
February25, 1993

Improved interprocedural slicing algorithm

Arun Lakhotia

The Centerfor AdvancedComputerStudies
University of SouthwesternLouisiana

Lafayette, LA 70504
(318) 231-6766,-5791 (Fax)

arun@cacs.usl.edu

Available as CACS TR-92-5-8

Abstract

Horwitz, Reps,andBinkley (TOPLAS,90) presentanalgorithmfor interproceduralprogramslicing
using a systemdependencegraph (SDG) representationof programs. In order to identify the set of
statementsin a slice their algorithm makestwo traversalsover the SDG; effectively traversingsome
edgestwice. This paperpresentsa one passalgorithm which traverseseachedgein the slice at most
once. In scenariosrequiring on-line union of interproceduralslices, the algorithm providessignificant
improvementby permitting the constructionof union incrementally.

1 Introduction

A slice of a programwith respectto a programpoint p consistsof all statementsof the program
that might affect the behaviorof the programobservedat p; the programpoint p is saidto be the slicing
criterion*. Horwitz, Reps,andBinkley [1] presentanalgorithm(henceforthreferredto asHRB algorithm)
for computingslicesthatcrossboundariesformedby procedurecalls. Theyintroducedsystemdependence
graph (SDG), a graphwith typededgesand nodesencodingthe data,control, andcall dependenciesin
a program. In order to slice a programit is first convertedinto its SDG representation.The slice at
a particularvertex (correspondingto a programpoint) using their algorithm is obtainedin two passes.
Both passesperformthe transitiveclosureof verticesthat canreacha given setof verticesin the SDG;
the passesdiffer in the type of dependencesthey useto perform the closure.

This paper presentsan algorithm (henceforthreferred to as AL algorithm) equivalent to HRB
algorithm. The AL algorithm usesthe SDG representationfor slicing and may be implementedto
perform only one traversalof eachedgein the slice. This improvesupon the HRB algorithmwhich in
the worst casetraversesan edgetwice. The AL traversalalgorithmthereforeis optimal.

The SDG representationof a programmay be usedto perform interproceduralanalysesother than
slicing. Most of the analysesalgorithmswould require forward or backwardtraversalof dependences
representedin the SDG. The traversalalgorithmusedfor interproceduralforward andbackwardslicing
couldbeusedasthebackboneof thesealgorithms.Onesuchapplicationreportedin [3] is theproblemof
constructingcall multigraphof a programwith procedurevaluedvariables.Thealgorithmreportedin [3]

* This definition is slightly different from the original definition of programslice introducedby Weiser[10].

1

February25, 1993

combinesHorwitz et. al.’s forward slicing algorithm’s traversalmechanismwith WegmanandZadeck’s
constantpropagationalgorithm [9] to constructthe call multigraph. In order to do so the algorithm
requiresseveraltraversalsof the SDG. Even an improvementin the constantfactor provided by the
AL algorithm could lead to a substantialimprovementin the running time of this andother algorithms
requiring such traversals.

Our algorithm providessubstantialimprovementin situationsrequiring on-line slicing of the same
program. Consider,a debuggingscenariowherea programmerperformsa slice on a statement,finds
that it is inadequate,andwould like the union of this slice with that over anotherstatement.Using the
HRB algorithm, the secondrequestfor slicing will requirecomputinga fresh slice on the union of the
two statements.However,the AL algorithm may be usedto constructthe slice incrementallystarting
from the slice for the first statement.The HRB algorithmusesthe two passesto correctly accountfor
the calling contextof a procedurecall. It maintainsa two valuedtag to distinguishstatementsin the
slice from thosenot in it. TheAL algorithmmaintainsa threevaluedtag thathelpsin distinguishingthe
calling contextas well as identifying the verticesin the slice. Sincethe calling contextof the previous
slice is availablein the tags, the AL algorithm may be usedto incrementallybuild on it. This is not
possiblein the HRB algorithm becauseof the lack of the contextinformation.

