
Architecture recovery techniques: a unified
view and a measure of their goodness

Arun Lakhotia

Centerfor AdvancedComputerStudies
University of SouthwesternLouisiana

Lafayette, LA 70504
arun@cacs.usl.edu

(318) 231-6766,Fax: -5791

Draft: Please do not quote or circulate. Thanks.

Abstract
A partitioningof softwaresysteminto modulesis often termedasits architecture. Eachpartition (or module)

consistsof a set of functions, procedures,global variables,and/or type declarations. To help maintain legacy
systemsor systemswith inadequatedocumentation,severalapproacheshave beenproposedfor recoveringtheir
architecturesfrom their sourcecode. This papermakesthreecontributions.First, it developsa schemeto classify
thesetechniques.Second,it surveysthe variousarchitecturerecoverytechniquesandpresentsthemusinga unified
andconsistentterminology.Third, it presentsa measureto evaluate‘how well a recoveredarchitecturematchesan
expected(or actual)architecture’.It is envisionedthat this measuremaybeusedin carefullycontrolledexperiments
to discernthe contextsof applicability of varioustechniquesand to pavethe way for their improvement.Results
from an experimentto evaluatethe performanceof two architecturerecoverytechniquessuggestedby Hutchens
and Basili are presented.

1 Introduction
It hasbeenwidely acknowledgedthat softwaremaintenanceconsumes60–80%of a softwaresystem’stotal

cost [LS80]. The activities performedduring maintenancemay broadly be classifiedas: a) understandhow the
software functions, b) designand implementa change,and c) validate the change[Par86]. The working of a
programis typically understoodby readingits sourcecodeand documentation.While readingthe documentation
is most helpful, it is very rare to find a documentedsoftwaresystem. And when sucha documentis availableit
is very often inconsistentsinceit hasnot beenkept up-to-datewith the modificationsdoneto the softwaresystem
[LB85]. The only definitive documentof a program,therefore,is the programitself.

Researchefforts in designrecoveryare aimedat extractingthe designof a softwaresystemfrom its source
code,wherethe term “design” looselymeansany higher level abstractionof a softwaresystembeyondthe source
codeitself [Chi90]. Onesuchdesignis architecturaldesign- a partitioningof structuralelements(suchasfunctions,
procedures,variables)of a softwaresysteminto groupsof relatedcomponents.This is ata higherlevelof abstraction
than a designdescribingthe algorithmsor datastructuresusedin a system.

Severalresearchershaveproposedautomatedor semi-automatedtechniquesto creategroupsof relatedprogram
symbolswith the implicit or explicit objectiveof recoveringthe modulardecomposition* of the program[BE81,
CS90,HB85, MMM90, MBK91, LW90, PCB92,Sch91,SB91]†. It is not very obvious how theseArchitecture

* The term“module” is usedin this paperin the senseusedby Parnas[Par76]in the contextof abstractdatatyping andinformationhiding.
† Someresearchershave proposedarchitecturerecovery techniquesthat are not automatablebecauseof their dependenceon analyses
performedby human[JL91, SS94].Thesearenot studiedin this paper.

1

RecoveryTechniques(ARTs) comparewith eachother since the techniqueshavebeenexpressedusing different
setsof termsandsymbols. It is alsonot clearhow successfulthe techniquesare,individually or in comparisonto
othertechniques,in recoveringthe actualarchitecture.This is becauseof the absenceof any measureto evaluating
how “close” an architecturerecoveredby a methodis a) comparedto an expectedarchitectureand b) compared
to architecturesrecoveredby other techniques.

This paperprovidesa frameworkfor comparingARTs. It a) developsa schemeto classifyARTs,b) developsa
unifying view of theARTs by rephrasingeachtechniqueusinga commonsetof symbolsandterms,andc) develops
a metric to quantify how “close” a recoveredarchitectureis to an expectedarchitecture.

The rest of the paperis organizedin eight sections,excludingreferences.Section2 gives our classification
schemefor ARTs. Section3 summarizesmethodsfor numericclusteranalysisandmeasuresfor comparingclusters
found by thesemethods. SeveralARTs are basedon clusteranalysis. Section4 introducesour terminology to
expressthe ARTs. Section5 surveysandsummarizesseveralARTs. It shouldbe emphasizedthat in somecases,
our presentationmay be significantlydifferent from that presentedin the original works. This is becausewe have
attemptedto presentall the techniquesusing the samesetof symbolsandconcepts.Section6 givesour measure
for comparingarchitectures.It is basedon the measurespresentedin the previoussection. Section7 summarizes
the resultsof an experimentwe conductedto evaluatethecorrectnessof theARTs suggestedby Hutchens& Basili
[HB85]. Section8 containsour concludingremarks. It also outlinesan experimenton how our measuremay be
usedin carefully controlledexperimentsto discernthe contextsof applicability of varioustechniquesand to pave
the way for their improvement.

2 A scheme for classifying ARTs

An architectureof a software system is analogousto classification hierarchies,called clusters, used by
statisticians[Eve74](seeSection3). Recoveringasoftware’sarchitecturecorrespondsto performingclusteranalysis.
The term clusteranalysisbroadly refersto any methodof groupinga setof objectssuchthat objectsin the same
group are in “somesense”moresimilar to eachother than to thosein differentgroups. Clusteringhasbeenused
in the life-sciencesto classify organismssincethe early 1700s. It is now commonlyusedin the social sciences,
in information retrieval,and in patternrecognitionto organizeandunderstandlarge amountsof data. Its first use
in organizingdesigninformation datesback to the 1960swhen the British architectChristopherAlexanderused
it to organizearchitecturalconstraintsfor designingcities [Ale64]. Alexanderusedclusteranalysisto generatea
“program” from designconstraints.To him a “program” wasa sequenceof instructionsto the architect.Thougha
mereplay of words, it is interestingto observethat while Alexanderusedclusteranalysisto get a programfrom
a design,the ARTs use it to extracta designfrom a program.

Clusteringtechniquesmay be classifiedbasedon the propertiesof the resultinggroupingor the information
usedin creatingthesegroups,as follows:

If thepairwiseintersectionof theresultinggroupsis emptythenthetechniqueis partitioning, elseit is overlapping
(or non-partitioning).
If the techniquecreateslevelsof groupsit is stratified. If thereis only onelevel of groupingit is non-stratified
(or flat). If the stratifiedgroupsform a tree then it is hierarchic.
A techniquemaybeclassifiedasconceptual, graphtheoretic, or numericaldependingon thetypeof information
andcomputationproceduresused.Whenvaluesof objectattributesaremeasuredon an ordinalscalethemethod
is classifiedas conceptualclustering[MS83]. If the techniqueusesgraph-theoreticcomputations,it is termed
graph-theoretic. However, if the attribute valuesare measuredon a ratio or an interval scale and numeric
computationsare used,the techniqueis called numeric.

Numeric,hierarchic,andpartitionedclusteringtechniqueshavebeenin commonusefor a long time andhenceare
themostwell studiedtechniques.Thereis a rigorousgeneralizedframeworkthatmaybeusedto describeproperties
of numericalmethods. In contrast,the conceptualand graph-theoreticmethodshavenot beenusedas frequently
andhencedo not havea generalizedframework. They, therefore,mustbe studiedindividually.

2

Thearchitectureof a softwaresystemrecoveredusingARTs, to some,mayappearto be of questionablevalue.
Most of the techniquesareheuristic. Theyusecrossreferenceinformationfrom a programto identify its modules.
Critics may rightly cite severalscenarioswheresuchcross-referenceinformationmay not be sufficient to extracta
software’sarchitecture.To arguein favor of theARTs, it is worth observingthatmaintenanceprogrammersfind the
cross-referencedataasoneof themostimportantsourceof information[Par86]. Thealternativeis to useinformation
from control anddataflow analyses[Hec77,MJ81] . But suchinformationwould be insufficient sincethe notion
of informationhiding is definedon the basisof scopeandoperationson symbols[Par76],not the informationthey
generateandpropagate.Besides,75-80%of thecodecurrentlyundermaintenanceis in languagessuchasCOBOL,
FORTRAN, CMS-2,andJOVIAL, languagesdesignedwhenstructuredprogrammingwasstill a buzzword[Sch87].
For theselanguagesdataandcontrol flow analyseswould yield very impreciseresults.Thus,cross-referencedata
may provide information as good as other static analyses.Ideally, the two typesof information may be usedin
conjunctionwith flow analysis,for instanceHutchens& Basili [HB85] usecross-referencerelationshipsdefined
using information obtainedfrom a program’sflow analysis.

3 Basics of numeric cluster analysis
This sectionsummarizesfrom the literature the theoreticalframework of numeric, hierarchic,partitioning,

clusteringalgorithms(NHPC) andmeasuresfor comparingclusters.Most of the work is summarizedfrom Jardine
& Sibson [JS71].

3.1 Cluster analysis: dissimilarity matrices to dendrograms
Definition: Let

�
denotea set of objectswith � elements. A relation on

�
is a subsetof

�����
. Let ��� �	�

denotethe set of all equivalence(symmetric,reflexive, and transitive)relationson
�

. Let
�� denotethe set of
real numbers �� and
���� the set of real numbersbetween � ������� .
An NHPC methodcreatesa dendrogram from somedissimilarity coefficients.

Definition: ([JS71]). A dissimilarity coefficient, also referredto as a dissimilarity matrix or DC, on a set
�

is a
function, ��� �������
 � , satisfying the following conditions:

DC1. ���! "�# �%$ � , &')(�
DC2. ���! "�+* �,$ �-�.*,�# � , &' "�+*/(�
Definition: ([JS71]). A dendrogram is a function 01�2
 � � �3� �4� satisfyingthe following conditions:

D1. �65879587-:<;=0��>7 �@? 0��>7-: �
D2. 0A�>7 �,$8�B�C�

for large enough 7 .
D3. Given 7 , D�E�F�� such that 0A�G7	HIE �"$ 0��#7 �
In otherwords,a dendrogrammapsnon-negativereal numbers,called levels, to equivalencerelations,or clusters,
on
�

suchthat 1) the clusterat a level is completelycontainedin a clusterat a higher level and2) at somelevel
7 , 0��>7 � is eventually

�J�K�
. The third conditionestablishesuniquenessin caseswhere 0 is discontinuous.

