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Abstract

A partitioning of softwaresysteminto modulesis often termedasits architectue. Eachpartition (or module)
consistsof a set of functions, proceduresglobal variables,and/or type declarations. To help maintain legacy
systemsor systemswith inadequatedocumentationseveralapproachesave beenproposedfor recoveringtheir
architecturegrom their sourcecode. This papermakesthreecontributions.First, it developsa schemeto classify
thesetechniques.Second,t surveysthe variousarchitecturerecoverytechniqguesand presentshemusinga unified
and consistenterminology. Third, it presentsa measurdo evaluate’how well a recoveredarchitecturematchesan
expectedor actual)architecture’.lt is envisionedhatthis measuranay be usedin carefully controlledexperiments
to discernthe contextsof applicability of varioustechniquesandto pavethe way for their improvement.Results
from an experimentto evaluatethe performanceof two architecturerecoverytechniquessuggestedy Hutchens
and Basili are presented.

1 Introduction

It hasbeenwidely acknowledgedhat software maintenanceonsume$0-80%o0f a softwaresystem’stotal
cost[LS80]. The activities performedduring maintenancenay broadly be classifiedas: a) understanchow the
software functions, b) designand implementa change,and c) validate the change[Par86]. The working of a
programis typically understoodby readingits sourcecodeand documentation.While readingthe documentation
is mosthelpful, it is very rareto find a documentedsoftwaresystem. And when sucha documentis availableit
is very often inconsistentsinceit hasnot beenkept up-to-datewith the modificationsdoneto the softwaresystem
[LB85]. The only definitive documentof a program,therefore,is the programitself.

Researctefforts in designrecoveryare aimed at extractingthe designof a softwaresystemfrom its source
code,wherethe term “desigri’ loosely meansany higher level abstractionof a softwaresystembeyondthe source
codeitself [Chi90]. Onesuchdesignis architecturaldesign- a partitioningof structuralelementgsuchasfunctions,
proceduresyariables)of a softwaresysteminto groupsof relatedcomponentsThisis ata higherlevel of abstraction
than a designdescribingthe algorithmsor datastructuresusedin a system.

Severaresearcherbaveproposedautomatear semi-automatetechniquedo creategroupsof relatedprogram
symbolswith the implicit or explicit objective of recoveringthe modular decompositioh of the program[BES81,
CS90,HB85, MMM90, MBK91, LW90, PCB92,Sch91,SB91J. It is not very obvious how theseArchitecture

Theterm“module” is usedin this paperin the senseusedby ParnagPar76]in the contextof abstractdatatyping andinformationhiding.
T Some researcherdhave proposedarchitecturerecovery techniquesthat are not automatablebecauseof their dependencen analyses
performedby human[JL91, SS94]. Theseare not studiedin this paper.



RecoveryTechniquesARTs) comparewith eachother since the techniqueshave beenexpressedising different
setsof termsand symbols. It is alsonot clear how successfuthe techniquesare, individually or in comparisorto

othertechniquesin recoveringthe actualarchitecture.This is becausef the absencef any measurdo evaluating
how “close” an architecturerecoveredby a methodis a) comparedto an expectedarchitectureand b) compared
to architecturegecoveredby other techniques.

This paperprovidesa frameworkfor comparingARTSs. It a) developsa schemeo classifyARTS, b) developsa
unifying view of the ARTs by rephrasingeachtechniqueusinga commonsetof symbolsandterms,andc) develops
a metric to quantify how “close” a recoveredarchitectureis to an expectedarchitecture.

The restof the paperis organizedin eight sections,excludingreferences.Section2 gives our classification
schemdor ARTs. Section3 summarizesnethodsfor numericclusteranalysisandmeasuregor comparingclusters
found by thesemethods. SeveralARTs are basedon cluster analysis. Section4 introducesour terminology to
expresghe ARTs. Section5 surveysand summarizeseveralARTs. It shouldbe emphasizedhatin somecases,
our presentatiormay be significantly differentfrom that presentedn the original works. This is becauseve have
attemptedo presentall the techniquesusing the sameset of symbolsand concepts.Section6 givesour measure
for comparingarchitectures.t is basedon the measurepresentedn the previoussection. Section7 summarizes
the resultsof an experimentwe conductedo evaluatethe correctnes®f the ARTs suggestedy Hutchens& Basili
[HB85]. Section8 containsour concludingremarks. It also outlinesan experimenton how our measuremay be
usedin carefully controlledexperimentdo discernthe contextsof applicability of varioustechniquesandto pave
the way for their improvement.

2 A scheme for classifying ARTS

An architectureof a software systemis analogousto classfication hierarchies,called clusters used by
statisticiangEve74](seeSection3). Recoveringasoftware’sarchitecturecorrespondso performingclusteranalysis.
The term clusteranalysisbroadly refersto any methodof groupinga setof objectssuchthat objectsin the same
group arein “some sense’more similar to eachotherthanto thosein differentgroups. Clusteringhasbeenused
in the life-sciencesto classify organismssincethe early 1700s. It is now commonly usedin the social sciences,
in informationretrieval, andin patternrecognitionto organizeand understandarge amountsof data. Its first use
in organizing designinformation datesback to the 1960swhen the British architectChristopherAlexanderused
it to organizearchitecturalconstraintsfor designingcities [Ale64]. Alexanderusedclusteranalysisto generatea
“program” from designconstraints.To him a “program” wasa sequencef instructionsto the architect. Thougha
mereplay of words, it is interestingto observethat while Alexanderusedclusteranalysisto get a programfrom
a design,the ARTs useit to extracta designfrom a program.

Clusteringtechniquesmay be classifiedbasedon the propertiesof the resultinggroupingor the information
usedin creatingthesegroups, as follows:

O If thepairwiseintersectiorof theresultinggroupsis emptythenthetechniques partitioning, elseit is overlapping
(or non-partitioning.

O If the techniquecreatedevelsof groupsit is stratified If thereis only onelevel of groupingit is non-stratfied
(or flat). If the stratified groupsform a tree thenit is hierarchic.

O A techniquemay be classifiedasconceptualgraphtheoetic, or numericaldependingon thetype of information
andcomputationproceduresised. Whenvaluesof objectattributesaremeasuredn an ordinal scalethe method
is classifiedas conceptuaklustering[MS83]. If the techniqueusesgraph-theoreticomputationsijt is termed
graph-theoretic. However, if the attribute valuesare measuredon a ratio or an interval scale and numeric
computationsare used,the techniqueis called numeric.

Numeric, hierarchic,and partitionedclusteringtechnigueshavebeenin commonusefor a long time andhenceare
the mostwell studiedtechniques.Thereis a rigorousgeneralizedrameworkthat may be usedto describeproperties
of numericalmethods. In contrast,the conceptuaknd graph-theoretianethodshave not beenusedas frequently
and hencedo not havea generalizedramework. They, therefore,mustbe studiedindividually.



The architectureof a softwaresystemrecoveredusingARTS, to some,may appeaito be of questionablevalue.
Most of the techniquesare heuristic. They usecrossreferenceinformationfrom a programto identify its modules.
Critics may rightly cite severalscenariosvheresuchcross-referencanformation may not be sufficient to extracta
software’sarchitecture.To aguein favor of the ARTSs, it is worth observingthatmaintenance@rogrammerdind the
cross-referencdataasoneof the mostimportantsourceof information[Par86]. The alternatives to useinformation
from control and dataflow analyseqHec77,MJ81] . But suchinformationwould be insufiicient sincethe notion
of information hiding is definedon the basisof scopeand operationson symbols[Par76], not the informationthey
generateand propagate Besides,75-80%of the codecurrentlyundermaintenancés in languagesuchasCOBOL,
FORTRAN, CMS-2,andJOVIAL, languageslesignedvhenstructuredorogrammingwasstill a buzzword[Sch87].
For theselanguagesiataand control flow analysesvould yield very impreciseresults. Thus, cross-referenceata
may provide information as good as other static analyses.ldeally, the two typesof information may be usedin
conjunctionwith flow analysis,for instanceHutchens& Basili [HB85] use cross-referenceelationshipsdefined
using information obtainedfrom a program’sflow analysis.

