

An Approach towards Disassembly of Malicious Binary Executables

A Thesis

Presented to the

Graduate Faculty of the

University of Louisiana at Lafayette

In Partial Fulfillment of the

Requirements for the Degree

Master of Science

Aditya Kapoor

Fall 2004

© Aditya Kapoor

2004

All Rights Reserved

An Approach towards Disassembly of Malicious Binary Executables

Aditya Kapoor

APPROVED:

__________________________ __________________________
Arun Lakhotia, Chair William R. Edwards
Associate Professor of Computer Science Associate Professor of Computer Science

__________________________ __________________________
Dmitri Perkins C. E. Palmer
Assistant Professor of Computer Science Dean of the Graduate School

To Mom and Dad

Acknowledgements

I thank my advisor, Dr. Arun Lakhotia for his valuable guidance, extraordinary support,

inspiration, and encouragement. This thesis would never have been conceptualized

without the ideas and motivation that he provided me. I greatly appreciate his patience

and the trust he showed in me throughout my thesis. He was always there to support me

both morally and academically whenever I was in a fix. My gratitude for him cannot be

expressed in a paragraph.

 I thank my parents and my sister for their never-ending encouragement, trust, and

support during my lows and my highs in the research period. I am grateful to Dr.

Andrew Walenstein for reviewing my thesis document in a short time and giving me

helpful insights. Thanks to Eric Uday, Prashant Pathak, Nitin Jyoti, and Firas Bouz who

gave me helpful feedback during all times in my thesis and shared intriguing discussions

about the challenges I faced.

 Finally, I would also like to thank my roommates Bunty Agrawal, Alok S. Singh,

and Jai Dialani for their constant words of support and encouragement in the last two

years and the good food they cooked for me.

TABLE OF CONTENTS

1 INTRODUCTION .. 1
1.1 MOTIVATION.. 1
1.2 RESEARCH OBJECTIVES ... 4
1.3 RESEARCH CONTRIBUTIONS... 4
1.4 IMPACT OF THE RESEARCH... 4
1.5 ORGANIZATION OF THESIS ... 5

2 BACKGROUND ... 6
2.1 DISASSEMBLY OVERVIEW.. 6
2.2 DISASSEMBLY CHALLENGES.. 7
2.3 METHODOLOGIES OF STATIC DISASSEMBLY .. 9

2.3.1 Flow Insensitive Analysis.. 9
2.3.2 Flow Sensitive Analysis... 10
2.3.3 Combined Linear Sweep and Recursive Traversal................................... 12
2.3.4 Interactive Disassembly .. 12
2.3.5 Disassembly Heuristics... 13

3 PE ARCHITECTURE AND INTEL INSTRUCTION FORMAT..................... 14
3.1 PE FILE FORMAT .. 14
3.2 INTEL INSTRUCTION FORMAT... 15
3.3 INTEL OPCODE MAPS... 18
3.4 ADDRESSING MODES .. 18

4 SEGMENTATION OVERVIEW.. 19
4.1 SEGMENTATION EFFICACY... 19
4.2 SEGMENT STRUCTURE ... 21
4.3 SEGMENT RELATIONSHIPS ... 21
4.4 SEGMENT CONSTRUCTION ... 22
4.5 EXPLANATION OF ALGORITHM WAYPOINTS.. 27
4.6 SEGMENT OVERLAPS AND SPECIAL CASES .. 29
4.7 ILLUSTRATIVE EXAMPLE ... 31

5 SEGMENT PRUNING VIA SEGMENT CHAINING.. 33
5.1 SEGMENT-CHAINING.. 33
5.2 ALGORITHM: CHAINING AND PRUNING.. 34
5.3 EXAMPLE: SEGMENT CHAINING AND PRUNING.. 37

6 EVALUATION AND RESULTS .. 38
6.1 THEORETICAL LIMITATIONS AND ASSUMPTIONS ... 38

6.1.1 Attacking the Assumptions .. 38
6.1.2 Attacking the Implementation ... 40

6.2 EXPERIMENTAL SETUP AND ANALYSIS .. 41
6.2.1 Setup.. 41

6.2.2 Analysis Parameters ... 42
6.2.3 Data Analysis: “Clean” Executable... 44
6.2.4 Data Analysis: “Malicious” Executable .. 47
6.2.5 Data Analysis: Non-Executables .. 49
6.2.6 Inference of Data Analysis.. 52

