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Abstract

The paperanalyzestheauthor’sexperiencewith modifying large,real-worldpro-
grams written by other programmers. It finds that Brooks’ domain and pro-
grammingknowledgebasedhypothesis-test-refine paradigmexplainstheauthor’s
approachto understandingprogramsandthe differencesin performancein com-
parisonwith his students.Zvegintov’s 9–stepprocessof changeis found to be
a goodfirst level decompositionof the (physical)tasksperformedwhenmaking
correctivechangesto a softwaresystem.

The paperalso makessomenew observations.Besidesmodularity and levels
of abstractions,the organizationof sourcecode in hierarchyof directoriesalso
hasinfluenceon the easeof locatingcodesegmentsrelevantto a changerequest.
The functionality of a programis not only understoodfrom its documentation
but alsoby executingit andinferring relationsbetweenits inputsandoutputs;an
approachanalogousto conceptidentification.Whenintroducinga newfunctionin
an existingprogram,a programmerattemptsto find subproblemsthat havebeen
solvedby otherpartsof the programso as to mimic their solutions.Quite often
this meanscopying large code segments.However, when deleting a function,
the codeimplementingit is not destroyed,only executionpathsleadingto it are
disconnected;leavingbehinddead-code.The replicatedanddeadcodesegments
aremajorcontributorsto thedifficulty in understandingandmodifying programs.
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1 Introduction

How doesan expertor a noviceprogrammerunderstandandmodify computerprograms,especially
thosenot developedby him? What are the cognitive processesactive in a programmer’smind when
performing theseactivities? What are the tasksperformedduring programmodification? Answersto
thesequestionsarecentralto our concernover the enormouscostof maintainingsoftwaresystems.They
could explain the differencesbetweenan expertand a noviceprogrammer’scapabilitiesin maintaining
softwaresystems.This would lead to the developmentof softwaretools, documentationstandards,and
training programsto augmentthe skills of the novicetherebyincreasingtheir productivity.

Softwaremaintenanceheavily relieson the programmers’ability to comprehendprograms[7]. This
observationhas promptedseveral researchersto investigatethe processesinvolved in understanding
programs.Of interestto this paperareworks from two disparatecommunities:academicresearchersin
computerscienceandpsychology,suchas[1, 3, 18, 19], andpractitionersandmanagersin the industry,
such as [22, 23, 25].

The papers[3, 18] proposetheoreticalmodelsof cognitive processesinvolved in programunder-
standing.Thesemodelshavebeensubjectedto experimentalanalysisby other researchers[9, 20]. The
experimentsaretypically performedin controlledenvironmentsusingprogramsunder500 lines of code.
Whethertheconclusionsdrawnfrom suchexperimentscanexplaintheprocessesinvolved in understand-
ing largerprogramsis debatable[2]. In contrast,[22, 23, 25] proposestepstakenin makingmodifications
to real-worldprograms.Thestepshavebeenassimilatedfrom yearsof experiencewith participatingin the
maintenanceof real-world softwaresystems.The stepsprovide rules-of-thumbguidelinefrom onepro-
grammer(or manager)to anotheron how to decomposeandorderthe tasksduringprogrammodification
and what mistakesto avoid. Their efficacy hasnot beenvalidated.

This paperattemptsto bridge the works of thesetwo disparatecommunities.It is centeredaround
the author’sanalysisof programmodificationexercisesthat he and his studentshaveperformed. The
exerciseswerenot performedto learnaboutthementalprocessesor specifictasksinvolved in modifying
programs;they were performedfor the intent of introducingnew behaviorin two real-world programs.
Thestepsin theexercisewerenot recorded.At the time whenthemodificationexerciseswereperformed
the authorwas looking for openproblemsin developingtools for supportingsoftwaremaintenance.He
wasconsciouslyobservinghis own actionsand that of his studentsso as to identify needsthat may be
filled by a software tool.

Sinceperformingcontrolledexperimentson real-worldprogramsis extremelydifficult, mostexper-
imental and observationalstudieson programmerbehaviorhave used“toy” programs. Whethertheir
resultsaregeneralizableto real-world programmingproblemsis questionable[2]. Therein lies the im-
portanceof this paper.It hasevolvedfrom the observationof real-worldprogrammodificationexercises
performedby the author. Like other observationaltechniques,suchas protocol analysis,introspection
maybeusedto developinitial hypothesesabouthumanbehavior[8, 6]; thesehypothesesmaylaterbeval-
idatedempirically. This papermakesseveralnew observationsthat could be the subjectof experimental
validation. Theobservationsof thispapershouldnot betakento construetheoryof programmerbehavior.

The rest of the paperis organizedas follows. The next sectionsummarizesthe works relevantto
this research.Section3 givesa narrativeof four programmodificationexercisesperformedon two real
world programs.Our observationsfrom eachexercisearegiven in separatesubsections.To understand
the programmingproblemandsolutiononemay needspecializedknowledgeaboutthe softwareandthe
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problem. Readernot conversantwith or interestedin thesedetailsmay directly go to the subsections
describingour observations.Section4 givesa comparativeanalysisof the factorsinfluencingour ability
to modify the two systems.It alsoanalysesthe potentialcausesof differencebetweenthe author’sand
thestudents’capabilitiesto understandandmodify others’code.Section5 summarizesour observations.

2 Related works
This sectiongivesan overviewof the researchefforts in studyingthe physicalprocesses[1, 22, 23,

25] and the cognitive processes[3, 18, 21] involved in programcomprehensionand modifications.We
considerphysicalprocessesas externally observablestepscarried out when modifying a software. In
contrast,cognitive processesare processesactive within the mind.