3 Basics of numeric cluster analysis

This sectionsummarizesrom the literature the theoreticalframework of numeric, hierarchic, partitioning,
clusteringalgorithms(NHPC) and measured$or comparingclusters.Most of the work is summarizedrom Jardine
& Sibson[JS71].

3.1 Cluster analysis: dissimilarity matrices to dendrograms

Definition: Let P denotea setof objectswith p elements. A relation on P is a subsetof P x P. Let E(P)
denotethe setof all equivalence(symmetric,reflexive, and transitive) relationson P. Let R, denotethe setof
real numbers> 0 andR,; the setof real numbersbetween[0, 1].

An NHPC methodcreatesa dendogram from somedissimilarity coeficients

Definition: ([JS71]). A dissimilarity coefficient also referredto as a dissimilarity matrix or DC, on a setP is a
function, d : P x P — R4, satisfyingthe following conditions:

DC1. d(A,A) = 0, VA € P
DC2. d(A,B) = d(B,A), VA,B € P

Definition: ([JS71]). A dendpgramis a functionc : R4 — Z(P) satisfyingthe following conditions:

D1. 0 < h < R = ¢(h) C e(h)
D2. ¢(h) = P x P for large enoughh.
D3. Given h, 36 > 0 suchthatec(h 4 6) = c(h)

In otherwords, a dendrogranmapsnon-negativeeal numberscalled levels to equivalenceelations,or clusters,
on P suchthat 1) the clusterat a level is completelycontainedin a clusterat a higherlevel and 2) at somelevel
h, e(h) is eventuallyP x P. Thethird condition establishesiniquenessn caseswvherec is discontinuous.

A dendrograms usuallyrepresentedsa treewith numericlevelsassociatedo its branchesseeFigurel for an
example.Theabscissaf a dendrogramhasno specificmeaningbut the ordinaterepresenttevels. If aline is drawn
parallelto the abscissdahenthe leavesof eachtreerootedat the branchest cutsrepresenthe partitionsdueto the
equivalenceslassatthatlevel. Thesetof all theseequivalencelassegor partitions)is representetdy a dendrogram.
Definition: Let 7 C(P) andU GG(P) representhesetsof all DCsanddendrogramsiespectivelypverthesetP. We
will ignorethe parameter” andsimply usel/ C' andU G&; the parametewill be obviousfrom the contextof usage.

Definition: A NHPC methodH is a mappingHd : UC — UG".

An analogoushierarchicalclusteringmethodcan be definedusing similarity coefficientsanddendrogramsvith decreasindevel numbers.
Thereis a simpletransformatiorfrom a similarity basedclusteringmethodto an analoguedissimilarity basedclusteringmethod. Most of our
discussionis from the point of view of dissimilarity basedmethod. The analoguefor similarity basedmethodis obviousand, for the sakeof
simplicity, is omitted.
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Figure1 A sampledissimilarity matrix andthe correspondinglendrogranresultingfrom single-link HAC. Sincethe matrix is
symmetric,only the lower triangle andthe diagonalare shown. A dendrogranis a hierarchyof setof equivalence
relations(i.e. partitions). It may be representedsa tree. The partitionsat any dissimilarity value may be
determinedby drawing a line perpendiculato the dissimilarity valuesaxis. Eachbranchof the tree cut by the line
represents partition consistingof elementsn the subtreerootedat that branch. Elementsin a partition at a lower
dissimilarity value are morelikely to be similar. At the highestlevel of dissimilarity valueall elementsarein the
one partition. Insteadof the possiblyinfinite numberof levels (sincerangeis R 1) one may divide the levelsinto
somefixed levels of intervals. The axis on the right represent®ne suchinterval assignment.

input: a DC 'd on a set 'P
out put: dendrogram
put each element of "P in a group by itself
while 'd has nore than one el enrent do

sl: identify the two npst simlar groups

s2: conbine the elenments and create a new'd’
end-whi |l e

Figure2 Outline of HAC algorithms.An HAC algorithmmay be generatedy choosinga strategyfor identifying the two most
similar elementgstepsl) anda strategyfor “combining” theseelementgo createa new dissimilarity matrix (steps2).

A classof NHPC algorithmscalledthe hierarchical agglomerative clustering, or HAC, havethe outline given
in Figure 2. An HAC algorithm may be generatedoy choosinga strategyfor identifying the two most similar
elementqstepsl) anda strategyfor “combining” theseelementgo createa new dissimilarity matrix (steps2). The
pair of elementswith the smallestcoeficient in a dissimilarity matrix are usually consideredas the most similar
elements.Analogously,if a similarity matrix is used,the pair with the highestcoeficient would be mostsimilar.

Therearefour popularstrategiedor “combining’ similar elementscalledsingle-link, complete-link, weighted-
average-link, and unweighted-average-link. The single-link algorithmstake the smallestdissimilarity betweenthe
pair of similar elementsas the coeficient for the new elementrepresentingheir agglomeration. The complete-
link algorithmstake the largestsuchdissimilarity coeficient and the other methodsuse weightedand unweighted
averages.

The dendrogramin Figure 1 is the resultof applyingthe single-link HAC on the dissimilarity matrix in the

samefigure. In this example,A» and A3 combineat level 0.2, A4 combineswith A, and As at level 0.3, A,
combineswith A2, As, and A4 atlevel 0.4. Finally, all the objectsform a single clusterat level 0.7.
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Figure3 Dissimilarity matrix createdfrom the dendrogramin Figure 1. Sinceit is not convenientto compareddendrograms,
for the sakeof comparisonit is preferredto transformdendrogramsénto dissimilarity matrices. The first matrix
containsthe lowest dissimilarity value at which two elementsare placedin the samepartition. The matrix is
equivalentto the dendrogranin thatone canbe derivedfrom the other. The secondmatrix containsthe codenumber
of the interval (given by the right axis in the dendrogramYor the dissimilarity value of the correspondingntry
of the first matrix. If the edgesof the tree representatiomf a dendrogramare consideredo be
undirectedthenthe third matrix containsthe length of the path from one elementto another.

3.2 Transforming dendrogramsto dissimilarity matrices

The NHPC basedARTSs createclustersthatmay be representedshierarchies.To definea metric for evaluating
how well a recoveredarchitecturanatchesan expectedarchitecturesuchhierarchiemeedto be compared.Sinceit
is very unwieldy to defineoperationssuchas comparisorof hierarchiesit is customaryto transforma dendrogram
backinto a dissimilarity matrix. This requiresdefininga function/ : UC — UG. Thereare severalwaysto do
it. Figure 3 givesthree dissimilarity matricesderived from the dendrogramn Figure 1. The first matrix in this
figure representshe dendrogramwithout any lossof information,i.e. the samedendrogranmay be recreatedrom
this matrix. The following function definesthis transformatioi
Definition: Ui(c) = (AA, B) - (min{h | (A4, B) € c¢(h)}).

The mappingU; (¢) mapsan pair of elementgo the smallestievel at which they arein the samecluster. Condition
DC3, above,guaranteeshat U/; is 1-1 from the set of dendrogramdo somesubsetof the setof DC's on P. The
dendrograme associatedo Uj(c) is given by:

c(h) = {(4, B) | U1(c)(4, B) < h}

Thus, in our subsequentliscussionon comparisonof dendrogramsve usel;(¢) insteadof c.
Notation: We treatfunction applicationas left associative.Thatis, f(z)(y) = (f(z))(y).

Thereare otherwaysto createa dissimilarity coeficient from a dendrogram.Sokal and Rohlf [SR62] give a
variationof U; by dividing thelevelsof the dendrogramninto intervalsandusingthe interval numberinsteadof the
level. Supposéhatthe dissimilarity valuesrangebetweer) and1. Therangemaybesplitinto N intervalsof equal
sizeand a codenumberfrom 1 to N may be associatedo eachinterval asfollows. Theinterval (i — 1/N,i/N],
for 1 <i < N, is assignedhe code N — i + 1. A dissimilarity value may be mappedto the codenumberof the
interval in which it is contained. The following function: K : Ry, — 1..N doesthis.

Definition: K(j) = N —i+ 1 suchthatj € (: — 1/N,i/N],for1 <i < N.