7 RELATED WORK... 54

8 CONCLUSION AND FUTURE WORK .. 58

BIBLIOGRAPHY... 60

ABSTRACT... 62

BIOGRAPHICAL SKETCH ... 63

 vii

LIST OF FIGURES

FIG. 1-1. STAGES IN STATIC ANALYSIS OF BINARY [15]... 2

FIG. 1-2. OBFUSCATION THROUGH JUNK INSERTION. .. 3

FIG. 2-1. AN EXAMPLE SHOWING DISASSEMBLY DRAWBACKS USING LINEAR SWEEP 9

FIG. 2-2. OBFUSCATION BY JUNK BYTE INSERTION (BEAGLE.H)....................................... 10

FIG. 2-3. COMPARISON OF TARGET RESULTS OF DIFFERENT DISASSEMBLY TECHNIQUES... 12

FIG. 3-1. FILE FORMAT OF A PE FILE. ... 15

FIG. 3-2. INTEL INSTRUCTION FORMAT ... 16

FIG. 3-3. ARCHITECTURE OF MOD R/M BYTE AND SIB BYTE... 17

FIG. 3-4. A 32 BIT INSTRUCTION AND ITS STRUCTURE .. 17

FIG. 4-1. EXAMPLE SHOWING CONTROL FLOW OF PROGRAM STARTING AT BYTE 0 20

FIG. 4-2. EXAMPLE SHOWING CONTROL FLOW OF PROGRAM STARTING AT BYTE 1 20

FIG. 4-3. STRUCTURE OF A SEGMENT ... 21

FIG. 4-4. STEPS OF SEGMENT CREATION.. 23

FIG. 4-5. SEGMENT TERMINATION .. 24

FIG. 4-6. PSEUDOCODE FOR SEGMENTATION ALGORITHM, LEFTMOST COLUMN SPECIFIES

CODE WAYPOINTS .. 26

FIG. 4-7. MAIN PROGRAM PSEUDOCODE FOR COMPUTING SEGMENTS 27

FIG. 4-8. ILLUSTRATIVE EXAMPLE OF SEGMENT OVERLAPS .. 30

FIG. 4-9. EXAMPLE SHOWING SPECIAL CASE OF OVERLAPPING ... 30

FIG. 4-10. EXAMPLE 2: EXCERPT OF ASSEMBLY CODE FROM A SAMPLE PROGRAM............ 31

FIG. 4-11. EFFECT OF APPLYING SEGMENTATION ALGORITHM ON GIVEN CODE BLOCK,

GREY AREA SHOWS END OF SEGMENT. ... 32

FIG. 5-1. VARIOUS STAGES OF SEGMENTATION... 34

FIG. 5-2. PSEUDOCODE FOR SEGMENT-CHAINING ALGORITHM, LEFTMOST COLUMN

SPECIFIES CODE WAYPOINTS... 36

FIG. 5-3. PSEUDOCODE FOR DELETING A SEGMENT ... 37

FIG. 5-4. EXAMPLE SHOWING SEGMENT PRUNING BY CHAINING 37

FIG. 6-1. RUNTIME SELF-MODIFYING OBFUSCATION (NETSKY.Z) 39

FIG. 6-2. OBFUSCATION THROUGH EXCEPTION HANDLING.. 40

FIG. 6-3 PRUNING OF INVALID INSTRUCTIONS: CLEAN EXECUTABLES............................... 45

FIG. 6-4 SEGMENT COMPARISONS: CLEAN EXECUTABLES... 46

FIG. 6-5. CODE INFLATION INDEX: CLEAN EXECUTABLES ... 46

FIG. 6-6 PRUNING OF INVALID INSTRUCTIONS: MALICIOUS EXECUTABLES........................ 48

FIG. 6-7 SEGMENT COMPARISONS: MALICIOUS EXECUTABLES.. 48

FIG. 6-8 CODE INFLATION INDEX: MALICIOUS EXECUTABLES ... 49

FIG. 6-9 SEGMENT COMPARISONS: NON-EXECUTABLES .. 51

FIG. 6-10 PRUNING OF INVALID INSTRUCTIONS: NON-EXECUTABLES................................ 51

FIG. 6-11 CODE INFLATION INDEX: NON-EXECUTABLES ... 52

 ix

LIST OF TABLES

TABLE 6-1. RESULTS: CLEAN EXECUTABLE (INSTRUCTION, SEGMENTS, AND OVERLAPS). 44

TABLE 6-2 RESULTS: MALICIOUS EXECUTABLE (INSTRUCTION, SEGMENTS, AND OVERLAPS)