2.1 Physical processmodels Wachtel [22, 23] and Zvegintov [25] give steps involved in
modifying programsin an industrialenvironment.Their stepsarerules-of-thumbguidelinesaccumulated
from yearsof experiencemaintainingsoftwaresystems.Wachtelobservesthat softwaremodification is
initiated by a “changerequest”and terminateswith the “release”of the software. Betweenthesetwo
statesis where the actualmodification takesplace. Zvegintov proposesa nine stepprocessthat links
thesetwo states:

1. Get an overviewof the functionality of the current system. What doesthe systemdo? What is it
used for? etc.

2. Get an overviewof its implementation. Understandthe high level componentsthat come into play
during execution.For instance,the machines,equipments,people,andsoftwareitemsthat constitute
this system.

3. Outline therequest. Identify the functionality that would be alteredasa resultof this change.Define
the inputsandoutputsfor a setof casesthat would be changed,a setof relatedcasesthat would not
change,and a set of boundarycases.

4. Tracetherequest. Identify the partsof thesoftwaresystemthatneedto bemodifiedfor implementing
the change.This is the first stepwherethe sourcecodeis inspected.

5. Coverthe request. Make surethat all the partsthat needto be modifiedhavebeenidentified(in the
eventthat codehasbeenduplicatedto handlesimilar conditionsin differentsituations).

6. Design the change.
7. Implementthe change.
8. Ripplethe change. Code“downstream”to the modifiedcodemay be exposedto datathat it did not

beforemodification. It may thereforecreateconditionsthatdid not exist in theearlierversion.Follow
the executionto identify theselocationsand modify them as well.

9. Prove the change.

Zvegintov’s9-stepsdefinea top-downprocess.Steps1 to 4 may all be consideredasunderstandingthe
system.This includesunderstandingissuesoutsidethe sourcecodeand documentation.The inspection
of the sourcecodeis deferredtill the fourth step. Zvegintov’sprocessof changeis centeredaroundthe
changerequest.This requestinfluenceswhich part of the programis understood.As a corollary, if there
is no changerequest,there is no needto understanda program.

Basili andMills haveproposedabottom-upapproach[1] for understandingprograms.Theirapproach
involvestransformingtheprogramthrougha successionof abstractrepresentationsandfinally terminating
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into a PDL, an abstractlanguage,specificationof the program. Their centralconcernis understanding
the programindependentof the changerequest.

2.2 Cognitive processesin program modification Shneiderman[18] hasproposedthat
understandinga programimplies creationof “multileveled internal semanticstructureto representthe
program”. The highestlevel in this structureencodeswhat the programdoeswhile the lower level may
recognizefamiliar sequencesof algorithmsor statements.This multilevel structureis createdbottom-up.
A programmerrecognizesthe function of groupsof statements,piecesthemtogetherto form ever large
chunksuntil the entire programis comprehended.

Accordingto Shneiderman,thefirst stepwhenmodifyinga programis thedevelopmentof theinternal
semanticsrepresentingprogram. The changerequestis appliedto the internal semanticrepresentation
andthenpropagatedto the actualprogram.Shneidermanis not explicit on whetherpartialunderstanding
of systemis permittedor whetherthe changerequesthasany influenceon how thesystemis understood.

Brooks [3] has proposeda competing theory of the cognitive processesinvolved in program
comprehension.He saysthat during programmingone createsmappingsfrom a problem domain to
the programmingdomain,passingthroughseveralintermediatedomains.Programcomprehensionis the
reconstructionof this mappingperformedby a hypothesis-testprocess. A programmerfirst createsa
hypothesisaboutthe program’sbehaviorandthenlooks for evidenceto supportor rejectthe hypothesis.
If the hypothesisfails a new hypothesisis generated,andthe processcontinues.In the extremesituation
when the programmeris unableto createany more hypotheses,he resortsto the bottom up approach,
i.e. read and understandthe code.

Brooks permits incompleteunderstandingof the programin that all the mappingsbetweenlevels
of domainsmay not be constructedin order to carry out a task. He contendsthat comprehensionmay
be affected by the modification being performed. To test a hypothesis,the programmermay search
for “beacons” to locate relevant code. Brooks has only theorizedabout the comprehensionprocess
when modifying programs. He has not suggestedthe processby which modificationsare carriedout.
He emphasizeson the importanceof domain knowledge in the understandingprocess. That is, if
a programmeris not knowledgeableabout the program’sdomain, it will make it harder for him to
understandthe code.

Solowayet. al. [21], studiedthe protocolsof programmersmodifying a pieceof code.They found
thatprogrammer’swentthroughcyclesof readingthecode,raisingquestionsaboutit, makingaconjecture
aboutit, and searching codefor answers.They termedthe read-question-conjecture-searchcycle as an
“inquiry episode”. Since it is a cycle, it could as well be written as question-conjecture-search-read,
which then mapswell with Brooks’ model.

3 Narrative of modification exercises

This sectiongivesa narrativeof four programmodificationexercises,referredto asMOD I - IV, that
theauthorandhis studentsperformed.It reconstructsthestepstakenandsomeof theprotocolsexchanged
during theseexercises. This reconstructionof protocol is basedon recollectionof the modification
exercises.Theypreservethe essenceof thecommunicationsbetweenthe authorandthestudents,though
they may not be verbatim. It must also be emphasizedthat the exerciseswere not performedto study
humanbehavior,but were doneas part of a separateresearcheffort.
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3.1 Subjects The subjectof the modification exerciseswere four secondyear graduatestudents,
referredto as B, C, D, E, and the author, referredto as SubjectA. SubjectA has had considerable
experiencewith modifying programswrittenby others.SubjectsB to E wereexperiencedwith developing
programs. They did not haveexperiencewith maintainingprograms.