A dendrogramis usuallyrepresentedasa treewith numericlevelsassociatedto its branches;seeFigure1 for an
example.Theabscissaof a dendrogramhasno specificmeaningbut theordinaterepresentslevels. If a line is drawn
parallel to the abscissathenthe leavesof eachtreerootedat the branchesit cutsrepresentthe partitionsdueto the
equivalenceclassat thatlevel. Thesetof all theseequivalenceclasses(or partitions)is representedby a dendrogram.

Definition: Let L<M"� �4� and L<NO� �4� representthesetsof all DCsanddendrograms,respectively,overtheset
�

. We
will ignoretheparameter

�
andsimply use L<M and L1N ; theparameterwill be obviousfrom the contextof usage.

Definition : A NHPC method P is a mapping PQ�RL<M � L<N *.

* An analogoushierarchicalclusteringmethodcanbe definedusingsimilarity coefficientsanddendrogramswith decreasinglevel numbers.
Thereis a simple transformationfrom a similarity basedclusteringmethodto an analoguedissimilarity basedclusteringmethod. Most of our
discussionis from the point of view of dissimilarity basedmethod. The analoguefor similarity basedmethodis obviousand, for the sakeof
simplicity, is omitted.

3

 � �
 � ��� � �
 �� ��� � ��� � �
 �� ��� 	 ���
 ��� � �
 � ����	 ��� � ����� ��� � �

 � � �� �� �

A1 A2
A3 A4 A5

--

--

--

--

--

--

--

--

--

--

1.0

0.9

0.8

0.7

0.6

0.5 --

0.4

0.3

0.2

0.1

0.0

D
is

si
m

ila
rit

y
va

lu
es

C
od

e
nu

m
be

r
of

 in
te

rv
al

4

3

2

1

Dissimilarity matrix Dendrogram

Figure 1 A sampledissimilarity matrix andthe correspondingdendrogramresultingfrom single-link HAC. Sincethe matrix is
symmetric,only the lower triangleandthe diagonalareshown. A dendrogramis a hierarchyof setof equivalence
relations(i.e. partitions). It may be representedasa tree. The partitionsat any dissimilarity valuemay be
determinedby drawinga line perpendicularto the dissimilarity valuesaxis. Eachbranchof the treecut by the line
representsa partition consistingof elementsin the subtreerootedat that branch.Elementsin a partition at a lower
dissimilarity valuearemorelikely to be similar. At the highestlevel of dissimilarity valueall elementsare in the
onepartition. Insteadof the possiblyinfinite numberof levels(sincerangeis ���) onemay divide the levels into
somefixed levelsof intervals. The axis on the right representsonesuchinterval assignment.

input: a DC ’d’on a set ’P’
output: dendrogram
put each element of ’P’ in a group by itself
while ’d’ has more than one element do

s1: identify the two most similar groups
s2: combine the elements and create a new ’d’

end-while

Figure2 Outlineof HAC algorithms.An HAC algorithmmay begeneratedby choosinga strategyfor identifying thetwo most
similar elements(steps1) anda strategyfor “combining” theseelementsto createa newdissimilaritymatrix (steps2).

A classof NHPC algorithmscalledthehierarchical agglomerative clustering, or HAC, havethe outline given
in Figure 2. An HAC algorithm may be generatedby choosinga strategyfor identifying the two most similar
elements(steps1) anda strategyfor “combining” theseelementsto createa newdissimilaritymatrix (steps2). The
pair of elementswith the smallestcoefficient in a dissimilarity matrix are usually consideredas the most similar
elements.Analogously,if a similarity matrix is used,the pair with the highestcoefficient would be mostsimilar.

Therearefour popularstrategiesfor “combining” similar elements,calledsingle-link, complete-link, weighted-
average-link, and unweighted-average-link. The single-link algorithmstake the smallestdissimilarity betweenthe
pair of similar elementsas the coefficient for the new elementrepresentingtheir agglomeration.The complete-
link algorithmstake the largestsuchdissimilarity coefficient andthe othermethodsuseweightedandunweighted
averages.

The dendrogramin Figure 1 is the result of applying the single-link HAC on the dissimilarity matrix in the
samefigure. In this example, ��� and ��� combineat level ����� , ��� combineswith ��� and ��� at level ��� � , � �
combineswith ��� , ��� , and ��� at level ��� ! . Finally, all the objectsform a singleclusterat level ��� " .

4

� � �
� � ��� ! �
��� ��� ! ��� � �
��� ��� ! ��� � ����� �
� � ��� � ��� � ����� ����� �

� � ��� ��� ��� � �

� � �
� � � �
��� � � �
��� � � � �
� � � � � � �

� � ��� ��� ��� � �

� � �
� � ! �
��� ! � �
��� � � � �
� � � � � ! �

� � ��� ��� ��� � �

Equivalent to the dendrogram Cophonetic values Cladistic differ ence

Figure3 Dissimilarity matrix createdfrom the dendrogramin Figure1. Sinceit is not convenientto compareddendrograms,
for the sakeof comparison,it is preferredto transformdendrogramsinto dissimilarity matrices.The first matrix
containsthe lowestdissimilarity valueat which two elementsareplacedin the samepartition. The matrix is
equivalentto thedendrogramin thatonecanbe derivedfrom the other. The secondmatrix containsthe codenumber
of the interval (given by the right axis in the dendrogram)for the dissimilarity valueof the correspondingentry
of the first matrix. If the edgesof the tree representationof a dendrogramare consideredto be
undirectedthenthe third matrix containsthe length of the path from one elementto another.

3.2 Transforming dendrograms to dissimilarity matrices
TheNHPCbasedARTs createclustersthatmayberepresentedashierarchies.To definea metric for evaluating

how well a recoveredarchitecturematchesan expectedarchitecturesuchhierarchiesneedto be compared.Sinceit
is very unwieldy to defineoperationssuchascomparisonof hierarchies,it is customaryto transforma dendrogram
back into a dissimilarity matrix. This requiresdefininga function �������
	��� . Thereareseveralways to do
it. Figure 3 gives threedissimilarity matricesderivedfrom the dendrogramin Figure 1. The first matrix in this
figure representsthedendrogramwithout any lossof information,i.e. the samedendrogrammaybe recreatedfrom
this matrix. The following function definesthis transformation*.

Definition: � ������������������������� �"!$#%'&)(*� �+�,���.-/�0��&1�32'� .
Themapping � �0�4��� mapsan pair of elementsto thesmallestlevel at which they arein the samecluster.Condition
DC3, above,guaranteesthat � � is 1-1 from the set of dendrogramsto somesubsetof the setof DC’s on P. The
dendrogram� associatedto � �0�4�5� is given by:

�0��&1�"�6%7� �+�,���8(*� �0�4�5�,� �����9�;:<&=2
Thus, in our subsequentdiscussionon comparisonof dendrogramswe use � ������� insteadof � .
Notation: We treat function applicationas left associative.That is, >?�A@B�,��C7�8DE�4>=�4@B�A�3�4C7� .

Thereareotherwaysto createa dissimilarity coefficient from a dendrogram.SokalandRohlf [SR62] give a
variationof � � by dividing the levelsof the dendrograminto intervalsandusingthe interval numberinsteadof the
level. Supposethatthedissimilarityvaluesrangebetween� and

�
. Therangemaybesplit into F intervalsof equal

sizeanda codenumberfrom
�

to F may be associatedto eachinterval as follows. The interval �4G=H ��I FJ��G I FLK ,
for

� :MG;:MF , is assignedthe code FNHOG?P �
. A dissimilarity valuemay be mappedto the codenumberof the

interval in which it is contained.The following function: Q��1RTS � 	 � � �UF doesthis.

Definition: QV�XW7��YFZH[G?P �
suchthat WJ-\�4G]H �0I FJ�,G I F�K , for

� :�G�:^F .

SokalandRohlf definedthe cophonetic value of a pair of elementsas the smallestnumberinterval in which
the pair are placedin the sameoperation. The cophoneticvaluesfor all pairs of elementsform a dissimilarity
matrix. The mapping is definedas follows.

Definition: � � �4�����_���������9�`���4Qa�A� � �����,� �+�,���A� .
The secondmatrix in Figure3 givesthe cophoneticvalueswith F�� ! for the dendrogramin Figure1.

A significantlydifferentmethodusingthe notion of cladistic difference is suggestedby Farris [Far79].

* We usesubscriptsto distinguishmorethanonefunction in a particularclass,e.g. bdc0e bgfhe i;c0e4i.f0eAjAj�j

5

Definition: The cladistic difference betweentwo leavesof a dendrogramis the numberof edgesin the path
betweenthemin a treerepresentationof the dendrogram.We use

���
to denotethe mappingfrom a dendrogramto

the dissimilarity coefficients due to cladistic differencebetweenelements.

The third matrix in Figure 3 is createdby applying
� �

to the dendrogramin Figure 1.

For the sakeof mathematicalconveniencewe assumethat, henceforth,the rangeof a dendrogramis ����� and
not ��� . Thereis no lossof generalitysincethis canbe achievedby dividing all the levelsof a dendrogramby the
smallestlevel at which all elementsof 	 arein thesamecluster.This mappingessentiallynormalizesa dendrogram
andmakesit independentof scale,a propertythat easesthe comparisonof dendrograms.

3.3 Measures of differ encebetweenclusters
Clusteranalysistechniquesarestatistical.Thecomputationtheyuseto groupprogramelementsareessentially

heuristic. Oncea techniquehasbeendesigned,oneneedsto evaluateit. JardineandSibsonhaveidentifiedseveral
factorson which theplant taxonomyresultingfrom clusteranalysismaybeevaluated[JS71]. Their factors,adapted
to the context of softwaresystems,are as follows:

1. Correctness: How effective is the techniquein recovering“actual” modulehierarchy?
2. Stability: How sensitiveare the recoveredclustersto perturbationof data?
3. Consistency: How sensitiveare the recoveredclustersto the order in which datais processed.
4. Testof independence: Do the classificationsdependuponany otherpropertiesof the population?For instance,

the classificationsmay be dependentupon the programmingstandardsusedin an organization.
5. Measurementof dependence: The extent to which the classificationsdependupon other propertiesof the

population(as againstsimply testing for independence).
6. Measurementof congruence: How well do theclassificationsbasedon onesetof criteria‘fit’ thosedueto another

set? For instance,whethera module classificationarrived by analyzingcommentsand documents[MBK91]
matchesthat due to analyzingthe bindingsbetweenvarioussymbols[HB85].

