
Wolf: A tool to recoverdataflow oriented designsof software systems

Arun Lakhotia

The Centerfor AdvancedComputerStudies
University of SouthwesternLouisiana

Lafayette, LA 70504
(318) 482-6766,-5791 (Fax)

arun@cacs.usl.edu

Presented in: Fifth Systems Reengineering Technology Workshop, Monterey, CA, February 1995.

Abstract

Dataflowdiagramshavebeenusedto modelsystems,
not just softwaresystems,evenbeforecomputerswerein-
vented.Severalforward engineeringtechniquesfor devel-
oping softwaresystemsusedataflow information for ana-
lyzing the requirementsand/orthe designs.Wolf is a tool
to recoverdataflowdesignsof softwaresystemsfrom their
sourcecode. It is expectedto benefitproblemdomainsin
which dataflow orientedtechniquesare most suitable(or
commonly used)for analyzinga software’srequirements
and/ordesignduring the forwardengineeringprocess.For
such domainsWolf will enablethe migration of legacy
softwareto CASE tool(s).

1 Intr oduction

Dataflow diagramshave been used to model sys-
tems, not just software systems,even before computers
were invented. Several forward engineeringtechniques
for developingsoftwaresystemsusedataflow information
for analyzingthe requirementsand/or the designs. Some
such techniquesare [2]: De Marco’s StructuredAnaly-
sis and SystemSpecification (SASS),Ganeand Sarson’s
StructuredSystemsAnalysis, Orr’s StructuredRequire-
ments Definition (SRD), Teichrow’s ProgramStatement
Language/ProgramStatementAnalyzer(PSL/PSA),Ross’s
StructuredAnalysisandDesignTechnique(SADT), Ward
and Mellor’s extensionof SASS,and Yourdon’sModern
StructuredAnalysis.

Wolf is a tool to recoverdataflow designsof soft-
waresystemsfrom their sourcecode. It is developedusing
ReasoningSystem’sSoftwareRefineryandMark V’s Ob-
jectMaker CASE-Tool Productsand can recoverdesigns
for C programs.The dataflowdesignsareextractedusing
SoftwareRefineryanddisplayedusingObjectMaker.Wolf
can display dataflowdesignsusinga variety of notations,
including IDEF0 and bubbles. This is madepossibleby
ObjectMakersinceit supportsmostof thedatafloworiented

CASEtechniques.Thoughdevelopedfor C, Wolf mayeas-
ily becustomizedfor otherlanguages.This ability is made
possibledue to usingSoftwareRefinery’sgenericcontrol
flow graphabstractionsfor performingdataflowanalysis.

2 Design of Wolf

A dataflowdesignconsistsof a “hierarchy” of DFDs
(or IDEFs) orderedby increasinginformation flow and
processingdetail. The top most diagram, the DFD 0,
in this hierarchyconsistsof one bubble representingthe
entire systemand “arrows” showingflow of information
from this bubbleto “externalelements.” EachDFD in the
hierarchy “decomposes”a bubble of a parentDFD into
bubblesdenotingits subfunctions.The bubblesthat have
no decompositionare referredto as “terminal” or “leaf”
bubbles.

Internally, Wolf decomposesthe problemof recover-
ing datafloworienteddesigninto the problemof (a) creat-
ing layersof processors(“bubbles” or boxes)from a pro-
gram’sfunctions,(b) identifying the “logical” flow of data
betweenfunctions,and(c) annotatingtheflow edgesby the
informationthatflows acrossit. Figure1 givesa schematic
diagramof the approachusedby Wolf. Currently Wolf
recoversDFDs having only “bubbles” (transformers)and
“arrows” (flow of data). The mechanismsto implement
“data stores” and accessto “external elements”(part of
De Marco’sDFDs)differ significantlybetweenprocedural
languages.For instance,in COBOL the physical names
of files processedis availablein the headerof a program;
which is not thecasein C. Hencewe havecurrentlynot in-
cludedinformationaboutdatastoresandexternalelements.

