
A unified framework for expressing software
subsystem classi fication techniques

Arun Lakhotia

Centerfor AdvancedComputerStudies
University of SouthwesternLouisiana

Lafayette, LA 70504
arun@cacs.usl.edu

(318) 482-6766,Fax: -5791

Accepted for publication in the J. of Systems and Software. To appear in 1996.

Abstract
Thearchitectureof a softwaresystemclassifiesits componentsinto subsystemsanddescribesthe relationships

betweenthe subsystems.The informationcontainedin suchan abstractionis of immensesignificancein various
softwaremaintenanceactivities. Thereis considerableinterestin extractingthe architectureof a softwaresystem
from its sourcecode,andhencein techniquesthatclassifythecomponentsof aprograminto subsystems.Techniques
for classifyingsubsystemspresentedin the literaturediffer in the type of componentsthey place in a subsystem
andthe informationtheyuseto identify relatedcomponents.However,thesetechniqueshavebeenpresentedusing
differentterminologyandsymbols,makingit harderto performcomparativeanalyses.This paperpresentsa unified
framework for expressingtechniquesof classifying subsystemsof a softwaresystem. The framework consists
of a consistentset of terminology, notation, and symbols that may be usedto describethe input, output, and
processingperformedby thesetechniques.Using this frameworkseveralsubsystemclassificationtechniqueshave
beenreformulated.This reformulationmakesit easierto comparethesetechniques,a first steptowardsevaluating
their relative effectiveness.

1 Introduction
A softwaresystemis typically comprisedof severalinterconnectedcomponents,suchasprocedures,functions,

global variables,types,files, documentation,etc. An architectureof a softwaresystemclassifiesits components
into subsystemsanddescribesinteractionsbetweenthesesubsystems[16, 33]. It providesa high level abstraction
of theorganizationof a systemandcanbeusedto addressthesystemlevel properties,suchascapacity,throughput,
consistency,and componentcapability [38].

Unlessthe architectureof a systemis documented,which is very rare, its maintainerhasto infer its overall
structuralorganizationfrom its sourcecode.However,thearchitectureof a softwaresystemis not usuallyapparent
from its sourcecode. As a result thereis considerableinterestin developingautomatedsupportfor recoveringthe
architectureof a softwaresystemfrom its sourcecode.

The crucial problem in recoveringthe architectureof a softwaresystemis classifying its componentsinto
subsystems.The interactionsbetweensubsystemsmaybe inferredfrom the interactionbetweentheir membercom-
ponents.The subsystemsmust,of course,containcomponentsthat arerelated.Differentsubsystemclassifications
may be createdby grouping componentsbasedon different types of relationships. For instance,syntactic-units
suchasfunctions,procedures,variables,andtypesmaybeorganizedso thatunitsbelongingto thesame“module” *

* The term “module” is usedin this paperin the senseusedby Parnas[30] in the contextof abstractdatatyping andinformationhiding.

1

are placedin the samesubsystem[1, 6, 21, 27, 28, 31, 36]. Alternatively, onemay placesyntactic-unitsrelated
to the samefault in the samesubsystem[17, 37]. A subsystemmay also consistof collection-units—files and
modules—whereunits affectedby the samechangerequestare groupedtogether[23]. One may also classify a
collection of completeprogramsinto subsystemsrepresentingsoftware libraries [22]. Subsystemsmay also be
comprisedof both syntacticand collection units [11, 25].

Researchin subsystemclassificationtechniques(SCT),asmaybeevidentfrom theabovedescription,hasbeen
influencedby different applicationneeds,and hasoften progressedin isolationof the knowledgeof others. This
is reflectedby the fact that SCTs havebeenpresentedusingvery different terminologyandsymbols. As a result
it is difficult to compareandcontrastvarioustechniques.SCTs intrinsically dependuponheuristicswhich can be
improvedby borrowing ideasfrom otherSCTs. Suchan exchangeof ideasis currently limited dueto the lack of
a unified frameworkwithin which SCTs may be described.A unified framework is also necessaryto developa
soundfoundationfor what may be consideredasa collectionof ad hoc tools. This paperattemptsto provide just
that. The frameworkwe developallows the comparisonof the inputs,processing,andoutputsof variousSCTs. It
makesit easyto createnew SCTs by mixing the strategiesusedin differentSCTs andalsoenablesthe creationof
meta-SCTs, i.e., SCTs parameterizedover the choiceof strategies.

The restof thepaperis organizedasfollows. Section2 placesresearchin SCTin thecontextof otherresearch
efforts. Section3 presentsour frameworkfor expressingSCTs usinga consistentsetof notation,terminology,and
symbols. Severalof the known SCTs are reformulatedin Section4 using our framework. As a corollary, our
reformulateddescriptionof a SCT may be significantlydifferent from its descriptionin the original paper.We do
not attemptto highlight the differencesand leave it for the readerto find the correspondence(or transformation)
betweenour descriptionsandthat in the original works. Section5 summarizesthe benefitsof a unified framework
usingexamplesfrom the contextof the SCTs reformulated.Section6 concludesthe paperwith someobservations
aboutwhy theseheuristictechniquesmay be successfulin identifying modulesin legacycode.

2 Related works
The phrase“software architecture” hasbeenusedby researchersand practitionersfor quite sometimenow,

althoughwithout a formal definition. The emerging field of softwarearchitecturesaims at formalizing the notion
of architecturesand developinglanguagesto specify architectures. In addition to describingthe structureand
topology of a system, thesearchitecturespecificationlanguageswill addresssystem level propertiessuch as
capacity,throughput,consistency,andcomponentcapability[38]. Subsystemclassificationtechniquesmaybe used
to automaticallyextractthearchitecturesof existingsystemsandto documentthemusingarchitecturespecification
languages.

The problemof classifyingthe subsystemsa softwarebelongsto the broaderclassof problemsof recovering
the designof a softwaresystem.A comprehensivesurveyof otherdesignrecoverytechniquesis beyondthe scope
of this work, andis unwarrantedsinceit maybefoundelsewhere[5, 10, 41]. Subsystemclassificationis essentially
a graphpartitioningproblem. Hence,it hasmuch in commonwith VLSI layout problems.Someof the SCTs [6,
23] havein fact beeninfluencedby algorithmsfor VLSI layout [13, 14].

Researchin subsystemclassificationis also of significanceto researchin reengineeringproceduralprograms
into object-orientedprograms[18, 40]. Suchareengineeringtaskimplicitly requiresidentifying asetof classes,their
instancevariables,and their methods,a requirementanalogousto recoveringthe modularsubsystems.Currently
the identificationof objectsis doneby analyzinga naturallanguagedescriptionof the systemusingobject-oriented
analysismethodsdesignedfor forward engineering[12]. Object identification by processinga natural language
is inherentlynon-automatable.It may be automatedor semi-automatedusingSCTs instead[28]. Going onestep
further then, SCTs may be usedto identify objectsduring forward engineeringif the designor requirementsare
statedin a notationsuitablefor machineanalysis.It is thereforenot a coincidencethata recentlyproposedtechnique
for deriving modulardesignsfrom formal specification [8] bearsa resemblanceto someof the SCTs discussedin
this paper.

Softwareerrorsoccurwhena maintenanceprogrammer’smodelof thearchitectureof a softwaresystemdiffers
from theactualarchitecture.A tool hasrecentlybeenproposedto reducetheseerrorsby validatinga programmer’s

2

model[26]. Usingthis tool a maintenanceprogrammer(a)postulatesa setof subsystemsof aprogram,(b) postulates
thecomponentsthatbelongto thatsubsystem,and(c) postulatesrelationshipsbetweenthesubsystems.Thetool then
extractstheactualrelationshipsbetweenthesubsystemsby reflectingtherelationshipsbetweenthecomponentsonto
the postulatedsubsystems.The similarities and the differencesbetweenthe postulatedrelationshipsandextracted
relationshipshighlight the discrepanciesin theprogrammer’smodelof thesystem.This approachmaybe extended
furtherby usingSCTs to extractsubsystemclassificationsandcomparingthecongruencebetweentheextractedand
the postulatedsubsystemclassificationsusing a congruencemetric [20].

3 A unified framework for subsystem classification techniques

In this sectionwe developa unified framework—terminology,notation,andsymbols—to describethe inputs,
outputs,andprocessingperformedby SCTs. This frameworkis usedin the next sectionto describeseveralSCTs.

3.1 Inter connection relations: Inputs to SCT

In order to recover the subsystemclassificationof a program,a SCT takesas input someinterconnection
relations[32] betweenthe componentsof program. A programmay have a variety of components,potentially
relatedby severaldifferent interconnectionrelations. Theserelationsmay be representedas directedgraphswith
nodesrepresentingprogramcomponentsandedgesdenotinginterconnectionsbetweenthesecomponents.(An edge
emanatesfrom a source nodeand terminateson a target node.) Different interconnectiongraphsrelatedifferent
programcomponents.We introducethe following genericsymbolsto categorizeprogramcomponentsusedin an
interconnectiongraph:

•
�

: the set of all the sourcenodes,
• � : the set of all the target nodes,
• � : the set of programcomponentstaggedon edges,and
• ��� ��� � � � : the set of all the programcomponentsin a graph.

Noticethatthesesetsaregenericin thattheir membershipis definedwith respectto a giveninterconnectionrelation.

The componentsof a programmay be of severaldifferent “types,” suchas function, variable,procedure,file,
document,etc. Insteadof creatingdifferentsetsof componentsfor eachof thesetypes,we assumethateachunique
softwarecomponentis representedby a uniqueabstractentity. The “type” (andalso the “name”) of a component
is availableasan attributeof this entity. This makesour setshomogenouswithout any lossof generality.

Interconnectionrelationsprovide the foundationfor softwaremaintenancetools, in general[7, 9, 35]. While
there exist several interconnectionrelations (or graphs),those used by the SCTs studied in this paper can be
classifiedinto three categories,as follows.

Definition: An interconnectiongraph whoseedgesare taggedwith numeric valuesis called a weightedcross-
referencegraph (WXG). A numericvalue in thesegraphsdenotethe strengthof the interconnectionbetweenthe
nodes(or components)connectedby the correspondingedge.

Definition: An interconnectiongraphwhoseedgesare taggedwith a programcomponentis called a component
flow graph (CFG). An edgein a CFG representsa producer/consumertype relationshipbetweenthe sourceand
target node.

Definition: An interconnectiongraph whoseedgesdo not have any tags is called a componentcross-reference
graph (CXG).

The CXGs, WXGs, andCFGsusedby the SCTs describedin this paperare summarizedin Tables1, 2, and
3, respectively. The symbols � , 	 , and
 , respectively,denotethe three types of graphs. Thesesymbolsare
subscriptedto identify a specific graph. The tablesalso describethe relation representedby eachinterconnection
graph and their correspondingsets

�
, � , and � .