To evaluateeachof thesefactorsrequirescomparingmultiple classificationsgeneratedby a method.To enable
experimentationthe comparisonmust be objectiveandcomputable.Therehasbeena significantamountof work
on measuresfor comparingclassifications.They aresummarizedbelow. Sincecomparisonof dendrogramsis not
convenient,asstatedearlier,to easecomparisonit is typical to mapthe dendrogramsto dissimilaritymatrices.The�

functionsof the previoussubsectionperform suchmappingsand are usedby the comparisonfunctionsstated
in the following subsections.

Definition: Let
�������������� ��� be a function that gives the normalized‘dif ference’betweentwo DCs.
Jardineand Sibson[JS71] give the following functions:

1.
 �����������! �"$#�%'&�(*),+ ���-�/.0�210"�34�5 -�/.6�718"9+ � .6�71;: 	6<
2.
 ��� � ��� "�#

= >@? A�BDCFEHG IKJMLNA7O2CPEQG IKJSR O
T BOVU C U L � J

3.
 � ��� � ��� "W#
>@X A�BVCPEQG IQJMLYA�O�CZEQG I[J�XBOVU C U L � J

where ��� and �5 are two DCs and the summationsareover the \ � \ 3^]�"2_!` two elementsubsetsof 	 .

The difference betweentwo dendrogramscan also be measuredby their Euclideandistanceif they are
representedby points on the Euclideanspaceof \ � \ 3^]�"�_!` dimension. The Euclidian distanceis not a good
measurebecauseit is often hard to establishthe necessarytriangle inequality for sucha Euclideanspace.

SokalandRohlf [SR62]havesuggestedusingtheproductmomentcorrelationcoefficient between� � # � �ba � "
and � # � ��a " to comparetwo classificationsa � and a . This coefficient, which they term copheneticcorrelation
coefficient, predictsthe extent to which there is a linear relationshipbetweenthe two DCs and may be usedas
a measureof their relationship.

Day [Day79] hascompileda setof distancemeasuresbetweenpartitions(hierarchical,flat clusters)basedon
lattice- andgraph-theoreticrepresentations.Rohlf [Roh74] andDay [Day79] surveyover 15 comparisonfunctions
takenfrom literature. The choiceof the appropriate
 , as is the casewith any metric,dependson the application.

6

JardineandSibson[JS71],for instance,find
���

asthepreferredmetric for comparinganimalandplanttaxonomies.
They argue that

���
is not very sensitiveand

���
requiresattachinga meaningto squaringof DC values,which

may not always be appropriate.

3.4 Corr ectnessof a clustering technique
The differencebetweena dendrogramgeneratedby an ART and an expecteddendrogrammay be measured

by an appropriate
�

function. The centroidof the differencesbetweena large numberof suchsamplesmay be
takenasa measureof its correctness.The choiceof statisticfor the centroidwill dependon the distributionof the
distances;for instance,arithmeticmeanmay be usedif the distribution is normal.

4 Terminology for unifying ARTs
This sectionintroducessymbolsandtermsusedin the next sectionto presentvariousARTs within a unifying

framework.

All the ARTs studiedhave one thing in common. They take as input information about cross-references
betweenprogramsymbols,suchas thoseextractedby [BHW89, CNR90,Rei90, WCW88]. For most techniques,
the set of programsymbolsis a subsetof the namesof functions,procedures,types,global variables,and files.
Schwanke’stechnique[Sch91]alsoconsidersnamesof algorithmsfound in textbooks(which is different from the
namesof functionsimplementingthem). Maareket. al.’s technique[MBK91] considerswordsusedin comments
and documentation. Basedon theserelationshipsthey attempt to organize the programsymbols in collections
representingmodules. They differ in:

1. the set of programsymbols they use,
2. the type of relationsthey observe,
3. the processingthey do to identify the modules,
4. the type of symbolsthat are included in a module.

The setof programsymbolsusedby an individual techniquemay further be divided into two sets: the setof
architecture elements� andthe setof resources � . The differencebetweenthe two setsis thatwhile the symbols
from both the setsmaybe usedby a technique,the recoveredarchitectureis specifiedonly in termsof the symbols
in set � . What constitutes� and � differs for eachART. Furthermore,not all elementsof � may appearin the
recoveredarchitecture.We classify the subsetof � appearingin the recoveredarchitectureas � . In otherwords,
althoughthe symbols �
	�� areusedby an ART, the architectureis definedonly in termsof ���� .

The relationshipbetweenprogramsymbolsusedby variousARTs may further be classifiedinto two groups:

1. Resourceusagediagrams(RUD) and
2. Resourceflow diagrams(RFD)

4.1 Resource usagediagrams
An RUD is a collection of binary relationsof the form ��������� . Theserelations,for instance,��� , ��� , ��� ,

etc.,defined later, representrelationshipssuchas refer, use, called-by, respectively.A collectionof theserelations
mayalsobe representedasa labelleddirectedgraphwhosenodesbelongto ��	�� , edgesgo from a nodein � to a
node � , andthe labelof the edgecorrespondsto the specificrelation. An RUD, therefore,encodescross-reference
relationshipsbetweenprogramsymbols.

Following is a list of � relationsusedby the ARTs studiedin this paper:The first threerelationsarebetween
proceduresand global variables.

1. ��� : ����� �"!$#&% meansprocedure� defines(i.e. assignsto) global variable # .
2. � � : � � � �"!'#(% meansprocedure� usesglobal variable # .
3. ��� : ���)� �"!'#(% meansprocedure� refersto (i.e. either definesor uses)global variable # .

7

4. ��� : A relation betweentwo procedures.���'� � � ! � � % meansprocedure� �
calls procedure� �

.
5. � � : A relation betweenprogramsand pairs of lexical affinity words. Two words havea lexical affinity in a

documentif they appearin it with in
���

word distance. � � � �"!���� % meansthe lexical affinity ��� appearsin
the documentationof program � .

6. �
	 : A relationbetweenproceduresandtypes. �
	$� �"!�� % meansprocedure� eitherhasa formal parameterof type
� or returnsa valueof type � . In otherwords,type � is usedin the interfacespecification of a procedure� .

7. �
 : A relationbetweenproceduresand types. �
$� �"!�� % meanstype � appearsin procedure� . ��	 �
�� .
8. ��� : A relationbetweenfiles andall typesof programelements.���)����!�� % meansprogramelement � is declared

in file � .
9. �
� : A relation betweenpairs of files. ������� � !�� � % meansfile � � includesfile � � .

An RUD definedasa labelleddirectedgraphimplies that thereis at mostoneedgeof a particulartypebetween
any two nodes.Someof the ARTs we studyusethe numberof occurencesof eachrelationship.This information
may be abstractedusinga labelled,directedmultigraph. To accommodatethis, we introduce,for every � relation
definedabove,a mapping� � � � ����� , where� is thesetof naturalnumbers.Thus � ��� � ! #�% givesthenumber
of times a procedure� refers to a global variable # .

Notice that � ��� !��(%���� ��� !���%! #" and $ � �%�"!��(%���� �%�"!��(%�&'" .
Thesetof architectureelements� for anART is obviousfrom thediscussion.Thesetof all programelements

� 	 � usedby an ART is evident from the choiceof the � relationsor � functions it uses. We, therefore,do
not explicitly statethesesetsfor eachtechnique.

Notation: For the sakeof convenience,we mapthe booleanvalue true to (and false to " . This allows us to use
the � relations in arithmetic expressions.

Notation: A ‘) ’ is usedas a shorthandfor an existentially quantifiedsymbol. Two ‘) ’ symbolsin the same
expressionrepresenttwo differentexistentiallyquantified symbols.Theexpression* ��)�!�+ !,) % , where* is a relation,
is a shorthandfor -/. �1032 !54'67.8&#* ��2 !�+ !54 %:9;* �<2 !�+ !54 %�=

4.2 Resource flow diagrams

A resourceflow diagramis alsoa labelleddirectedgraph.Theverticesof this graph,however,consistonly of
elementsfrom the set � , the setof architecturalelements.The edgesof an RFD arelabelledby the elementsfrom
the set � . The setof labelsof an RFD, therefore,dependson the programbeinganalyzed.Contrastthis with an
RUD whoseverticesbelongedto � 	 � andwhoselabelswerefixed basedon the type of relationshipconsidered.

An edgein an RFD from vertex � to vertex � with label . indicatesthatprogramelement� providesresource
. to programelement. . Statedanotherway, resource. flows from programelement� to programelement� . An
RFD, therefore,is a ternary relation >�� � � � � � .

The notion of what “flows” meanmay differ on the specificrelationshipcaptured.Hutchensand Basili, for
instance,identify the following relations:

1. > � � � � !'# ! � � % – a relation establishedif (a) procedure� �
modifiesvariable # , (b) procedure� �

usesvariable # ,
and(c) thereis an executablepath from procedure� �

to procedure� �
over which variable # is not modified.

2. > � � � � !'# ! � � % – a relationestablishedif (a) procedure� �
modifiesvariable # , (b) procedure� �

usesvariable # ,
and (c) there is an executablepath from procedure� �

to procedure� �
.

3. >@? � � � !'# ! � � % – a relationestablishedif procedure� �
modifies variable # andprocedure� �

usesit

For relations >A� and > � the notion of “flows” dependson the existenceof an executionpath from oneprocedure
to another.Establishingsuchrelationshipsmay often requirestaticflow analysis[ASU86, Hec77]. In contrastthe
> ? requiresinformation local to individual procedureswithout concernof existenceof executionpathsconnecting
them. Suchrelationsmay often be computedfrom � relations. As for instance:

> ? � � � !'# ! � � %B& ����� � � ! #�%:9 ��� � � � !'#(% .

8

Table 1 Classificationof ARTs basedon criteria introducedin Section2

Source Typeof computation
performed

Generatesparitions? Generatesstratified
architectures?

Belady& Evangelisti,81 numeric yes no

Choi & Scacchi,90 graph-theoretic yes yes

Hutchens& Basili, 85 numeric yes yes

Liu & Wilde, 90 graph-theoretic no no

Maareket. al., 91 numeric yes yes

Müller & Uhl, 90 mixed (numeric&
graph-theoretic)

no yes

Patelet. al., 92 numeric no no

Schwanke,91 numeric yes yes

Selby& Basili, 91 numeric yes yes

Analogousto � , we definea mapping
� ��� ��� � � that countsthe numberof resourcesflowing from

one elementto anotherin a > relation. More precisely:

� ����!�� % &�� > ����!,)�!��'%��
For every RFD > we may also definea RUD �
	 ��� � � as follows:

��	 ����!��'%:&�� � ���!,)�!��'%�� "

5 A unified view of ARTs
This sectiongives an overview of variousarchitecturerecoverytechniques.The overview presentsa unified

view in that, insteadof usingtermsandsymbolsfrom the original work, the termsandsymbolsintroducedin the
previoussectionare used. This allows one to comparethe informationused,the computationperformed,and the
output generatedby various techniques.