Ideally, one would like the layer of processorsin
a recovereddesignto be as close as possibleto that in
an expected(or actual) dataflow orienteddesign. Since
the problem of finding the “actual” layer is intractable,
Wolf provides multiple methodsto createthe layers of
processors.The simplestmethodusesthe layers induced
by a program’scall graph. Other methodsusenumerical

1

p1 calls p2
p2 uses vi
vi’s type is tk
p2 defines v3
....

p2 p3 p4

p5 p6 p7 p8 p9

p1

p2
p3

p4

p5

p6p7

p8

p9

Data flow design

Structural
relationships

L1

L2

L3
L4 L5

p1 p2 p3 p4

p5 p6

p7 p8
p9

Source
code

Flat logical data flow design

Architecture

Interprocedural
physical data flow

DFD0

DFD1

DFD2
DFD3

DFD4
DFD5

Figure1 Schematicdiagramof the stepsusedby Wolf for recoveringthe dataflow designof a softwaresystemfrom its sourcecode.

cluster analysisto group most closely related functions.
Wolf thus recoversa variety of dataflow designsfor a
system.Choosingthe“right” designis left to thediscretion
of the user.

There is a logical flow of data from procedure
�

to
procedure� if thereis a potentialexecutionpath through
which a datageneratedin

�
is transferredthrougha se-

quenceof identity assignmentsto procedure� , and the
data is used in � . In other words, if a procedureonly
actsasa conduit to transferdatabetweentwo procedures,
without transformingthe data, it only participatesin the
physicaldataflow. Thereis a logical flow of datafrom a
procedurethat generatesdata to a procedurethat usesit.
This definition of logical andphysicaldataflowis similar
to that usedby De Marco in StructuredAnalysisandSys-
tem Specification[3]. In a dataflow designwe feel one
would like to extract the logical flow of dataand not the
physicalflow. Wolf determinessuchflow information by
performingstatic flow analysis[1].

To completethe recovereddataflowdesignone also
needsto identify theactualinformationthatflows between
processingelements.This may be either the nameof the
variable in the generatingprocedurewhosevalue is used
in the receivingprocedureor the “type” of this variable.
The variousdesignand analysismethodsusing DFDs do
not specifywhethertheannotationon the arrowsis names
of variablesor types.Besides,therearetrade-offs in either

case.Wolf canannotateedgeswith both the information,
the nameof a variableor its type. The choice is left to
the user.

3 Conclusions

Wolf is the first reverseengineeringtool to extract
datafloworienteddesigns.It is basedon theprinciplethat:

For activities(suchas reuseand reengineering)requiring
an understandingof what a software systemdoes,abstrac-
tions that were (or shouldhavebeen)usedin the forward
engineeringof the systemshouldalso be mosteffectiveto
recoverby reverseengineering[4].

Wolf is expectedto be of benefit for problemdomainsin
which dataflow oriented techniques,such as thoselisted
earlier,are most suitable(or commonlyused)for analyz-
ing a software’srequirementsand/ordesignduringthefor-
wardengineeringprocess.Someof theactivitiesit maybe
usedfor are: maintainingthe consistencyof designdoc-
umentwith its code,migrating/reengineeringold software
codeto emerging ComputerAided SoftwareEngineering
(CASE) technology,and for understandinglarge software
systems.Furthermore,the tool may also be usedfor or-
ganizationsintroducingCASE tools in their development
methods.Wolf providesthemaneasyway to migratetheir
existing softwareto the CASE tool(s). Wolf is therefore
an importanttechnologyin enablingsuchtransition.

2

Bibliography

[1] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers:
Principles, Techniques,and Tools. Addison-Wesley,
1986.

[2] A. M. Davis. Software Requirements:Objects,Func-
tions, and States. PrenticeHall, 1993.

[3] T. De Marco. Structured AnalysisandSystemSpecifi-
cation. YourdonPress,New York, 1978.

[4] A. Lakhotia. What is the appropriateabstractionfor
understandingand reengineeringa softwaresystem?
IEEE ComputerSocietyReverseEngineeringNewslet-
ter, pages1–2, Sept.1994.

3