... 47

TABLE 6-3 IMAGE FILES USED FOR DATA ANALYSIS... 49

TABLE 6-4 RESULTS: NON-EXECUTABLE (INSTRUCTION, SEGMENTS, AND OVERLAPS) 50

1 Introduction

1.1 Motivation

In the recent past computer security has become an issue of foremost importance

for individuals, businesses, and governments. Hostile programmers, who write programs

with malicious intents of collecting private information, spread spam, etc. breach the

existing security measures. Whenever these hostile programmers, specifically virus/worm

writers, succeed in spreading a virus or a worm, there is a significant loss to businesses.

For example, mi2g website [6] quotes that within one quarter the NetSky worm and all its

A - Q variants put together, had already caused between $35.8 billion and $43.8 billion of

estimated economic damages worldwide. The website also quotes that, in March,

combined losses due to the three worms Beagle, MyDoom, and NetSky crossed the $100

billion mark within a week.

 The war between hostile programmers and antivirus writers resembles any classic

arms escalation. The first step in countering the malicious attacks is to identify the

malicious programs. Antivirus companies use several dynamic and static analysis

techniques to identify malware [25]. Most of the Anti-Virus (AV) tools depend upon

knowledge of what are called “virus signatures,” which are nothing but patterns of system

calls. If these AV tools can find a particular signature in their database of currently

known patterns, they raise an alarm. To identify signatures from a malicious program or

to understand and counteract the malicious behavior, we need to analyze the executable.

This typically requires converting the byte sequence of an executable to an intermediate

representation.

Fig. 1-1. Stages in static analysis of binary [15].

According to [15], the architecture shown in Fig. 1-1 is a proposed staged

architecture for binary malware analysis. Disassembly is the first step, and it generally

must occur before subsequent analysis can take place. Current disassemblers are used for

different purpose, such as binary rewriting for efficiency [20], portability [11, 23] or

program maintenance when source code is not available. The problem of disassembly

becomes a research issue when the disassemblers are used to analyze malicious codes.

The current disassembly algorithms are based on many assumptions such as entry point

and control flow information, which are easy targets of malicious code writers.

Techniques used by code-obfuscators [19], for the purpose of protecting

intellectual property, can be used by malicious code writers. These writers having

malicious intents also rely on many of the existing virus creation tools [5] and

obfuscation techniques, such as junk byte insertion, computed jumps, and self-modifying

code, to hinder the disassembly process of the current algorithms [14, 17].

There are several examples of virus code and obfuscators that motivate this

research. A Few recent examples are self-modifying code of mass mailing worm

Netsky.Z and Beagle.H (Junk byte Insertion) that puts the current disassemblers into

disarray. Fig. 1-2 shows the disassembled code of Beagle.H obtained from the open

 2

source debugger Ollydbg. Column 1 shows the incorrect disassembly generated from

Ollydbg, while column 2 shows the correct disassembly. It is evident from the figure that

the virus writer has successfully hidden instructions starting at location 0040A006 and

0040A00A.

Location

Column 1 (Disassembly Ollydbg)

 Hex Disassembly

0040A000 60 PUSHAD

0040A001 E8 01000000 CALL 0040A007

…

0040A006 E8 83C404E8 CALL E845648E

0040A007

…

0040A00A

0040A00B 0100 ADD DWORD PTR DS:[EAX],EAX

Column 2 (Actual Disassembly)

Hex Disassembly

60 PUSHAD

E8 01000000 CALL 0040A007

83C4 04 ADD ESP,4

E8 01000000 CALL 0040A010

0040A000

0040A001

…

0040A006

0040A007

…

0040A00A

0040A00B

Location

5 bytes

Fig. 1-2. Obfuscation through junk insertion.