Table1 classifies ARTs studiedin this paperbasedon the classificationschemedevelopedin Section2. The
first column of this table cites the paperin which the techniquewas presented.The papersof [HB85, LW90]
presentmultiple ARTs, eachof themwith the sameclassification.The secondcolumnclassifiesthe techniqueson
the type of computationthey perform, i.e. graph-theoretic,numeric,or conceptual.Notice that noneof the ARTs
useconceptualclustering.The ARTs of [BE81, HB85, PCB92,MBK91, Sch91,SB91] usenumericcomputations,
thosein [CS90, LW90] use graph-theoreticcomputations. The ART of [MU90] usesboth graph-theoreticand
numericcomputations.The third column classifies eachtechniqueon whetherthey placea programelementin
one and only one module(partitioned),or whethera programelementmay be placedin more than one module
(non-partitioned).The techniquesof [BE81, CS90,HB85, MBK91, Sch91,SB91] createpartitionswhile thoseof
[LW90, MU90, PCB92] do not. The fourth column classifieseachtechniqueon whetherthey organizeprogram
elementsin levels. All the ARTs, exceptthoseof [BE81, LW90, MU90, PCB92], createhierarchicarchitectures.
The architecturegeneratedby ART of [MU90] are stratifiedbut not hierarchical.

5.1 Numeric, stratified ARTs
TheARTsof [HB85, MBK91, Sch91,SB91]arenumericandstratified in thattheyusenumericcomputationsto

createnot onebut severallevelsof modules.Thearchitecturesrecoveredby thesetechniquesarein fact hierarchical

9

and the modulesare partitioned. All theseARTs usethe outline of HAC algorithms,Figure 2, thoughwith some
modifications. Hence,to comparethesetechniqueswe only needto identify:

1. Which � relationsor � functions they use?
2. How the dissimilarity of similarity matrix is created?
3. In the HAC loop (Figure 2), what strategyis usedto:

a. selectthe most similar elements(steps1)?
b. “combine” theseelementsto createa new similarity or dissimilarity matrix (steps2)?

Table2 givesa comparativeanalysisof numericarchitecturerecoverytechniques.It representstheinformation
usedby thesetechniquesusing the relation ��� � ��� . Sincedifferent techniquesusedifferent information their
architecturesmay differ on the structuralelementsthey organize. Due to differencesin the computationsused
different techniquesmay classify the sameprogramelementin different clusters.

5.1.1 ARTs of Hutchens & Basili [HB85] Hutchens& Basili’s ARTsmaintainanRUD consistingof � �
(which procedurerefersto whichglobalvariable)and � � (which proceduremodifieswhich globalvariable)relations.
They suggesttwo methodsbasedon two differentmethodsfor computingdissimilarity matrices: recomputedand
expecteddissimilarity matrices.The recomputeddissimilarity matrix is computedas follows:

��� �/� � ����!�+ % & ����� %�� �)�%+�%@)	� � ��� !�+�%
����� %
� �)��+�%) � ��� !�+�%

where � is the binding matrix which gives the binding strength betweentwo proceduresand the vector � gives
the numberof bindingsinvolving a given procedure.A binding is a ternaryrelation: ������!�� !�+�% representingthat
procedure� refersto aglobalvariable � thatis modifiedby procedure+ . Clearly, ������!�� !�+ %:&
� � ��� !���%�9 � � ��+ !���% .
The matrix � and the vector � are definedas follows:

� ����!�+ %:& � �)��� !,)�!�+�%��� � ����+ !,) !�� %��

����� %:& � ������!)�!,) %��� � ����)�!,)�!�� %��
Rememberthat �)��� ! !�+�% &#-��)��� !��"!�+�% ��� � 6��)��� !��"!�+�%�= , andsimilarly ����� ! ! % and �)� ! !�� % .

The expecteddissimilarity is definedas:

��� �/� � ����!�+ % & ����� %
� ����+�%
������� ��� %A) (% � � ��� !�+�%

where � and � are asdefined for recomputeddissimilarity and
����� ��� % gives the dimensionof � .

The ARTs of Hutchens& Basili usea modification of HAC. They maintaintwo matrices:a binding matrix
anda dissimilarity matrix. Insteadof computingthe latter only once,asdonein HAC, Hutchens& Basili’s ART
recomputesit in eachiteration. In the HAC loop, the two mostsimilar elementsarechosenbasedon the smallest
dissimilarity. Then the binding matrix is recreatedby “combining” thesesimilar elementsusing the single-link
method. The dissimilarity matrix is recomputedusing the appropriatefunction (statedabove).

The recomputationof dissimilarity matrix at eachiterationleadsto the possibility that the dissimilarity values
over successiveiterationsdecrease,implying that a later iterationmay group a pair with lower dissimilarity. The
hierarchyof partitionsthuscreatedwouldnot alwayshavenon-decreasinglevelnumbers.Theresultingclassification
thereforewill not be a dendrogramandhenceto easyto interpret. To overcomethis problem,Hutchens& Basili
suggestthat wheneverthe dissimilarity of a newly createdcluster is smaller than that of the previousiteration,
the new clusterbe merged with the previouscluster. This may be doneby assigningthe new cluster the same
dissimilarity level as the previouscluster.

10

Ta
bl

e
2

O
ve

rv
ie

w
of

va
rio

us
n

u
m

e
ri
c

ar
ch

ite
ct

ur
e

re
co

ve
ry

te
ch

ni
qu

es
.

D
es

ig
n

re
co

ve
ry

m
et

ho
d

�

�

�� �
��

�

si
m

ila
rit

y
or

di
ss

im
ila

rit
y

co
m

pu
ta

tio
n

�� �
�	

�

D
efi

ni
tio

ns
of

sy
m

bo
ls

us
ed

.
S

ee
S

ec
tio

n
4

fo
r

te
rm

in
ol

og
y

C
lu

st
er

in
g

m
et

ho
d

H
ut

ch
en

sa
nd

B
as

ili
,

85
pr

oc
ed

ur
es

gl
ob

al
va

ria
bl

es

��
� �
���

=

� re
fe

rs
to

�

� �� �
���

=

� as
si

gn
es

to

�re
co

m
pu

te
dd

is
si

m
ila

rit
y:

� �� �
� ����
��� ���
��

� �� �
� �� �
�� ����
�

�� � �
� ��
� �� �
� ���
�� �
� �� � �
��

�� ����
� � �
� ���� �
�� �
 �� � �
� ��
�

� �� �
 �� � �
� ��
� �
�� � �� �
��

A
da

pt
at

io
n

of
H

A
C

.
R

ec
om

pu
te

s! ,
an

d

"

at
ea

ch
st

ep
.

ex
pe

ct
ed

di
ss

im
ila

rit
y:

� �� �
� ��

� #$ %
� �� �
&� '
�� ����
�

di
m

! is
th

e
ro

w
di

m
en

si
on

of

!

S
el

by
an

d
B

as
ili

,
91

"
"

"
"

"
"

si
m

ila
rit

y
m

ea
su

re

�� ����
�

A
s

de
fin

ed
ab

ov
e

si
ng

le
-li

nk

S
ch

w
an

ke
,9

1
pr

oc
ed

ur
es

gl
ob

al
sy

m
bo

ls
pr

oc
ed

ur
es

� (� �
��

� =

� us
es

�

��)� �
��

� =

� ca
lls

�

*� ca
lls

�

si
m

ila
rit

y
m

ea
su

re

+�
 ,
-
 .
� �/ '
� 0� ���
��

1� +
�
 ,
-
 .
� �2 '
� +�
 ,
�
 .
� � +
�
 . �

 ,�
�

 ,�
3 � 4
� 5� ���
��6

+� 7
� �

8:9;<�
= >?� @

� A
��

@
� A
� �
� 5� � �
A� B
 � 5� �
��
�

C ,D ,
an

d

� ar
e

us
er

de
fin

ed
pa

ra
m

et
er

s

A
da

pt
at

io
n

of
H

A
C

.
In

te
ra

ct
iv

e

M
aa

re
k

et
.

al
.,

91
pr

og
ra

m
s

pa
irs

of
w

or
ds

in
do

cu
m

en
ta

tio
n

E +� �
���GF

N
um

be
ro

f
tim

es

� ap
pe

ar
sin

�

di
ss

im
ila

rit
y

m
ea

su
re

8
H I � ,
- � .

J K �� L
��M
J K �� L
�

� ,�
3 � 4
NPO� ���
�� Q
R6

S ,�
�� � �
N O� ���
�� 'T UV
� @
�
� ��
��

@
�
� ��
� �N�O
� � �
��B
8 N�O
� ����
�

W S ,�
� S , �
X S ,�B Y
Z ,

X S , :
m

ea
n

of

S ,

Y Z ,

:
st

an
da

rd
de

vi
at

io
n

of

S ,

si
ng

le
-li

nk
or

co
m

pl
et

e-
lin

k

11

5.1.2 ART of Selby & Basili [SB91] The ART of Selby & Basili use the sameRUD as the ARTs of
Hutchens& Basili, describedabove.It usesthe single-link HAC with a similarity matrix consistingof the binding
matrix,

�
, as definedby Hutchens& Basili [HB85].

�������	��
������� � ��
�����

5.1.3 ART of Schwanke[Sch91] The RUD usedby the ART of Schwanke[Sch91] consistsof the ���
relation(which procedurecalls which procedure)andthe ��� relation(which procedureuseswhich globalvariable).
The similarity matrix it createsmay be statedas:

����������
�� �!�"� # �%$'&)(*$,+-�/.1032 �4� ��
�����
5�. # ��$ & (*$ + �/.76�28� # �%$ &:9 $ + �/. # �%$ +89 $ & ���

where:

• 5 , 0 , and 6 are user definedparameters,
• $ & �<;�=?> � � ��
��=@��A , i.e. the set of global variablesusedby procedure
 ,

• # ��B:�*� CD	EGF 9IH�J�K ��L�$��%M4��� , i.e. the weight associatedto (or the discriminatingpower of) a set of global
variables,and

• L�$��%M4�N�PO ��� � 9 ��MQ��O R�O �Q� � 9 � 9 ��O , the proportionof userelationsinvolving global variable M (or the probability
that a use relation involves variable M).