For thesakeof brevity this paperdoesnot containa detaileddiscussionof systemdependencegraph
(SDG); the readeris referredto [1] for that. The salientfeaturesof the grapharesketchedin Section2.
Section3 outlinesHRB forward slicing algorithmandSection4 the AL slicing algorithm. The proof of
equivalenceof the two algorithmsis given in Section5. Section6 analysesthe complexity of the AL
algorithmandpresentsempiricalresultscomparingthetwo algorithms.Section7 containourconclusions.

It maybeemphasizedthat this paperonly givestheAL algorithmfor backwardslicing. Theconcepts
presentedhoweverare sufficient to constructthe forward slicing algorithm.

2 System dependence graph

An SDG encodesthe data,control, andcall dependencerelationsbetweenstatements† of a program
in a simple procedurallanguageconsistingof assignment,if-then-else,while-do, procedurecall, entry,
andreturnstatements.Theparametersto a procedurecall aresimplevariablespassedby value-reference.
Thereis a specialproceduremain from which executionis initiated.

The SDG consistsof a collection of proceduredependencegraph (PDG) (a variation of program
dependencegraph [2, 5]). There is one PDG per procedurein the programencodingthe control and
datadependencerelationswithin theprocedure.Thesegraphscontainverticesrepresentingcall-sitesand
procedureentry points. The SDG hascall edgesconnectingthe call-sitesin a PDG to the entry point
in the PDG of the procedurecalled at that site.

For eachcall-site, the PDG also containstwo verticesfor every actualparameterin the procedure
call. An actual-in vertex to representthe transferof value of the actualparameterto an intermediate
variableusedto sendthe input to the procedure.An actual-outvertex to representtransferof the final
value of the parameterfrom an intermediatevariableto the actualparameter.

Analogously,for everyentry point, the PDGscontaintwo verticesfor every formal parameter.A
formal-in vertexrepresentingthe transferof valueto the formal parameterfrom the intermediatevariable

† It alsohasanotherdependencecalledthe def-orderdependencewhich is not relevantfor slicing. This dependenceis thereforeignoredin
this paper.

2

February25, 1993

|

||||

|| ||

|||| || ||

||||

a_in := z

| ||| ||

| ||
| ||

| ||

| ||

| ||

| ||

| || ||

||

||

Enter Add

a := a_in b := b_in Body a_out := a

a := a+b

z := z_in

Enter Inc

Body

call Add

b_in := 1 z := a_out

Enter A

x := x_in Body x_out := x y_out := yy := y_in

call Add

a_in := x b_in := y x := a_out

call Inc

z_in := y y := z_out

Enter Main

Body

while i < 11i := 1sum := 0

call A

x_in := sum sum := x_out i := y_outy_in := i

| ||
| ||

| || | ||

| ||

| ||

| ||

| ||

||

o

o
o

| ||

| ||
| ||

| ||

| ||

||

||

| ||
| ||

| ||| ||

| || | ||

|

|

||

||

32

33
34 35

36

37

25

24

28

29 30

31

12
14

15 1613

17

19 20 21

18

22
23

 1

 2

 5 4 3

 6

 7 9 10 8

11

26 27
|

|

z_out := z

in slice: 53
not traversed: 0
only in 1st pass: 4
only in 2nd pass: 18
in 1st & 2nd pass: 28

total traversal: 78

Edge traversal statistics

procedure main()
begin

sum := 0;
i := 1;
while (i < 11) do

A(sum, i)
od

end main;

procedure A(x, y)
begin

Add(x, y);
Inc(y)

end A;

procedure Inc(z)
begin

Add(z, 1)
end Inc;

procedure Add(a,b)
begin

a := a + b
end Add;

Figure1 A programtakenfrom [1] and its systemdependencegraph.Verticesarenumberedfor later reference.Intra edges
areindicatedby solid lines andFrom-To andTo-Fromedgesby (slightly different)dottedlines.
Verticesin thesliceoverthevertexset{25, 26} appearin boxeswith thickerboundaries.Theedgesin theslicehavean
overstrike

���������������
dependingon if they aretraversedin thefirst pass,secondpass,or bothfirst andsecondpassof the

HRB algorithm. Edgesin theslice thatarenot traversedin eitherpassof theHRB algorithmareoverstrikedwith an 	 .

assignedto in theactual-invertex. A formal-outvertexrepresentingthetransferof valuefrom theformal
parameterto the intermediatevariableusedat the actual-outvertex.