Sokaland Rohlf definedthe cophonetic value of a pair of elementsasthe smallestnumberinterval in which
the pair are placedin the sameoperation. The cophoneticvaluesfor all pairs of elementsform a dissimilarity
matrix. The mappingis definedas follows.

Definition: Us(c) = (AA, B) - (K(Uy(¢)(4, B)).
The secondmatrix in Figure 3 givesthe cophoneticvalueswith N = 4 for the dendrogramin Figure 1.
A significantly different methodusing the notion of cladistic difference is suggestedy Farris[Far79].

We usesubscriptgo distinguishmorethanonefunctionin a particularclass,e.g. Uy, Uz, A1, Az, ...



Definition: The cladistic difference betweentwo leavesof a dendrogramis the numberof edgesin the path
betweenthemin a treerepresentationf the dendrogramWe useU; to denotethe mappingfrom a dendrogranto
the dissimilarity coeficients due to cladistic differencebetweenelements.

The third matrix in Figure 3 is createdby applying Us to the dendrogramin Figure 1.

For the sakeof mathematicatonveniencave assumehat, henceforththe rangeof a dendrogranis Ry; and
notR .. Thereis no lossof generalitysincethis canbe achievedby dividing all the levelsof a dendrogranby the
smallestevel at which all elementof P arein the samecluster. This mappingessentiallynormalizesa dendrogram
and makesit independenbf scale,a propertythat easeghe comparisonof dendrograms.

3.3 Measures of differ encebetweenclusters

Clusteranalysistechniquesarestatistical. The computatiorthey useto groupprogramelementsareessentially
heuristic. Oncea techniquehasbeendesignedpne needsto evaluateit. Jardineand Sibsonhaveidentifiedseveral
factorson which the planttaxonomyresultingfrom clusteranalysismay be evaluatedJS71]. Their factors,adapted
to the contextof software systems,are as follows:

1. Correctness How effective is the techniquein recovering“actual” module hierarchy?

2. Stability How sensitiveare the recoveredclustersto perturbationof data?

3. Consistency How sensitiveare the recoveredclustersto the orderin which datais processed.

4. Testof independenceDo the classficationsdependuponany other propertiesof the population?For instance,
the classificationgnay be dependentipon the programmingstandardsisedin an organization.

5. Measuementof dependence The extent to which the classificationsdependupon other propertiesof the
population (as againstsimply testing for independence).

6. Measuementbfcongruence How well do the classificationdasedn onesetof criteria‘fit’ thosedueto another
set? For instance,whethera module classificationarrived by analyzingcommentsand document§MBK91]
matchesthat due to analyzingthe bindingsbetweenvarious symbols[HB85].

To evaluateeachof thesefactorsrequirescomparingmultiple classificationgyeneratedy a method. To enable
experimentatiorthe comparisormust be objectiveand computable. Therehasbeena significantamountof work
on measuregor comparingclassifications.They are summarizedelow. Sincecomparisonof dendrogramss not
convenientas statedearlier,to easecomparisorit is typical to mapthe dendrogramso dissimilarity matrices.The
U functionsof the previoussubsectiornperform such mappingsand are usedby the comparisonfunctions stated
in the following subsections.

Definition: Let A : DC x DC — Ry, be a function that gives the normalized'dif ference’ betweentwo DCs.
Jardineand Sibson[JS71] give the following functions:

1. Al(dl, dg) = max{|d1(A,B) — d2(A,B)| : A,B S P}
2 Au(di d :\/Z [d1(A,B)—d2(A,B))?
2(d1, do) > Vir(p-1)
|di (A B)-d2(A,B)|
3- AB(dl)dZ) = %p(p—l)
whered; andd, aretwo DCs and the summationsare over the p(p — 1)/2 two elementsubsetsof P.

The difference betweentwo dendrogramscan also be measuredby their Euclideandistanceif they are
representedy points on the Euclideanspaceof p(p — 1)/2 dimension. The Euclidian distanceis not a good
measurebecausat is often hardto establishthe necessaryriangleinequality for sucha Euclideanspace.

Sokaland Rohlf [SR62] havesuggestedising the productmomentcorrelationcoeficient betweend; = U(e;)
andd, = U(cz) to comparetwo classifications:; andcs. This coeficient, which they term copheneticorrelation
coefficient predictsthe extentto which thereis a linear relationshipbetweenthe two DCs and may be usedas
a measureof their relationship.

Day [Day79] hascompileda setof distancemeasuredbetweenpartitions (hierarchicalflat clusters)basedon
lattice- and graph-theoreticepresentationsRohlf [Roh74] and Day [Day79] surveyover 15 comparisorfunctions
takenfrom literature. The choiceof the appropriateA, asis the casewith any metric, dependson the application.




JardineandSibson[JS71],for instancefind A3 asthe preferredmetric for comparinganimalandplanttaxonomies.
They argue that A; is not very sensitiveand A, requiresattachinga meaningto squaringof DC values,which
may not always be appropriate.

3.4 Correctnessof a clustering technique

The differencebetweena dendrogramgeneratedy an ART and an expecteddendrogrammay be measured
by an appropriateA function. The centroid of the differencesbetweena large numberof such samplesmay be
takenasa measureof its correctnessThe choiceof statisticfor the centroidwill dependon the distribution of the
distancesfor instance arithmeticmeanmay be usedif the distributionis normal.

4 Terminology for unifying ARTSs

This sectionintroducessymbolsandtermsusedin the next sectionto presentvariousARTs within a unifying
framework.

All the ARTs studied have one thing in common. They take as input information about cross-references
betweenprogramsymbols,suchas thoseextractedby [BHW89, CNR90, Rei90, WCW88]. For mosttechniques,
the set of programsymbolsis a subsetof the namesof functions, procedurestypes, global variables,and files.
Schwanke’sechnique[Sch91]also considersnamesof algorithmsfound in textbooks(which is differentfrom the
namesof functionsimplementingthem). Maareket. al.’s technique[MBK91] considerswordsusedin comments
and documentation. Basedon theserelationshipsthey attemptto organizethe programsymbolsin collections
representingmodules. They differ in:

1. the setof programsymbolsthey use,

2. the type of relationsthey observe,

3. the processingthey do to identify the modules,

4. the type of symbolsthat are includedin a module.

The setof programsymbolsusedby an individual techniquemay further be divided into two sets: the set of
architectue elements” andthe setof resouces¥. The differencebetweenthe two setsis thatwhile the symbols
from both the setsmay be usedby a technique the recoveredarchitectures specifiedonly in termsof the symbols
in set”. What constitutesP and F differs for eachART. Furthermore not all elementsof 7 may appeatrin the
recoveredarchitecture.We classify the subsetof P appearingn the recoveredarchitectureas P. In otherwords,
althoughthe symbols? U F areusedby an ART, the architectureis definedonly in termsof P C P.

The relationshipbetweenprogramsymbolsusedby variousARTs may further be classifiedinto two groups:

1. Resourceusagediagrams(RUD) and
2. Resourceflow diagrams(RFD)

4.1 Resource usagediagrams

An RUD is a collection of binary relationsof the form = : P x F. Theserelations,for instance,, 7, 7,
etc., defined later, representelationshipssuchasrefer, use called-by respectively.A collectionof theserelations
may alsobe representedsa labelleddirectedgraphwhosenodesbelongto P U F, edgesgo from a nodein P to a
nodeF, andthe label of the edgecorrespondso the specificrelation. An RUD, therefore,encodesross-reference
relationshipsbetweenprogram symbols.

Following is a list of = relationsusedby the ARTSs studiedin this paper: The first threerelationsare between
proceduresand global variables.

1. w4 w(p,v) meansprocedurep defines(i.e. assignsto) global variable v.
2. m,: m(p,v) meansprocedurep usesglobal variablev.
3. m: m(p, v) meansprocedurep refersto (i.e. eitherdefinesor uses)global variablev.



4. 7.: A relation betweentwo procedures..(p1, p2) meansprocedurep; calls procedureps.

5. my: A relation betweenprogramsand pairs of lexical affinity words. Two words have a lexical affinity in a
documentif they appearin it with in +£5 word distance. 7, (p, ws) meansthe lexical affinity ws appearsn
the documentationof programp.