Schwanke’sART usesthesingle-linkHAC algorithmfor creatingclusters.It alsoprovidestwo interactiveinterfaces
to validatetheclustersbeingcreated.In thefirst interface,aftereveryclusteris createdtheuseris askedto confirm
it. In the secondinterface,a new cluster is first validatedby using a heuristic; if the validation fails the user
is queried. The heuristicusedby Schwankeis: if the programsymbolsbeing groupedare declaredin the same
file then the grouping is okay, else it is not. Implementationof this heuristic requiresthe ��S relation, that is
which programelementis declaredin which file. This extendsthe information neededto createthe RUD used
by Schwanke’smethod.

5.1.4 ART of Maarek et. al. [MBK91] Unlike all theotherARTs studiedin this paper,Maareket. al.’s
ART doesnot aim at classifyinga setof procedures,variables,or typesinto modules.Instead,it aimsat grouping
related“programs” into groupsof softwarelibraries. Thoughnot explicitly statedby the authors,this technique
could well be usedfor architecturerecovery. This techniquediffers significantly from other numeric, stratified
techniquesin that it usesinformationfrom programdocumentation,not the codeitself. It usesa multigraphRUD,
representingthe T-U relationbetweena program’sdocumentationand its lexical affinities. Maareket. al. suggest
usingeithera single-link or complete-linkHAC with the dissimilarity matrix createdby the following function:

6V��W�W�X	��
�����"� C�ZY\[& (*[+1]^G& �����_2]^G+ �%���
where:

• [& �<;	=`> T-U ��
�� =@��A , i.e. the set of lexical affinity found in document
 ,
• ^ &-��=��a� 9 T U ��
��=@�-2*bdc	eN��L�$���=-�f
g��� , i.e. resolvingpowerof lexical affinity = in document
 ,
• L�$��%=-�f
N�"� T U ��
�� =@�fR C T U ��
� 9 � , probabilitythatlexical affinity
 appearsin thedocumentationof program= , and
•]^ &1�h� ^ & 9ji^ &a�fRGkQl,m , normalizedresolvingpower. i^ & is the meanof ^ & and k�l�m is its standarddeviation.

5.2 Numeric, non-stratified ARTs
Numeric, non-stratifiedARTs are techniquesthat usenumericalcomputationto group programsymbolsinto

modules.They are non-stratifiedin that they only createonesetof groups,not levels of groups. The techniques
of [BE81, PCB92] fall in this category. The first one createspartitionedmoduleswhile the secondone creates
overlappingmodules. Like other numeric ARTs, thesemethodscomputea matrix of valuesusing information
containedin an RUD. They differ in the relationsthey useto createan RUD, the computationsusedto createthe
respectivematrices,and the functions usedto identify groups.

12

5.2.1 ART of Belady & Evangelisti [BE81] Belady& Evangelistiusethe ��� relation,i.e. which func-
tion useswhich global variable*. The similarity matrix theyusecorrespondsto the adjacencymatrix representation
of � � .

����� � ��
�����"� � �Q� ��
�� �!��� �� � � ��
������� �
In creatingthis matrix, they requirethat theproceduresbe assignedrow (andcolumn)numberslower thanthe

globalvariables.This matrix is theninput to a clusteringalgorithmdueto Donath[DH72]. It takestwo parameters:
the numberof clusters,� , to be generatedandthe maximumnumberof nodesallowed in eachcluster. A cluster,
hencea module,may have both proceduresand global variables. Donath’s algorithm generates� eigenvectors
using the similarity matrix. Theseeigenvectorsare then usedto placeeachnodein one of the � -modules. The
detailsof the placementalgorithm may be found in the original paper.

5.2.2 ART of Patel et. al. [PCB92] Patelet. al.’s ART usesT
	 , the multigraphRUD representinghow
many times a procedurerefersto a type. It createsa similarity matrix using the following function:

����������
�� ��� � T�	 ��
@� 2 T�	 �%�!���� T 	 ��
@� ��� 2 ��� T 	 ����� ���
where T
	 ��
g� is a vector representingT�	 ��
� 9 � andall vectorsusethe samepermutationto for assigningposition
to the countsfor the types. The vector product,therefore,representsthe computation:

T 	 ��B:�_2 T 	 ���� � C[���� T 	 ��B:��[V� 2 T 	 ��� � [��

and the vector dimensionrepresentsthe computation:��� T 	 ��B:� ��� ��� C[���� T 	 ��B:� [V���
where � is the set of all types usedin the program.

Patel et. al.’s ART is not constructive,in that it doesnot generatea set of groupsrepresentingmodules.
Instead,it providesa function to test if a setof proceduresconstitutea module.A setof procedures� constitutea
moduleif �@� � ����� , where � is someexperimentallydeterminedthresholdvalueand �@� � � is defined as:

�@� � �"� CD � !	E#"%$ D�&' ! �����(����M ��)V�
O � OQ2 O � 9 � O

5.3 Graph-theoretic, stratified ARTs
Only the ART of Choi & Scacchi[CS90] falls into this category.Unlike the otherARTs discussedso far, this

usesanRFD * (not anRUD) to recoveran architecture.Further,it usesgraph-theoreticcomputationandorganizes
a program’ssymbolsin a hierarchy.This hierarchyis similar to that dueto HAC basedARTs, in that the program
symbolsappearonly at the leaf and that eachsymbol appearsat most once. The intermediatenodesare newly
addedabstractnodesrepresentingmodules. Choi & Scacchi’sART, therefore,createspartitionedmodules. The
hierarchyit generatesis different from dendrogramsin that thereis no level numberassociatedto the nodes.

Choi & Scacchi’sART dependson finding thebiconnectedcomponentsof anundirectedgraph.A biconnected
component of a graphis its subgraphwhoseeverypair of distinct edgeslie on somecycle. A nodemaybe in more

* Belady & Evangelisti [BE81] actually use the relation “which function useswhich control block.” In their context, a control block
correspondsto a global variable,hencewe saythat they usethe +�, relation.

13

than one biconnectedcomponent,but any two biconnectedcomponentsmay haveat most one nodein common.
Nodescommonto different biconnectedcomponentsare called articulation points. Algorithms for finding the
biconnectedcomponentsof a graphmay be found in textson algorithmanalysis,suchas [AHU74].

Choi & Scacchi’sART finds the biconnectedcomponentsof an RFD. It then createsa module for each
articulationpoint. Eachmoduleconsistsof an articulationpoint andsubmodulescreatedby applyingthe algorithm
recursivelyto thesubgraphsinducedby the verticesof eachbiconnectedcomponent,exceptthe articulationpoints.
Choi andScacchiarguethat this procedureextractsan architecturewith minimum alterationdistance(which is the
sameas the sumof all cladisticdistances)andminimum coupling (sumof the numberof childrenof all nodes).

5.4 Mixed, stratified ARTs
Müller & Uhl’s [MU90] is the only ART we have studiedthat usesa combinationof graph-theoreticand

numericcomputationsandgeneratesstratificationsthatarenot hierarchies.It usesa multigraphRFD
�

to compute
the similarity matrix. Its algorithmic structurecan also be abstractedas an HAC (i.e., iteratively selectsimilar
elements,combine them, and createa new similarity matrix). It provides four methodsto decide if pairs of
elementsbelong to the samegroup. The techniqueis interactive, in that the onus of choosingthe appropriate
methodin eachiterationlies with theuser.Unlike HACs it alsoprovidesmethodsto decideif two elementsdo not
belongto the samegroup. The four methodsof choosingprogramelementsthat may be groupedare:

1. selectionby interconnectionstrength
2. selectionby centricity
3. selectionby commonneighbors,and
4. selectionby name

The first threeselectionmethodsusenumericcomputationssimilar to thoseusedby HAC basedmethods.These
computationsare,however,bestexpressedusinggraph-theoreticconcepts(henceits classificationasmixed).

The interconnectionstrengthmeasurebetweentwo nodes � and � is the exactnumberof syntacticobjects
exchangedbetweenthe two nodes,i.e.

�����	��
 �������� �
 �������

Müller & Uhl classifytwo componentsto bestronglyrelatedif their interconnectionstrengthis greaterthana certain
threshold ��� and loosely relatedif it is lessthan a certainthreshold��� . Componentswith stronginterconnection
strengthareplacedin thesamegroupandthosewith differentinterconnectionstrengthareplacedin differentgroups.

Müller & Uhl andsuggesttwo similarity measuresfor selectingon commonneighbors,onebasedon common
successorscommonsuccessorsbetweenthe pair:

��������
 ���������� � �
 ����!"�$#%�&�
 �'�(!)���

and the other on their commonpredecessors:

���*�,+.-/
 �����0���1� � �
 !0�2�3��#%� �
 !0����4�

Rememberthat � �
65 �7(���8� �
.5 �(!0�7����:9<; . Two elements� and � are placedin the samemodule either if���*� �
 �����0�>=?�$@ or �4���%+.-A
 �����0�B=C�$D , where ��@ and �ED are two thresholdvalues.

To select by centricity, the exact interface or the number of dependencesbetweenan elementand other
elementsis computed.

F4�G
 �3��� �
 ���H!"��I �
 !0�.�B�

This is thenusedto identify centralandfringe nodesdefinedasthosewith theexactinterfacebeyondthethresholds
��J and �LK , respectively. Suchelementsare assignedto different groups.

14

Selectionby nameis uniqueto Müller & Uhl’s ART. Two programelementsare consideredsimilar if their
nameshave matchingsubstrings(e.g. commonprefix).

After groupingtwo elements,Müller & Uhl’s ART createsa new dependencymatrix by replacingthe pair of
similar elementswith a new node. Its dependencieswith the otherelementsis computedby addingthe sumof the
dependenciesof the elementsgrouped.Müller & Uhl allow multiple selectionoperationsto be appliedto the same
dependencematrix. This meansthat an elementor a modulemay be includedin more than one module leading
to a non-hierarchical,yet stratified,architecture.However,if during any iteration only one selectionoperationis
applied then the architecturewould be hierarchical.

Though,Müller & Uhl’s ART can be abstractedas an HAC, the architecturesare not dendrogramsas there
areno level numbersassociatedto eachcluster. Sincethe techniqueusesseveraldifferentsimilarity computations
there is no trivial way to use similarity valuesas levels.