The foremost challenge for a disassembly algorithm is to distinguish between

code and data, where data can be embedded in code. In the automated analysis of malice

the disassembly algorithm should be:

• Safe: all the possible instructions should be disassembled such that no

code is hidden from the analysis.

• Precise: minimum data being incorrectly recognized as code.

The algorithm proposed in this thesis is termed “segmentation algorithm” and it

assures safe disassembly. It analyzes each byte for potentially starting an instruction and,

thus, finds all the code. Segmentation approach does not leave any code behind from

disassembling. For preciseness, it divides the program into segments to remove illegal

instructions.

 3

In an environment that is code intensive, there is a high possibility of data being

interpreted as code, since out of 512 possible Intel opcodes 398 are valid opcodes. Also,

since each byte can start a valid instruction, there is also a need to check on what we call

“Code Inflation,” (i.e., how many bytes are present in more than one instruction).

1.2 Research Objectives

The aim of this research is to propose and implement a disassembly method that

leaves no code behind from being disassembled, making it harder for malicious code or

obfuscated binaries to hide their code, thus raising the bar for hostile programmers.

1.3 Research Contributions

The main contribution of this thesis is a novel approach towards disassembly of

malicious and obfuscated binary executables. The main advance comes from a segment-

based framework that makes the disassembly process independent of flow analysis and

entry point location and, hence, difficult to attack by common obfuscation routines.

Instead of the traditional ordered instruction sequence, the output of the disassembler is a

collection of potentially overlapping segments, where each segment defines a unique

disassembly of some portion of the executable. The technique examines each and every

byte of the program, and it treats each byte as a potential instruction. The approach makes

a minimum number of assumptions and, hence, is more robust against obfuscation

attacks.

1.4 Impact of the Research

The proposed disassembly technique provides a novel disassembly method that can be

used to give more precise disassembly in the presence of obfuscations that use indirect

jumps, jump in the middle of instruction, self-modifying code, or control flow

 4

obfuscations. The segmentation-based disassembler can be used to augment the current

AV analysis systems, or to reverse engineer obfuscated code. The assembly code,

generated from the proposed disassembler, can then be fed to subsequent stages of the

pipeline shown in Fig. 1-1.

1.5 Organization of Thesis

Chapter 2 provides an overview of disassembly research problems and introduces the

main prior disassembly approaches. Intel instruction format and win32 binary executable

architecture are explained in chapter 3. The main segmentation algorithm is explained in

chapters 4 and 5. Chapter 4 introduces our framework for identifying segments of code

and chapter 5 describes heuristics to reduce false positives by pruning segments that lead

to data or other corrupt segments. Chapter 6 discusses the evaluation method and results.

Chapter 7 presents related work. Future Work and Conclusions are covered in chapter 8,

followed by the bibliography.

 5

2 Background

This chapter outlines the process of disassembling binary executables. It also

describes the goals and challenges for disassembling malware, along with providing an

overview of main prior disassembly techniques.

2.1 Disassembly Overview

Reverse engineering binary executables is a necessary step for rewriting binaries

for efficiency [20], or portability [11, 23]. It is also used for maintaining programs where

source code is not available, and for detecting malicious programs. Reverse engineering

may include recovering the inherent structure and design of program. Techniques for

recovering source from binary generally fall into two categories, i.e., either disassembly

[14, 17, 22, 24] or decompilation.

Almost all the antivirus groups use disassemblers frequently to analyze the

behavior of suspect programs [25]. The algorithms used in the disassemblers, however,

are not written with malicious program in mind. This leads to several problems due to

code obfuscation such as junk insertion and hiding target of jump instruction [15]. We

experienced this first hand, when studying the disassembly of the win32.evol worm,

using the leading commercial disassembler IdaPro [2]. The code of win32.evol makes a

jump into the middle of a valid instruction, throwing the disassembler and the

programmer off the trail of valid instructions. More generally, we may expect that using

technologies developed for a “friendly” programmer are unlikely to withstand “attacks”

from a “hostile” programmer.

