure 1 computed using the confidence level of the nearest common ancestor of
each component pair.

along this axis betweentwo nodesis proportionalto the
differencein their confidencelevels. Table2 enumerates
the subsystemscorrespondingto the intermediatenodes
of dendrogramHSCs

DE
and

DF
.

4.2 Distancebetweencomponentsin a HSC

A pair of componentsclassified by a HSC are never
differently placedsince they are always placedtogether
in the root subsystem.Thebooleannatureof theproperty
“dif ferently placed”makesit too weakto compareHSCs.
Hence,it is commonto introduceanotherproperty, the
distancebetweentwo componentsin anHSC,alsoknown
as pairwise distance.

Two pairwisedistancemeasurescommonlyusedin
the literature are as follows. The distancebetweentwo
componentsL � and L � in a HSC that classifiesboth is:
(1) the length of the shortestpath betweenL � and L � ,
ignoringthedirectionof theedgesin theHSC[13], or (2)
the confidencelevel of the nearestcommonancestorof
L � and L � in theHSC [6]. Thesearebut two of the many
pairwise distancemeasuresthat have beenproposed[5,
19, 26].

To define our congruencemeasurefor a HSC, it is
sufficient to havejust thepairwisedistancesbetweeneach
pair of componentsin the HSC, for the distancemeasure

of choice.This informationcanberepresentedasamatrix,
called a PDM. A PDM is assumedto be indexedby the
componentnames. Let M representthe universeof all
componentsof all softwaresystems,andlet NPO represent
the domain of all non-negativereal numbers. A PDMQ

has the signature
QSR MUTAMWVX NPO . We use the

symbolPDM to denotethedomainof all pairwisedistance
matrices.

Table3 presentsthePDMsfor theHSCs
DE

and
DF

of
Figure1. ThePDMsarecreatedusingthesecondpairwise
distancemeasure,i.e., the confidencelevel of the nearest
commonancestorof pairs of components.

4.3 Measure of the differ encebetweenHSCs

The differencebetweenHSCsmay be measuredin terms
of their correspondingpairwisedistancematrices(PDMs)
[13]. Previousworksin numericaltaxonomyhavedefined
suchmeasuresfor comparingHSCsthat classify exactly
identicalsetsof components,typically theentireuniverse.
HSCsproducedby SCRTs do not satisfy this constraint.
In the caseof SCRTs, even if two techniquesclassify
the sametypes of program components,they may not
agreeupon the specific componentsthey classify. This
is becausea techniquemay not classify all of the pro-
gram componentsof a particular type, usually leaving
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out componentsthat do not participatein the intercon-
nectionrelation(s) it uses[14]. A PDM is, therefore,a
partial function, i.e., it doesnot map every possiblepair
of componentsto a real numberin that it only gives the
pairwisedistancesbetweencomponentsclassifiedby the
correspondingHSC.

Definition: Let
( R K 0 � X ���

be the set of all
componentsin the HSC representedby a PDM. That is,(�� Q��

gives the set of componentsin the HSC for whichQ
is a PDM.

For example, for
K 0 � DE

and
K 0 � DF

of Ta-
ble 3,

(�� K 0 � DE ��� �����7�����/��04��(��7*>��6���=>�
and(�� K 0 � DF �	� �����7�����/��04��(��<*5��6���@��

.
Let PDMs

Q �
and

Q �
representtwo HSCs of the

sameprogram recoveredusing different SCRTs. Then(�� Q � ��
 (�� Q � �
gives the setof componentsclassifiedby

both
Q �

and
Q �

. Thus,
(�� K 0 � DE �
 (�� K 0 � DF ���

���%�������/��04�7(;�<*5��6��
.

We adaptthe previouslydefinedmeasuresof differ-
encebetweenPDMs by constrainingthemto the domain
over which both functionsof the PDMs aredefined.The
adaptedmeasuresof differencearestatedbelow.
Definition: Let � R K 0 � T K 0 � X N�� � beafunction
thatgivesthenormalized "difference"betweentwo PDMs:
• � � � Q � � Q � �������� ��� Q � ��� � ��� � ��,Q � ��� � ��� � � � R � � ��� �! #" �
• � � � Q � � Q � �	�

$ %&('*) &,+.-0/1 2�3*46573*8 5:9:;=<>2.9.46573*8?5�97;A@ 9B 39DC E!C 4 C E!C <	F7;
• G�H�I�J�K�L�J0M7N!O PQ 37R Q 9�S / C 2 3 465 3 8 5 9 ;=<>2 9 465 3 8 5 9 ; C39 C E!C 4 C E!C <	F:;
where JTK and J�M arePDMsand U is thesetof components
classifiedby both of the PDMs, i.e., UVOXW�I�JTK7NDYZW�I(J�M7N .
Theseare, of course, but three of the many proposed
pairwisedistancemeasuresbetweenPDMsthathavebeen
proposedin the literature[5, 19, 24, 26].