Another importantquestionwhenusing this techniqueis: How doesonedefinethe variousthresholds?This
questionbecomesmoot sinceMüller & Uhl’s ART allow the thresholdvaluesto be set interactivelyandchanged
betweeniterations.

5.5 Graph-theoretic, non-stratified ART

Liu & Wilde [LW90] presenttwo ARTs to groupa setof functions,types,andglobal variablesinto modules.
TheseARTs usegraph-theoreticcomputationand generatenon-stratifiedarchitectureswith overlappingmodules.
We refer to the two ARTs as global based and type based. The first techniqueusesan RUD consistingof the � �
relation (i.e., which procedureuseswhich global variable)while the RUD usedby the secondtechniqueconsists
of ��� relation (i.e., which procedureuseswhich type in its interface).

The global basedART hastwo steps. In the first stepthe � � relation is usedto createan undirectedgraph
�� ����� whosenodesrepresentglobal variables. In this graphthereis an edgebetweentwo nodesif their existsa
procedurethat usestheir correspondingglobal variables: i.e.,

�� ��	A��
�� if ���� � �
 �$� � ��� � �
 �$��	 � .
Each strongly connectedcomponentof the graph
�� ���0� representsa module. Let ��� � be the vertices

in a stronglyconnectedcomponent.The setof programelements� +
 ��� in the correspondingmoduleis defined
by the following rules.

1. All the global variablesrepresentedby verticesof a strongly connectedcomponentare in its corresponding
module, i.e. ����� +
 �0� .

2. All the proceduresusingany global variablerepresentedby the verticesof � are in � +
 �0� , i.e.���
��! �� ��� �
 �$� � �#"$�%� +
 �0� .
3. No other symbolsare in � +
 ��� .
Since a proceduremay be usedby variablesin multiple strongly connectedcomponents,it may be in multiple
modules.

Definition: Let & + and &�' be two types, & +)(&�' if type & + is a sub-typeof &�' , i.e. & + is usedto define &�' .
The typebasedART first removescertainrelationsfrom �+* . If �+*
 � ��& + � and �+*
 � ��&�'(� aretwo relations,saying

procedure� usestypes & + and &�' , then if & +,(&�' , the relation ��*
 � ��& + � is removed. We call the new relation
so created ��-* .

Modules are now identified by associatingwith eachtype & , �$'
 &� – a set of proceduresand types,using
the following rules.

1. All the proceduresusing type & belongto this set, i.e. �� �&��-*
 �$�.&��"/�0� '
 &� .
2. All the typesusedby any of theseproceduresarealso in this set, i.e. 1&�'0�A��-*
 � ��&�2�%��-*
 �$�.&�'4�#"3�4�$'
 &� .
3. No other symbolsbelong to � '
 &� .
Onceagain,a proceduremay be in more thanonemodulesinceit may usemore than onetype.

15

F
D

_C
LR

F
D

_I
S

S
E

T

F
D

_S
E

T

al
re

ad
y_

ex
is

t

co
py

_d
ef

co
py

_v
ar

di
ff_

lis
t

fd
_e

xp
re

ss
io

n

in
it_

sl
ic

e

in
te

rs
ec

t_
va

r

m
ak

e_
fd

_l
ilc

m
ak

e_
fe

ba
_a

sg
m

m
ak

e_
flo

w
ed

ge

nu
m

_a
ss

ig
nm

en
t

nu
m

_i
f

nu
m

_i
fe

ls
e

nu
m

_p
ro

gr
am

nu
m

_w
hi

le

pd
g_

in
it

rd
1_

as
si

gn
m

en
t

rd
2_

as
si

gn
m

en
t

rd
2_

w
hi

le

sa
m

e_
de

f

ta
g_

lo
op

ca
rr

y

un
io

n_
va

r

un
io

n_
de

f

co
py

_f
lo

w
ed

ge

de
f_

or
de

r

fe
_a

ss
ig

nm
en

t

fe
_i

f

fe
_i

fe
ls

e

fe
_s

tm
tli

st

fe
_w

hi
le

fe
ba

_a
ss

ig
nm

en
t

fe
ba

_p
ro

gr
am

in
te

rs
ec

t_
flo

w
ed

ge

pr
in

t_
fe

_i
nf

or
m

at
io

n

se
ar

ch
_f

ef
ro

m

se
ar

ch
_f

lo
w

ed
ge

un
io

n_
flo

w
ed

ge

fe
ba

_i
f

fe
ba

_i
fe

ls
e

fe
ba

_s
tm

tli
st

fe
ba

_w
hi

le

pr
in

t_
do

_i
nf

or
m

at
io

n

pr
in

t_
rd

1_
in

fo
rm

at
io

n

pr
in

t_
rd

2_
in

fo
rm

at
io

n

pr
in

t_
sl

ic
e

sl
ic

e

fd
_a

ss
ig

nm
en

t

fd
_i

f

fd
_i

fe
ls

e

fd
_s

tm
tli

st

fd
_w

hi
le

fe
_p

ro
gr

am

flo
w

_d
ep

en
de

nc
e

nu
m

_s
tm

tli
st

rd
1_

if

rd
1_

ife
ls

e

rd
1_

st
m

tli
st

rd
1_

w
hi

le

rd
2_

if

rd
2_

ife
ls

e

rd
2_

pr
og

ra
m

rd
2_

st
m

tli
st

fd
_s

ta
te

m
en

t

fe
_s

ta
te

m
en

t

fe
ba

_s
ta

te
m

en
t

nu
m

_s
ta

te
m

en
t

rd
1_

st
at

em
en

t

rd
2_

st
at

em
en

t

fe
of

fe
rr

or

pr
in

t_
fd

_i
nf

or
m

at
io

n

un
io

n_
lc

un
io

n_
li

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Dendrogram for parts of a program slicing program

Figure4 An architectureof partsof a programslicing systemrecoveredusingsingle-link HAC algorithm. The strings“rd1”,
“rd2”, “fe”, “feba”, and“fd” areacronymsfor differenttypeof dataandcontrolflow analyses.Thestrings“if”, “while”,
“ifelse”, “assignment”,etc. denotedifferentprogramconstruct.The systemusedthe conventionof namingfunctions
by combiningthesestrings. Notice the abovearchitecturedoesnot do a good job of identifying relatedfunctions.

6 Comparing architectures

6.1 Why compare architectures?

While the ARTs surveyedin Section5 representsignificantresearchprogress,in the absenceof any objective
measureto evaluatethe quality of architecturesrecovered,their validationhasbeensubjective.This is exemplified
by the following extracts:

“Although we performed the analysis with no foreknowledge of the system, our derived structure is consistent
with the mental image held by the chief maintainer of the Practice Manager.” [MMM90, Section 8]

and

“There was a close correspondence between the two views of the system. This may be seen by the dendrogram
of the smaller system in the Appendix. The two capital letters preceding each of the Fortran procedure names
designate the subsystem in which the designers placed the routine.” [HB85, Section III.E.2, page 755]

16

Thequotationssuggestthat the respectivearchitecturerecoverytechniqueswerevalidatedon softwaresystems
for which the expectedarchitecturecould be definedby either its maintenanceprogrammer(first case)or by some
naming convention(secondcase). The comparisonof the recoveredarchitecturewith the expectedarchitecture
was,however,donemanuallyby having the designersor maintainersvisually inspectthe graphscreatedby each
methodandassessif theymatchedtheir view or mentalmodelof thesystems’modulehierarchy.Similar validation
procedureshave beenusedby other works too.

The graphrepresentationof a stratified architecturefor a large systemcanbe quite complex.For instance,the
dendrogramreferredto in thesecondquotationhas246leaf nodesandthenumberof intermediatenodesareequally
large. Checkingfor its “correctness”– how well it matchesan expectedmoduledecomposition– by inspectionis
proneto error. Thecomplexityof this exercisecanbe experiencedby looking at thedendrogramof Figure4. Even
a small variation in a graph, that may easily go undetectedby a human,could changeits “meaning” drastically.
Thereis, therefore,a needto automatethe comparisonof the recoveredarchitecturewith an expectedarchitecture.
The latter may be derivedfrom cluesprovidedby the namesof the symbolsor othersystemspecificinformation.

6.2 Properties of a congruencemeasure

Themeasuresfor clusterdifferencegivenin Section3.3, the
�

functions,cannotbeuseddirectly for comparing
architectures.The problemsare as follows:

1. The
�

functionsonly comparedendrograms.But, theexpectedmodulehierarchyusedfor measuringthedegree
of correctnessandthe architecturesrecoveredby Choi andScacchi’stechnique[CS90] arenot dendrograms.

2. The
�

functionscomparedendrogramsoverthesamesetof elements.Sincethearchitecturerecoverytechniques
use different structural information, the architecturesrecoveredby them may not contain the sameprogram
elements.

Furthermore,the
�

functionsmeasurethedifferencebetweentwo clusters.Theyreturna high valuewhentwo
clustersarevery differentanda low valuewhentheclustersaresimilar. Therefore,whenmeasuringcorrectnessof
a technique,sayby taking the meanof several

�
values,a high value indicateslow degreeof correctness.

We prefera measureof congruence,�������	�
������ -(+ , betweenclustersthat returnsa high valuewhen
two architecturesare closeto eachother and low when they are apart; the inverseof ‘dif ference’. The function
� must satisfy the following properties.

1. Its rangeshould from ; to � .
2. If it returnsa � it shouldindicatethat the two architecturesare completelycongruent,i.e.:

a. the two architecturesorganizethe sameset of elementsand
b. the dissimilarity coefficient mappingof their dendrogramsis identical.

3. If it returnsa ; it shouldindicatethat the architectureshavenothing in common,i.e.

a. the two architectureshaveat most one elementin commonor
b. the two architecturesare flat partitionsand all pairs of elementsin the two architectureare ‘dif ferently

placed’.

Two elementsaresaidto bedifferently placed if theyarein thesamepartitionin onearchitecturebut in different
partitions in another[Ran71]. The two extremevalues capturethe extremepossibilities when comparing
architectures.

4. If two architecturesorganizethe sameset of elementsthen it shouldreturn a higher numberwhen they have
fewer differently placedelements.

5. If noneof the elementsorganizedby both the architecturesaredifferently placedthenit shouldreturna higher
numberwhen the fraction of elementscommonto both is higher.