3

Table 1 Summaryof componentcross-referencegraphsusedby SCTs studiedin this
paper. SeeSection3.1 for descriptionof italicized phrases.

Type of components
CXG
� source� target

�
Relation expressedby � ���������	��

���� procedure syntactic
unit

syntacticunit
� �

appearssomewherein the declarationof procedure
� �

����� procedure global
variable

procedure
� �

assignsto (i.e., modifies the valueof) global variable
� �

� ��� " " " " procedure
� �

uses(without modifying) global variable
� �

� ��� " " " " procedure
� �

refersto (i.e., assignsor uses)global variable
� �

directly
(i.e., without aliasing)

����� " " " " procedure
� �

refersto (i.e., assignsor uses)global variable
� �

either
direcly or indirectly (dueto aliasingwith a formal parameter)

��� " " procedure procedure
� �

calls procedure
� �

����� " " type procedure
� �

hasa direct or downward referenceto type
� �

in its
interface(i.e., type of formal parametersandreturntype).

� ��� " " " " procedure
� �

hasa local variableof type
� �

� ��� " " " " procedure
� �

refersto a global variableof type
� �

����� type " " type
� �

is usedin definingtype
� �

i.e., type
� �

is a sub-partof type
� �

or equivalentlytype
� �

is
super-partof type

� �
������� statement

block
variable block

� �
usesvariable

� �

�� ��� " " " " block
� �

modifiesvariable
� �

��! ��" " " " " block
� �

modifiesvariable
� �

beforeusing it.

� � �$#	� " " " " variable
� �

is live † at the endof block
� �

.

� ! file syntactic
unit

file
� �

containsa declarationof syntactic-unit
� �

� " " " file file
���

includesfile
�%�

†: A variableis live after a block if it is used,beforebeingmodified,in someotherblock [3].

3.1.1 Notation used Let
� �

,
� �

, and & representprogramcomponents.We usethe notation � ��� � ��� �
 as a
shorthandfor

��� � ��� �
('*)+� �
 , where
)+� �
 gives the setof edgesin the CXG � . The notation 	 �,� � ��� �
 gives the

weightof theedgefrom component
���

to component
�	�

in theWXG 	 , where 	 ���������%�	
 �.- implies that thereis no
suchedge.Analogously,
 �,� � � & ��� �

givesa booleanvaluedenotingtheabsenceor presenceof an edgewith tag &
from component

� �
to component

� �
in the CFG
 , i.e., component& flows from component

� �
to component

� �
.

The Booleanvalue true is mappedto / and the value false to - . Conversely,all positive naturalnumbers
map to true and - to false. This mappingbetweenthe booleanand the naturalnumberdomainspermits the use
of predicatesin arithmetic expressionsand vice-versa.

4

Table 2 Summaryof weightedcross-referencegraphsusedby SCTs studiedin this paper.

Type of components
WXG
	 source� target

�
Relation expressedby 	 ��� � ��� �

	 � program
doc.

lexical
affinity‡

Numberof times lexical affinity
�%�

appearsin documentationof
���

	 � function type Numberof timesprocedure
���

hasa direct or upwardreferenceto type� �
‡: Pairsof wordsare lexical affinity if they appearwithin

���
word distance[22].

Table 3 Summaryof CFGsusedby SCTs studiedin this paper.

Type of components
CFG

 source� tag

�
target
�

Meaning of
 ��� � � & ��� �

 ��� procedure global
variable

procedure procedure
���

modifiesvariable & ,
procedure

� �
usesvariable & , and

the definition of & in
� �

reaches
� �

 ��� " " " " " " procedure
� �

modifiesvariable & ,
procedure

� �
usesvariable & , and

thereis an executablepath from procedure
� �

to
procedure

� �
(thoughthe definition from

� �
doesnot

reachthe usein
� �

)

 ��� " " " " " " procedure
���

modifiesvariable & and
procedure

� �
usesvariable & ,

i.e., � ��� ��� � � &
�� � ��� ��� � � &

.

(thereneednot be any executionpath from procedure� �
to procedure

� �

	� file syntactic

units
file Syntactic-unit(suchasa variable,function, type) & is

declaredin file
� �

andusedin file
� �

A ‘ ’ is usedasa shorthandfor an existentiallyquantifiedsymbol,with each‘ ’ in an expressionrepresenting
a different existentially quantified symbol. The expression
 � ��
 �

is shorthandfor �
 �� ��
 ���
����� �����

 �� ��
 ���
��

.

Notice the differencebetweenthe two usagesof
 �� ��
 ���

above. In the first usageit is an unevaluated

term. But in the secondusageit is evaluatedasa predicatethat testswhethercomponent

flows from component
to component

�
. The differenceis significantsince
 � ��
 �

constructsa set. If for two pairs of

and
�

,

 �� ��
 ���

evaluatesto true, therewould be two entriesin the set if the term is not evaluatedbut only oneentry
(true) if the term is evaluated.In a graph-theoreticinterpretation
 � ��
 �

is the subgraphinducedby edgeswith
tag

in graph
 .

This ‘ ’ notationmay similarly be extendedto be usedas argumentto � and 	 andusedwith setoperators,
suchas ��� (length),

�
(union), � (intersection),and � (set difference). A expressionmay also be usedwith

arithmeticoperatorssuchas . In this casethe elementsof the set are evaluatedand the resultingvaluesadded.
Thus, 	 ��! �#"

gives the sumof the weightsof all the edgesin WXG 	 emanatingfrom component
!

.

SomeSCTs inputa CFGbut actuallyusethenumberof elementsflowing from onenodeto another,information
typically encodedusinga WXG. Insteadof defininga new WXG we defineandusea function $ that transforms

5

a CFG into a CXG, i.e. $ � ��������� �
.

	�
����������������
������� ��������

Our useof this transformationdoesnot necessarilyimply that any implementationof that SCT will actually
require that the transformationbe computed. Using a transformationhelps in differentiatingthe type of relation
input by a SCTandthemannerin which it is used.Theknowledgethata SCTactuallyusesa WXG but is described
to input a CFG is preservedin our reformulationof the SCTs.

3.1.2 On global variables and types Figures 1, 2, and 3 define the majority of the interconnection
relationsunambiguously,exceptthoseinvolving global variablesand types. What constitutesa global variable
or a type and what it meansto use, modify, or referencesuch a componentdiffers betweenSCTs. In several
instancesthesephrasesand terms have only beendefinedloosely, most often by examples. In the absenceof
precisedefinitions in an original work, any precisereformulationof it has the potential of misrepresentingthe
work. Hence,we do not attempt to give precisemeaningsto thesephrases,but insteadpresenta summaryof
their usagebelow.

Thedefinition of a “global variable” tendsto be influencedby theprogramminglanguagetheSCT is designed
for and/or experimentedwith. In FORTRAN a variable appearingin a COMMON block is global [28]. For
C, someSCTs definevariables“extern ,” i.e., externalto a function, to be global [27]. Othersconsiderlocal
variablesthataredefined as“static ,” i.e., within the local scopeof a functionbut with global lifetime, asglobal
variablestoo [21].

The definition of what constitutestheuseor modificationof a variablealsobecomesdifficult whena program
containspointers.SincetheSCTs we describedo notmakethesetermsanymoreprecise,we refrainfrom attempting
a betterdefinition. A variable is said to be “referenced”if it is “used” or “modified.”

While theSCTs usethe term “global variable” within theparametersof theconventionallyacceptedusage,the
sameis not true aboutthe terms“type.” Considerthe following codefragmentin C:
typedef Storage char[];

struct Stack {
int sp;
Storage buffer;

} S;
According to the conventionaldefinition, this codefragmentintroducesthe typesStorage andStack .

However,Patelet al. alsoconsidera field of a record(i.e., a struct in C) to bea type[31]. Thus,according
to Patelet al. the abovefragmentalso introducestypesStack.sp andStack.buffer .

Definition: A type (say) is a sub-partof anothertype (say !) if is usedin defining ! . Conversely,type !
is said to be a super-partof . The sub-partand super-partrelationsare transitive,asymmetric,and irreflexive,
and hencedefine a partial order [31].

In the aboveexample,by conventionaldefinition, Storage and int are sub-partsof Stack . However,
accordingto Patelet al.’s definition,Storage.buffer andStorage.sp too aresub-partsof Stack .

Definition: A procedure" directly referencesa type # if it referencesa variable,say $, of type # . A procedure
downward referencesthe sub-partsof types it directly references.It upward referencesthe super-partsof types
it directly references. (The phrases“upward” and “downward” imply directionsin a tree representationof the
sub-partrelation.)

Patelet al.’s SCT usesa WXG %�& that countsthe direct andupwardreferencesto typesin a procedure.For
the aboveexample,the expressionS.sp will be countedasa referenceto eachof the typesStack , Stack.sp ,
and int . Ogandoet al. usea CXG ' &)(thatmaintainsthe directanddownwardreferencesto typesin the interface
specificationof a procedure[27]. In this CXG, a formal parameterof type struct Stack , as in our example,
also defines upwardreferencesto types int , Storage , and char .

Pateletal. andOgandoetal. usethetermssub-typeandsuper-type, respectively,to meansub-partandsuper-
part. We usethe latter termsbecausethe former havea well acceptedmeaningin the contextof type inheritance.

6

3.1.3 Filtering interconnectiongraphs Most SCTs filter theinput interconnectiongraphsfor “noise” that
maynegativelyinfluencethesubsystemstheyrecover.We considersuchoperationsseparatefrom thecomputations
performedto createsubsystems.The filters appliedby variousSCTs may be summarizedas follows:

1. Removea relationbetweena procedureanda type (say #) if thereexistsa relationbetweenthat procedureand
a super-partof type # [21, 27].

2. Remove“utility ” componentsfrom an interconnectiongraph. Theseare components(usually proceduresand
globalvariables)connectedto severalothercomponents[6, 23]. Functionsandproceduresin anexternallibrary
or in auser-definedlibrary aretypicalexamplesof utility components.HutchensandBasili alsoconsiderroutines
that “do all their communicationvia parametersandreturnvaluesandarealsocalledby morethanoneroutine”
as utility components[17].

3. Combine(not remove)utility componentsbelongingto a standardlibrary into a singlecomponent[25].
4. Remove(rather,do not include)informationpertainingto “loop variables”from the interconnectiongraph[31].
5. Removeall lexical affinities whose“resolvingpower” (seeSection4.1.2)in a documentis onestandarddeviation

abovethe meanresolvingpower of all the lexical affinities in that document[22].
6. Removecomponentsconnectedto single components[36].

