Wolf: A tool to recoverdataflow oriented designsof software systems

Arun Lakhotia

The Centerfor AdvancedComputerStudies
University of Southwesterri_ouisiana
Lafayette, LA 70504
(318) 482-6766,-5791 (Fax)
arun@cacs.usl.edu

Presented in: Fifth Systems Reengineering Technology Workshop, Monterey, CA, February 1995.

Abstract

Dataflowdiagramshavebeenusedto modelsystems,
not just softwaresystemsgvenbeforecomputersverein-
vented. Severalforward engineeringechniquedor devel-
oping softwaresystemsusedatdlow information for ana-
lyzing the requirementsand/orthe designs.Wolf is a tool
to recoverdataflowdesignsof softwaresystemsrom their
sourcecode. It is expectedo benefitproblemdomainsin
which datdlow orientedtechniquesare most suitable (or
commonly used)for analyzinga software’srequirements
and/ordesignduring the forward engineeringorocess.For
such domainsWolf will enablethe migration of legacy
softwareto CASE tool(s).

1 Intr oduction

Dataflow diagrams have been used to model sys-
tems, not just software systems,even before computers
were invented. Severalforward engineeringtechniques
for developingsoftwaresystemsuse datdlow information
for analyzingthe requirementsand/orthe designs. Some
suchtechniquesare [2]: De Marco’s StructuredAnaly-
sis and SystemSpecfication (SASS), Ganeand Sarson’s
Structured SystemsAnalysis, Orr’'s Structured Require-
ments Definition (SRD), Teichrow’s Program Statement
Language/PrograrStatemenfnalyzer(PSL/PSA),Ross’s
StructuredAnalysis and DesignTechnique(SADT), Ward
and Mellor's extensionof SASS,and Yourdon'sModern
StructuredAnalysis.

Wolf is a tool to recoverdataflow designsof soft-
waresystemdrom their sourcecode. It is developedising
ReasoningSystem’sSoftwareRefineryandMark V's Ob-
jectMaker CASE-Tool Productsand can recover designs
for C programs.The dataflowdesignsare extractedusing
SoftwareRefineryanddisplayedusing ObjectMaker.Wolf
candisplay dataflowdesignsusing a variety of notations,
including IDEFO and bubbles. This is made possibleby
ObjectMakersinceit supportanostof thedatafloworiented

CASEtechniquesThoughdevelopedor C, Wolf mayeas-
ily be customizedor otherlanguagesThis ability is made
possibledue to using Software Refinery’sgenericcontrol
flow graphabstractiondor performingdataflowanalysis.

2 Design of Wolf

A dataflowdesignconsistsof a “hierarchy” of DFDs
(or IDEFs) orderedby increasinginformation flow and
processingdetail. The top most diagram, the DFD 0,
in this hierarchy consistsof one bubble representinghe
entire systemand “arrows” showingflow of information
from this bubbleto “externalelements. EachDFD in the
hierarchy “decomposes’a bubble of a parentDFD into
bubblesdenotingits subfunctions. The bubblesthat have
no decompositionare referredto as “terminal” or “leaf”
bubbles.

Internally, Wolf decomposeshe problemof recover-
ing datafloworienteddesigninto the problemof (a) creat-
ing layersof processorg‘bubbles” or boxes)from a pro-
gram’sfunctions,(b) identifying the “logical” flow of data
betweerfunctions,and(c) annotatinghe flow edgedy the
informationthatflows acrosdt. Figurel givesa schematic
diagramof the approachusedby Wolf. Currently Wolf
recoversDFDs having only “bubbles” (transformers)yand
“arrows” (flow of data). The mechanismgo implement
“data stores” and accessto “external elements”(part of
De Marco’s DFDs) differ significantly betweenprocedural
languages. For instance,in COBOL the physical names
of files processeds availablein the headerof a program;
whichis notthe casein C. Hencewe havecurrentlynotin-
cludedinformationaboutdatastoresandexternalelements.