6. m;: A relationbetweenproceduresindtypes. 7;(p,t) meansprocedurep eitherhasa formal parameteof type
t or returnsa value of type ¢. In otherwords,typet is usedin the interfacespecfication of a procedurep.

7. m: A relationbetweenproceduresandtypes. 7;(p, t) meanstypet appearsn procedurep. m; C .

8. m4: A relationbetweerfiles andall typesof programelements.w4( f, s) meansprogramelements is declared
in file f.

9. m: A relationbetweenpairs of files. 7¢(fi, f2) meansfile fi includesfile fs.

An RUD definedasa labelleddirectedgraphimpliesthatthereis at mostoneedgeof a particulartype between
any two nodes.Someof the ARTs we study usethe numberof occurence®f eachrelationship. This information
may be abstractedising a labelled, directedmultigraph. To accommodatehis, we introduce,for every = relation
definedabove,a mappingll : P x ¥ — A, whereN is the setof naturalnumbers.ThusIl, (p, v) givesthe number
of times a procedurep refersto a global variable ».

Notice that 7(x,y) < I(x,y) > 0 and—7(z,y) < I(x,y) = 0.

The setof architectureelementsP for an ART is obviousfrom the discussion.The setof all programelements
P U F usedby an ART is evidentfrom the choiceof the 7 relationsor II functionsit uses. We, therefore,do
not explicitly statethesesetsfor eachtechnique.

Notation: For the sakeof convenienceywe mapthe booleanvaluetrue to 1 andfalseto 0. This allows usto use
the 7 relationsin arithmetic expressions.

Notation: A ‘-’ is usedas a shorthandfor an existentially quantified symbol. Two ‘—’ symbolsin the same
expressionmepresentwo differentexistentiallyquantfied symbols. Theexpressiorg(—, B, —), wheref is arelation,
is a shorthandfor {z : 3X,Y -z = ¢(X,B,Y) A &(X,B,Y)}

4.2 Resource flow diagrams

A resourcdlow diagramis alsoa labelleddirectedgraph. The verticesof this graph,however,consistonly of
elementdrom the setP, the setof architecturakelements.The edgesof an RFD arelabelledby the elementdrom
the setF. The setof labelsof an RFD, therefore,depend=on the programbeing analyzed.Contrastthis with an
RUD whoseverticesbelongedo P U F andwhoselabelswerefixed basedon the type of relationshipconsidered.

An edgein an RFD from vertexz to vertexy with label z indicatesthat programelementz providesresource
z to programelementz. Statedanotherway, resource: flows from programelementz to programelementy. An
RFD, therefore,is a ternaryrelationy : P x F x P.

The notion of what “flows” meanmay differ on the specificrelationshipcaptured. Hutchensand Basili, for
instance,identify the following relations:

1. ¥¢(p1,v,p2) — arelation establishedf (a) procedurep; modifiesvariablev, (b) procedurep, usesvariablev,
and (c) thereis an executablepath from procedurep; to procedurep» overwhich variablev is not modified.

2. ¥.(p1,v,p2) — arelationestablishedf (a) procedurep; modifiesvariablev, (b) procedurep, usesvariablev,
and (c) thereis an executablepath from procedurep; to procedurep;.

3. ¥s(p1, v, p2) — arelationestablishedf procedurep; modffies variablev and procedurep, usesit

For relationsy; and. the notion of “flows” dependson the existenceof an executionpath from one procedure
to another.Establishingsuchrelationshipsmay often require static flow analysisfASU86, Hec77]. In contrastthe
¥, requiresinformationlocal to individual proceduresvithout concernof existenceof executionpathsconnecting
them. Suchrelationsmay often be computedfrom = relations. As for instance:

Us(p1,v,p2) = Ta(p1,v) A Tu(p2, v).



Table 1 Classificationof ARTs basedon criteria introducedin Section2

Souce Type of computation Generategaritions? Generatestratified
performed architectues?
Belady & Evangelisti,81 numeric yes no
Choi & Scacchi,90 graph-theoretic yes yes
Hutchens& Basili, 85 numeric yes yes
Liu & Wilde, 90 graph-theoretic no no
Maareket. al., 91 numeric yes yes
Miuller & Uhl, 90 mixed (numeric& no yes
graph-theoretic)
Patelet. al., 92 numeric no no
Schwanke91 numeric yes yes
Selby & Basili, 91 numeric yes yes

Analogousto II, we definea mapping¥ : P x P — N that countsthe numberof resourcedlowing from
one elementto anotherin a v relation. More precisely:

\Il(a) b) = W’(a) ) b)|
For every RFD ¥ we may also definea RUD 7, : P x P asfollows:

ﬂ-d’(a) b) = |\I!(a) 7)b)| >0

5 A unified view of ARTs

This sectiongives an overview of variousarchitecturerecoverytechniques.The overview presentsa unified
view in that, insteadof usingtermsand symbolsfrom the original work, the termsand symbolsintroducedin the
previoussectionare used. This allows one to comparethe information used,the computationperformed,and the
output generatedby varioustechniques.

Table 1 classfies ARTs studiedin this paperbasedon the classificationschemedevelopedn Section2. The
first column of this table cites the paperin which the techniquewas presented. The papersof [HB85, LW90]
presentmultiple ARTs, eachof themwith the sameclassification. The secondcolumn classifiesthe techniqueson
the type of computationthey perform,i.e. graph-theoretichnumeric,or conceptual.Notice that noneof the ARTs
useconceptuaklustering. The ARTs of [BE81, HB85, PCB92,MBK91, Sch91,SB91] usenumericcomputations,
thosein [CS90, LW90] use graph-theoreticcomputations. The ART of [MU90] usesboth graph-theoreticand
numeric computations. The third column classfies eachtechniqueon whetherthey place a programelementin
one and only one module (partitioned),or whethera programelementmay be placedin more than one module
(non-partitioned).The techniquef [BE81, CS90,HB85, MBK91, Sch91,SB91] createpartitionswhile thoseof
[LW90, MU90, PCB92] do not. The fourth column classifieseachtechniqueon whetherthey organizeprogram
elementsin levels. All the ARTSs, exceptthoseof [BE81, LW90, MU90, PCB92], createhierarchicarchitectures.
The architecturegeneratedby ART of [MU90] are stratified but not hierarchical.

5.1 Numeric, stratified ARTSs

The ARTs of [HB85, MBK91, Sch91,SB91]arenumericandstratfiedin thattheyusenumericcomputationgo
createnot onebut severallevelsof modules.The architecturesecoveredy thesetechniquesarein fact hierarchical



andthe modulesare partitioned. All theseARTSs usethe outline of HAC algorithms,Figure 2, thoughwith some
modifications. Hence,to comparethesetechniquesve only needto identify:

1. Which = relationsor II functionsthey use?
2. How the dissimilarity of similarity matrix is created?
3. In the HAC loop (Figure 2), what strategyis usedto:

a. selectthe most similar elements(steps1)?
b. “combine” theseelementsto createa new similarity or dissimilarity matrix (steps2)?

Table2 givesa comparativeanalysisof numericarchitecturerecoverytechniqueslt representsheinformation
usedby thesetechniqueausingthe relation = : P x F. Sincedifferenttechniqueausedifferentinformation their
architecturesmay differ on the structuralelementsthey organize. Due to differencesin the computationsused
different techniquesmay classify the sameprogramelementin different clusters.

5.1.1 ARTs of Hutchens & Basili [HB85] Hutchens& Basili's ARTs maintainan RUD consistingof ..
(which procedureefersto which global variable)andr, (which procedurenodifieswhich globalvariable)relations.
They suggestwo methodsbasedon two different methodsfor computingdissimilarity matrices: recomputedand
expectedissimilarity matrices. The recomputeddissimilarity matrix is computedas follows:

s(A) + s(B) — 2b(A, B)

diss1 (A, B) = S(A) T S(B) — b(A, B)

whereb is the binding matrix which gives the binding strength betweentwo proceduresand the vector s gives
the numberof bindingsinvolving a given procedure.A bindingis a ternaryrelation: e(A, z, B) representinghat
procedured refersto aglobalvariablez thatis modifiedby procedureB. Clearly,e(A, z, B) = 7. (A, 2)Aw,(B, z).
The matrix b and the vector s are definedas follows:

b(A,B) = |e(A, —, B)| + |e(B, —, A)|

S(A) = |€(A) o 7)| + |6(7, 7)A)|

Remembetthate(A4, _, B) = {e(A, z, B) | V& - e(A, z, B)}, andsimilarly e(A, _, ) ande(
The expecteddissimilarity is definedas:

A).