3.2 Properties of a subsystemclassification
The subsystemclassification recoveredby a SCT may be describedin termsof:

1. the set of programcomponentsincluded in it,
2. its organizationalstructureof its subsystems,and
3. the interpretationassignedto the structure.

Theseissuesare discussedin the rest of this section.

3.2.1 Program componentsincluded in subsystemclassification Let
�

be the set of program
componentsin the subsystemsrecoveredby a SCT. Clearly, for any SCT,

�
would be a subsetof the set � ,

the setof all programcomponentsusedin the interconnectionrelationsit inputs. For someSCTs the set
�

may be
constrainedfurther to � (the setof sourcenodes)or ����� (the setof sourceandtarget nodes),seeTable4.

3.2.2 Organizational structur e of a subsystemclassification In the simplestcase,eachsubsystem
may simply be a subsetof the programcomponents.Sucha subsystemclassificationis termedflat. If the pairwise
intersectionof all of the subsystemsof a flat subsystemclassificationis empty, the subsystemclassificationis
termed partitioned.

When attempting to recover modules, each subsystemin a partitioned subsystemclassificationmay be
interpretedasrepresentinga module. Sincea programcomponentin a partitionedsubsystemclassificationbelongs
to only onesubsystem,a componentis associatedwith only onemodule. This is what is usually desired.

Given that all the SCTs areessentiallyheuristic,requiringthat a subsystemclassificationbe partitionedis too
stronga constraint. SomeSCTs createclassificationsthat are flat, but not partitioned. Thereare also SCTs that
createclassificationsthat arenot evenflat. A subsystemclassificationis not flat whenits subsystemsmay contain
other subsystems,not just programcomponents.Suchsubsystemclassificationsare termedstratified if they can
be representedby directedacyclic graphs,with programcomponentsat the terminal nodes,intermediatenodes
representingsubsystems,andedgesgoing from the nodeof a subsystemto thoseof its members.It is sometimes
desiredthat a subsystemclassification be a tree, not just a directedacyclic graph,implying that eachsubsystem
or programcomponentbelongsto at most onesubsystem.A stratifiedsubsystemclassificationthat is also a tree
is called hierarchic.

Thereis a specialtypeof hierarchicsubsystemclassificationcalleda dendrogramwhich is recoveredby SCTs
thatusenumericalclusteranalysis[19]. A dendrogrammaybe visualizedasa treewith numericlevelsassignedto
eachintermediatenode,suchthat the numericlevels increasemonotonicallyfrom a child nodeto the parentnode.
This may be representeddiagrammaticallyby drawing a tree suchthat the length of the line connectinga parent

7

anda child subsystemis proportionalto the differencein their levels. An exampledendrogramis shownin Figure
1; the ordinateaxis in the figure showsthe absolutelevel numbers.

The level numbersin a dendrogrammay be usedto definean ordering“immediatelybelow” betweenpairsof
nodeseven if they are not in the samesubtree.

Definition: A nodeor a leaf
�

is immediatelybelowa node � if (a)
�

is at a level lessthanor equalto � and
(b) the parentnodeof

�
is not immediatelybelow � . Further,a nodeis said to be immediatelybelow itself.

In the diagrammaticrepresentationof a dendrogram,statedearlier,eachbranchcut by a line drawn through
a node � andperpendicularto the ordinateaxis identifiesa nodeor leaf immediatelybelow � . In Figure1 node� �

and
���

are immediatelybelow
���

; � , � ,
� �

, and
� �

are immediatelybelow
� �

.

3.2.3 Interpr etations of an organization structur e A subsystemconsistsof componentsthat are
related to each other. One can arrive at different subsystemclassificationbasedon the specific relationships
usedto groupcomponents.Someof the relationshipsthat SCTs useto relatecomponentsare: (a) the components
belongto the samemodule,(b) the componentsare affectedby the samechangerequest,(c) the componentsare
relatedto the samesoftwareerror. What it meansfor a pair of programcomponentsto be in the samesubsystem
thereforedependson the SCT.

A fundamentalquestionthat remainsunansweredis “What constitutesa subsystem?”A subsystemis clearly
a subsetof programcomponentsfor flat subsystemclassifications. The definition of a subsystemis not quite so
straightforwardwhen subsystemclassificationsare stratified.

Considerthetreein Figure1. It representstheoutputof SCTs generatinghierarchicalsubsystemclassifications.
The symbols �
	�	�	� representprogramcomponentsand the symbols

� � 	�	�	 ��� representintermediatenodesof
the tree. Clearly,eachnon-leafnodein the treerepresentsa subsystem.The questionis “Who areits members?”

There are three interpretationscommonly assignedto a hierarchic subsystemclassification,each giving a
different setof membersin the subsystemsassociatedwith the nodesof the tree. We usethe symbols � � , � � , and
� � suchthat ��� ������ gives the membersof subsystem

���
using interpretation� .

Interpr etation 1: A subsystemwith respectto an intermediatenode of a hierarchic subsystemclassification
consistsof its children. Thus, for Figure 1:

� ���� � � ��� � ��� �����
� � ��� � � ����� ��� �
� ��������� ��� � � � �!� ���
� ��������� ����� ���!���"�

Accordingto this interpretation,a subsystemis a setconsistingof programcomponentsandothersubsystems[11,
25].

Interpr etation 2: The programcomponentsat the leavesof a subtreerootedat a nodebelongto the subsystem
representedby that node. Thus, for Figure 1:

� � ��� ��� �#� � ��� ��� �
� � ��� � � �#�$� ��� �
� � ������� �#� � �!� �!� � � �
� � ������� �#� � ��� ��� � � �!� �!� � � �

This interpretationcreatessubsystemsthataresetsconsistingonly of programcomponents.Theresultingsubsystems
mayoverlap,but mustcomply with the constraintthat if the intersectionof two subsystemsis non-empty,thenone
of them is a proper subsetof the other [23].

Interpr etation 3: The third interpretationis usually assignedto dendrograms.The subsystemat eachnodeof
a dendrogramconsistsof a partition of all the programcomponentsin the dendrogram,such that if node � is
immediatelybelow node

�
, then the set of programcomponentsin the subtreerooted at � is a subsetin the

8

--

--

--

--

--

--

--

--

--

--

1.0

0.9

0.8

0.7

0.6

0.5 --

0.4

0.3

0.2

0.1

0.0

Le
ve

l n
um

be
rs

A B C D E F G

M3

M4

M2

M1

Figure 1 A samplehierarchicalsubsystemclassification.

partition of
�

, and vice-versa. In other words, �������	��
����� � � if and only if � is immediatelybelow
�

. Thus
for Figure 1:

� ������������� ����������������! � �"$#&%'#�($)�#* ,+'#�-�).#� ,/0)�#* ,1$)�)� ��� � ������� 23��� ��� � ���! � �"4)5#* ,%$)�#� ,($)�#* 6+7#&-8)5#* ,/0)9#* ,1$)�)� ��� ������� :3��� ��� ���! � �"$#&%'#�($)�#* ,/;#&+7#&-<#�14)�)� ���>=�������� ?3��������>=����! � �"$#&%'#�(�#�/;#�+'#&-@#A1$)�)

where
� �B�>CD� gives the level of subsystem�>C in the dendrogram.

A dendrogram,therefore, representslayers of partitioned subsystemclassifications,with a level number
associatedto eachlayer. The partition at the highestlevel placesall programcomponentsin oneset. The partition
at the lowest level placeseachcomponentin a subsystemby itself. Further,all componentsplacedin the same
subsystemat onelevel arealsoplacedin the samesubsystemsat everyhigher level. The aboveinterpretationof a
dendrogramfollows strictly from its definition[19] andis usedby SCTs employingnumericalclusteringtechniques.

3.3 Computation performed by a SCT
Dependingupon the type of computation(algorithms) they use, SCTs may largely be classifiedas graph-

theoretic, conceptual, numerical, or flow-analysisbased, as follows:

1. If a techniqueusesgraph-theoreticcomputations,it is termedgraph-theoretic.
2. If a techniqueusescomputationsthat may be explainedusing flow-analysisconcepts[3], it is termedflow-

analysisbased.

9

� � �
� ����� � �
� � ����������� �
� � ����	����
���� � �
�� ����	���� ����� ����� � �

� � � � � � � � ��

A1 A2
A3 A4 A5

--

--

--

--

--

--

--

--

--

--

1.0

0.9

0.8

0.7

0.6

0.5 --

0.4

0.3

0.2

0.1

0.0

D
is

si
m

ila
rit

y
va

lu
es

C
od

e
nu

m
be

r
of

 in
te

rv
al

4

3

2

1

Dissimilarity matrix Dendrogram

Figure2 A sampledissimilarity matrix andthe correspondingdendrogramresultingfrom single-link HAC. Sincethe matrix is
symmetric,only the lower triangleand the diagonalareshown. A dendrogramis a hierarchyof a setof equivalence
relations(i.e., partitions). It may be representedasa tree. The partitionsat any dissimilarity valuemay be
determinedby drawinga line perpendicularto the dissimilarity valuesaxis. Eachbranchof the treecut by the line
representsa partition consistingof componentsin the subtreerootedat that branch.Componentsin a partition at a
lower dissimilarity valuearemorelikely to be similar. At the highestlevel of dissimilarity valueall componentsare
in the onepartition. Insteadof the possiblyinfinite numberof levels (sincerangeis ���) onemay divide the levels
into somefixed levelsof intervals. The axis on the right representsonesuchinterval assignment.

3. If the valuesof attributesaremeasuredon an ordinal scale,the techniqueis termedconceptual[24].
4. However, if attributevaluesare measuredon a ratio or an interval scaleand numericcomputationsare used,

the techniqueis termednumeric.

SCTs generatingstratifiedsubsystemclassificationsmayalsobeclassifiedastop-downor bottom-up[23]. The
top-downSCTs createsubsystemsat the top of a stratifiedsubsystemclassificationandtheniteratively decompose
them to createsubsystemsat lower levels. Bottom-up SCTs createsubsystemsat the bottom of a subsystem
classification and then iteratively merge subsystemsto createthoseat the higher levels.

All stratifiedSCTs studiedin this paper,exceptChoi andScacchi’s[11], arebottom-up.The computationof
top-downstratifiedSCTs maybeabstractedby thealgorithmtemplateof Figure3. Startingwith an interconnection
graph,thesealgorithmsiteratively find a set of componentsthat may be said to be most similar (Steps1), place
thesecomponentsinto thesamesubsystem(Steps2), andcreatea newinterconnectiongraphby combiningthe two
components(Steps3). StratifiedSCTs differ in the strategieschosenat eachof thesesteps.