3.2 Material for modification exercise The softwaresystemsmodified were: the GNU C
Compiler(GCC) from FreeSoftwareFoundationandthe WisconsinProgramIntegrationSystem(WPIS)
from University of Wisconsin*. Both the systemsarewritten in C. Of the four modifications,threewere
performedon GCC and one on WPIS.

3.2.1 Material 1: GCC Thissystemhasabout290,000linesof codein about175files,all maintained
in onedirectory. Thetop level directoryof GCCcontains334files. This includes115 .c files, 68 .h files,
and4 .y files; README, texinfo, andmanpagedocumentationfiles; configurationfiles to install it on a
dozenor morearchitecturesandsomeMakefilescontainingproceduresfor generatingand installing the
system. The Makefiles containedproceduresto generateseveralexecutablesand libraries that are part
of the GCC system. The sourcecode(i.e. the .c, .h, and .y files but not the documentationand other
files) totals about290,000lines of text. When the completesystemis generatedapproximately115 .o
files are createdin the top level directory itself.

3.2.2 Material 2: WPIS. At the top level this systemcontainssevendirectoriesand a Makefile.
There is a directory src that containsthe source. The sourcecodetotals 41,000lines of text but it is
not all containedin one directory. The src directory is further divided into eight subdirectorieswhich
in turn haveanotheroneor two levelsof directoriesbeforethe actualsourcefiles arefound. The lower
mostdirectorieshousecodefor a specificmodule.Someof themodulesimplementgeneralpurposedata
structuressuchas graph, set,queue, and sequence. The directoriesfor thesemodulesare combinedin
a directorycalledpackages. Similarly, thereare modulesthat implementcomplexdatastructures,such
aspdg_modulefor implementingprogramdependencegraph, andcomplexalgorithms,suchasprogram
slicing, their directoriesarecombinedinto a directorycalledalgorithm. Thereareseparatemodulesfor
interfacingwith the windowing systemandothersoftwaresystemsneededto useWPIS.

In WPISeachmodulehasa separateMakefile containinginstructionsto compilethatmodule.These
are all tied togetherby a hierarchy of Makefiles communicatingwith each other by a large set of
“macros”. The Makefiles of WPIS are written such that on compilation the .o files are generatedin
directoriesdifferent from the sourcefiles. The documentationfiles are in separatedirectoriesandso are
examplesusedto demonstratethe system

3.3 Purposeof the modification exercises Themodificationof GCCwasinitiatedin order
to experimentwith architecturerecoverytechniques[5, 11, 16, 15]. The threeexercises,describedlater,
collectively would havemodifiedthe GCC to outputsomecrossreferenceinformationneededby sucha
browsingtool. While the first two exercisewerecompleted,the third wasnot becauseby thenwe found
a public domaintool, FIELD from Brown University [17], thatperformedmostof whatwe wanted.The
last modificationexercisewhich, asstatedlater, wasmorecomplexthan the first two. Sinceit was not
cost-effective to completethat exercise,it was abandoned.

* The experiencecited hererelatesto version1.40of GCC andthe first releaseof WPIS.
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The modification of WPIS was performed to experimentwith an algorithm for interprocedural
program slicing [14]. This algorithm was a variation of an algorithm due to [10]. This exercise
was successful. The reasonwe choseWPIS to developthe slicing algorithm was becauseit already
implementedthe constructionof “program dependencegraph”, an internal representationof programs.
This algorithmfor constructingthis representationis very intricateandwe did not feel it worthwhile to
implementit when WPIS was available.

More recentlywe havepurchasedthe SoftwareRefinery toolsetfrom Kestrel InstituteandRefine/C
extensionsfrom ReasoningSystems,Inc. Thesetoolsprovidea muchbetterplatformfor our experimental
research.They havealsocompletelyremovedour dependenceon modifying othersoftwaresystems.As
a resultmostof our prototypedevelopmentactivity hasbeenmovedto this platform.

3.4 Procedures MOD I and II were performedin Fall 91 by SubjectsA and B. SubjectB did
the modificationsas a ResearchAssistantand hencewas paid for the work. The two subjectsworked
in close cooperation.

MOD III was performedin the first two weeksof Summer92 by SubjectsC andD as a part of a
courseproject. SubjectA playedan advisory role only.

MOD IV wasperformedby SubjectE in Fall 92 asa part of a courseproject. SubjectA supervised
all stepsof the exercise.

3.5 ExerciseMOD I This exerciseenumeratesseveralof theassertionswe makeaboutprogram-
mer behavior.Readeruninterestedin detailsof the experimentmay prefer to skip to Section3.5.3.

3.5.1 Objective of MOD I Modify GCC’s“preprocessor”suchthatwhenit processesa “#define”
directive it outputs,along with its normal output, the MACRO symbol, the line at which the definition
starts,and the line at which it ends. The format of the output shouldbe designedso as not to “break”
subsequentparsingand codegenerationactivities.

3.5.2 Reconstruction of stepsfor MOD I The tasksperformedto carry out the modificationcan
be analyzedin termsof Zvegintov’s 9-stepsprocessof change[25]. The reconstructionis createdby
mappingthe tasksto Zvegintov’ssteps.The presentationhasbeensimplified to showthis mapping. In
the actualexercise,the stepswerenot alwayscarriedout in the order presented.
���������	�
����������	������������������� !�#"�$%�&�'�)(

SubjectB wasgiven a shorton-line lessonon GCC. It has
threeexecutablecommandsgcc, cpp, andcc1; thegcc is the front endusedfor compilingfiles; it invokes
cpp andcc1; the cpp preprocessesthe “#” directives(including “#define”); the cc1 takesits input from
cpp andcompilesthe program.This decompositionis commonfor C compilers.The lessonwasbased
on the SubjectA’s prior knowledgeof GCC. SubjectB had neitherusedGCC before nor was aware
of decompositionof C compilers.
�*�����+�	�
�,�-!�/.1020435�6�
�87�$9���������:"���� !��(

We browsedthroughGNU sourcesto get a feel of it. We
learntits installationproceduresandexperimentedwith installingit. Theprimequestionin our mind was:

[M1-1] Which of the (115 .c, 68 .h, and 4 .y) files were usedfor creatingcpp?