= =

diss»(A, B) = (dim (b) — 1) x b(A, B)

whereb ands are asdefined for recomputediissimilarity and dim(b) givesthe dimensionof b.

The ARTs of Hutchens& Basili usea modffication of HAC. They maintaintwo matrices: a binding matrix
and a dissimilarity matrix. Insteadof computingthe latter only once,asdonein HAC, Hutchens& Basili's ART
recomputest in eachiteration. In the HAC loop, the two mostsimilar elementsare chosenbasedon the smallest
dissimilarity. Then the binding matrix is recreatedby “combining” thesesimilar elementsusing the single-link
method. The dissimilarity matrix is recomputedusing the appropriatefunction (statedabove).

The recomputatiorof dissimilarity matrix at eachiterationleadsto the possibility that the dissimilarity values
over successiveaterationsdecreaseimplying that a later iteration may group a pair with lower dissimilarity. The
hierarchyof partitionsthuscreatedvould not alwayshavenon-decreasintgvel numbers.Theresultingclassification
thereforewill not be a dendrogranand henceto easyto interpret. To overcomethis problem,Hutchens& Basili
suggestthat wheneverthe dissimilarity of a newly createdclusteris smallerthan that of the previousiteration,
the new clusterbe memged with the previouscluster. This may be done by assigningthe new clusterthe same
dissimilarity level as the previouscluster.
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5.1.2 ART of Selby & Basili [SB91] The ART of Selby & Basili usethe sameRUD as the ARTSs of
Hutchens& Basili, describedabove. It usesthe single-link HAC with a similarity matrix consistingof the binding
matrix, b, as definedby Hutchens& Basili [HB85].

sims(A, B) = b(A, B)

5.1.3 ART of Schwanke[Sch91] The RUD usedby the ART of Schwanke[Sch91] consistsof the =
relation(which procedurecalls which procedureandthe 7, relation(which procedureuseswhich globalvariable).
The similarity matrix it createsmay be statedas:

w(ranrpg)+k x 7.(A, B)

Sim4(A,B) — n + U)(T)A ) TB) + d X (’LU(TA — 7”B) —|— 'lU(T’B - TA))

where:

* n, k, and d are user definedparameters,
e ry = {F :my(A, F)}, i.e. the setof global variablesusedby procedureA,

« w(X) = 24 —log(Pr(z)), ie. the weight associatedo (or the discriminating power of) a set of global
variables,and
e Pr(z) = |mu(—,z)|/|mu(—, —)|, the proportionof userelationsinvolving global variable z (or the probability

that a use relation involves variable z).

Schwanke’ART usesthesingle-link HAC algorithmfor creatingclusters.It alsoprovidestwo interactiveinterfaces
to validatethe clustersbeingcreated.In thefirst interface,after everyclusteris createdhe useris askedto confirm

it. In the secondinterface,a new clusteris first validatedby using a heuristic; if the validation fails the user
is queried. The heuristicusedby Schwankeis: if the programsymbolsbeing groupedare declaredin the same
file then the groupingis okay, elseit is not. Implementationof this heuristic requiresthe =, relation, that is

which programelementis declaredin which file. This extendsthe information neededto createthe RUD used
by Schwanke’smethod.

5.1.4 ART of Maarek et. al. [MBK91] Unlike all the other ARTs studiedin this paper Maareket. al.’s

ART doesnot aim at classifyinga setof proceduresyariables,or typesinto modules.Instead,it aimsat grouping
related“programs”into groupsof softwarelibraries. Thoughnot explicitly statedby the authors,this technique
could well be usedfor architecturerecovery. This techniquediffers significantly from other numeric, stratfied

techniquesn thatit usesinformationfrom programdocumentationnot the codeitself. It usesa multigraphRUD,

representinghe I1,, relation betweena program’sdocumentatiorandits lexical affinities. Maareket. al. suggest
using eithera single-link or complete-linkHAC with the dissimilarity matrix createdby the following function:

: > s
d A B) =

(A B) = o T e P X P (D)
where:
e ay = {F 1,(A, F)}, i.e. the setof lexical affinity found in documentA,
o pa(F)=-1I,(A, F) x log (Pr(F, A)), i.e. resolvingpower of lexical affinity ' in documentA,
e Pr(F,A)=1,(A,F)/> (A, —), probabilitythatlexical affinity A appearsn the documentatiorf program

F, and

* pa = (pa —pa)/o,,, Normalizedresolvingpower. p4 is the meanof p4 ande,, is its standarddeviation.

5.2 Numeric, non-stratified ARTs

Numeric, non-stratifiedARTSs are techniqueghat use numericalcomputationto group programsymbolsinto
modules. They are non-stratifiedin that they only createone setof groups,not levels of groups. The techniques
of [BE81, PCB92]fall in this category. The first one createspartitionedmoduleswhile the secondone creates
overlappingmodules. Like other numeric ARTSs, thesemethodscomputea matrix of valuesusing information
containedin an RUD. They differ in the relationsthey useto createan RUD, the computationausedto createthe
respectivematrices,and the functions usedto identify groups.
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5.2.1 ART of Belady & Evangelisti [BE81] Belady& Evangelistiusethe m, relation,i.e. which func-
tion useswhich global variablé. The similarity matrix they usecorrespondso the adjacencymatrix representation
of my.

. | mi(AB)— 1
sime(4, B) = { -, (A, B)— 0

In creatingthis matrix, they requirethat the procedurede assignedow (and column)numberdower thanthe
globalvariables.This matrix is theninputto a clusteringalgorithmdueto Donath[DH72]. It takestwo parameters:
the numberof clusters,N, to be generatechnd the maximumnumberof nodesallowedin eachcluster. A cluster,
hencea module, may have both proceduresand global variables. Donath’s algorithm generatesV eigenvectors
using the similarity matrix. Theseeigenvectorsare then usedto placeeachnodein one of the N-modules. The
details of the placementalgorithm may be found in the original paper.

5.2.2 ART of Patel et. al. [PCB92] Patelet. al.’s ART usesll;, the multigraphRUD representingiow
many times a procedurerefersto a type. It createsa similarity matrix using the following function:

| _TL(4) x TT(B)
sim7(A, B) = “ﬁt(A)“ X ﬁt(B)H

Wherelft(A) is a vectorrepresentindl;(A, —) andall vectorsusethe samepermutationto for assigningposition
to the countsfor the types. The vector product,therefore representshe computation:

(X)) x I,(Y) = a%:THt(X, a) x I,(Y, a)

and the vector dimensionrepresentshe computation:

o] < f S

where T is the setof all typesusedin the program.

Patelet. al.’s ART is not constructive,in that it doesnot generatea set of groupsrepresentingnodules.
Instead,it providesa functionto testif a setof proceduresonstitutea module. A setof proceduresS constitutea
moduleif 7'(S) > 7, wherer is someexperimentallydeterminedhresholdvalue and7'(S) is defined as:

simz(z,y)
S -1

T(s) = ZeETEL

5.3 Graph-theoretic, stratified ARTs

Only the ART of Choi & Scacchi[CS90]falls into this category.Unlike the other ARTs discussedsofar, this
usesanRFD ¢ (notan RUD) to recoveran architecture. Further,it usesgraph-theoreticomputatiorandorganizes
a program’ssymbolsin a hierarchy.This hierarchyis similar to thatdueto HAC basedARTSs, in thatthe program
symbolsappearonly at the leaf and that eachsymbol appearsat mostonce. The intermediatenodesare newly
addedabstractnodesrepresentingnodules. Choi & Scacchi’'sART, therefore,createspartitionedmodules. The
hierarchyit generatess differentfrom dendrogramsn that thereis no level numberassociatedo the nodes.