The pairsof intermediatevariablesusedto communicatethe initial andfinal valuesof a parameter
to/from the procedureentry areunique. The SDG containstwo edges,parameter-inandparameter-out,
to representthedatadependencebetweentheactual-in to formal-in andformal-outto actual-outvertices.

Sincethere is one PDG per procedurein the SDG, the actual-in (actual-out)verticesfor the same
parameterfrom differentcalls to thesameprocedurearedependeduponby (dependon) thesameformal-

3

February25, 1993

procedure HRB_slicing_algorithm(
�

, �)

declare
�

: a systemdependencegraph
� : setsof vertices in

�

begin

First pass: Mark all verticesof
�

which can(reflexive,transitively)reachanyvertexin � usingIntra andFrom-To edges.
Let the verticesmarkedbe called �����

Secondpass: Mark all verticesof
�

which can transitively reachany vertex � usingonly Intra andTo-From edges.
The markedverticesare in the slice of

�
wrt � .

end

Figure 2 Summaryof HRB interproceduralslicing algorithm

in (formal-out) vertex. The SDG alsocontainsedgesbetweenthe actualparameterverticesof the same
procedurecall and betweenthe formal parameterverticesat the procedureentry. Theseedges,termed
summaryedges, summarizethe dependencebetweenthe argumentsof the procedurecall as a result of
executingthe procedure.

In this paperwe classify the edgesin an SDG (excludingdef-orderdependence)in the following
three categories:

Intra: Within verticesof a PDG - control, flow, and summary
From-To: From a call site to an entry site - call and parameter-in
To-From: To a call site from an entry site - parameter-out

3 HRB Interprocedural slicing algorithm

Ottenstein& Ottenstein[5] outline an algorithm for slicing a procedure-lessprogramusing PDG
representation:it is the set of all statementsthat can reachany statementin the slicing criteria using
control or data dependenceedges.

Whenextendingthis algorithmfor interproceduralslicing usingSDG representationHorwitz et. al.
note that traversingan SDG without discriminatingbetweenthe type of edgestraversedmay create
dependencepathsbetweenverticesof two proceduresevenwhen noneexists. This happensbecausea
procedureentry vertexmay be connectedto multiple call sites. A traversalmay useparameter-inedge
comingout of onecall site andparameter-outvertexreturningto anothercall site to createthe incorrect
linkage. Horwitz et. al. termedthis the calling contextproblem. They developeda two passtraversal
algorithmthat correctlyaccountedfor the calling contextof a procedure[1]. The two passesdifferedin
theedgesusedfor traversal.In thefirst passof their backwardslicing algorithm,summarizedin Figure2,
edgeswerechosensuchthat thetraversaldid not descendinto a calledprocedure.Similarly, thechoiceof
edgesin thesecondpasslimited the traversalfrom ascendinginto a procedurecall. A similar approachis
usedby their forward slicing algorithmto correctlyaccountfor calling contextsin the forward traversal.

It may be notedthat, earlier Myers’ had provideda solution of the calling contextproblemin the
framework of a set of dataflow analysisproblems. His solution requiredthe maintenanceof special
markersrepresentingthe call site to keeptrack of the calling context. Horwitz et. al.’s solution to the
calling contextproblemimproveduponMyers’ solution[4]. Our solution,presentedin the next section,
may be seenas presentingHorwitz et. al.’s solution in lattice theoreticframework.