Notice that a subsystemclassification createdby thesealgorithmsconsistsof programcomponentsforming
the sourceandtarget nodes(�����) of the interconnectiongraphit inputs. However,Table4, Column“Elements
from,” showsthatsomeof thestratifiedSCTs organizea differentsetof programcomponents.This is becausemost
SCTs transformtheir input interconnectiongraphbeforestratifying it. Table4, Column“Elementsfrom,” identifies
the set with respectto the input to a SCT, not its stratificationalgorithm.

An organizationof a setof entitiesinto subsetssuchthatentitiesin the samesubsetarein “somesense”more
similar to eachother than to thosein different subsetsis often referredto as a cluster [15]. Since a subsystem
classificationis analogousto a cluster[23], someof the SCTs we studyusehierarchical agglomerativeclustering,
or HAC [19]—a classof numericalclusteranalysisalgorithms—or its variations.

10

input: An interconnection graph
�
.

output: A stratified subsystem classification over the set �����
s0: put each element of ����� in a subsystem by itself
while � has more than one element do

s1: identify a set (with at least two elements) of most similar subsystems
s2: create a new subsystem by merging the similar subsystems
s3: create a new � by replacing the similar subsystems by the new subsystem

end-while

Figure3 Algorithm templatefor generatingstratifiedSCTs by top-downcomputation.A specificstratifiedSCTmaybedescribed
by describingthe input interconnectiongraphit inputsandthe strategiesit usesat eachof the Stepss1, s2, ands3.

Thechoicesat Stepss1, s2, ands3 mayberestrictedfurther if a SCTusesHAC. Theinput to a HAC algorithm
is a symmetric,directedWXG without self edges(i.e., thereis no edgefrom a nodeto itself). The strategyat Step
s1 dependsuponwhetherthe weightson the WXG represent(a) similarity betweentwo nodesor (b) dissimilarity
betweentwo nodes.Two nodesaremost similar if theyhaveeitherthehighestsimilarity or thelowestdissimilarity.
Steps2 of a HAC algorithm identifiesa set of nodesthat are pairwisemost similar.

SinceHACs output dendrograms,the strategyusedat Steps2 must satisfy interpretation�
	 , definedearlier.
This maybe achievedby creatinga new clusterby taking theunionof themostsimilar clusters.The (dis)similarity
valuebetweenthe clustersmerged is assignedas the level numberfor the new cluster.

HAC algorithmstraditionally choosefrom one of four strategies[19]—single-link, complete-link, weighted-
average-link, andunweighted-average-link—to createa new WXG after merging a setof similar clustersto create
a new cluster(Figure 3, Steps3). Let � be the set of similar clustersbeing combinedin a given iteration, � be
the new clusterreplacingall themembersof � , and be anothercluster(not in �). In thesingle-link strategythe
smallestdissimilaritybetweenanyelementof � and is usedasthedissimilaritybetween� and . Thecomplete-
link strategyusesthe largestsuchdissimilarity andthe other two strategiesuseweightedandunweightedaverages
of dissimilaritiesbetween andmembersof � . SomeSCTs useyet anotherstrategy,termedcumulative-link, where
the sumof the dissimilaritiesbetween andall the elementsof � is takenas the dissimilarity between and � .

The dendrogramin Figure2 is the result of applyingsingle-link HAC on the dissimilarity matrix in the same
figure. In this example,��� and � 	 combineat level ��� � , ��� combineswith ��� and � 	 at level ��� � , ��� combines
with � � , � 	 , and � � at level ��� � . Finally, all the componentsform a singleclusterat level ��� � .

4 Reformulation of SCTs using our unified framework
This sectiongives an overview of variousof SCTs. The overview presentsa unified view in that, instead

of using termsandsymbolsfrom the original work, the termsandsymbolsintroducedin the previoussectionare
used. This allows one to comparethe informationused,the computationperformed,and the outputgeneratedby
various techniques.

Table 4 classifies SCTs studiedin this paperbasedon the classification schemedevelopedin Section3. The
details of the computationsare elaboratedupon below.

4.1 Numeric, stratified SCTs
The numeric,stratified SCTs we examineeitheruseHAC or somevariationof HAC. To describea SCT that

usesa HAC algorithm,it is sufficient to describe(a) whetherit usesa similarity matrix or a dissimilaritymatrix, (b)
how this matrix is computed,and(c) which of thefive strategies—single-link, complete-link, weighted-average-link,
unweighted-average-link, or cumulative-link—it usesat Step s3.

We usethe symbols ����� �"! and �"�$#&% to denotea dissimilarity matrix anda similarity matrix, respectively.

11

Table 4 Classificationof SCTs basedon criteria introducedin Section3.

Subsystemclassificationcharacteristics

SCT of .. Computation used Input graph Elements
fr om

Partitioned?
Stratified?
(not flat?)

Belady&
Evangelisti,81

numeric ����� � yes no

Choi & Scacchi,90 graph-theoretic ��� 	�
� yes yes

Hutchens& Basili,
85 (both ARTs)

numeric ����� 	�
� yes yes

Livadas&
Johnson,94 graph-theoretic � ����� ��� � ,� ��� � � � �

�
no no

Maareket. al., 91 numeric ��� 	 yes yes

Maarek& Kaiser,
88

numeric �� 	�
� yes yes

Müller & Uhl, 90 mixed
Generic

� � � � � 	 no yes

Ogandoet al., 94 graph-theoretic � ��! , � � � �
no no

Ong & Tsai, 93 graph-theoretic �#"�$�% � � � �'& $,�#($ � � ��)*($ ��+,+-+
�

no no

Patelet. al., 92 numeric � � 	 no no

Schwanke,91 numeric �.(/) � ��0 	 yes yes

Selby& Basili, 91 numeric ����� 	�
� yes yes

4.1.1 SCTs of Hutchens and Basili Hutchensand Basili suggesttwo SCTs [17]. Both use CFG � ���
and createsubsystemsof componentsfrom the correspondingset 	1
2� . The relation � ���.3546�87���9;: implies that
procedure4 refersto a globalvariable 7 thatis modifiedby procedure9 . EventhoughCFG � ��� maybecomputed
from CFGs � ��! and � �) , ����� 3=<?>-��7���<�@,:BA � ��! 3/<�>���7C:ED � �) 3/<-7���<,@,: , we maintainthat this SCT inputsa CFG, not
two CXGs. This is becauseHutchensand Basili also investigateother CFGs ����! and ��� 0 , but chooseCFG �����
becauseit is computationallylessexpensiveto construct.

Bothof theSCTs of HutchensandBasili usedissimilaritymatricesbut eachusesa differentformulato compute
it. The first SCT computesthe dissimilarity matrix, termedrecomputed dissimilarity, as follows:

FHG <,<�>�3�4;��9I:JA
F�KMLON�K,K 354P:�Q F�KMLHN�K,K 389I:SRUT?< G�V @ 3546��96:FHKMLHN�K,K 3=4W:EQ FHKMLHN�K,K 3X9Y:ZR[< G�V @ 3546��9Y:

wherematrix < G5V @ gives the binding strength betweentwo proceduresandthe vector
FHKMLHN�K,K

givesthe numberof
bindings involving a given procedure,as follows:

< G5V @?354;��96:\A^] ����� 354;��9I:�Q2] ����� 3=9_��4P:
F�K�L�N�K-K 3/4P:JAa`] ����� 3�4;� :�Qb`] ����� 3 �84W:

The secondSCT computesthe expected dissimilarity using the formula:

F�G <,<,c�3�4;��9;:ZA
F�KMLHN�K,K 3/4W:�Q F�KMLHN�K,K 389I:

3=d�egfh38< G5V @-:SRji,:lkm< G�V @?3546��9Y:

12

where < G5V @ and
F�K�L�N�K-K

areasdefinedfor recomputeddissimilarity and d�egf 3=< G5V @�: givesthe dimensionof < G�V @ ,
i.e., its numberof rows or numbercolumns(the two are samesincea dissimilarity matrix is square).

The SCTs of HutchensandBasili usethe stratificationalgorithmtemplateof Figure3, generatedendrograms,
and use the cumulative-link strategyto computethe coefficients for the new elementthat replacesthe pair of
elementscombinedinto a subsystem.However,they arenot HAC algorithmsbecausethey maintaintwo matrices
in eachiteration—a similarity matrix (< G5V @) and a dissimilarity matrix (

FHG <,<�> or
FHG <,<-@)—insteadof just one. In

Steps1, the two algorithmsfirst computethe respectivedissimilarity matrix from the similarity matrix < G�V @ and
they thenusethedissimilaritymatrix to find thepair of similar elements.In Steps3, theycomputea newsimilarity
matrix < G�V @ using the cumulative-linkstrategy. Thus, insteadof doing all the operationson either a similarity
matrix or a dissimilaritymatrix,asis doneby a HAC algorithm,theseSCTs computetwo matricesin eachiteration.

Therecomputationof a dissimilaritymatrix from a similarity matrix in eachiterationleadsto thepossibilitythat
the dissimilarity valuesover successiveiterationsmay decrease,implying that an iterationmay createa subsystem
with a lower dissimilarity thana subsystemcreatedin an earlier iteration. The hierarchyof partitionsthuscreated
mayhavedecreasinglevel numbers.The resultingclassification,therefore,will not be a dendrogram.To overcome
this problem,HutchensandBasili suggestthat wheneverthe dissimilarity of a newly createdsubsystemis smaller
than the subsystemcreatedin the previousiteration, the former shouldbe assignedthe samedissimilarity level
as the latter.

4.1.2 SCT of Maarek et al. Maareket al.’s SCT differs from othernumeric,stratifiedtechniquesin that it
usesinformationfrom programdocumentation,not thecodeitself [22]. It usesWXG ��� , relatingthedocumentation
of a programandits lexical affinities, andclassifiessymbolsbelongingto the correspondingset 	 into subsystems.
Maareket al. suggestusingeither single-link or complete-linkHAC with the dissimilarity matrix createdby the
following function:

F�G <-< � 3546��9Y:JA
�

G������	�
����� � 3 G : k �� � 3 G :
where:

•
��� A������ ��� 3�� ���W:�� , i.e., the set of lexical affinities found in a document� ,

• � � 3��I:JA R ��� 3�� ���W: k�� ��! 3�" N 3�� �#� :8: , i.e., resolvingpowerof lexical affinity � in a document� ,
• " N 3�� ���W: A ��� 3$� �#�m:#% � � � 3$� � : , i.e., probability that lexical affinity � appearsin the documentationof

program � ,
• �� � 3��I:ZA 3 � � 3$�I:�R'&� � :�%)(+*�, , i.e., normalizedresolvingpowerof lexical affinity � in document� , and
• &� �

is the meanof � �
and (+* , is its standarddeviation.