Ideally, one would like the layer of processorsn
a recovereddesignto be as close as possibleto that in
an expected(or actual) dataflow oriented design. Since
the problem of finding the “actual” layer is intractable,
Wolf provides multiple methodsto createthe layers of
processors.The simplestmethodusesthe layersinduced
by a program’scall graph. Other methodsuse numerical

L4

pl calls p2
p2 uses vi ‘T

vi's type is tk ,,_.-;%

p2 defines v3

Structural
relationships

Aﬁ‘ﬁ\v

p2 p3 p4

e

PS p6 p7 p8 p9

Interprocedural
physical data flow

pS pé

pl p2 p3 p4

Architecture

il

L b DFDO /o ~ -~ - ~

p7 p8 ::77 74//
DFD1 ~ 6);'7 70.77

‘\\2;

DFD2

Data flow design

Flat logical data flow design

Figurel Schematidiagramof the stepsusedby Wolf for recoveringthe datdlow designof a softwaresystemfrom its sourcecode.

cluster analysisto group most closely related functions.
Wolf thus recoversa variety of dataflow designsfor a
system.Choosinghe“right” designis left to thediscretion
of the user.

Thereis a logical flow of data from procedureA to
procedureB if thereis a potentialexecutionpaththrough
which a datageneratedn A is transferredthrougha se-
guenceof identity assignmentgo procedureB, and the
datais usedin B. In otherwords, if a procedureonly

actsasa conduitto transferdatabetweentwo procedures,

without transformingthe data, it only participatesin the
physicaldataflow. Thereis a logical flow of datafrom a
procedurethat generateslatato a procedurethat usesit.
This definition of logical and physicaldataflowis similar
to that usedby De Marco in StructuredAnalysisand Sys-
tem Specification[3]. In a dataflow designwe feel one
would like to extractthe logical flow of dataand not the
physicalflow. Wolf determinessuchflow information by
performing static flow analysis[1].

To completethe recovereddataflowdesignone also
needso identify the actualinformationthat flows between
processingelements. This may be eitherthe nameof the
variablein the generatingprocedurewhosevalue is used
in the receiving procedureor the “type” of this variable.
The various designand analysismethodsusing DFDs do
not specifywhetherthe annotationon the arrowsis names
of variablesor types. Besidestherearetrade-ofs in either

case.Wolf canannotateedgeswith both the information,
the nameof a variableor its type. The choiceis left to
the user.

3 Conclusions

Wolf is the first reverseengineeringtool to extract
datafloworienteddesigns.It is basedon the principle that:

For activities (suchas reuseand reengineeringyequiring
an understandingf what a softwae systendoes,abstrac-
tions that were (or shouldhavebeen)usedin the forward
engineeringof the systemshouldalso be mosteffectiveto
recoverby reverseengineering[4].

Wolf is expectedio be of benefitfor problemdomainsin
which dataflow oriented techniques,such as thoselisted
earlier, are most suitable(or commonlyused)for analyz-
ing a software’srequirementsand/ordesignduring the for-
wardengineeringprocess.Someof the activitiesit maybe
usedfor are: maintainingthe consistencyof designdoc-
umentwith its code,migrating/reengineeringld software
codeto emepging ComputerAided Software Engineering
(CASE) technology,and for understandindarge software
systems. Furthermore the tool may also be usedfor or-
ganizationsintroducing CASE tools in their development
methods.Wolf providestheman easyway to migratetheir
existing softwareto the CASE tool(s). Wolf is therefore
an importanttechnologyin enablingsuchtransition.

Bibliography [3] T. De Marco. Structued Analysisand SystenSpedii-
cation YourdonPress,New York, 1978.
[1] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers:

Principles, Techniques,and Tools Addison-Wésley, [4] A. Lakhotia. What is the appropriateabstractionfor

1986. understandingand reengineeringa software system?
[2] A. M. Dauvis. Softwae Requiements:Objects,Func- IEEE ComputerSocietyReverseEngineeringNewslet-
tions, and States PrenticeHall, 1993. ter, pagesl-2, Sept.1994.