Choi & Scacchi’sART dependsn finding the biconnectedcomponent®f anundirectedgraph. A biconnected
component of a graphis its subgraphwhoseevery pair of distinctedgedie on somecycle. A nodemay bein more

Belady & Evangelisti[BE81] actually use the relation “which function useswhich control block.” In their context, a control block
correspondgo a global variable,hencewe saythat they usethe 7, relation.

13



than one biconnectedcomponentbut any two biconnectedcomponentsnay have at most one nodein common.
Nodescommonto different biconnectedcomponentsare called articulation points. Algorithms for finding the
biconnecteccomponentf a graphmay be found in texts on algorithm analysis,suchas[AHU74].

Choi & Scacchi'sART finds the biconnectedcomponentsof an RFD. It then createsa module for each
articulationpoint. Eachmoduleconsistsof an articulationpoint and submodulesreatedby applyingthe algorithm
recursivelyto the subgraphsnducedby the verticesof eachbiconnectedccomponentexceptthe articulationpoints.
Choi and Scacchiargue that this procedureextractsan architecturewith minimum alterationdistance(which is the
sameasthe sumof all cladistic distancesand minimum coupling (sum of the numberof childrenof all nodes).

5.4 Mixed, stratified ARTS

Miuller & Uhl's [MU90] is the only ART we have studiedthat usesa combinationof graph-theoreticand
numericcomputationsandgeneratestratificationsthatare not hierarchies.lt usesa multigraphRFD ¥ to compute
the similarity matrix. Its algorithmic structurecan also be abstractedas an HAC (i.e., iteratively selectsimilar
elements,combine them, and createa new similarity matrix). It providesfour methodsto decideif pairs of
elementsbelongto the samegroup. The techniqueis interactive,in that the onus of choosingthe appropriate
methodin eachiterationlies with the user. Unlike HACs it alsoprovidesmethodgto decideif two elementsdo not
belongto the samegroup. The four methodsof choosingprogramelementshat may be groupedare:

1. selectionby interconnectionstrength
2. selectionby centricity

3. selectionby commonneighbors,and
4. selectionby name

The first three selectionmethodsuse numericcomputationssimilar to thoseusedby HAC basedmethods. These
computationsare, however,bestexpressedising graph-theoreticonceptghenceits classificationas mixed).

The interconnectiorstrengthmeasurebetweentwo nodesA and B is the exactnumberof syntacticobjects
exchangedetweenthe two nodes,i.e.

simg(A, B) = V(A, B)

Miuller & Uhl classifytwo components$o be stronglyrelatedif their interconnectiorstrengthis greaterthana certain
threshold7}, andlooselyrelatedif it is lessthana certainthreshold7;. Componentswith stronginterconnection
strengthareplacedin the samegroupandthosewith differentinterconnectiorstrengthareplacedin differentgroups.

Miuller & Uhl andsuggestwo similarity measuregor selectingon commonneighborspnebasedon common
successorgommonsuccessordetweenthe pair:

simg(A, B) = |1y (A, —) Nmy(B, —)|
and the other on their common predecessors:
stimio(4, B) = |7y (—, A) N7y (—, B)]

Remembetthat 7y (a,b) = |¥(a, —,b)| > 0. Two elementsA and B are placedin the samemodule either if
simg(A, B) > T, or simyo(A, B) > Ts, whereT, and T, aretwo thresholdvalues.

To selectby centricity, the exact interface or the number of dependencebdetweenan elementand other
elementsis computed.

ei(A)=T(A, —)+ U(—,A4)

This is thenusedto identify centralandfringe nodesdefinedasthosewith the exactinterfacebeyondthe thresholds
T and T}, respectively. Suchelementsare assignedo different groups.
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Selectionby nameis uniqueto Miller & Uhl's ART. Two programelementsare consideredsimilar if their
nameshave matching substrings(e.g. common prefix).

After groupingtwo elementsMiller & Uhl's ART createsa new dependencynatrix by replacingthe pair of
similar elementswith a new node. Its dependenciewith the otherelementss computedby addingthe sumof the
dependenciesf the elementggrouped.Muller & Uhl allow multiple selectionoperationgo be appliedto the same
dependencenatrix. This meansthat an elementor a module may be includedin more than one module leading
to a non-hierarchicalyet stratified, architecture.However,if during any iteration only one selectionoperationis
applied then the architecturewould be hierarchical.

Though,Miller & Uhl's ART canbe abstractechs an HAC, the architecturesare not dendrogramss there
are no level numbersassociatedo eachcluster. Sincethe techniqueusesseveraldifferent similarity computations
thereis no trivial way to use similarity valuesas levels.

Anotherimportantquestionwhen using this techniqueis: How doesone definethe variousthresholds?This

guestionbecomeanoot sinceMiller & Uhl's ART allow the thresholdvaluesto be setinteractivelyand changed
betweeniterations.

5.5 Graph-theoretic, non-stratified ART

Liu & Wilde [LW90] presenttwo ARTSs to group a setof functions,types,and global variablesinto modules.
TheseARTs use graph-theoreticcomputationand generatenon-stratifiedarchitecturesvith overlappingmodules.
We refer to the two ARTSs as global based andtype based. The first techniqueusesan RUD consistingof the =,
relation (i.e., which procedureuseswhich global variable)while the RUD usedby the secondtechniqueconsists
of =; relation (i.e., which procedureuseswhich type in its interface).

The global basedART hastwo steps. In the first stepthe =, relationis usedto createan undirectedgraph
(V, E') whosenodesrepresenglobal variables. In this graphthereis an edgebetweentwo nodesif their existsa
procedurethat usestheir correspondingglobal variables:i.e.,

(z,y) € Eif Ip - my(p,2) A mu(p, y).
Each strongly connectedcomponentof the graph (V, E') representa module. Let C' C V' be the vertices

in a strongly connecteccomponent.The setof programelementsM; (C') in the correspondingnoduleis defined
by the following rules.

1. All the global variablesrepresentedy verticesof a strongly connectedcomponentare in its corresponding
module,i.e. C C M;(C).

2. All the proceduresising any global variablerepresentedby the verticesof C' arein AM;(C), i.e.
Vg € C{p | mu(p,9)} C Myi(C).

3. No other symbolsarein M,;(C).

Since a proceduremay be usedby variablesin multiple strongly connectedcomponentsjt may be in multiple
modules.

Definition: Let¢; andt» betwo types,t; < t» if typet; is a sub-typeof ¢», i.e. t; is usedto definet,.

Thetype basedART first removescertainrelationsfrom ;. If 7:(p,t1) andm:(p,{2) aretwo relations,saying
procedurep usestypest, andi», thenif ¢, < ¢», the relation7:(p,t1) is removed. We call the new relation
so created;.

Modules are now identified by associatingwith eachtype ¢, M,(t) — a setof proceduresand types, using
the following rules.

1. All the procedureaisingtype ¢ belongto this set,i.e. {p | 7i(p,t)} C Ms(t).
2. All the typesusedby any of theseproceduresarealsoin this set,i.e. {t2 | 7/(p,t) A mi(p, t2)} C Ma(t).
3. No other symbolsbelongto M(t).

Onceagain,a proceduremay be in more than one modulesinceit may usemorethan onetype.
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Dendrogram for parts of a program slicing program
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Figure4 An architectureof partsof a programslicing systemrecoveredusing single-link HAC algorithm. The strings“rd1”,
“rd2”, “fe”, “feba”, and“fd” areacronymdor differenttypeof dataandcontrolflow analysesThestrings“if’, “while”,

"o

“ifelse”, “assignment” etc. denotedifferent programconstruct. The systemusedthe conventionof namingfunctions
by combiningthesestrings. Notice the abovearchitecturedoesnot do a good job of identifying relatedfunctions.