4.1.3 SCT of Maarek and Kaiser MaarekandKaiser’s SCT usesCFG � (that relatesa file declaring
a syntactic-unitto a file using that unit) andcreatessubsystemsconsistingof symbolsfrom the correspondingset	�
 � [23]. This SCT is an extensionof single-link HAC. It usesthe similarity matrix createdfrom WXG] � .

< G�V
- 3546��9Y:JAh] �� 354;��9I:�Q2] �� 3=9_��4P:
MaarekandKaiser’sSCT extendsthe single-link HAC in that it marksthe partitionscreatedat eachlevel of

the dendrogramas either frozen or prospective. The final subsystemclassificationconsistsonly of the partitions
markedfrozen. A partition is markedfrozenwhen .)/ , the varianceof the sizeof eachsubsetin the partition from
an example size 0 is small. If thereare 1 subsets7 > ��7 @ �,+-+,+���732 in partition 4 , then

. / 3 4 :JA i
1

5
` �76 > 398 7 �;: R 0 : @

wherethe expression8 7 �;: denotesthe sizeof 7 � , definedasfollows. If partition 4 is markedfrozenthenthesizeof
its subsetsis forced to be i , i.e., 8 7 �<: A i , i>= G = 1 . If partition 4 is prospectivethen 8 7 �7: A@? 7 � ? .

13

To determinea partitionwith a ‘small’ . / , the . / of up to � consecutiveprospectivepartitionsgeneratedby the
single-link HAC arecompared.The onewith the smallest.)/ is considered‘small’ andis frozen. When � A i , all
partitionsaremarkedfrozen,thusresultingin a single-linkHAC. When � A^T , the . / ’s of at mosttwo consecutive
partitionsneedbecompared.This canbeachievedby introducingthefollowing stepinto thestratificationalgorithm:

s4: if ��� (new
�
) > ���	� ��

then mark
�

to be frozen

else mark
�

to be prospective

where the (dis)similarity matrices � and new � also implicitly representthe partitionsbeforeand after the loop
is executed. In addition, the partition representedby matrix d beforeenteringthe loop and after its termination
are also markedas frozen.

4.1.4 SCT of Schwanke Schwanke’sSCT usesthe CXGs �� (which procedurecalls which procedure)and
���� (which procedurereferenceswhich syntacticunit) andcreatessubsystemsconsistingof componentsfrom the
correspondingset � [36]. The similarity matrix it createsmay be statedas:

�������������! #"%$ & �('*),+-'*./"1032�45� �� �����! #"76 �� �(8�9�:"9";�0 & ��') +-' . "70 � 45� & �(')=< ' . "70 & �(' .5< ') ">"

where:

• ; , 2 , and � are user definedparameters,
• ') $@?�ACB ��D� �E�F�>AG">H , i.e., the set of syntacticunits referencedby procedure� ,

• & ��I="J$LKM�NPO <RQTSVU �XWY'Z��[�"X" , i.e., the weight associatedto (or the discriminatingpowerof) a set I of syntactic
units, and

• WY'Z�([�"\$^] ��E� � �!["�] _�] ��D� � � "�] , i.e., the proportionof userelationsinvolving syntacticunit [(or the probability
that a relation involves syntacticunit [).

Schwanke’sSCT usesthe single-link HAC algorithm for clusteringprogramcomponents. It also providestwo
interactiveinterfacesto validatea subsystemasit is created.In the first interface,after everysubsystemis created
the useris askedto confirm it. In the secondinterface,a new subsystemis first validatedby usinga heuristic; if
the validation fails then the useris queried. Schwanke’sheuristicsmay be statedas: If the syntacticunits being
clusteredare declaredin the samefile, then the clusteringis okay, elseit is not. Implementationof this heuristic
requiresCXG �` , i.e., which programelementis declaredin which file.

4.1.5 SCT of Selby and Basili SelbyandBasili’s SCT usesthe sameCFG asthe SCTs of Hutchensand
Basili, Section4.1.1, and createssubsystemsconsistingof symbolsfrom the correspondingset � [37]. It uses
single-link HAC with the similarity matrix �����=a as definedwith HutchensandBasili’s SCTs.

4.2 Numeric, non-stratified SCTs

Numeric, non-stratified SCTs are techniquesthat usenumericcomputationto organizeprogramcomponents
into subsystems.They are non-stratified in that they only createoneset of subsystems,not levels of subsystems.
Thereare threeSCTs that fall in this category.The subsystemsproducedby two of the techniquesarepartitioned
[6, 1], but thoseproducedby the remainingare not [31]. We havenot had the opportunityto reformulateoneof
the SCTs sinceit appearedvery recently[1]. A reformulationof the otherSCTs is presentedbelow.

14

4.2.1 SCT of Belady and Evangelisti BeladyandEvangelisti’sSCT [6] usesthe CXG ��� , i.e., which
functionreferenceswhich globalvariable*, andcreatessubsystemsconsistingof componentsfrom thecorresponding
set

�
. It createsa similarity matrix which is simply the adjacencymatrix representationof ��� .

�������V���F�> F"\$ ��� ���F�> F"76 ��� �(8�9�:"
This similarity matrix is input to DonathandHoffman’s clusteringalgorithmto createsubsystemsconsisting

of componentsthat are closeto eachother whenplacedin an � -dimensionalspace[13]. The placementof each
componenton an � -spaceis doneby computing � (typically = 5) eigenvectors.The ���
	 valueof thesevectors
gives the coordinatesof the �
��	 elementin the similarity matrix. The partitionscreatedby DonathandHoffman’s
algorithmareconstrainedby two parameters:thenumberof subsetsto be generatedandthemaximumsizeof each
subset.The detailsof the algorithm can be found in the original paper[13] .

4.2.2 SCT of Patel et al. Patelet al.’s SCTuses�� , theWXG representingthenumberof timesa procedure
hasa director upwardreferenceto a type [31]. It classifiessymbolsfrom thecorrespondingset � into subsystems.
It createsa similarity matrix using the following function:

������������������� � � ���!�#" � � �$�%�& ��� ���'� & " & ��� �$�(� &
where ��� ���'� is a vectorrepresenting�)� ���*� � andall vectorsusethesamepermutationfor assigningpositionto the
countsfor the types. The vector product,therefore,representsthe computation:

 ��� ��+��," �)� ��-*�.�0/132�4 �)� ��+���15�6" ��� �7-8��15�
and the vector dimensionrepresentsthe computation:

& ��� ��+�� & �:9 /132;4 ��� �7+��<1=��>
where 4 is the set of all types usedin the program.

Patelet al.’s SCT doesnot generatea setof subsystemsrepresentingmodules.Instead,it providesa function
to test if a setof proceduresbelongto the samemodule. A setof procedures? constitutesa moduleif 4!� ? �,@BA ,
where A is someexperimentallydeterminedthresholdvalue and 4!� ? � is defined as:

4!� ? �C� /D=E F�G5HJI D3KL F �M�����3�7NO��P3�Q ? Q " Q ?�RTS Q
4.3 Mixed, stratified SCTs

Mixed, stratifiedSCTs are techniquesthat usea combinationof numericandgraphtheoreticcomputationsto
organizeprogramcomponentsinto subsystems.Theyarestratifiedin thata subsystemrecoveredby thesetechniques
may containothersubsystems,andsuchinclusion is free of cycles. Of the SCTs we study,only Müller andUhl’s
may be classifiedas mixed, stratified.

* BeladyandEvangelisti[6] actuallyusetherelation“which functionuseswhichcontrolblock.” In their context,a controlblock corresponds
to a global variable,hencewe say that they usethe U5V;W relation.

15

4.3.1 SCT of Müller and Uhl Müller andUhl’s SCT is programminglanguageand contextindependent
in that it doesnot commit to any specifictype of input. It acceptsany type of interconnectionrelations,i.e., either
CXG, WXG, or CFG, but treatsthemall asWXGs [25]. Thusa CFG

�
input to Müller andUhl’s SCT is treated

as a WXG � � , and a CXG � is treatedas a WXG by associatinga weight of one to eachedge. We, therefore,
usea genericWXG � to representthe interconnectionrelationsinput by this SCT.

Müller and Uhl’s SCT is top-down and can be abstractedby the stratified SCT templateof Figure 3, (i.e.,
iteratively selectsimilar elements,combinethem, and createa new interconnectiongraph). It differs from other
stratified SCTs in the following ways.

1. During eachiterationit computesseveralsimilarity matricesandprovidesa collectionof rulesto discernif two
elementsare similar. Other techniquesusually computeonly one (dis)similarity matrix and provide only one
rule for detectingsimilar elements.

2. Besidesdeciding whethertwo elementsare similar, it also providesrules to decide if two elementsare not
similar. Thus, it allows elementsto be placedin different subsystems.Other SCTs only permit the selection
of similar elements.

3. It mergessimilar elementsin the interconnectiongraph,not the similarity matrix. The similarity matricesare
recomputedfrom the new interconnectiongraph.

4. The subsystemclassificationcreatedby this SCT, thoughstratified,may not be hierarchic.

Its rulesfor identifyingsimilarelementsmaybeclassifiedasbasedon: (1) interconnectionstrength,(2) common
neighbors,(3) centricity, and(4) name.The first threerulesusesimilarity matriceslike thoseusedby HAC based
SCTs. Thesecomputationsare,however,definedusinggraph-theoreticconcepts(henceits classificationasmixed).

The interconnection strength measurebetweentwo nodes � and � is the exactnumberof syntacticobjects
exchangedbetweenthe two nodes: �M���������*���%�C� � ���*���%��� � �$���;�%�
Müller and Uhl classify two componentsto be strongly relatedif their interconnectionstrengthis greaterthan a
certainthreshold4�� andlooselyrelatedif it is lessthana certainthreshold4�	 . Componentsthatarestronglyrelated
areplacedin the samesubsystemand thosethat areweakly relatedareplacedin differentsubsystems.

Müller andUhl suggesttwo similarity measuresbasedon commonneighbors,oneusingcommon successors:�M����
�����*���%�C� Q � ����� ��� � �$��� � Q
and the other using common predecessors:�M����
�
����*���%�C� Q � � �;�'��� � � ���%� Q
Two elements� and � are placedin the samesubsystemeither if ����
� ���*���%�(@ 4�� or if ����
�
 ���*���%��@ 4�� ,
where 4 � and 4 � are two thresholdvalues.

Müller andUhl definecentricity as the numberof dependencesbetweenan elementandotherelements:����������� �$�!�C��� � �7�*� ����� � � �;�'�
This is thesameasthedegreeof a weighteddirectedgraphcomputedby addingtheweightsof its edges.Elements
with

�����������
beyondthresholds4�� and 4�� , are termedcentral and fringe elements,respectively.Fringeelements

are assignedto different subsystems.