2.2 Disassembly Challenges

Disassembly can be divided into two categories: dynamic disassembly and static

disassembly. During dynamic disassembly a program is executed, and during execution,

the instructions being executed are traced. A main drawback of this approach is that any

given run may trace through only a subset of the possible execution paths, and even after

several runs there is no guarantee that all the paths are executed. Take, for example, a

worm, which executes the malevolent payload only on certain dates. Static analysis

techniques can give more complete results for disassembly because they can analyze the

binary as a whole.

A major challenge in correctly disassembling malware is rooted in the von

Neumann architecture, where instructions are indistinguishable from data [13]. The

problem is perhaps worst for self-modifying code, where code is treated as data, and what

was once data becomes executable. A disassembly algorithm could fail, either by

incorrectly interpreting some instruction as data (False Negative) or by incorrectly

interpreting some data as an instruction (False Positive). When analyzing malicious code,

especially when the analysis is automated, false negatives may lead to an unsafe analysis,

i.e., the malicious parts of the code might be overlooked. On the other hand, false

positives can also be damaging by overwhelming the engineer or the tool analyzing the

binary.

Malware authors intentionally try to defect static disassembly. They use tricks like

jumping into the middle of a valid instruction or use many computed jumps which make

it difficult to determine the jump targets statically. Further tricks used to confuse

disassemblers include:

 7

� Junk insertion: Obfuscators or hostile programmers insert some “junk” bytes

between valid instructions to thwart the disassembly. These junk bytes are

normally never executed as they are jumped over.

� Using Exception Handlers to transfer control: An exception, such as an invalid

instruction or referencing a protected memory page, causes a trap or fault, which

the operating system catches and transfers control to code called exception

handler. This obfuscates jumps, which can cause disassembler to altogether miss

the code at the jump target

� Self-modifying code. Self-modifying code changes itself dynamically at runtime.

Static disassemblers would need to be able to compute the outputs in order to be

able to disassemble correctly.

� There are many other novel approaches proposed by [17] such as:

o Call conversion: This obfuscation technique changes the return location

of call instruction. The program does not return to the instruction just after

call rather it is manipulated to return at a predefined offset from the calling

location. The bytes between the offset and location just after call can be

filled by junk bytes to confuse disassembler.

o Opaque predicates: In this technique the obfuscators can change all the

unconditional jumps and call to conditional jumps and call. The branch

that is always taken is known. Malicious writers insert junk data on the

location of branch that is never taken.

o Jump table spoofing: Artificial insertions of jump tables that are not

visited at run time.

 8

2.3 Methodologies of Static Disassembly

Static analysis of a binary is done through methods that are termed either flow

sensitive or flow insensitive.

2.3.1 Flow Insensitive Analysis

Flow insensitive algorithms for disassembly do not take control flow of the

program in account. In particular they do not use control statements (jumps, calls etc) to

affect the choice of which bytes to disassemble. One widely used flow insensitive method

for disassembly is the Linear Sweep (LS) algorithm [17, 22-24]. LS starts disassembling

instructions from the first executable byte and continue disassembling it until either the

program end is reached or it encounters an invalid instruction code. In case LS

implementation encounters such an invalid code, it generally either terminates or

continues from the next byte.

Consider the sequence of 10 bytes illustrated in Fig. 2-1. In the figure each

column represents a byte, and each arrow represents an instruction. Bytes 5 and 6 are

junk bytes and are not part of the program code. LS starts disassembling from byte 0 and

would return Inst 0, Inst 1 and Inst2 as disassembly result along with bytes 5 and 6 (if

bytes 5 or 6 starts an instruction). A hostile programmer can craft bytes 5 and 6 to

confuse the disassembler, since now we get four instructions Inst 0, Inst1, Inst 2 and

instruction consisting of bytes 5 and 6.