The answerwasfound from the procedureto generatecpp in the Makefile. The next questionnow was:

[M1-2] What is the format of its output?

6



This wasimportantto designanoutputmessagethatcontainedthe necessaryinformation,wasconsistent
with the outputtingconventionsof cpp, and would not breakcc1. The Manual pagesfor cpp contain
someinformation aboutthe format. This was not sufficient for us. So we executedcpp and attempted
to infer what it did. This requiredcreatingsomesampledata,executingcpp with it, and analyzingits
output. Theanalysiswentaboutby reasoningforward - what theoutputwould beusedfor in the context
of what GCC (asa whole system)did andbackward – what informationdid cc1, the parser,needfrom
cpp so it could carry out its function.*
� ����$ �
��� � � � �'���!��� ��� (

We now defined the syntax of the output and verified that it would not
interferewith cc1, the parser. The verification requiredcreating“mock” inputs for cc1 and executing
cc1 directly insteadof through gcc.
� ��"�� � � � � �'���!��� ��� (

The questionat hand was:

[M1-3] Where is #define processedin the cpp sourcecode?

We did not attemptto tracethe requestby symbolicexecutionof the program. Insteadwe scannedthe
programon-line looking for someclues. The following pieceof text caughtour attention:
int do_define (), do_line (), do_include (), do_undef (), do_error (),

do_pragma (), do_if (), do_xifdef (), do_else (),
do_elif (), do_endif (), do_sccs (), do_once ();

The cpp processescommandssuch as #define , #line , #include , #undef . It was therefore
assumed that the list, above,gavethe nameof functionswherethesecommandswere processed.We
looked at the code for do_define() , extractedbelow:
/* Process a #define command.

... comments about arguments deleted ... */
do_define (buf, limit, op, keyword)

U_CHAR*buf, *limit;
FILE_BUF *op;
struct directive *keyword;

{
U_CHAR*bp; /* temp ptr into input buffer */
U_CHAR*symname; /* remember where symbol name starts */
int sym_length; /* and how long it is */

.... lots of code deleted ...

Thefirst line validatedour assumptionthatdo_define() processes#define . Thelast two comments
providedinformationto our next question.They told us that the nameof the macrowill be availablein
symnameandsym_length . Also, while wewerescanningthetext to find thecodefor do_define() ,
we noticed the string:

ip->lineno .

This string wasinterestingbecausewe haveto output line numbersandthe field lineno wastherefore
relevant. We assumedthat lineno field was usedto keepthe numberof the line of the input being
processedand that ip referredto the input file. Thesewere later confirmedfrom the commentsin the
code.Followingsimilarquestionsandclueswe foundthatthetwo line numberswe neededwereavailable
in the function handle_directives() , the caller of do_define ().

* Note that the forward andbackwardreasoningwe performedis different from forward and backwardprogramslicing [24]. In program
slicing the analysisis performedover a program’ssourcecode. Our analysiswas performedover a program’sinput and output behavior.
Besides,cppandcc1 aretwo differentexecutableprograms.Analysisbetweeninteractionsof suchprogramsis not coveredby programslicing.
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We now had locatedthe placesin the codewherethe nameof the macroand the two line numbers
as well as the data structurescontainingthem were available. Theseare the placesthat would have
to be changed.
���������
	���
�����������	��

The commentsin handle_directives() said it processed“#” directives.
We could not think of a needfor morethanonefunction to processdirectivesandhencedid not worry
aboutcheckingit. We did checkif do_define() was called from any other function. It was called
from make_definition() to createsomeinitial definitions. This was a surpriseto us eventhough
it correspondsto a featuredocumentedin the GCC Manual pages. Evidently, since the featurenever
interestedus we must have ignored it.
� ������������� !�#"%$�&'��"(���)	*	���,+-�.���/�����

Eventhoughwe hadthe threepiecesof informationneeded
to be output, therewas still one more problem. The two line numbersand the macronamewere not
availablein the samefunction; the line numberswere availablein handle_directives() but the
macronamewasavailablein do_define() . To implementthechange,onecouldeithersplit thetaskof
outputtingtheneededinformationacrossthesetwo proceduresor propagatethe informationto a location
in either of the procedures.We generatedvariousalternativesandevaluatedthem:

[M1-4] If we output in do_define() it will also output the information when do_define() is
called from make_definition() .

[M1-5] If do_define() returnsthe macronameit hasto allocatespacefor the symbolor the caller
shouldpassanargument.But theseoptionswill requirechangingtheinterfaceof do_define()

[M1-6] The handle_directives() function could duplicatefrom do_define() the searchfor
finding the macroname.This will not requireany changesin the interfacesandhencehaslow
chancesof interfering with other behaviors.

We choseM1-6. Otheroptionswould haverequiredchangingthe interfacesand we did not know
what the repercussionswould be. We still had one more questionleft: What conventionsdo we need
to follow to output the informations? We knew that cpp outputsspecialinformation when processing
#include directive. Hencethe solution was:

[M1-7] Let’s seewhat cpp doesfor processing“#include ”. We could “mimic” the output technique
it usesthere.

We copiedthe codefor outputtinginformation and customizedit to our needs.
0 �1$�$�&'�2��� 3$��������2	��-�4+-�)�������

. We did not do any specialtestfor “rippling” the change.To prove
the changewe compiledsomeof our C programsto seeif the compiler behavedaswe desired.