6 Comparing architectures

6.1 Why compare architectures?

While the ARTs surveyedn Section5 represensignificantresearctprogressjn the absencef any objective
measurdo evaluatethe quality of architecturesecoveredtheir validationhasbeensubjective. This is exemplified
by the following extracts:

“Although we performed the analysis with no foreknowledge of the system, our derived structure is consistent
with the mental image held by the chief maintainer of the Practice Manager.” [MMM90, Section 8]

and

“There was a close correspondence between the two views of the system. This may be seen by the dendrogram
of the smaller system in the Appendix. The two capital letters preceding each of the Fortran procedure names
designate the subsystem in which the designers placed the routine.” [HB85, Section Ill.E.2, page 755]
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The quotationssuggesthatthe respectivearchitectureecoverytechniquesverevalidatedon softwaresystems
for which the expectedarchitecturecould be definedby eitherits maintenancerogrammeifirst case)or by some
naming convention(secondcase). The comparisonof the recoveredarchitecturewith the expectedarchitecture
was, however,done manually by having the designersor maintainersvisually inspectthe graphscreatedby each
methodandasses# they matchedheir view or mentalmodelof the systems'modulehierarchy. Similar validation
procedureshave beenusedby other works too.

The graphrepresentationf a stratfied architecturefor a large systemcanbe quite complex. For instancethe
dendrogranreferredto in the secondguotationhas246 leaf nodesandthe numberof intermediatenodesareequally
large. Checkingfor its “correctness™ how well it matchesan expectedmoduledecomposition- by inspectionis
proneto error. The complexity of this exercisecanbe experiencedy looking at the dendrogranof Figure4. Even
a small variationin a graph,that may easily go undetectedy a human,could changeits “meaning” drastically.
Thereis, therefore,a needto automatethe comparisorof the recoveredarchitecturewith an expectedarchitecture.
The latter may be derivedfrom cluesprovidedby the namesof the symbolsor other systemspecificinformation.

6.2 Properties of a congruencemeasure

Themeasuresor clusterdifferencegivenin Section3.3,the A functions,cannotbeuseddirectly for comparing
architectures. The problemsare as follows:

1. The A functionsonly comparedendrogramsBut, the expectednodulehierarchyusedfor measuringhe degree
of correctnes&ndthe architecturesecoveredy Choi and Scacchi’stechniquegfCS90] are not dendrograms.

2. The A functionscomparedendrogramgverthe samesetof elements.Sincethearchitectureecoverytechniques
use different structuralinformation, the architecturesecoveredby them may not contain the sameprogram
elements.

Furthermorethe A functionsmeasurehe differencebetweenwo clusters.Theyreturna high valuewhentwo
clustersarevery differentanda low valuewhenthe clustersaresimilar. Therefore whenmeasuringcorrectnessf
a technique say by taking the meanof severalA values,a high value indicateslow degreeof correctness.

We prefera measureof congruencey : DG x DG — Ro1, betweenclustersthat returnsa high value when
two architecturesare closeto eachother and low whenthey are apart; the inverseof ‘difference’. The function
w1 must satisfy the following properties.

1. Its rangeshouldfrom 0 to 1.
2. If it returnsa 1 it shouldindicatethat the two architecturesare completelycongruent,i.e.:

a. thetwo architecturesorganizethe sameset of elementsand
b. the dissimilarity coeficient mappingof their dendrogramss identical.

3. If it returnsa 0 it shouldindicatethat the architecturedave nothingin common,i.e.

a. thetwo architectureshave at most one elementin commonor
b. the two architecturesare flat partitionsand all pairs of elementsin the two architectureare ‘dif ferently
placed'.

Two elementsaresaidto be differently placed if theyarein the samepartitionin onearchitecturebut in different
partitions in another[Ran71]. The two extremevalues capturethe extreme possibilities when comparing
architectures.

4. If two architecturesorganizethe sameset of elementsthenit shouldreturna higher numberwhen they have
fewer differently placed elements.

5. If noneof the elementsorganizedby both the architecturesare differently placedthenit shouldreturna higher
numberwhen the fraction of elementscommonto both is higher.
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6.3 Measure of congruenceof architectures

We solve the first problem by choosingtwo different /' functions (mapping of a cluster to dissimilarity
coeficients) measuringanalogougpropertiesonefor dendrogramsnd one for trees. The dissimilarity coeficients
usingthe appropriatd/ function maythenbe usedin the A functions. The secondproblemis solvedby comparing
only the architectureslefinedover elementsin the intersectionof two architecturesand multiplying the resulting
‘difference’by an intersection ratio. The detailsare given below.

As statedearlier, a tree can be interpretedas a dendrogranmby equatingthe depthof eachnodeto the level
of a dendrogram.Choi and Scacchi’'salgorithm minimizesthe sum of the cladistic distancebetweenall pairs of
leavesin the recoveredarchitecture.lt is appropriatethereforeto usethe function Us (introducedin Section3.3)
to maptheir treeinto a dissimilarity matrix. But this functionis not appropriatefor traditionaldendrogram$ecause
it assumes unit distancebetweentwo levelsirrespectiveof their difference.Thereis no obviousanalogybetween
U, andUs, henceit would not be appropriateto comparevaluesresultingfrom thesefunctions.

An alternativeis to define,for dendrogramsa function U4, that measuresladistic distancebetweenpairs of
elementsausinglevel values. This requiresintroducinga function L : DG — P — R, the lowest level partition in
the dendrogranr at which an elementis first clusteredwith a different element.

Definition: L(c) = (AA) - (min{h : 3B, B # A,(A, B) € c(h)})

Notice that the expression/; (¢)(A, B) — L(c)(A) is the differencebetweenthe lowestlevel at which A is
clusteredwith someother elementand the lowestlevel at which both A and B arein the samecluster. This is
analogougo cladistic distance— the numberof edgestraversedto reachthe leaf node A from the leaf node B.
The following function U4 is then analogousto Us.

Definition: The Uy : DG — P x P — Ry, betweenpairs of elementsin a dendrogramis then defined as:
Ua(c) = (A4, B) - ([U1(c)(4, B) — L(c)(4) 4+ Ui(c)(4, B) — L(c)(B)]/2)
The sum of level differencesis divided by two to normalizeit.
Definition: Let E : DG — 27 bethe setof all the elementsin the recoveredarchitecturec, i.e.
E(c) = {A : 3h,B, (4, B) € ¢(h)}.

That two architecturesc; and ¢z, of the sameprogramrecoveredusing two different techniquesdo not
organizethe sameset of elementsmay be statedas F(c1) # E(c2). Usingthe A functionsone canonly compare
the architectureover the set E(c1) N E(c2) asdefinedby the projectionof one architectureover the other.

Definition: The projection, _| - : DG x DG — DG, of architecturec; with respectto architecturee, is defined
as: (Cl | C2)(h) = Cl(h) n E(Cl) X E(C2).

In otherwords,e; | c2 is thesameasc; ateachlevel exceptthatrelationsinvolving elementsotin ¢ areremoved.
The congruenceof ¢; | ez and ey | ¢; may be measuredising one of the A functionsstatedearlier. But sucha
measurewill be insensitiveto the elementsin the two architectureghat are not in the other. The inverseof this
is measuredby the intersection ratio given below.

Definition: The intersectionratio, I : DG x DG — R4, of architectures; ande; is:
I(c1, ¢2) = |E(c1) N E(e2)|/[E(er) U Eca)|

The intersectionratio is 1 whenboth the recoveredarchitectureorganizethe samesetof elements.It is 0 if
they organizeentirely different setof elements.Therefore,a high intersectionratio is goodanda low intersection
ratio is bad. The congruenceof two architecturegnay now be measuredas follows.

Definition: The measure of congruence, 1 : DG x DG — Ry, of architectures:; ande, is given by:
pler, ea) = I(er,e2) x (1 — A(Uj(er | e2),Uj(ea | 1)) wherej € {2,4}.