Identifying similar elementsbasedon their namesis uniqueto Müller andUhl’s SCT.Two programelements
are consideredto be similar if their nameshavematchingsubstrings(e.g.,commonprefixes).

After identifying subsystemsof similar elements,Müller and Uhl’s SCT createsa new WXG using the
cumulative-link strategy. Since this SCT allows multiple subsystemsto be createdduring the sameiteration, a
componentor a subsystemmaybeincludedin morethanonesubsystemleadingto a non-hierarchical,yet stratified,
subsystemclassification. However, if during any iteration only one similarity criterion is applied,the subsystem
classificationwould be hierarchical.

Müller andUhl’s SCT is interactiveandleavesthe selectionof the appropriaterule(s) in eachiterationto the
user. Similarly, the choiceof thresholdvaluesis also left to the userwith the provision that thesevaluesmay be
changedbetweeniterations.

16

4.4 Graph-theoretic, stratified SCTs

4.4.1 SCT of Choi and Scacchi Choi andScacchi’sSCT usesgraph-theoreticcomputationsandcreatesa
stratifiedsubsystemclassificationthat is alsoa hierarchy[11]. This hierarchyis similar to that of a dendrogram,in
that programcomponentsappearonly at the leaf andthat eachcomponentappearsat mostonce.The intermediate
nodesareabstractnodesrepresentingsubsystems.The hierarchyit generatesis different from dendrogramsin that
thereare no level numbersassociatedwith the nodes.

Choi andScacchi’sSCT usesCFG
� � representingthe flow of resourcessuchasdatatypes,procedures,and

variablesfrom onesourcecodefile to another.Thesubsystemsit createsconsistof symbolsfrom thecorresponding
set � ��� . This SCT is top-down. It first finds the biconnectedcomponentsand articulationpoints [2] of the
graph. It then createsa subsystemfor eacharticulationpoint of

� � . Eachsubsystemconsistsof an articulation
point andsub-subsystemscreatedby applyingthe algorithmrecursivelyto thesubgraphsinducedby the verticesof
eachbiconnectedcomponent,exceptthe articulationpoints. Choi andScacchiargue that this approachextractsa
subsystemclassificationwith minimumalterationdistance(sumof distancesbetweenpairsof leaves)andminimum
coupling (sum of the numberof children of all nodes).

Notice that this SCT doesnot makeuseof the tagson the edgesof CFG
� � , thereforeusing it asa CXG.

4.5 Graph-theoretic, non-stratified SCTs
Thereare two SCTs that use graph-theoreticcomputationsand generatenon-stratified subsystems[21, 27].

Due to a closeassociationbetweentheir developersthe two SCTs haveinfluencedeachotherandhencefollow a
similar theme. Both the SCTs aim at creatingsubsystemsof procedures,types,and global variablesrepresenting
modularsubsystemsand provide two strategies—global-based and type-based—to placeprogramcomponentsin
the samesubsystem.The global-basedstrategycreatessubsystemsconsistingof global variablesand procedures
whereasthe type-basedstrategycreatessubsystemsconsistingof typesandprocedures.

Before presentingthe two SCTs, we introducesomeadditionaldefinitions and notation to help us describe
theseSCTs. Figure 4 containsexamplesthat enumeratethe definitionsintroduced.

4.5.1 Additional definitions and notation The two SCTs useCXGs whosesetof sourcenodes� and
set of target nodes

�
are disjoint, i.e., � � � ��� . The length of a path (sequenceof edgestraversed)in these

graphscanbe at mostone. Hence,thesealgorithmsemployoperationsthat requiretraversinga singleedgeeither
along (i.e., from the sourcenodeto the target node)or against (i.e., from the target nodeto the sourcenode).

Definition: The setof nodesreachablefrom a node � by traversingoneedgeof a CXG � aredenotedasfollows:

�	��
������������� ������������� �����!�����#"
���$�����%��
�������%�	��
�����	&'���("

Whethera traversalis donealong an edgeor againstan edgeis obvious from the nodeitself, sincea nodein a
CXG with disjoint) and * can be either a target or a sourceof an edge,but not both, as enumeratedby the
examplein Figure 4.

Definition: Two elements+
 and +, havea weak match in CXG � if � ��
 ��+
 �	-.� ��
 ��+,/���10 . They havea strong
match if � ��
 ��+
 �2�3� ��
 �4+/,� .
Definition: Let 5%67���	� and 8�67�4�	� denotethepairsof nodesin � with strongandweakmatch,respectively,i.e.:

��+
 �#+ , �:9;5%67���	��<=� ��
 �4+
 �	- � ��
 ��+ , �?>�10
�4+
 �#+/,�:9@8A67�B�	��<=� ��
 �4+
 ���C� ��
 �4+/,�

Definition: Let 5%6%DE���	� give the reflexive, transitive-closureof 5%67�4�	� .

17

Example CXG � Single edgetraversals

P1

P2

P3

P4

T1

T2

T3

T4

���������
	��������	��������
�������������������	��
� ��� ������������������
����� ���
���������!�������������� ���

� ��� �"�#	$��%�$�
	��&�����
�����'�"�
�'��%�$�
	��&�����
�����'�"�
�'��%�$�����&�!���
�����'�"� ����%�$�����&�!���

Weak and strong matches
(*) �"���+�,���-�#	��.�
���$�/�-�������
�0�/�$��������� ���/�$�"�
����� �'�$�/����1.����1��$�/�2�
	��&���'���$�2�
	��3���'�/�$�������&�!���$�/���41.�&�51����
6) �3���+�,���-�
�7�.�8���/�$�"�91&�.��1�� 1;: ��<=< > �/���41��3�41�� 12: �.<=< > �
Partitions createdby weak and strong matches
(*),? �-���@�����'�#	����
�����
����� ���A�/�$�
	��&�����&�����&�!�'���
6) �3���+�,�����
�7�.�8�'�A�/�0�#	'���/�������A�/�$�
	��A�/�$�����A�/�$�������$�$�!�7�'�
Weak and strong groupings around B and C
(*D�?E �3���+� (*D
?F �"����%���0�#	��.�
�7�.�!�7�.�8�5�&�
	��2���7�3���7�3�!�����
6 D E �-����%���'�
����� ���&�����&�!���A�/�0�#	��&�
	��&�������$�0�
�7�3�
	��3���G���
6 D F �"���+�,���0�
	����#	��.�!�H�A�/�$�������#	$���$�$���7�.�������!����� ���A�/�$�!�5���
�����I�����

Figure4 Examplesenumeratingdefinitionsintroducedto abstractandLivadasandJohnson’sandOgandoet
al.’s SCTs. TheseSCTs useCXGs with the propertythat JLKNMPOPQ

Definition: Let R be a subsetof S . We use
(*),?T �-��� and

6) T �-��� to denotethe following:

(*) ?T �"���� (*) ? �-����U R%VWR6) T �"���� 6) �3����U R,VNR
That is,

(*),?T �-��� and
6) T �"��� are subsetsof

(*),? �"��� and
6) �-��� , respectively,containingonly relations

betweenthe elementsof R . If the sets B and C of � are disjoint, then
(*),?E �"��� and

(*),?F �"��� partition(*),? �-��� , i.e.:

(*) ?E �-����X (*) ?F �"���� (*) ? �-���
(*) ?E �-����U (*) ?F �"����PY

Similarly,
6) E �-��� and

6) F �-��� partition
6) �-��� .(*),? �-��� and

6) �-��� are equivalencerelations,hencethey define partitionsover the set S . If the sets B
and C aredisjoint, then

(*),?E �"��� and
(*),?F �-��� (similarly,

6) E �-��� and
6) F �"���) arealsoequivalencerelations

creatingpartitionsover the sets B and C , respectively.

The subsetsin the partitionscreatedby weak and strongmatchesmay be expandedfurther to createweak
groupings (WG) and strong groupings (SG).

Definition: A weak grouping around B ,
(*D
?E �-��� is the setof subsetsof S createdby expandingthe subsetsin

the partitionscreatedby
(*),?E �-��� as follows:

18

If
�

is a subsetin the partition due to 5%6 D� �4�	� then
� &������� � ��
 �
	 � 9 5%6 D� �4�	� .

A weak groupingaround * , 5�� D :���	� ; a stronggroupingaround) , 8�� � ���	� ; and a stronggroupingaround * ,
8�� ���	� , may be similarly createdby expandingthe partitions createdby 5%6 D ���	� , 8A6 � ���	� , and 8�6 � ���	� ,
respectively.

4.5.2 SCT of Ogando et al. The global-basedstrategyof Ogandoet al. createssubsystemsgiven by����������������
, i.e., weakgroupingaround � of theCXG

�����
(which procedureuseswhich globalvariable)[27]. The

subsystemscreatedby this strategyhavethe following properties:

1. If a procedurerefersto theglobalvariables "! and $# thentheglobalvariablesareplacedin thesamesubsystem.
2. If a global variableis placedin a subsystemthenall proceduresreferringit areplacedin that subsystem.
3. A global variable is placedin at most one subsystem.

Their type-basedstrategyusesCXG
��%'&

that representsrelationsbetweenproceduresand types usedin its
interfacedescription(i.e., formalparametersandreturnvalue). This CXG maintainsdirectanddownwardreferences
to types. The CXG is filtered to removerelationsbetweena procedure(anda type) if procedure(referencesa
super-partof) . The type-basedstrategycreatessubsystemsgiven by

���������� %*& �
, i.e., weakgroupingaround � of

CXG
� %*&

(after filtering, seeSection3.1.3). The subsystemscreatedby this strategymay be describedasfollows:

1. If the interfaceof a procedurerefersto types) ! and) # but doesnot refer to any of their super-parts,then the
two types are placedin the samesubsystem.

2. If a typeis placedin a subsystem,thenall proceduresreferringto it (in theinterface)areplacedin thatsubsystem.
3. A type is placedin at most one subsystem.

4.5.3 SCTs of Livadas and Johnson LivadasandJohnson’sglobal-based strategyis thesameasOgando
et al.’s, exceptthat it usesthe CXG

� � &
insteadof the CXG

� ���
[21]. In otherwords,it createssubsystemsgiven

by
���+�� �,� � &,�

, i.e., weakgroupingaround � of the CXG
� � &

(which procedurereferenceswhich global variable
either directly or indirectly due to aliasingwith a formal parameter).

Their type-basedstrategyis really a family of strategiesin that it is parameterizedby a CXG that gives a
relation betweenproceduresand types(i.e., which procedureuseswhich types). It createssubsystemsgiven by- �/.0���1�

, i.e., strong groupingaround 2 of the CXG
�

. Livadas and Johnsonhave experimentedwith various
combinations(unions) of CXGs

��%*&
,
��%43

, and
��% �

.