3.5.3 Analysis of MOD I We makethe following observationsfrom the reconstructionabove.

The various tasksperformedwhile modifyingprogram can be mappedto the 9 stepsproposedby
Zvegintov[25]. This correspondenceof stepsfor the aboveexerciseis providedwith the reconstruction.

Thefunctionalityof a systemis understoodnot only from its documentation,but also from executing
it. To find the format of cpp’s output (M1-2), we executedthe programwith variousinputsandrelated
them with the outputs. To interpretthe information containedin the output, we neededthe knowledge
of what informationcpp, the preprocessor,neededto provideto cc1, the parser.This interpretationwas
supportedby argumentsbasedon programmingknowledgeandon knowledgeaboutcompilers.

Our methodof understandingcodemaybe explainedusingBrooks’ theory [3]. The sourcesused
to generatecpp add up to about 10,000lines of C code. The whole exercisewas performedon-line,
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without any hardcopy. Hencea complete,bottom-upunderstanding,evensubconsciously,is ruled out.
Insteadasthe reconstructionfollowing M1-3 shows,thesymbolsandthe commentsin the programwere
usedto locate the codesegmentsthat were relevantto the change. The symbolsactedas “beacons”
that helpedus in “homing” in on the relevantcode. The commentswere the first sourceof evidence
supportingthe hypothesis.

A programof the size of cpp has a multitude of symbols. Which symbols act as beaconsand
why? We believethat whethera symbolactsasa beacondependson therelevanceof the informationto
the activity beingperformed. The beaconswe used,do_define() and ip->lineno (M1-3), were
meaningfulin the contextof the changerequest.An expertprogrammeris ableto scanthe text, identify
the symbolsthat are relevantto the changerequest,andfilter out irrelevantsymbols.

Theextentto whicha programis understooddependson the“amount” of functionalityof interestto
the programmer.We only wantedto alter the processingof oneof manycommandsthat cpp processes.
As a resultwe focussedon how thatcommandwasimplemented.Our changewassuccessfulbecausein
cpp each“#” directive is processedby a separatefunction. It would havebeenmuchharderotherwise.

Newfeaturesmaybe addedby “mimicking” or duplicatingcodefor subproblemspreviouslysolved
by theprogram. M1-6 andM1-7 give two different reasons.In M1-6 the decisionto duplicatecodefor
“searchingthe macroname”is madebasedon trade-offs betweenvariousalternativedesigns.However,
in M1-7 the suggestionto “mimic” the solution to “output information” is basedon the knowledge
that when processing#include directive cpp outputsinformation and that the two subproblemsof
outputtinginformation are similar. When the codebeing mimicked is more than just a function call it
leadsto replicatedcodesegments,a major problemin maintaininglarge softwaresystems.

3.6 Exercise MOD II This exerciseexhibits the failure of an initial hypothesisaboutprogram
behaviorand subsequent“search” for information to generatenew hypotheses.It showshow lack of
experiencewith the designstrategyemployedby a programmay makeits comprehensionharder. The
reconstructionis restrictedto highlighting thesepoints.

3.6.1 Objective of MOD II Modify theGNU front end,gcc, to invokethemodifiedC preprocessor,
cie-cpp, insteadof cpp.

3.6.2 Reconstruction of steps for MOD II After familiarizing with therelevantsourcecodefiles,
SubjectB was askedto:

[M2-1] Find the call to execv() or fork() that invoke “cpp” andmodify it to invoke “cie-cpp”.

This directive was basedon the hypothesisthat:

[M2-2] The functions execv() or fork() are usedto executeother programs. The nameof the
programto be executedis providedas an argument. Since“cpp” is a separateprogram,there
must be a call to one of thesefunctionscontaining“cpp” as a substring.

SubjectB returnedafter a few dayssayinghe could not find any suchcall. SubjectA wassurprisedand
decidedto scanthe text, searchingfor “cpp” and“CPP”. The searchled to the codesegmentextracted
in Figure 1. SubjectA immediatelyresponded:

[M2-3] Pretty neat,the informationaboutsubprocessinvokation is encodedin table.
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static struct compiler default _compilers[] =
{

{".c ", "@c"},
{"@c",

"cpp -lang-c %{nostdinc} %{C} %{v} %{A*} %{D*} %{U*} %{I*} %{i* } %{P}\
%{C:%{!E:%eGNU C does not support -C without using -E}}\
%{M} %{MM} %{MD:-MD %b.d} %{MMD:-MMD%b.d}\

Figure1 Extract from GNU’s C Compiler front-end. The datastructurecontainsa “program” that describes
what subprocesseswould be invoked by the compiler, their order, input, andoutputs.The language
usedis internal to GNU C Compiler. (This approachof encodingprogramcontrol information
in a datastructureis sometimesalso called as table-drivenprogramming).
 1992 FreeSoftwareFoundation,Inc.

SubjectB hadalsoscannedthis text but could not makeany inference.A short lectureon table-driven
programmingwas sufficient to bring him on par.

3.6.3 Analysis of MOD II A programmermayscanthe codein search of information that maybe
usedto createhypothesesabouta program’sdesign. Scanningthe codeis different from “reading” the
codeto understandeachstatement.It is alsodifferent from tracingcontrol flow paths.Scanninga code
meansflipping through text in searchof “beacons”. Sucha scanmay also be done by searchingfor
occurrencesof certain“words” or charactersequencesof relevanceto the context.

Notice that scanningcodeto find some“beacon” is bottom-upthoughsearchingfor somecharacter
sequenceis top-down.