17

6.3 Measure of congruenceof architectures
We solve the first problem by choosingtwo different

�
functions (mapping of a cluster to dissimilarity

coefficients)measuringanalogousproperties,onefor dendrogramsandonefor trees.The dissimilarity coefficients
usingtheappropriate

�
functionmay thenbe usedin the

�
functions.Thesecondproblemis solvedby comparing

only the architecturesdefinedover elementsin the intersectionof two architecturesand multiplying the resulting
‘dif ference’by an intersection ratio. The detailsare given below.

As statedearlier, a tree can be interpretedas a dendrogramby equatingthe depthof eachnodeto the level
of a dendrogram.Choi and Scacchi’salgorithm minimizesthe sum of the cladistic distancebetweenall pairs of
leavesin the recoveredarchitecture.It is appropriate,therefore,to usethe function

���
(introducedin Section3.3)

to maptheir treeinto a dissimilaritymatrix. But this functionis not appropriatefor traditionaldendrogramsbecause
it assumesa unit distancebetweentwo levelsirrespectiveof their difference.Thereis no obviousanalogybetween� + and

� �
, henceit would not be appropriateto comparevaluesresultingfrom thesefunctions.

An alternativeis to define,for dendrograms,a function
���

, that measurescladisticdistancebetweenpairsof
elementsusinglevel values.This requiresintroducinga function � � ��� ��� ���
	 , the lowest level partition in
the dendrogram� at which an elementis first clusteredwith a different element.

Definition: �
 �H�0�
� �B�)�
 � ��� �� � &� ����� ���
 �����0�
��
 � ��" �
Notice that the expression

� +
 �H�
 �����0�:!��
 �H�
 �3� is the differencebetweenthe lowest level at which � is
clusteredwith someother elementand the lowest level at which both � and � are in the samecluster. This is
analogousto cladistic distance– the numberof edgestraversedto reachthe leaf node � from the leaf node � .
The following function

� �
is then analogousto

� �
.

Definition: The
� � � ��� ��� ��� ��� 	 , betweenpairs of elementsin a dendrogramis then defined as:� �
 �H�B�
�� �����0�)�
�� � +4
 �H�
 �����0�:!��
 �(�
 �B��I � +�
 �(�
 �������!��
 �H�
 �0��� �"!A�

The sum of level differencesis divided by two to normalizeit.

Definition: Let � �������#!%$ be the setof all the elementsin the recoveredarchitecture� , i.e.
�
 �H�'� 4� � &�$���'�
 �����0�
'�
 �L�#" .

That two architectures� + and �1' , of the sameprogram recoveredusing two different techniquesdo not
organizethe samesetof elementsmay be statedas �
 � + �
�� �
 � '4� . Using the

�
functionsonecanonly compare

the architecturesover the set �
 � + �$#��
 �1'�� asdefinedby the projectionof onearchitectureover the other.

Definition: The projection, � �����	�
��� � ��� , of architecture� + with respectto architecture�1' is defined
as:
 � + ���1'4�
 � �'�(� +(
 � ��#$�
 � + � �$�
 �1'4� .
In otherwords, � + �%�1' is thesameas � + at eachlevel exceptthat relationsinvolving elementsnot in �1' areremoved.
The congruenceof � + �)� ' and �1' �*� + may be measuredusing one of the

�
functionsstatedearlier. But sucha

measurewill be insensitiveto the elementsin the two architecturesthat are not in the other. The inverseof this
is measuredby the intersection ratio given below.

Definition: The intersectionratio, + ����� � ��� �#� 	 , of architectures� + and �1' is:

+
 � + ��� ' ��� � �
 � + �$#��
 � ' �4� �L� �
 � + �-,��
 � ' ���
The intersectionratio is � whenboth the recoveredarchitecturesorganizethe samesetof elements.It is ; if

they organizeentirely different setof elements.Therefore,a high intersectionratio is goodanda low intersection
ratio is bad. The congruenceof two architecturesmay now be measuredas follows.

Definition: The measure of congruence, � � ��� � ��� � -(+ , of architectures� + and � ' is given by:
�
 � + ��� ' � �.+
 � + ��� ' � �
 � ! �
 �)/
 � + �*� ' �H� �)/
 � ' �)� + �.� where 0�
 %!&�1�" .

In our initial experiments[LMP92], we deriveda function equivalentto
� �

beforebeingexposedto Jardine
and Sibson’s[JS71] work. This is, therefore,our choiceof the differencemeasurewhen computingcongruence.
Generally speakingone may chooseany of the

�
functions given in Section 3.3 or devise a new one. For

a meaningful comparisonof architecturesdue to Choi & Scacchi’sART with thoseof other ARTs the
� /

in
computingcongruenceshould,however,be restrictedto

� ' for treesand
� �

for dendrograms.

18

7 An experiment with Hutchens-Basili ARTs
During Summer’92we conductedan experimentto measurethe correctnessof Hutchens& Basili’s ARTs

[LMP92, HB85]. The intent of our experimentwas to measurehow successfultheseARTs were in recovering
the actualarchitectureof a setof systemsthat were designedusingdataabstraction[Par76]. The most important
parameterfor such an experimentis the programsanalyzed. Ideally, the programsshouldsatisfy the following
constraints:

1. The programsshould have diligently used data abstractionand the module decompositionshould be easily
retrievablefrom the sourcecode.

2. The programsshouldbe representativesof real-world programs.

Thesetwo constraintsare hard to satisfy simultaneously;since it is hard to find a set of programsthat are
representativesof real-world programsand use data abstraction. The retrievability of the designdecomposition
from the code is important to useas an “oracle” for the expectedarchitecture.

Given the difficulty in choosingsubjectprograms,it was our choice to give higher precedenceto the first
constraint. We, therefore,usedprogramsdevelopedin our course“Introduction to SoftwareEngineering.”These
programswere ensuredto satisfy the first constraintsince their developmentwas rigorously controlled. All the
programshad the sameabstractdata type baseddesignand hencethe samemodule decomposition†. This was
ensuredsincea) the designwas provided to the students(as a routine part of the instruction)and b) the design
violationswereremovedover four iterations,oneper week. During the iterations,that the programsimplemented
thegivendesignwasverified by a) reviewof eachprogramby the grader,b) reviewof eachmoduleby two fellow
students,andc) generationof “programfamilies” (a la Parnas)by exchangingmodulesbetweenstudents.

Thelastmethodof verificationprovidedthemostrigorouschecksinceeachstudentgeneratednineprogramsby
mixing modulesfrom two otherstudents.If a moduleviolatedthe interfaceconstraint,therewasa high likelihood
that it would causecompile-timeor run-timefailureswhencombinedwith someoneelse’smodule.

The author along with two graduatestudentsimplementedthe two ARTs proposedby Hutchens& Basili
[HB85] (seeTable2) with threevariationsof � , andmeasuredthe congruenceof the recoveredarchitecturesof 19
C programsvarying in size from 500 lines (including comments)to 2400 lines.

In computing the measureof congruence� we used the ��� function to measurethe differencebetween
architectures.It wasour observationthat a) mostof the recoveredarchitectureshadseveralmisplacedprocedures
or did not organizeall theproceduresandb) thecongruencemeasureswerehigherwhentherecoveredarchitectures
found more correct modulesand lower when fewer correct moduleswere found. The congruencemeasures,
therefore,correctly reflectedhow close a recoveredarchitecturewas to the expectedone. Figure 5 plots the
congruencemeasuresfor variationsof the two ARTs proposedby Hutchens& Basili. Thevariationsintroduced,in
both cases,was that the relation ��� wasusedto substitute��� and �
	 . Accordingly, the set � wasredefinedto be
the setof all global symbols. The meansof the congruencemeasuresof the plots are ������ and ������ for expected
andrecomputedmethods,respectively.On a rangeof 0 to 1, this is not a very high value. However,thecongruence
measuresfor unmodified Hutchens& Basili’s ARTs wereworse,with meansof ������ and ������ , respectively.

8 Conclusions and future work
Softwareis an “immortal asset”of an organization[Bus89]. The capital budgetrequiredto redevelopmany

softwaresystemsis simply too large to justify scrappingthem [You92]. To keepup with changesin technology,
re-engineeringthesesystemsis the only viable alternative.Any re-engineeringtask involves reverseengineering,
i.e. recoveringof designand other abstractionsfrom sourcecode. Arnold’s compilation of paperson Software
Re-engineering[Arn93] and the proceedingsof the IEEE Conference on Software Engineering is rife with re-
engineeringexercisesin companiessuch as AndersonConsulting,DEC, IBM, Lockheed,and NASA. In these

† Thoughit is commonto useprogramswith identical specificationsin softwareengineeringexperiments[BGS84,HB85], to the bestof
our knowledge,this is the first instanceof an experimentwith programsimplementingidenticaldesign.

19

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0.
45

0.
50

0.
55

0.
60

Program number

C
on

gr
ue

nc
e

m
ea

su
re

s

Expected
Recomputed

ex
p.

3.
pl

ot

Figure5 Overlayedplot of congruencemeasuresfor architecturesrecoveredfor 19 assignmentprogramsusing
variationsof Hutchensand Basili’s architecturerecoverytechniques[HB85].

exercisesresearchershavedevelopedvarious techniquesto recoversoftwarearchitectures,i.e. its decomposition
in modules.

So far therehas beenno easyway to evaluatea technique’sability in recoveringa correct architectureor
comparingthe performanceof two techniques.The bottleneckhasbeen(a) the techniquesarenot presentedusing
a consistentset of symbolsand termsand (b) the lack of a measureto comparetwo architectures– an expected
with a recoveredor thoserecoveredby two differentARTs. This paperfills both theseneeds.It presentsa unified
view of eachtechniqueby using a consistentset of symbolsand termsand it presentsa measureof congruence
betweenarchitectures.

Thework is significantsinceit now enablesa comparisonof ARTs basedon the typeof informationtheyuse,
the kind of computationthey perform,andthe programelementsthat get includedin an architecturethey recover.
A comparativeknowledgeof suchinformation may help in a) decidingwhethera particular techniquewould be
applicablein a given context,b) whethera crossreferenceinformation extractiontool [BHW89, CNR90,Rei90,
WCW88] canbe usedto build an ART, andc) creatingnew ARTs by combiningelementsfrom differentARTs.