4

February25, 1993

procedure AL_slicing_algorithm(
�

, �)

declare
�

: a systemdependencegraph
� : set of vertices���������
	���

: set of vertices

begin���������
	����� � � ;
mark tags of all verticesin � to � ;
mark tags of all other vertices � ;
while

����������	��������
do

Selectand removea vertex � from
���������
	���

;
for eachvertex � suchthat edge � �"!#� in

�
do

caseedgetype of do
Intra: (* propagate � � %$'& to � *)(��)$�&*�+� � � ,$�&.- � �)$�& ;
To-From: (* propagate/ to � *)(��)$�&*�+� � � ,$�&.- / ;

From-To: (* if � � ,$�& is � propagate � elseignore � *)

if � � ,$�&0� �
then (��)$�&1� � � �)$�&.- �
else (��)$�&*� � � �)$�& ;

esac
(* put w in the list only if its newtag valuehas increased*)
if � � ,$�&02 (�� ,$�& then

� �)$�&*�+� (�� ,$�& ;
put � in the

���������
	���
;

fi

rof

elihw
(* Verticeswith tag values / and � are in the slice *)

end

Figure3 Onepassbackwardslicing algorithm. The statementblocks if, for, case, andwhile areterminatedby fi, rof, esac,
andelihw, respectively.Commentsareenclosedin (* and *) . After executionof statementsfor a
casecontrol is transferredto the statementfollowing esac(as in PASCAL).
The lattice (35476,896;:7< , =) is definedso that 4?>�80>@: .

4 AL interprocedural slicing algorithm

The AL algorithmfor interproceduralslicing is given in Figure3. Like HRB algorithmit maintains
a ACBEDEFHG%IKJ'L of verticesthat havebeenmarkedso far andasverticesaretraversedthey aretagged.The
AL algorithmmaintainsat eachvertexa tag which canassumethe valuesfrom the set MONQP�R.P�SUT . This
set along with the meetoperator V forms a lattice where:

NCVWRYXZR[V?N\X]R ,^ V"S\X_SCV ^ X\S , and
^ V ^ X ^ .

5

February25, 1993

Contrastthis with the HRB algorithm’suseof tagswith two values: ��� DEF�� � and ��� �	� DEF
� � .
In the beginningof the AL algorithmall verticesin the slicing criterion areplacedin the ACBEDEF G,I J'L

and are assignedthe tag S . All other verticesare assignedthe tag N . At the end of the algorithmall
verticeswhosetagsare R or S are in the slice. The traversalrequirespicking eachedge ��X����� in
the SDG correspondingto a vertex � in the ACBEDEF G,I J'L and deciding:

1. whether � shouldbe put in the ACBEDEF G,I J'L and, if so,
2. what the value of its tag should be.

WhentraversingIntra edges(i.e. with in the PDG) the tag at the target vertexof the edgeis propagated
to thevertexat thesource.This is not howeverthecasewhenFrom-To andTo-Fromedgesaretraversed.
A From-To edge(called to caller) is not traversedif the tag of the target vertex is not S . When it is
traversedthe tag S is propagatedto the sourcevertex. A To-From edge(caller to called) is always
traversed.Irrespectiveof the tagof its targetvertexa R tag is propagatedto its sourcevertex. Thesource
vertex is put in the Worklist only if its tag changes.

Table 1 enumeratesthe applicationof AL algorithm for the sameexampleusedfor HRB slicing
in Figure 1.

On-line union of slicesimplies creatinga union of sliceswherea requestfor slice shouldbe processed
beforethe next one is received.The AL algorithmmay be usedto processon-line requestsby making
the following modifications:

1. move the statement“mark tagsof all other vertices N ” out of the algorithm into an initialization
procedurethat is performedbeforethe first requestis receivedand

2. the A BEDEF G,IKJ L maybeinitialized only by thoseverticesin � whosetagvaluesat entrydiffer from S .

5 Proof of equivalence

Definition: Let � denotethesetof verticesin thesliceof SDG � wrt vertexset � usingHRB algorithm
(Figure 2). Let ��� and ��� be the setof verticesmarkedby the algorithm in the first passand second
pass,respectively.Notice that � ��� � � X�� , � ��� � � X�� , and ����� � .
Definition: Let � denotethe setof verticesin the slice of SDG � wrt vertexset � usingAL algorithm
(Figure 3). Let � � and �"! be the set of vertices whose with tag values R and S , respectively.
� � � �"! X#� , � � � �"! X#� , and ���#�"! .

We will show that � ! X���� and � � X$��� therebyimplying that � X�� .

Definition: Theedgetypeof a pathin anSDGis thesetof thetypeof edgesin thatpath. If theedgetype
of a path is M Intra T or MOT it is calledan in-pdg path. If it is M Intra, From-To T it is calledan ascending
path. If it is M Intra, To-From T it is called a descending path.