An unfamiliar or uncommondesignstrategyis hard to understand.SubjectB was not familiar (or
did not haveexperience)with table-drivenprogramming.As a result the codesegmentin Figure1 did
not interesthim. Had he symbolicallyexecutedthe code,from the start,he may haveunderstoodwhat
this tablewasusedfor. The feasibility of suchin depthreadingis howeverquestionable.

3.7 Exercise MOD III This exerciseonceagainshowsthe effect of a wrong hypothesis.It also
providesa casewherescanningthecodedid not revealanyinformationandreadingor tracingthecodeto
understandit wasimpossible.Theclueaboutthedesignstrategyusedwasavailablein onestatementin the
documentwhich we happenedto haveignored.Thereconstructionis limited to highlightingthesepoints.

3.7.1 Objectives of MOD III Modify theGNU parser,cc1, suchthat it outputsthecross-reference
informationbetweenthe function, global variable, and typedefsymbols,asdoneby [4].

3.7.2 Reconstruction of steps for MOD III After initial overview of GCC and its sourcecode,
SubjectsC and D were told to:

[M3-1] Find the code-generationfunction calledafter the parserfinishesparsinga function declaration.
It would have the parsetree of the whole function. Learn the structureof the parsetree and
print it out for somesampleprograms.

This was basedon the hypothesis:

[M3-2] A function is the smallestunit that the parserwill passto the codegenerator.
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static void
macroexpand (hp, op)

HASHNODE*hp;
FILE _BUF *op;

{
..... 92 lines deleted

/* Compute length in characters of the macro’s expansion.
Also count number of times each arg is used. */

xbuf_len = defn->length;
for (ap = defn->pattern; ap != NULL; ap = ap->next) {
if (ap->stringify)

xbuf_len += args[ap->argno].stringified _length;
else if (ap->raw_before || ap->raw_after || traditional)

xbuf_len += args[ap->argno].raw_length;
else

xbuf _len += args[ap->argno].expand_length;

if (args[ap->argno].use_count < 10)
args[ap->argno].use_count++;

}
...... 181 lines deleted

}

Figure 2 Partsof a function extractedfrom GNU C Compiler.
 1992 FreeSoftwarefoundation,Inc.

After two weeksSubjectC andD reportedthat theparsetreestheyprinteddid not haveinformationabout
thewhole function. Their experimentwasverified by SubjectA on the thoughtthat theymayhaveerred.
Thereafter,SubjectA scannedandreadpiecesof the parser(written in yacc [12]) andvariousfunctions
in the code-generator.This was a very painstakingexercisethat did not provide any new knowledge.
The mysterywasfinally resolvedby the following statementfound in GCC’s documentation:

[M3-3] The RTL intermediate code for a function is generated as the function
is parsed, a statement at a time

This essentiallyviolatedM2-2, our working hypothesis.This revelationandour exposureto GCC code
changedour estimateof the task. The exercisewasabortedbecausewe found a public domaintool [17]
that performedthe task we wanted.

3.7.3 Analysis of MOD III
It is not alwayseasyto validatehypothesisor understanddesigndirectly fromcode. We spenta long

time trying to mapour hypothesisto codeor vice-versa.We scanned,read,andtracedcode. But didn’t
reachanywhere.Unlike MOD II, the discrepancybetweenthe actualdesignand the expectedone was
not easilyvisible. A possiblereasoncouldbethat theparsingandcode-generationtaskscollectivelyspan
severalfiles. Getting a bigger picture from voluminouscode is not easy. Therecould be yet another
explanation,our inability to hypothesizethedesignthat wasactuallyimplemented. Our hypothesis,M3-2,
wasbasedon text book approachto compiling which is chosenfor clarity. The GCC’s designis chosen
for efficiency. Sincenoneof the subjectswere expert in compiler constructionwe could not think of
the GCC’s alternative.
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3.8 Exercise MOD IV Thisexercisedifferedsignificantly from thepreviousones,assummarized
below:

• It was performedon WPIS not GCC.
• It requiredthe developmentof a lot more new codethanMOD I to III.
• The purposewas not to changethe behaviorof WPIS but to changean algorithm while preserving

the behavior.
• The task was in a domainnew to SubjectE.
• Thework wasestimatedto besignificantly largeandthechancesof success,in SubjectA’s assessment,

very low.

As a result, Subject A decidedto maintain strict control on the task and proceedin steps(which
coincidentallyhappento be the sameasZvegintov’s9–steps[25]). This exerciseonceagainenumerates
the useof “mimicking” previoussolutionsto similar problems.Additionally it observes:

• the difficulty in programcomprehensiondue to “dead code”,
• the difficulty in understandingan implementationthat differs from the documentation,and
• the needto resort to readingcode,when all else fails.

3.8.1 Objectives for MOD IV Replacethe interproceduralslicing algorithmof WPIS,publishedin
[10], by the algorithm in [14].

3.8.2 Reconstruction of steps for MOD IV SubjectE spentalmost two months learning about
programslicing, learninghow to install anduseWPIS, andunderstandingthe two algorithms.Subjects
A and E discussedpossiblechangesthat may needto done in the original code to move to the new
code.SubjectA gaveSubjectE a tour of the sourcecodedirectoryinferring what the files implemented
from their names.

The source code for program slicing were correctly assumed to be in the directory
src/algorithms/slice . Interproceduralslicing is essentiallya graphtraversalproblem. The two
algorithms of concerndiffered in how they traversedthe programdependencegraph, a special type
of graph. SubjectE was askedto:

[M4-1] Understandhow the old algorithmis implemented.Seehow it operateson the nodesandedges
of the programdependencegraph. We can“mimic” it’s approachfor our problem.

SubjectE did this task independently.He reportedthat therewere somefiles that did not makesense;
they appearedto be syntacticallyincorrect.