To cite a few examples.ARTs that use‘type’ relatedinformation would not be useful with old FORTRAN
programssincetheseprogramsdo not haveuserdefinedtypes.ARTs thatuse‘global variables’relatedinformation
may not do well with programsusing dataabstractions.To developLiu & Wilde’s type-basedART [LW90] and
Patelet. al.’s ART [PCB92]oneneedstheinformation‘which typeis usedto definewhich type.’ A cross-reference
informationextractiontool that doesnot provide this informationwould not be suitablefor this purpose.Patelet.
al.’s ART also requiresthe count of how many times a relation betweentwo symbolsexistsand hencethe tool
usedshouldpermit sucha computation.Whena techniqueis not directly applicablein a particularcontext,it may

20

be adaptedusinga different setof relations. For instance,we modifiedHutchens& Basili’s ARTs [HB85] to use
relationsof procedureswith typesinsteadof with global variables.The modifiedARTs performedbetterthan the
originals,as determinedby the congruencemeasure,for programsusingdataabstraction.

An ambitiousexperimentthatwe plan to carryout, subjectto availability of resources,is to identify thefactors
that influencethe correctnessof architecturerecoveredby various techniques.For instance,we hypothesizethat
the following programpropertiesmay haveinfluenceon the architecturerecoveredby an ART:

F1. choiceof datastructuresfor implementingan abstractdatatype (suchasa sequencemay be implementedby
a list or an array),

F2. implementationdecisions(suchas defining a specialtypedef for data typesprocessedby a moduleor using
the nameof a primitive type usedto implementit), and

F3. size of the program(in lines of codeor any other measure).

Since factorsF1 and F2 influencethe cross-referencerelationsusedby someof the ARTs , it should influence
the architecturesthey recover. For example,to implementa sequenceas a list requiresdefining a struct (in C
terminology)which introducesadditionalsymbolsfor its fields; thesesymbolsarenot introducedin an arraybased
implementation.Similarly, F2 influencesthe numberof global symbolsin a systemandhencemay influencethe
recoveredarchitecture.The recoveredarchitecturemay potentially dependon the sizeof the relationswhich may
dependon the size of the program,henceF3.

We fathom that successfulidentification of factors influencing the recoveredarchitecturecan lead to the
developmentof (a) methodsfor estimatingthequality of therecoveredarchitecturesand(b) guidelinesto “calibrate”
recoverytechniquesusingprogramrelatedproperties.The estimationmethodmay be developedby measuringthe
dependenceon factors that havebeenidentified as influencing the recoveredarchitectures.The calibration of a
technique,suchas that of Schwanke’s[Sch91],would involve varying parametersof the clusteringmethodbased
on propertiesof programsunderstudysoasto recoverarchitecturesclosestto themodulehierarchy.Theguidelines
andestimationmethodscould be in the form of standardizedtableslike thoseusedby engineers.

Acknowledgments

This work made use of the FIELD programming environment under license from Brown University. We acknowledge
Steve Reiss its development. The work was partially supported by the grant LEQSF (1993-95) RD-A-38 and conducted
in Software Research Laboratory established by the grant LEQSF (1991-92) ENH-98, both from the Louisiana Board
of Regents.

Note to referees: An ART hasalsobeenproposedby Ong & Tsai [OT93]. It hasnot beenstudiedin this paper,
but will be in the final manuscript. The work cameto my attentionjust a day before this manuscriptwas sent
to the editors.

Bibliography

[AHU74] A. V. Aho, J.E. Hopcroft,andJ.D. Ullman.The Design and Analysis of Computer Algorithms. Addison-
Wesley,Reading,Massachussets,1974.

[Ale64] ChristopherAlexander.Notes on the synthesis of form. HarvardUniversity Press,Cambridge,Massachu-
setts,1964.

[Arn93] RobertS. Arnold. Software Reengineering. IEE ComputerSocietyPress,Los Alamitos,California, 1993.

[ASU86] Alfred V. Aho, RaviSethi,andJeffrey D. Ullman.Compilers: Principles, Techniques, and Tools. Addison-
Wesley, 1986.

[BE81] L. A. BeladyandC. J. Evangelisti.Systempartitioningandits measures.Journal of System and Software,
2(1):23–29,February1981.

21

[BGS84] Barry W. Boehm,TerenceE. Gray,andThomasSeewaldt.Prototypingversusspecifying:a multiproject
experiment.IEEE Transactions on Software Engineering, SE–10(3):290–302,May 1984.

[BHW89] T. J. Biggerstaff, JosiahHoskins,andDallasWebster.DESIRE:A systemfor designrecovery.Technical
ReportSTP-081-89,MCC/SoftwareTechnologyProgram,April 1989.

[Bus89] Eric Bush.A CASE for existingsystems.Technicalreport,LanguageTechnology,Salem,MA, 1989.

[Chi90] Elliot J. Chikofsky. Reverseengineeringanddesignrecovery:A taxonomy.IEEE Software, pages13–17,
January1990.

[CNR90] Yih-FarnChen,Michael Y. Nishimoto,andC. V. Ramamoorthy.The C informationabstractionsystem.
IEEE Transactions on Software Engineering, 16(3):325–334,March 1990.

[CS90] SongC. Choi andWalt Scacchi.Extractingandrestructuringthe designof large systems.IEEE Software,
pages66–71, January1990.

[Day79] William H. E. Day. The complexity of computingmetric distancesbetweenparitions.TechnicalReport
7901,Departmentof ComputerScience,Memorial University of Newfoundland,Newfoundland,Canada,
September1979.

[DH72] W. E. Donath and A. J. Hoffman. Algorithms for partitioning of graphsand computerlogic basedon
eigenvectorsof connectionmatrices.IBM Tech. Disclosure Bull., 15(3), 1972.

[Eve74] B. Everitt. Cluster Analysis. Heinemann,London, England,1974.

[Far79] J. S. Farris.A successiveapproximationapproachto characterweighting.Syst. Zool., 18:374–385,1979.

[HB85] David H. Hutchensand Victor R. Basili. Systemstructureanalysis:Clusteringwith databindings.IEEE
Transactions on Software Engineering, pages749–757,August 1985.

[Hec77] MatthewS. Hecht.Flow Analysis of Computer Programs. North-Holland,New York, 1977.

[JL91] Ivar JacobsonandFredrik Lindstrom.Re-engineeringof old systemsto an object-orientedarchitecture.In
Proc. OOPSLA, pages340–350,1991.

[JS71] N. JardineandR. Sibson.Mathematical Taxonomy. JohnWiley andSons,Inc., New York, 1971.

[LB85] M. M. Lehmanand L. A. Belady.Program Evolution. AcademicPress,1985.

[LMP92] Arun Lakhotia,SanjayMohan,andPruekPoolkasem.Onevaluatingthegoodnessof architecturerecovery
techniques.Technical Report CACS-TR-92-5-4, University of SouthwesternLouisiana, Lafayette,
September1992.

[LS80] B. Lientz andE. Swanson.Software Maintenance Management: A Study of the Maintenance of Computer
Application Software in 487 Data Processing Organizations. Addison-Wesley,Reading,MA, 1980.

[LW90] S.Liu andN. Wilde. Identifying objectsin a conventionalprocedurallanguage:An exampleof datadesign
recovery.In Proc. IEEE Conference on Software Maintenance, pages266–271,November1990.

[MBK91] Y. S. Maarek,DanielM. Berry, andGail E. Kaiser.An informationretrievalapproachfor automatically
constructingsoftwarelibraries.IEEE Transactions on Software Engineering, 17(8):800–813,August1991.

[MJ81] StevenMuchnick and Neil Jones.Program Flow Analysis: Theory and Applications. Prentice-Hall,Inc.,
1981.

[MMM90] HausiA. Müller, JochenR. Mohr, andJamesG. McDaniel.Applying softwarere-engineeringtechniques
to healthinformationsystems.Proceedings of the IMIA Working Conference on Software Engineering
in Medical Informatics (SEMI), Amsterdam, October1990.

[MS83] RyszardS.Michalski andRobertE. Stepp.Automatedconstructionof classifications:Conceptualclustering
versusnumerical taxonomy.IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-
5(4):396–409,July 1983.

[MU90] Hausi A. Müller and JamesS. Uhl. Composing subsystemstructuresusing (K,2)–partite graphs.
Proceedings of the Conference on Software Maintenance, pages12–19,November1990.

[OT93] C.L. Ong and W. T. Tsai. Class and object extraction from imperative code. J. Object Oriented
Programming, pages58–68,Mar–Apr 1993.

22

[Par76] David L. Parnas.On the designand developmentof programfamilies. IEEE Transactions on Software
Engineering, SE-2(1),March 1976.

[Par86] G. Parikh.Handbook of Software Maintenance. Wiley-Interscience,New York, N.Y., 1986.

[PCB92] SukeshPatel,William Chu,andRich Baxter.A measurefor compositemodulecohesion.In Proceedings
of the 14th International Conference on Software Engineering, pages38–48,1992.

[Ran71] William M. Rand.Objective criteria for the evaluationof clusteringmethods.Journal of the American
Statistical Association, 66(336):846–850,December1971.

[Rei90] StevenP.Reiss.Connectingtoolsusingmessagepassingin theField environment.IEEE Software, 7(4):57–
66, July 1990.

[Roh74] F. JamesRohlf. Methodsof comparingclassifications.Annual Rev. Ecol. Syst., 5:101–113,1974.

[SB91] Richard W. Selby and Victor R. Basili. Analyzing error-pronesystemstructure.IEEE Transactions on
Software Engineering, pages141–152,February1991.

[Sch87] N. Schneidewind.Thestateof softwaremaintenance.IEEE Transactions on Software Engineering, 13(SE–
3):303–310,March 1987.

[Sch91] R. Schwanke.An intelligent tool for reengineeringsoftware modularity. In Proc. 13th International
Conference on Software Engineering, 1991.

[SR62] Robert R. Sokal and F. JamesRohlf. The comparisonof dendrogramsby objective methods.TAXON,
XI(2):33–40, 1962.

[SS94] Ricky E. Sward and RobertA. Steigerwald.Issuesin re-engineeringfrom proceduralto object-oriented
code.In Bruce I. Blum, editor, Proc. of the Fourth Systems Re-engineering Technology Workshop, pages
327–333.JohnHopkins University Applied PhysicsLaboratory,1994.

[WCW88] A. Wolf, L. Clarke, and J. Wileden. A model for visibility control. IEEE Transactions on Software
Engineering, pages512–520,April 1988.

[You92] EdwardYourdon.Decline and Fall of the American Programmer. Prentice-Hall,Inc., EnglewoodClif fs,
New Jersey,1992.

23