4.6 Flow-analysis based,non-stratified SCT
SCTs whoserationale is best expressedusing flow-analysisterminology [3] are classifiedas flow-analysis

based(eventhoughflow-analysismay be statedin termsof graphoperations).Thereare two suchSCTs [28, 39].
Thesetwo SCTs haveevolved from the respectiveauthor’sexperienceswith reengineeringproceduralprograms
to object-orientedprograms. The presentationof Silva-Lepe’stechniqueprimarily consistsof a combinationof
examplesand discussions[39]. This makesit harderto abstractit and hencewe havenot reformulatedit. The
secondSCT is presentedusingsomealgorithms,besidesexamplesanddiscussions[28]. Our reformulationof this
SCT below, presentsit with a precisiongreaterthan that in the original work.

4.6.1 SCT of Ong and Tsai Ong andTsai’s SCT is designedto recoverobjects,i.e., modularsubsystems,
from Fortran programs[28]. The subsystemsit recoversare flat and may have overlappingsubsystems.Each
subsystemrecoveredby this SCT consistsof a set of variablesand statementblocks. Therefore,Ong andTsai’s
SCT doesnot treat a procedureor function asa unit that cannotbe decomposed,asotherSCTs do.

This SCT is similar to the graph-theoretic,non-stratifiedSCTs in that the sourcenodes2 andtarget nodes �
of the CXGs it usesaredisjoint, i.e., 2657�98;: . Hence,we find it convenientto usethe notation

�1< ! introduced
in the previoussubsection.

Ong and Tsai’s SCT usesCXGs
��=�>@?

,
�A>B?,%

,
��C�?
D

, and
�A3 &FE�?

. ComputingtheseCXGs requiresstatic flow-
analysisof the programs[3].

19

OngandTsai’sSCT consistsof two steps.In thefirst stepit createssubsystemsconsistingof globalvariables,
formal parameters,andactualparameters.The variablesin eachof thesesubsystemsaresaid to identify instance
variablesof an object class. In the next step,statementblocks, signifying “methods” of the class,are addedto
each subsystem.

The placementof variablesinto subsystems,in the first step,is doneusing the following rules:

1. All variables belonging to the same COMMON block belong to the same subsystem.
2. The formal parameters of each procedure are split into three categories:

use-only, define-and-use, and define-only. For each procedure, the set with
the largest size forms a subsystem.

3. If a formal parameter of a procedure belongs to a subsystem, then the
corresponding actual parameter of a call to this procedure also belongs
to that subsystem.

4. If an actual parameter of a procedure call belongs to a subsystem, then
the corresponding formal parameter of the procedure it calls also belongs
to that subsystem.

(Note that this stepusesinterconnectioninformationnot containedin the CXGs listed in Figure1.)

The subsystemsof variablesformed aboveare expandedto include statementblocks. Let
�

be the set of
variablesplacedin subsystem . Statementblocks areaddedto using the following steps:

Let
- ����� 8 �E������ � < !C�?,D �
	 ��� �1< !=$>B? �
	$�� . The set of statements that define or use a

variable in
�
.

For every statement � in
- �����

do

For every statement-block � containing statement � , starting from the
smallest block and going to bigger blocks, do

• ��� � � � 8 �1< !=$>@? � � �����
. The set of variables used in block � , except those

in
�
. If block � was used to make a method, then these variables

would correspond to the formal parameters.
• � �+� � � 8 � < !>B?,% � � � 5 � < !3 & E ? � � �����

. The set of variables, other than those in�
, that are used outside block � after being modified in block � . If

block � was used to make a method, then these variables would be used
to return values.

If the sets ��� � � � and � ��� � � are small then include block � in subsystem
Whetherthe sets ��� � � � and � � � � � are small is determined“by comparingseveral ��� ’s and � � ’s for a

graduallyexpanding� that consistsof the statementsaround � [28].” Since ��� and � � arenot constrainedto be
“smallest,” morethanonestatementblock � containinga statement� mayqualify to besmallandbe includedin the
subsystem.This allows placementof overlappingstatementblocks in the samesubsystem.Similarly, a statement
block mayalsobe placedin multiple subsystems.Thus,OngandTsai’sSCTgeneratesnon-partitionedsubsystems.

5 Benefits of our uni fied model
Our unified model offers the following importantbenefits.

• It identifiesthe parametersthatareimportantto describeSCTs. If the SCTs areexpressedusingthe terminology
introduced,it also makesit easierto comparevariousSCTs.

• Separatingthecomputationperformedby theSCTs from their inputspavestheway to createnewSCTs by mixing
and matchingthe informationusedand the computationsperformedby differentSCTs.

20

Additionally, a comprehensivesurveyof the interconnectionrelationsusedby SCTs, Figures1, 2, 3, and 4, may
also be usedto:

• Identify SCTs that may be suitablein a particularcontext.
• Identify “requirements”(or developbenchmarks)for languageprocessingtools whendevelopingspecific SCTs.

Thesebenefitsare further elaboratedupon below.

5.1 Describing and comparing SCTs

We havedevelopeda classification of the inputs,outputs,andcomputationsperformedby SCTs. New SCTs
may be expressedconciselyif they canbe describedusingour classification.For instance,if a new SCT generates
stratifiedsubsystems,one may statewhetherit may be abstractedusing the templatein Figure 3, and if so, then
the decisionsmadein Stepss1, s2, ands3 may be explained.If the stratifiedSCT happensto be a HAC, thenonly
the formula to computeits similarity matrix or dissimilarity matrix needbe stated.

Most SCTs, exceptthoseinfluencedby numericalclusteranalysis[19], havebeendescribedin the original
works using different terminologyand notation. Reformulatingthem using our unified frameworkhighlights the
similarities anddifferencesbetweenthe informationusedby the SCTs and the computationsthey perform. Some
noteworthyobservationsenabledby our reformulationare as follows:

1. The global-basedandtype-basedstrategiesof Ogandoet al., asper our reformulation(Section4.5.2),primarily
differ in the interconnectiongraphsthey input. They both usethe samecomputationto creategroups,i.e., they
computeweakgroupingsaround � of the CXG they input. However,in the original papertheir computations
appearsignificantly different [27].

2. Livadas and Johnson’stype-basedstrategyis influencedby Ogandoet al.’s type-basedstrategy. As per our
reformulation (Sections4.5.3 and 4.5.2), they differ in that, of the respectiveCXG they input, the former
computesstronggroupingsaround 2 while the latter computesweak groupingsaround � . A differencenot
explicit in the original work [21].

3. Patelet al. andOgandoet a. both useinterconnectiongraphsthat statewhich procedurereferenceswhich types
of variables. They both propagatereferencesto a variableof a type to other types in the sub-part/super-part
hierarchy. But the two differ in the direction in which referencesare propagatedin the hierarchy. Patelet al.
propagatethe references“upward” while Ogandoet al. propagatereferences“downward” (Section3.1.2).

4. The similarity matrices � ��� # , � ����� , and � ����� computedby HutchensandBasili (Section4.1.1),Maarekand
Kaiser (Section4.1.3), and Müller and Uhl (Section4.3.1) require the samecomputation,albeit on different
WXGs. Theyall sumtheweightson theedgesbetweenpairsof nodesof the respectiveWXGs. Thedifferences
in the terminologyand symbolsusedin the original works obscuresthis similarity.

5. HutchensandBasili (Section4.1.1) andMüller andUhl (Section4.3.1),both computethe degree—the sumof
indegree and outdegree—of nodesin the respectivegraphs.However,the original works do not refer to it as
computationof the degreeof a graph.

6. We use the symbols � ��� and � � � � whenevera computationyields a similarity or a dissimilarity matrix (as
definedin Section3.3). While the enumerationof this distinction is necessaryfor SCTs usingHAC algorithms
[19], we useit for otherSCTs aswell (seethe non-numeric,non-stratified SCTs). In additionto highlighting an
importantpropertyof thesecomputations,using thesesymbolsalso identifies computationsthat may possibly
be usedwith HAC algorithms.

5.2 Creating new SCTs

SCTs are essentiallyheuristic. New SCTs may be createdby mixing and matchingthe information and the
computationsused by different SCTs. The templatefor a stratified SCT, Figure 3, enablesthe creation of a
parameterizedstratifiedSCT, i.e., a SCTin which the interconnectiongraphto be used,the formula to computethe

21

similarity matrix or dissimilarity matrix, and/orthe decisionsfor Stepss1, s2, and s3 areparameterized.We have
implementedone suchparameterizedSCT that allows the following selections:

1. Theinput maybeoneof two CFGs,eithertheCFG
� ���

representingtheflow of valuesthroughglobalvariables,
describedearlier, or the CFG

� > �
, where

� > � �������	��
��
is true iff the variable, type, or function

�
is referred

(i.e., used,assigned,or called) by procedures
�

and

.
2. The computationsfor Stepss1, s2, and s3 may be either thoseused in single-link HAC or those used in

Hutchensand Basili’s SCTs [17].
3. If single-link HAC is chosen,it may be appliedon one of threematrices � ��� # , � � � � ! or � � � ��� as described

in Section4.1.1.

This ability to createseveralSCTs by parameterizinga generaltemplateis interestingbecauseSCTs areessentially
heuristic. A parameterizedSCT providesthe ability to experimentwith different combinationsof computations
and to choosethe one most suitablefor a particularenvironment.For instance,our parameterizedstratifiedSCT
can generateten subsystemclassificationsfor eachsoftwaresystem(two CFGsfor eachsystem,two subsystem
classificationsfor eachCFG due to HutchensandBasili’s SCT, andthreesubsystemclassificationsfor eachCFG
using single-link HAC).

5.3 Evaluating applicability of third-party programs and SCTs
All the SCTs we study,exceptthat of Ong andTsai [28], canbe parameterizedon their input interconnection

graph,i.e., their computationmay be statedin termsof a genericCXG, WXG, or CFG. Sucha parameterization
makesa SCT independentof any programminglanguageor any environmentalcontext. In addition to creatinga
classof SCTs from eachSCT,this enhancesthepossibility of usingthesameSCT for systemswritten for different
programminglanguagesby simply replacingthe front end.

The developmentof a languagespecific front-endis an expensivetask in the implementationof a SCT. One
may prefer to use a third-party programanalyzersuch as Refine [34] or FIELD [35] to perform this function,
insteadof developingone. Theseanalyzersoften differ in capabilitiesaswell asprice. The comprehensivelist of
interconnectiongraphspresentedin Figures1, 2, and3 may be usedto createguidelinesfor evaluatingwhethera
third-party tool extractsthe information neededto developone or more SCTs.