[M4-2] We found from the authorof WPIS that it wasdead-code– remainsfrom previousversionsof
the system.

We could not find that the files werenot beingcompiledbecausea) we assumedthat all the files were
compilableandb) thecompilationprocedurefor WPISis spreadovera collectionof Makefilesandhence
were too complexto verify. In anotherinstance,SubjectE reportedthat the codewas not doing what
the documentation[10] described. It turned out that:

[M4-3] The traversalmechanismin WPIS’ implementationwas significantly different from that in the
publishedwork [10].

12



We spenta few hours trying to map the publishedalgorithm to the code and when we couldn’t, we
inferred that:

[M4-4] Sincethe programworks our assumptionsaboutit mustbe wrong. We thenresortedto reading
and tracing through the code.

Oncethe discrepancywas realized,the modificationand implementationwas smooth. It actually took
less time than originally estimated.

3.8.3 Analysis of MOD IV M4-1 reiteratesthe tendencyto “mimic” existingsolutionsto subprob-
lems.

Deadcodeincreasesthedifficulty in programcomprehension. The reasonsareobvious.Any codein
the programcan not be ignored. This is especiallyso if the codecontains“beacons”that are relevant
for the task at hand. If the code is obsoletebut containsindicatorsas though it may be relevantto
the modification task, a new programmerhas to reestablishthat it is dead. When the programbeing
studiedworks, the first reactionto any perceptionof discrepancyis to considerthat you may not have
understoodit right (M4-4). In the casecited in M4-2, the obsoletecodewas leftover from an earlier
versionof WPIS that implementeda differentslicing algorithm. We could not believethat the codewas
syntacticallyincorrect,after all the systemcompiled,linked, and executedwell. As a consequencewe
thoughtmaybewe did not know somethingaboutthe programminglanguageC that the authorof WPIS
knew. Sincethe compilationprocedurewas too intricate we did not attemptat verifying if the source
codefile in questionwasusedto generatethe program.Suchdiversionscanbe very costly.

It is very difficult to detectthat the documentationand implementationdiffer. In Brooks’ terms[3],
to understanda programis to createmappingsbetweenlevelsof domains.Given a documentationand
an implementation,one may assumethat they are mappableand attemptto createmappingsbetween
the two. This is futile (and frustrating)when the documentand implementationarenot consistent.The
realizationof the inconsistencymay take quite sometime.

4 Comparative analyses
Theprevioussectiongavea narrativeof four modificationexercisesperformedonGCCandonWPIS,

systemsdescribedearlier. It alsopresentedanalysesof eachof theexercises.In this sectionwe compare
the experiencesof modifying GCC with that of modifying WPIS. We also comparethe differences
betweenthe approachusedby SubjectA (the author)andSubjectsB to E (the graduatestudents).

4.1 Comparison between systems MOD I, II, andIII wereperformedon GCCandMOD IV
on WPIS. MOD I, II, and IV were successfuland MOD III was aborted. MOD I and II required
understandingvery small portions of GCC and MOD III required understandinga very large part.
MOD IV’s need to understandWPIS was significant but less than that required for MOD IV. The
threemodificationson GCC were frustrating. The last oneabortedbecausewe felt it was very hard to
understandGCC.On theotherhand,MOD IV wasa pleasure.Becauseof its successwe haveundertaken
anotherproject,referredto asMOD V, that would affect morethan50% of WPIS’ modules.In spiteof
the magnitudeof the changesto be made,we are confidentof its success.

Our experiencewith the two systemscan be comparedon the following factors:

• our knowledgeabout the problem domain,
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static PROCEDUREVisitVertexForForwardSlice( vid, g )
VERTEX_ID vid;
PDG g;
{

PDG_VERTEXv;
PROCEDUREProcessSuccessorForForwardSlice();

v = pdg_vertex_retrieve(g, vid);
if (v == PDG_VERTEX_NULL) return(SUCCESS);
if (pdg _vertex_mark(v)) return(SUCCESS);
pdg_vertex_mark_set(v);
set_for_each1(pdg _vertex_loop_independent_targets(v),

ProcessSuccessorForForwardSlice, g);
set _for_each1(pdg_vertex_loop_carried_targets(v),

ProcessSuccessorForForwardSlice, g);
set_for_each1(pdg_vertex_control_targets_true(v) ,

VisitVertexForForwardSlice, g);
set_for_each1(pdg_vertex_control_targets_false(v ),

VisitVertexForForwardSlice, g);
return(SUCCESS);

}

Figure3 A function extractedfrom WisconsinProgramIntegrationSystem
 1989 ThomasW. Repsand University of Wisconsin,Madison.

• organizationof sourcecode in files and directories,and
• levels of abstractionsin design.

� ��" � �1� � ����� &'�� ����� One of the reasonsMOD IV was successfuland MOD V is progressing
smoothlyis thatwe areconversantwith theproblemthatit addresses,relateddesignissues,thealgorithms
anddatastructures.Theseareall availableaspublishedliteraturethatwe havebeenpursuingfor the last
threeyears.Thesubjectswererequiredto spendconsiderabletimereadingtheliteratureandunderstanding
the changerequest,beforeevenlooking at the code. In contrast,our knowledgeaboutGCC’s internals
was negligible when we undertookthe exercise. Most of GCC’s designdecisionsare gearedtowards
efficiency of compilation. Henceits designis significantly different from that proposedin traditional
compiler constructiontextbooks. While there is somedocumentationavailableon GCC, we did not
spendenoughtime readingit.