Fig. 2-1. An exa

7

Inst 2

0 1 2 3 4 5 6 7 8 9

Inst 0
mple showing
Inst 1
jmp
disassembly drawbacks using Linear Sweep

9

Fig. 2-1 shows code of a variant of mass mailing worm beagle.h. Column 1

shows the output of the open source debugger Ollydbg, while column 2 shows the desired

disassembly. At location 0040A001 the length of the instruction is 5 bytes. LS assumes

that the next instruction starts at 0040A006 and disassembles from there, resulting in 5

byte call instruction (CALL E845648E,) and so the next disassembled instruction starts at

0040A00B which is a junk byte. The junk byte is also a 5-byte call instruction code,

which throws off disassembly because the next instruction is supposed to start at

0040A007. Since E8 is an opcode for call instruction, it looks like a legitimate instruction

starting at 0040A006. The virus writer chose E8 since he has to insert an opcode that

starts a valid instruction else LS can raise alarms.

Location Column 1 (Disassembly Ollydbg) Column 2 (Actual Disassembly)

 Hex Disassembly Hex Disassembly

0040A000 60 PUSHAD 60 PUSHAD

0040A001 E8 01000000 CALL 0040A007 E8 01000000 CALL 0040A007

…

0040A006 E8 83C404E8 CALL E845648E

0040A007 83C4 04 ADD ESP,4

…

0040A00A E8 01000000 CALL 0040A010

0040A00B 0100 ADD DWORD PTR DS:[EAX],EAX

Fig. 2-2. Obfuscation by junk byte insertion (Beagle.H)

2.3.2 Flow Sensitive Analysis

Flow sensitive analysis uses control flow information to determine which bytes to

disassemble. One of the widely used flow sensitive algorithms is Recursive Traversal

(RT) [11, 17, 22-24]. It starts disassembly at the program’s main entry point and

 10

disassembles linearly, but as soon as it hits a branch instruction, it jumps to target and

again starts disassembling from there. RT disassembles a program, by following all the

possible targets of branch instructions encountered. Consider again Fig. 2-2, if we follow

RT we get the correct disassembly as shown in column 2. Since at location 0040A001 it

will jump to location 0040A007 and starts the disassembly from there. Thus RT ensures

unreachable program code at location 0040A006 is not included in the disassembled

code.

The main weakness of Recursive Traversal is that it requires precise and accurate

control flow information, i.e., it must first precisely identify control flow successors for

each control transfer operation in the program. But determining correct control flow is

made extremely challenging by indirect jumps, indirect jumps via jump table that does

not have bounds check associated with them, and self-modifying code. There are cases

when a set of possible targets cannot be statically determined, and hence result in both

false positives (in case of overestimation of targets) and false negatives (in case of

underestimation of targets). Also RT can be defeated by inserting junk bytes just after a

call instruction. Since it assumes that control returns to the next instruction after a call.

 Fig. 2-3 illustrates the under and over-estimation of LS and RT, the results of LS

and RT are illustrated by inner gray ovals. Overestimation of targets can lead to target

locations that are not part of the code and thus can disassemble some data.

Underestimation on the other hand might miss target locations where valid code is

starting. We say disassembly is precise and safe if we don’t have any false negatives and

minimum false positives. The dotted oval shows the target of the proposed algorithm.

 11

Fig. 2-3. Comparison of target results of different disassembly techniques

Results from linear
sweep.

CODE Target of segmentation

Algorithm DATA
Results from
Recursive Traversal

2.3.3 Combined Linear Sweep and Recursive Traversal

A hybrid approach that combines both LS and RT is proposed by [22]. The hybrid

algorithm disassembles using Linear Sweep and verifies the disassembly a function at a

time, using Recursive Traversal. This approach, in some cases, can detect and identify

some of incorrect disassembly. This approach also fails in case of call conversion, opaque

predicates and self-modifying code.

2.3.4 Interactive Disassembly

Due to drawbacks of current algorithms, some reverse-engineering tools use

interactive disassembly techniques [2, 9]. One of the most powerful interactive

disassemblers is IDA-Pro [2]. The main advantage with interactive disassembly tools is

that the users can choose some bytes that they think might be code and start disassembly

from that point onwards. Interactive disassembly is primarily a manual process, but the

users are allowed to check validity of their thoughts. Interactive disassembly is laborious

and may be error prone due to human intervention.

 12

2.3.5 Disassembly Heuristics

LS and RT- based techniques also have false negatives as well as false positives.

To reduce these false negatives heuristics can be used to restart the disassembly in the

“gaps” of untouched bytes. One such heuristic is termed “Speculative Disassembly” [11].