In our initial experimentdLMP92], we deriveda function equivalentto A3 beforebeing exposedo Jardine
and Sibson’s[JS71]work. This is, therefore,our choice of the differencemeasurewhen computingcongruence.
Generally speakingone may chooseany of the A functions given in Section 3.3 or devisea new one. For
a meaningful comparisonof architecturesdue to Choi & Scacchi’'sART with thoseof other ARTs the U; in
computingcongruenceshould,however,be restrictedto /> for treesand U/, for dendrograms.
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7 An experiment with Hutchens-Basili ARTs

During Summer'92we conductedan experimentto measurethe correctnesof Hutchens& Basili's ARTs
[LMP92, HB85]. The intent of our experimentwas to measurehow successfuthese ARTs were in recovering
the actualarchitectureof a setof systemsthat were designedusing dataabstractionPar76]. The mostimportant
parameterfor such an experimentis the programsanalyzed. Ideally, the programsshould satisfy the following
constraints:

1. The programsshould have diligently used data abstractionand the module decompositionshould be easily
retrievablefrom the sourcecode.
2. The programsshould be representativesf real-world programs.

Thesetwo constraintsare hard to satisfy simultaneously;since it is hard to find a set of programsthat are
representativesf real-world programsand use data abstraction. The retrievability of the designdecomposition
from the codeis importantto useas an “oracle” for the expectedarchitecture.

Given the difficulty in choosingsubjectprograms,it was our choiceto give higher precedenceo the first
constraint. We, therefore,usedprogramsdevelopedin our course“Introduction to SoftwareEngineering."These
programswere ensuredto satisfy the first constraintsince their developmentwas rigorously controlled. All the
programshad the sameabstractdata type baseddesignand hencethe samemodule decompositioh This was
ensuredsince a) the designwas providedto the students(as a routine part of the instruction) and b) the design
violations were removedover four iterations,one per week. During the iterations,that the programsimplemented
the given designwasverified by a) review of eachprogramby the grader,b) review of eachmoduleby two fellow
studentsand c) generatiorof “program families” (a la Parnashy exchangingnodulesbetweenstudents.

Thelastmethodof verificationprovidedthe mostrigorouschecksinceeachstudentgeneratechine programsoy
mixing modulesfrom two other students.If a moduleviolatedthe interfaceconstrainttherewasa high likelihood
thatit would causecompile-timeor run-time failureswhen combinedwith someoneelse’smodule.

The author along with two graduatestudentsimplementedthe two ARTs proposedby Hutchens& Basili
[HB85] (seeTable 2) with threevariationsof =, and measuredhe congruenceof the recoveredarchitectureof 19
C programsvarying in size from 500 lines (including comments)to 2400 lines.

In computingthe measureof congruencex we usedthe As function to measurethe difference between
architectureslt wasour observatiorthat a) mostof the recoveredarchitectureshad severalmisplacedprocedures
or did not organizeall the proceduresndb) the congruenceneasuresvere higherwhenthe recoveredarchitectures
found more correct modulesand lower when fewer correct moduleswere found. The congruencemeasures,
therefore, correctly reflectedhow close a recoveredarchitecturewas to the expectedone. Figure 5 plots the
congruenceneasuregor variationsof the two ARTs proposediy Hutchens& Basili. The variationsintroduced,in
both caseswasthat the relation 7, wasusedto substituter, andr,. Accordingly,the setF wasredefinedto be
the setof all global symbols. The meansof the congruencemeasure®f the plots are 0.52 and0.53 for expected
andrecomputednethodsrespectively.On arangeof 0 to 1, thisis nota very high value. However,the congruence
measuregor unmodfied Hutchens& Basili's ARTs were worse,with meansof 0.21 and0.22, respectively.

8 Conclusions and future work

Softwareis an “immortal asset”of an organization[Bus89]. The capital budgetrequiredto redevelopmany
softwaresystemss simply too large to justify scrappingthem[You92]. To keepup with changesn technology,
re-engineeringhesesystemss the only viable alternative. Any re-engineeringask involves reverseengineering,
i.e. recoveringof designand other abstractiondrom sourcecode. Arnold’s compilation of paperson Software
Re-engineerindArn93] and the proceedingsof the IEEE Conference on Software Engineering is rife with re-
engineeringexercisesin companiessuch as AndersonConsulting, DEC, IBM, Lockheed,and NASA. In these

T Thoughit is commonto useprogramswith identical specificationgn softwareengineeringexperimentdBGS84, HB85], to the bestof
our knowledge this is thefirst instanceof an experimentwith programsmplementingidentical design.
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Figure5 Overlayedplot of congruenceameasuredor architecturesecoveredfor 19 assignmenprogramsusing
variationsof Hutchensand Basili's architecturerecoverytechniquegHB85].

exercisegesearcherfiave developedvarioustechniquego recoversoftwarearchitecturesij.e. its decomposition
in modules.

So far there has beenno easyway to evaluatea technique’sability in recoveringa correctarchitectureor
comparingthe performanceof two techniques.The bottleneckhasbeen(a) the techniquesare not presentedising
a consistentset of symbolsandtermsand (b) the lack of a measureto comparetwo architectures- an expected
with a recoveredor thoserecoveredoy two differentARTs. This paperfills both theseneeds.It presentsa unified
view of eachtechniqueby using a consistentset of symbolsand termsandit presentsa measureof congruence
betweenarchitectures.

The work is significantsinceit now enablesa comparisorof ARTs basedon the type of informationthey use,
the kind of computationthey perform,andthe programelementghat get includedin an architecturethey recover.
A comparativeknowledgeof suchinformation may help in a) decidingwhethera particulartechniquewould be
applicablein a given context,b) whethera crossreferenceinformation extractiontool [BHW89, CNR90, Rei90,
WCW88] can be usedto build an ART, andc) creatingnew ARTs by combiningelementsfrom different ARTSs.

To cite a few examples.ARTSs that use ‘type’ relatedinformation would not be useful with old FORTRAN
programssincetheseprogramsdo not haveuserdefinedtypes. ARTs thatuse‘global variables’relatedinformation
may not do well with programsusing dataabstractions.To developLiu & Wilde's type-basedART [LW90] and
Patelet. al.’'s ART [PCB92] oneneedgheinformation‘which typeis usedto definewhichtype.” A cross-reference
information extractiontool that doesnot provide this informationwould not be suitablefor this purpose.Patelet.
al.’s ART also requiresthe count of how many times a relation betweentwo symbolsexistsand hencethe tool
usedshouldpermit sucha computation.Whena techniqueis not directly applicablein a particularcontext,it may
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be adaptedusing a different set of relations. For instance we modified Hutchens& Basili's ARTs [HB85] to use
relationsof procedureswith typesinsteadof with global variables. The modified ARTs performedbetterthanthe
originals, as determinedby the congruencemeasurefor programsusing dataabstraction.

An ambitiousexperimenthatwe planto carry out, subjectto availability of resourcesis to identify thefactors
that influencethe correctnes®of architecturerecoveredby varioustechniques.For instance ,we hypothesizethat
the following programpropertiesmay haveinfluenceon the architecturerecoveredby an ART:

F1. choiceof datastructuredor implementingan abstractdatatype (suchas a sequencenay be implementedoy
a list or an array),

F2. implementationdecisions(such as defining a specialtypedef for datatypesprocessedy a moduleor using
the nameof a primitive type usedto implementit), and

F3. size of the program(in lines of code or any other measure).

SincefactorsF1 and F2 influencethe cross-referenceelationsusedby someof the ARTs , it shouldinfluence
the architectureghey recover. For example,to implementa sequenceas a list requiresdefining a struct (in C
terminology)which introducesadditionalsymbolsfor its fields; thesesymbolsare not introducedin an arraybased
implementation.Similarly, F2 influencesthe numberof global symbolsin a systemand hencemay influencethe
recoveredarchitecture.The recoveredarchitecturemay potentially dependon the size of the relationswhich may
dependon the size of the program,henceF3.

We fathom that successfulidentification of factors influencing the recoveredarchitecturecan lead to the
developmenof (a) methoddor estimatingthe quality of the recoveredarchitecturesind(b) guidelinesto “calibratée’
recoverytechniqueausing programrelatedproperties.The estimationmethodmay be developedoy measuringhe
dependencen factorsthat have beenidentified as influencing the recoveredarchitectures.The calibrationof a
technique suchasthat of Schwanke’'dSch91], would involve varying parameter®f the clusteringmethodbased
on propertiesof programaunderstudyso asto recoverarchitectureglosestto the modulehierarchy. The guidelines
and estimationmethodscould be in the form of standardizedableslike thoseusedby engineers.
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