� ���-������� � 	����� ��� �����-��+-�2+��� ���
Theorganizationof wpissourcecodereflectsthedomainsthat

in Brooks’ terms a programmermay reconstruct. The subdirectoriesgraph, set, queue, and sequence
correspondto the mathematicalobjects that are placed a directory called packages. The directory
pdg_moduledefinesobjectsin theproblemdomainusingthe basicmathematicalobjects.This moduleis
kept separate,alongwith other modulesdefining problem-domainlevel concepts.

To understandGCC’s implementationyou haveto startwith identifying the setof files, if any, that
containscodeto performthelexical analysis,parsing,codegeneration,optimizationtasks;i.e. reconstruct
themappingbetweenconceptualdomainsandfiles. Sincethereareliterally hundredsof files in thesource
directory(andevenmoreif onehasthe .o files around)thereconstructionof domainsandtheir mappings
is no simple task.
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� � ����& � ���,������	����+)	�#���/�
. Comparethe codesegmentsin Figures2 and 3. They presenttwo

functions, one eachfrom GCC and WPIS. Thesefunctions were locatedas candidatesfor processing
two changerequests.In eachcasethe nameof the procedurereflectsthe externallyobservedbehavior
it is relatedto. Once you know the externalbehavioryou wish to change,it is easyto locate these
functions.Figure2 only showsa fractionof the294 linesfunction. This functionoperateson thespecific
datastructuresdirectly. The commentsrelatethe codesegmentsto tasksin the problemdomain. Figure
3 on the other hand showsthe whole function. It has no commentwithin the body of the code and
it also doesnot operateon the dataobject directly. Insteadit usesoperatorswhosenamesdefinethe
mathematicaloperations.Eachstatementcorrespondsto a unit subtaskat a level higherthanthe specific
implementationof the data structures.

GCC’s decompositionof functions is too coarsegrainedand completelylacks abstractionof data.
Its functionsrarely spanlessthan50 lines and they areusuallyvery intricate. WPIS’s functionsrarely
spanmore than 50 lines and rarely contain lots of detail.

4.2 Comparison between subjects Theauthorandthestudentsdifferedconsiderablyin their
ability to understandandmodify programs.The differencesmay be attributedto the following obvious
factors:

• experiencewith readingother’s code,
• programmingknowledge,and
• domain knowledge.

Thesefactorsmay be further refinedinto the following sub-factorsthat contributeto the differences:

• the ability to createhypothesesabout the system,
• the ability to makelogical argumentsto proveor refute the hypothesesbasedon given facts,and
• the ability to infer a program’sbehaviorfrom sampleinputs and outputs(like conceptidentification

[13, Chapter7]).

The studentswere lessexperiencedandalso lackedprogramminganddomainknowledgenecessaryfor
the work. Their performancewas, therefore,poorerbut could be improvedby training.

5 Conclusions

We havepresenteda narrativeof four programmodification exercisesperformedon two software
systemsabout50,000 lines in size. The exerciseswere not performedto study programmerbehavior
andthe narrativehasbeenreconstructedafter the fact. Threeof the programmodificationexercisewere
successful.Oneexercisewasabortedbecausewe founda public domaintool thatsatisfied our needs.We
makeseveralobservationsfrom analysingtheseexercises.Theseobservations,of course,shouldonly be
usedto createhypothesesaboutprogrammerbehavior.Unlessempricallyvalidatedthesehypthesescan
not (and shouldnot) be takenas theory of programmerbehavior.

The observationswe makemay be summarizedas follows. The 9-stepprocessof softwarechange
proposedby Zvegintov[25] seemto be a goodfirst level decompositionof tasksinvolved in modifying
a programto “add” features.Modificationsmadeto removefunctions,correctbehavior,or for complete
migration of codeare not capturedby this model.
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Theprocessof understandingprogramscanbemodelledby thehypothesis-test-refinetheoryproposed
by Brooks[3]. Thebottomup processproposedby Shneidermanis usedin extremesituations[18]. There
arecircumstanceswhena programmerjust scanscodein searchof “beacons”to seeda hypothesis.He
may resort to readingcodeor tracing the dataflows after shortlistinga set of functionsas candidates
for change.That a symbol or a codesegmentmay act as a “beacon” dependson the relevanceof the
information to the specific modificationtask; it is not an intrinsic propertyof the codeitself.

While documentationand sourcecodeare the obvious sourcesof information, programsare also
understoodby observingtheir execution.A programmaybeexecutedandits inputsandoutputsanalysed
to determineits behavior.This is donewhenthe documentationis absentor incomplete.Programsmay
alsobe executedto get a perspectivedifferentfrom the documentation.This processof understandinga
programfrom its inputsandoutputsis analogousto conceptidentification- for instance,givena sequence
of numbersidentify the mathematicalfunction usedto generateit [13].

The easewith which a programmay be understooddependson severalfactors. It dependson the
programmer’sexperiencewith modifying codeand also his knowledgeof the domainand the relevant
programmingconcepts. It is influencedby the programmer’sability to createhypothesesabout a
program’sdesign(or behavior)and the ability to test the hypothesisusing observedfacts and logical
reasoning.A systemdecomposedinto severallevelsof abstractionsis easierto understandthanonewith
a more coarsegraineddecomposition.Organizingthe sourcecodein a directory hierarchythat reflects
this decompositioncan further help in comprehensionof a large system.

When introducingnew featuresprogrammersattemptto find subproblemswhosesolutionsarealso
neededto implementother featuresof the system. If suchsubproblemsare found, their solutionsare
mimickedin the codeintroduced.In a systemwhosedecompositionis too coarse,mimicking a solution
may meanreplicatinglarge piecesof code. In a systemwith layersof abstraction,it may simply mean
calling the sameproceduresor functions. Changessuch as deleting a featuremay make somecode
obsolete.The obsoletecodeis often not destroyedandhamperssubsequentmodification activities.
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