In this technique, the undissassembled portions of the code are made targets of indirect

jumps and a “speculative bit” attached to the target is set. The disassembly of a particular

code area is stopped if an invalid instruction is encountered. The disassembly resumes

from the next byte. This heuristic, when augmented to LS and RT-based techniques, may

lower down the false negatives by finding all possible instructions in the “gap” area.

 13

3 PE Architecture and Intel Instruction Format

The path from a binary to disassembly consists of several steps that convert

sequence of bytes to assembly instructions such that it can be easily analyzed. Given a

sequence of bytes the conversion of bytes to intermediate representation depends upon

the choice of processor architecture. All architectures have certain opcode map for

mapping bytes sequence to instructions and vice versa. For our purposes we use Intel

architecture [3]. In order to reverse engineer a binary executable we need to understand

the steps involved in it. Since most of the virus attacks target PE (win32 portable

executable) files, we analyze and disassemble only PE files (although the methods

proposed should be readily extendible to DOS executables, ELF).

This chapter introduces:

• PE File format,

• Intel instruction format [3, 18], and the

• Intel Opcode Map [3]

3.1 PE file format

Fig. 3-1 shows the general layout of a PE file. All PE files starts with DOS MZ

header followed by a small program called DOS stub. The stub is the small program that

gives out an error message if the program cannot be run in DOS mode. Here we only

discuss the fields that are required to get the information of the byte sequence to be

disassembled. One of the important parts of PE file is the header that contains the time

and date stamp of PE file, the size of code, the address of entry point etc. Other

important parts to focus in PE files are the section headers contained in the section table.

PE executables are divided into chunks of bytes called “sections.” Each section has a

different attribute such as whether it is code or data or whether it is read or write enabled.

The number of entries in the section table is dependent upon the total number of sections

i.e. if there are n number of sections there will be n entries in the section table.

DOS “MZ” header
Contains the magic number “MZ” (0x 4d 0x 5a) in first two bytes. Last byte
contains offset of PE header

DOS STUB Contains small program saying “this program cannot be run in dos mode”.

“PE” header
Contains a magic number PE00 as starting 4 bytes. Info such as number of
sections, entry point, image base, time and date stamp etc

Section Table
Contains Headers for each section. Each Header contains information for
sections like size, RVA, name and characteristics stating it to be code or data
section.

Section 1
Section 2

…
Section n

Fig. 3-1. File format of a PE file.

Sections of PE file containing byte code. More than one
section can have same characteristics.

It is not necessary that a section be labeled as “data” or “code” since section can

contain both data as well as code. For disassembling, we need the sections and the

information about sections, such as virtual address of the section, size of the section, and

its real address in the file. All information about sections can be found in section header.

3.2 Intel Instruction format

Some knowledge of the instruction format of Intel is required to convert byte

sequences into meaningful assembly instructions. Intel instruction can vary in length

from one byte to fourteen bytes. The structure of every instruction is fixed, and illustrated

in the Fig. 3-2 [18].

 15

Instruction Prefix Opcode Mod R/M SIB Displacement Immediate

No of bytes 0 – 4 bytes 1 or 2 bytes 0 or 1 byte 0 or 1 byte 0 – 4 bytes 0 – 4 bytes

Fig. 3-2. Intel instruction format

An instruction can start with an optional prefix of up to four bytes. Instruction

prefixes modify default instruction behavior, i.e., they can force default segment of an

instruction or can override default size of machine word, to either 16 or 32-bit word.

Prefix also determines whether the following opcode is of one byte or two bytes.

Specifically, if prefix is “0x0F” the opcode is a two-byte opcode. An opcode decides the

primary format of an instruction. It determines whether there is further byte following the

opcode or the instruction is a one-byte instruction. An opcode also determine about

direction of operation.

If required, optional bytes, such as Mod R/M, SIB, displacement, and immediate

can follow the opcode byte. Mod R/M byte decides the addressing mode (direct/indirect

etc) of the operand. It specifies about the register to be used in the instruction and

indexing modes. Optional byte SIB (Scale Index Base) might follow Mod R/M byte to

extend the different addressing modes represented by Mod R/M. Fig. 3-3 shows the

architecture of both Mod R/M byte and SIB byte [4, 18]. Following formula is used to

compute the SIB value: “(index *2^scale) + base” and used for representing complex

addressing modes.