The edgetype of a path will be M T if it hasonly 0 or 1 vertex. Hencean in-pdg path consistsof
verticesin the samePDG. An ascendingpathtraversesmorethanonePDG; alwaysfrom the PDG of a
procedureto thatof a procedurecalling it. A descendingpathalsotraversesmorethanonePDG; always
from the PDG of a procedureto one it calls.

In theHRB algorithmthefirst passtraversesonly Intra andFrom-To edgesandthesecondpassonly
Intra andTo-From edges.Hence,the first passtraversesonly in-pdgandascendingpathsandthe second
passonly in-pdg anddescendingpaths.Notice that the pathsare traversedin the reverseorder.

6

February25, 1993

Table1 Application of AL algorithmfor slicing the SDG in Figure1 at vertexset {25, 27}. The first columnshowsthe���������
	���
. At eachiterationthe first elementfrom this list is selected.Verticeswith tag : areaddedto the front of

the list and thosewith tag 8 to the end. A � separatesthe two typesof vertices.The last columngives thenumberof
edgestraversedin the previousiteration. The Vertices marked columnsshowthe verticesmarkedwith the respective
tag in thebeginningof that iteration. A “..” indicatesthatverticesfrom thepreviousiterationretaintheir respectivetag.

Vertices marked No. of Edges
��������������� � �

Traversed

25,27 25,27

24,22,27 ..,24,22 2

18,22,27 ..,18 1

14,22,27 ..,14 1

11,22,27 ..,11 1

6,22,27 ..,6 1

5,22,27 ..,5 1

2,4,10,22,27 ..,2,4,10 3

1,4,10,22,27 ..,1 1

4,10,22,27 ... 0

10,22,27 ... 1

8,22,27 16 ..,8 16 3

22,27 16 3

13,27 16 ..,13 ... 2

27 16 2

31 16 ..,31 ... 3

28,29,30 16,36 ..,28,29,30 ..,36 4

29,30 16,36 1

30 16,36 2

 16,36 1

 23,36,23 3

 36 3

 32,33,34,37,32,33,34,37 4

 33,34,37 0

 34,37 1

 37 1

 35,35 3

... ... 1

Total edges
traversed

50

7

February25, 1993

Table2 Tableshowinghow tagsarepropagatedusingour backwardslicing algorithm. All pathstraversedmay be
decomposedinto a combinationof in-pdg, ascending, anddescending paths.The pathsaretraversedin the reverse
direction. The valueof ����� ���	� will be the
 of all the tagsreachingit from variouspaths.The third columntherefore
showsthe minmium valueof � � � ����� . A value
�� indicatesthat sucha path is not traversed.

Edge type of path��������������� Tag of ��� Tag propagated to���
1. in-pdg �
 �
2. " �
��
3. ascending �
 �
4. " �
��
5. descending �
��
6. " �
��

Table2 summarizeshow AL algorithm(Figure3) propagatestagsalonga path ����� �!�"�#�$�&% based
on the type of the path and the value of � % � �('*) . The following two Lemmascan be derivedfrom this
table,definition of + , and that the tagsof verticesin , are initialized to

�
.

Lemma 1: If there is an in-pdg or an ascendingpath from a vertex � to somevertex
�	-/. , then

��� �0'1)32 �
, and vice-versa.

Proof: Left to the reader. 4
Lemma 2: If 5 '*6 with

'16 � �0'�)72 �
suchthat thereis a descendingpathfrom � to

'16
and 895 � - . , such

that thereis an in-pdg or an ascendingpath from � to
�:-

then ��� �0'�);2 �
, andvice-versa.

Proof: Left to the reader. 4
Theorem 1: <>=@?BADC and EGFH?BAJI .
Proof: ELKM?NADC .O�P ADC

The first pass of HRB algorithm only traverses in-pdg and ascending paths terminating at vertices in Q .RTS an in-pdg or an ascendingpath from O to some U:V PXW .
Lemma 1R O�P ELK .