The matrix in Table 4 enumeratesthe intermediate
stepsfor computing G K I�[]\�^ _` L�[a\Z^ _b N . A cell
in this matrix representsthe absolutedifferenceof the
pairwisedistancesbetweena pair of componentsin HSCs_` and _b . Notice that the componentsc and d do not
appearin thecalculationsinceeachof themis classifiedby
only oneof theHSCs,not both. G�K7I([a\Z^ _` L�[a\Z^e_b N
is f�g h�i , themaximumof theabsolutedifferencesbetween
all pairwisedistances.

4.4 Our congruencemeasure for HSCs

Definition: The intersection ratio, jZk0l]m�npo�lamZnrqs�t
, of PDMs uTv and u0w is:

jTx�uTvzy�u{w*|~}�� � x�u v |�� � x�u w | �� � x�u v |�� � x�u w | �

� �� �T���z� �� � � �m �T� � �T� ����� ��� �
� � � � �T��� �� � � � �T��� � �� � � � �T���������z�����?� �� � � m � � �� v�� lamZn��� y�lamZn�� a¡ }¢¤£¦¥¨§ � lamZn ��ª© lamZn �  �¬« } �T� {�

Table 4. Calculation of ®]¯7°6±	²´³¶µ·¤¸ ±	²a³pµ¹!º for PDMs
of Table 3. Each cell represents the absolute difference
of the pairwise distances between two components in±	²´³ µ· and ±	²a³ µ¹ .

Theintersectionratio is
�

whenbothof therecovered
HSCs organize the sameset of componentsand it is

�
if they organize entirely different sets of components.
Therefore,whencomparingtwo HSCs,a high intersection
ratio is “good” and a low intersectionratio is “bad,”
which satisfiesour framework’s relation R2. For our
running exampleof lamZn �� and lamZn �  of Table 3,j»� �� y �  ¡ }½¼¾a} ��� ¿¦À . The congruenceof two HSCscan
now be measuredas follows.

Definition: Themeasure of congruence, ÁÂk¦lamZnÃol´mZnÄq s�Å v , of PDMs u v and u w is given by:Áx�u v y�u w |Æ}Çj�x(u v y�u w |�oVx � © � x�u v y�u w |�|
Generallyspeaking,one may chooseany of the

�
functionsgivenin Section4.3andcomputethePDM using
any of the techniquessuggestedin Section4.2.

Thus, Áx(lamZn �� y�lamZn �  |}Èx ���?¿¦À |�oÉx � © ��� {� |}�T� {��Ê
for our example.

5 Conclusions

The problemof recoveringthe modular subsystemclas-
sification of legacy systemsis an important issuein the
reverseengineeringof software.Severaltechniqueshave
beenproposedfor recoveringsuchsubsystemclassifica-
tions[14]. Thereis now a considerablecollectionof tech-
niques,andthe time is now right to experimentallyeval-
uate them.

To evaluatea subsystemclassificationrecoverytech-
nique, onemust determinethe similarity, or congruence,
of a recoveredclassificationwith an expectedclassifica-
tion. This requirestwo things: (1) the existenceof ei-
ther a set of data for which the expectedclassifications
areknown or an oracle—a mechanismdifferent from the
programitself—that can provide the expectedclassifica-
tion, and(2) a comparator—a mechanismto comparethe
outputof a programand the expectedoutput—toquanti-
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tatively comparethe recoveredclassificationwith the ex-
pectedclassification. This paperhas addressedboth re-
quirements.We haveproposeda set of widely usedand
easilyaccessibleasbenchmarksfor subsystemclassifica-
tion recovery techniquesrecoveringmodular subsystem
classificationsfor programswritten in theC programming
language.We havealsopresenteda measureto quantita-
tively determinethecongruencebetweentwo hierarchical
subsystemclassifications.

Our congruencemeasureassignsa number in the
rangeof [

�������
] to a pair of hierarchicalsubsystemclassi-

fications.The higherthecongruencemeasure,the greater
the similarity betweenthe subsystemclassifications.Two
subsystemclassificationsarecompletelycongruentif their
congruencemeasureis

�
and completely incongruentif

their congruencemeasureis
�
.

Evaluatinga subsystemclassificationrecoverytech-
nique requirescomparinga recoveredclassificationwith
an expectedclassification. The effectivenessof a tech-
nique is determinedby the congruenceof its recovered
subsystemclassificationswith thecorrespondingexpected
subsystemclassifications.This seemsto createa chicken-
and-eggproblemin that, if we know the subsystemclas-
sification of a softwaresystem,then we do not needto
recoverit. The problemis, however,superficial,because
our congruencemeasureis intendedfor usein controlled
experimentsspecifically designedto evaluatehow well
a techniqueperforms,to comparetwo techniques,or to
identify other causalfactorsaffecting the recoveredsub-
systemclassification. Under suchcontrolled conditions,
it is quite appropriateto know the expectedsubsystem
classification. The actualdesignof theseexperimentsis
beyondthe scopeof this paper.
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