Here are a few examplesof the information neededfor and the applicability of someSCTs. SCTs that use
‘type’ relatedinformationwould not be usefulwith FORTRAN programssincetheseprogramsdo not haveuser-
definedtypes. SCTs that use ‘global variables’ relatedinformation may not do well with programsusing data
abstractions.To developOgandoet al.’s type-basedSCT andPatelet al.’s SCT oneneedsthe information ‘which
type is usedto definewhich type’ [27, 31,]. A cross-referenceinformationextractiontool thatdoesnot providethis
informationwould not be suitablefor this purpose.Patelet al.’s SCT alsorequiresthe countof how manytimesa
relationbetweentwo symbolsexists,hencethe tool usedshouldpermit sucha computation.Whena techniqueis
not directly applicablein a particularcontext,it may be adaptedusinga different setof relations.

6 Conclusions
We have presenteda framework to describetechniquesthat decomposethe componentsof a programinto

subsystems.Sucha decomposition,referredto as a subsystemclassification,is useful in variouscontextsduring
software maintenance. Therefore, techniquesfor extracting subsystemclassificationshave been investigated
by researchersdevelopingtools to supportdifferent maintenanceactivities, such as programunderstanding[6],
reengineeringlegacy code [25, 28, 36], propagatingchanges[23], analyzingerror-pronecomponents[37], and
identifying objectsin sourcecode[21, 27]. Given the differencesin the problemdomains,thesetechniqueshave
beenpresentedusing different “languages”— terminologyand symbols. Our reformulationof thesetechniques
usinga consistent“language”is an attemptto dismantlethe “Tower of Babel” thuscreated.

Our investigationof SCTs stemsfrom our interestin developingautomatedsupportfor identifying modulesas
a precursorto reengineeringlegacycode.We feel that thesetechniqueshold promise,eventhoughtheyareheuristic

22

and dependprimarily on cross-referenceinformation. The useof cross-referenceinformation for organizing the
componentsof a programinto modulesfinds supportfrom the observationthat the notion of informationhiding is
itself definedon thebasisof scopeandoperationson symbols[30], which areessentiallycross-referenceconstraints.
It is alsosupportedby Parikh’sobservationthatcross-referencingis oneof themostimportantsourcesof information
for a maintenanceprogrammer[29].

That numericalclusteranalysisprovidesa goodheuristicfor recoveringmodules(or objects)may be extrap-
olated—epigrammatically,not logically—from the very applicationit was first designedfor, namely, to classify
animalandplant kingdoms—classificationhierarchiescommonlyusedasexamplesfor object-orienteddesign. In-
terestingly,numericalclusteranalysishasalso beenusedto generate“programs”—sequencesof instructionsto an
architect—fromarchitecturaldesignconstraintswhendesigningcities [4], the reverseof what SCTs seekto do.

Acknowledgments
This work has benefitted significantly by the careful reading and comments provided by Anurag Bhatnagar, John M.
Gravley, Zhen Huang, Bharat Nedunchalian, Anil K. Vijendran, and the anonymous referees. The work was partially
supported by the grant Louisiana BOR LEQSF (1993-95) RD-A-38 and ARO DAH04–94–G-0334. It was conducted
in the Software Research Laboratory funded by the grant Louisiana BOR LEQSF (1991-92) ENH-98.

Bibliography

[1] B. L. Achee and Doris L. Carver. A greedyapproachto object identification in imperativecode. In Proc.
Workshopon Program Comprehension. IEEE ComputerSocietyPress,1994.

[2] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and Analysisof ComputerAlgorithms. Addison-
Wesley,Reading,Massachussets,1974.

[3] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers:Principles, Techniques,and Tools. Addison-
Wesley, 1986.

[4] ChristopherAlexander.Noteson the synthesisof form. HarvardUniversity Press,Cambridge,Massachusetts,
1964.

[5] RobertS. Arnold. Software Reengineering. IEEE ComputerSocietyPress,Los Alamitos, California, 1993.

[6] L. A. Belady and C. J. Evangelisti.Systempartitioning and its measures.Journal of Systemsand Software,
2(1):23–29,February1981.

[7] T. J. Biggerstaff. Designrecoveryfor maintenanceandreuse.Computer, pages36–49,July 1989.

[8] David Carrington,David Duke,Ian Hayes,andJim Welsh.Derivingmodulardesignsfrom formal specifications.
Proc. of SIGSOFT’93,Software EngineeringNotes, 18(5):89–98,December1993.

[9] Yih-FarnChen,Michael Y. Nishimoto,andC. V. Ramamoorthy.The C informationabstractionsystem.IEEE
Transactionson Software Engineering, 16(3):325–334,March 1990.

[10] Elliot J. Chikofsky andJamesH. CrossII. Specialissueon reverseengineering.IEEE Software, 7(1), January
1990.

[11] Song C. Choi and Walt Scacchi.Extracting and restructuringthe designof large systems.IEEE Software,
7(1):66–71,January1990.

[12] PeterCoad and Edward Yourdon.Object-orientedanalysis. Yourdon Press,EnglewoodClif fs, NJ, second
edition, 1991.

[13] W. E. Donath and A. J. Hoffman. Algorithms for partitioning of graphs and computer logic basedon
eigenvectorsof connectionmatrices.IBM Tech.Disclosure Bull., 15(3), 1972.

[14] Alfred E. Dunlop andBrian W. Kerninghan.A procedurefor placementof standard-cellVLSI circuits. IEEE
Transactionson ComputedAided Design, CAD–4(1):92–98,January1985.

[15] B. Everitt. Cluster Analysis. Heinemann,London, England,1974.

23

[16] David Garlan and Mary Shaw. An introduction to softwarearchitecture.In V. Ambriola and G. Tortora,
editors,Advancesin Software EngineeringandKnowledgeEngineering, volume1. World ScientificPublishing
Company,1993.

[17] David H. Hutchensand Victor R. Basili. Systemstructureanalysis:Clusteringwith data bindings. IEEE
Transactionson Software Engineering, pages749–757,August 1985.

[18] Ivar Jacobsonand Fredrik Lindstrom. Reengineeringof old systemsto an object-orientedarchitecture.In
Proc. OOPSLA, pages340–350,1991.

[19] N. JardineandR. Sibson.MathematicalTaxonomy. JohnWiley andSons,Inc., New York, 1971.

[20] Arun LakhotiaandJohnM. Gravley.A measureof congruencebetweensubsystemclassificationsof a software
system.In 2nd IEEE Working Conferenceon ReverseEngineering. IEEE ComputerSocietyPress,1995.

[21] PanosE. LivadasandTheodoreJohnson.A newapproachto findingobjects.Journalof SoftwareMaintenance,
6(4):in print, September1994.

[22] Y. S. Maarek, Daniel M. Berry, and Gail E. Kaiser. An information retrieval approachfor automatically
constructingsoftwarelibraries. IEEE Transactionson Software Engineering, 17(8):800–813,August1991.

[23] Y. S. Maarek and G. E. Kaiser. Changemanagementfor very large softwaresystems.In Proceedingsof
PhoenixConferenceon Computersand Communications, pages280–285,March 1988.

[24] RyszardS. Michalski andRobertE. Stepp.Automatedconstructionof classifications:Conceptualclustering
versusnumericaltaxonomy.IEEETransactionsonPatternAnalysisandMachineIntelligence, PAMI-5(4):396–
409, July 1983.

[25] HausiA. Müller andJamesS. Uhl. Composingsubsystemstructuresusing(K,2)–partitegraphs.Proceedings
of the Conferenceon Software Maintenance, pages12–19,November1990.

[26] Gail C. Murphy, David Notkin, and Kevin Sullivan. Softwarereflexion models:Bridging the gap between
sourceandhigh-levelmodels.TechnicalReport95-03-02,Departmentof ComputerScienceandEngineering,
University of Washington,1995.

[27] R. M. Ogando,S. S. Yau, S. S. Liu, andN. Wilde. An object finder for programstructureunderstandingin
softwaremaintenance.Journal of Software MaintenanceResearch andPractice, 6(5), Sep-Oct1994.

[28] C.L. OngandW. T. Tsai.Classandobjectextractionfrom imperativecode.J. ObjectOrientedProgramming,
pages58–68, Mar–Apr 1993.

[29] G. Parikh.Handbookof Software Maintenance. Wiley-Interscience,New York, N.Y., 1986.

[30] David L. Parnas.On the design and developmentof program families. IEEE Transactionson Software
Engineering, SE-2(1),March 1976.

[31] SukeshPatel,William Chu, andRich Baxter.A measurefor compositemodulecohesion.In Proceedingsof
the 14th InternationalConferenceon Software Engineering, pages38–48,1992.

[32] D. E. Perry.Softwareinterconnectionmodels.In Proceedingsof the9th InternationalConferenceon Software
Engineering, pages61–69,April 1987.

[33] DewayneE. Perry and AlexanderL. Wolf. Foundationsfor study of softwarearchitectures.ACM SIGSOFT
Software EngineeringNotes, 17(4):40–52,October1992.

[34] ReasoningSystems,Inc., Palo Alto, CA. RefineUser’s Guide, 1992.

[35] StevenP. Reiss.Connectingtools usingmessagepassingin the Field environment.IEEE Software, 7(4):57–
66, July 1990.

[36] R. Schwanke.An intelligenttool for reengineeringsoftwaremodularity.In Proc.13thInternationalConference
on Software Engineering, 1991.

[37] RichardW. SelbyandVictor R. Basili. Analyzingerror-pronesystemstructure.IEEETransactionsonSoftware
Engineering, pages141–152,February1991.

[38] Mary Shaw,RobertDeLine, Daniel V. Klein, TheodoreL. Ross,David M. Young, and Gregory Zelesnik.
Abstractionsfor softwarearchitecturesand tools to supportthem.Draft, 1994.

24

[39] Ignacio Silva-Lepe.An empirical method for identifying objectsand their responsibilitiesin a procedural
program. In Technologyof Object-OrientedLanguagesand SystemsEurope Conference, pages136–149,
Versailles, France, 1993. Prentice-Hall. Also available as technical report NU-CCS-93-2, Northeastern
University.

[40] Ricky E. SwardandRobertA. Steigerwald.Issuesin reengineeringfrom proceduralto object-orientedcode.
In Bruce I. Blum, editor, Proc. of the Fourth SystemsReengineeringTechnologyWorkshop, pages327–333.
JohnHopkins University Applied PhysicsLaboratory,1994.

[41] RichardC. WatersandElliot J.Chikofsky.Specialissueon reverseengineering.Communicationsof theACM,
37(5), May 1994.

25