Proof: EYF�?NA I .O�P ADI
The second pass of HRB algorithm traverses in-pdg and descending paths terminating at vertices in Z\[.
Vertices already in Z [are not included in ZL] . The new vertices are reached by traversing descending paths (or else they

would be in Z [).R�S_^�` P ADC suchthat thereis a descendingpathfrom O to ^1` andthereis no in-pdgor anascending
path from O to any vertex in W .acbed Z [R@S_^1` P E K suchthat thereis a descendingpathfrom O to ^1` andthereis no ascendingpathfromO to any vertex in W .

Lemma 2R O�P EYF . f

8

February25, 1993

6 Analysis of complexity and implementation experience

The complexity of computing an interproceduralslice using SDG may be separatedinto the
complexity of constructingthe SDG and that of traversingthis graphto identify statementsin a slice.
Horwitz et. al. [1] haveanalyzedthat the costof constructingSDGis polynomial in variousparameters
of the systemand that the costof traversingthe SDG is boundedby the size of the SDG.

A more precisecomplexityof the traversalalgorithmmay be derivedas a function of the number
of edgesin the final slice. Let

�
be the numberof edgesin the SDG of the slice with respectto vertex

set W . The HRB and AL algorithmsare both linear on the size of
�

. There is howevera difference
in numberof times the two algorithmstraverseeachedge. The HRB algorithm requiresat most two
traversalof eachedgein

�
for anychoiceof implementationof �������	��
 U� . In contrast,theAL algorithm

can be implementedto traverseeachedgeat most one time. The detailsfollow.

In a naive implementationof AL algorithm, the tag of eachvertex can changetwice (from � to�
and

�
to �). This implies that the edgesterminatingat a vertex may be traversedtwice. Consider

howeverthe following strategyto selecta vertex from the �������	��
 U� :
select vertices with tag � before selecting any vertex with tag

�

Since a
�

tag always propagates
�

, this strategyensuresthat all verticesthat may be marked � are
visited beforeany vertex with a tag

�
is visited. Thus the tag of a vertex is changedat most onceand

eachedgeterminatingat it is traversedonly once.

Table 1 enumeratesthe applicationof AL algorithm using this strategy. The slice is computedby
traversing50 of the 53 edgesin the slice. The 3 From-To edges(from a call-site in Inc to the entry of
Add) marked � in Figure1 arenot traversed.Theseedgesarealsonot traversedby the HRB algorithm.
Figure1 alsocontainsthe edgecountstatisticsfor the sameexampleusingtheHRB algorithm;28 edges
are traversedtwice thus getting a total edgetraversalcount to 78.

The HRB algorithm hasbeenimplementedin the WisconsinProgramIntegrationSystem(WPIS)
[8]. We modifiedWPIS andimplementedthe AL algorithmaswell. The userinterfacewasmodifiedso
that that oneor both of the slicing algorithmcould be invoked. The two algorithmswere implemented
to usethe depth-firststrategyin selectingverticesfor traversal.This precludedthe needto maintainan
explicit �������	��
 U� . When both the slicing algorithmswere selectedour implementationcomparedthe
resultsof the two algorithmsto experimentallyverify that the two algorithmscreateidenticalslices.The
algorithmswere also modified to collect statisticson edgetraversal.

Figure4 givesa comparativeanalysisof edgetraversalsfor the two algorithmasa ratio of the total
edgesin the slice. Notice,that the depth-first traversalstrategyfor the AL algorithmdoesnot ensurethat
edgesbe traversedonly once. As a result therearesomevaluesin the region ��������� . However,there
is only one value in the region ����� �!� indicating that most of the time HRB algorithmrequiredmore
traversalsthanthe numberof edgesin the slice. Besides,evenwith the suboptimalimplementation,the
AL algorithmalwaystraversedlessnumberof edgesthan the HRB algorithm.

7 Conclusions

This paperpresentsan algorithmthat improvesuponthe interproceduralslicing algorithmpresented
by Horwitz, Reps, and Binkley [1]. Our algorithm has the sameorder of complexity but with an
improved constant. Insteadof the (up to) two traversalof edgesperformedby HRB algorithm, our

9

February25, 1993

*

*

*

* *

*

*

*
*

*

*

*

*

*

*

*

*

*

*

Edges traversed by AL algorithm/Total edges in slice

E
dg

es
 tr

av
er

se
d

by
 H

R
B

 a
lg

or
ith

m
/T

ot
al

 E
dg

es
 in

 s
lic

e

0.9 1.0 1.1 1.2

1.
0

1.
2

1.
4

1.
6

1.
8

2.
0

Figure4 Comparativeanalysisof edgestraversedby HRB algorithmandAL algorithm. The axesrepresentthe edges
traversedby two algorithmasa ratio of the total edgesin the slice. Both the algorithmswere implementedusing
depth-firstgraphtraversalstrategy.The resultsarefrom threeprogramsbesidesthe onein Figure1. The dotted
segmentplots the valuesx =y. All the points lie abovethis line indicatingthat the numberof edges
traversedby HRB algorithm werealwaysgreaterthan thosetraversedby AL algorithm. Due to the
choiceof depth-firststrategy,in 4 casesthe AL algorithmtraversessomeverticesmore than once
(���������). In contrast,the HRB algorithmhasall but one point in the region 	�
 ����� .

algorithmmay be implementedto performa maximumof onetraversalper edge.In scenariosrequiring
on-line union of interproceduralslicesour algorithmmay be usedto constructthe slicesincrementally.
The HRB algorithm, as presentedin [1], can not be usedto generateunion of slicesincrementally. It
may be modified to do so by maintaininga threevaluedtag, as doneby our algorithm. The necessary
relationshipsare presentedin the theoremstating the equivalencebetweenthe slicescomputedby the
two algorithms.

Acknowledgments: Thestudymadeuseof theWisconsinProgramIntegrationSystem(WPIS)underlicensefrom theUniversity

of Wisconsin-Madison.We acknowledgeThomasRepsand SusanHorwitz for their role in its development.NageswaraRao

implementedthe algorithm on WPIS and helpedin drawing Figure 1. Pruek PoolkaseminstalledWPIS and GrammaTech’s

SynthesizerGenerator[6, 7] neededby WPIS. The work was supportedby the grant LEQSF (1991-92)ENH-98 from the

LouisianaBoard of regentsand 1992 USL SummerResearchAward.

Bibliography

[1] Horwitz, S.,Reps,T., andBinkley, D. Interproceduralslicing usingdependencegraphs.ACM Trans.

10

February25, 1993

Program. Lang. Syst. 12, 1 (1990), 26–60.

[2] Kuck, D. J., Muraoka, Y., and Chen, S. On the numberof operationssimultaneouslyexecutable
in FORTRAN-like programsand their resultingspeed-up.IEEE Transactions on Computers C-12,
12 (Dec. 1972).

[3] Lakhotia, A. Constructingcall multigraphsusing dependencegraphs.In ACM SIGACT/SIGPLAN
Symposium on Principles of Programming Languages (POPL’93) (Jan.1993(to appear)).

[4] Myers,E. A preciseinterproceduraldataflow algorithm.In Proceedings of the 8th Annual Symposium
on Principles of Programming Languages (Jan.1981), pp. 219–230.

[5] Ottenstein,K. J., and Ottenstein,L. M. The programdependencegraphin a softwaredevelopment
environment.ACM SIGPLAN Notices 19, 5 (May 1984).

[6] Reps,T., andTeitelbaum,T. The Synthesizer Generator: A System for Contructing Language-Based
Editor. Springer-Verlag, New York, NY, 1988.

[7] Reps,T., andTeitelbaum,T. The Synthesizer Generator Reference Manual, third ed.Springer-Verlag,
New York, NY, 1988.

[8] Reps,T. W. The Wisconsin Program-Integration System Reference Manual. Universityof Wisconsin-
Madison, 1992.

[9] Wegman,M., andZadeck,F. Constantpropagationwith conditionalbranches.ACM Trans. Program.
Lang. Syst. 13, 2 (Apr. 1990), 181–210.

[10] Weiser,M. Programslicing. IEEE Trans. Softw. Eng. 10, 4 (1984),352–357.

11