 16

Mod Reg/Opcode R/M

5

Examp

possibl

by the M

displac

Pre

Ins

The op

and me

bytes to

because

This ex

byte-se

7

Scale

Fig. 3-3. A

le showing interpretati

Mod byte is a two-bit

e values 00, 01, 10 or 1

od R/M value. For ex

ement byte following t

fix Opcode Mod R
 10001011 00000

truction: mov eax

Fig. 3-

Fig. 3-4 illustrates dis

code value specifies th

mory manager uses ma

 corresponding tables

 the Mod field is neith

ample highlights the n

quences to instructions
6 |
Index

rchitecture of Mod R/M

on of an instruction:

value (most significan

1. Which of the option

ample, the combinatio

he Mod R/M byte. Let

/M SIB Displa
100 10000101 01001

 , dword[4*eax+42

4. A 32 bit instruction and

assembly of a sequenc

at the instruction is a m

pping tables to map o

and interpret any instru

er 01 nor 10, yet there

eed for opcode maps, c

.

17
3 | 2
Base

byte and SIB byte

t bits in Fig. 3-3). It ca

al byte follows Mod R

n 01 or 10 in the Mod

s consider an example

cement
100 01111011 01000010

7b4c] = 8b04854c7

 its structure

e of bytes to an assemb

ov instruction. The X8

pcodes, Mod R/M byte

ction. This is an intere

 is a displacement byte

ontaining detailed rule
0

n have 4

/M is decided

 field leads to

.

 00000000

b4200

ly instruction.

6 processor

s and SIB

sting example

 following it.

s, to map

3.3 Intel Opcode Maps

X86 processors divide the instructions into three encoding groups, namely: 1-byte

opcode encodings, 2-byte opcode encodings, and escape (floating-point) encodings [3].

Section 3.2 discussed how prefix value affects length of opcode. If the opcode is not

preceded by prefix “0x0f” then it is a single byte opcode, and if the opcode is preceded

by “0x0f” prefix then it is a two-byte opcode. Each opcode has a lookup map associated

with it. For example, if the opcode is 0x08, then the associated table entry will be one of

ADD, OR, ADC, SBB, AND, SUB, XOR or CMP. If it is “0x0f 0x80” then the two-byte

opcode map is referenced instead and the instruction is jo (jump on overflow) in this case.

 The opcode map contains all the information about the byte following the opcode

if it is part of instruction. Specifically, for each value of opcode the map contains

information about register type, whether Mod R/M byte follows or not etc.

3.4 Addressing modes

X86 normally supports two addressing modes for its operands: direct and indirect.

It also provides unconditional and conditional branch or jump instructions. Examples of

conditional jump instructions are jz, je, loopne etc and examples of unconditional jump

instructions are jmp, call, ret etc. Both conditional and unconditional branches can jump

either directly or indirectly. Example of direct jmp is call 401000 where we know the

exact address that it jumps to, in case of indirect jump it can jump via registers as in call

eax.

 18

4 Segmentation Overview

A key contribution of this thesis is an algorithm for extracting maximal set of valid

instructions embedded in basic blocks (termed as segments). The key idea behind

segmentation is to find all the possible code in the executable by considering each byte as

potentially starting an instruction. The basic steps of segmentation algorithm are:

• Exhaustively check each byte for starting an instruction

• Create segments – sequences of instructions

• Chain segments – link segments based on jump targets

• Prune segments – remove segments leading to invalid instructions

 The segmentation approach does not rely on certain common assumptions like entry

point information and control flow information.

This chapter elaborates on the following points:

• Segmentation efficacy

• Segment structure

• Segment relationships

• Segment construction

• Overlap special cases

4.1 Segmentation Efficacy

In most prior disassembly approaches, it was effectively assumed that no byte

may belong to more than one instruction, and that a binary is effectively a contiguous

collection of non-overlapping instruction sequences. A key question to ask, however, is:

Can one byte be in two instructions?

Consider the byte sequence and control flows depicted in Fig. 4-1 and Fig. 4-2.

In the figures arrows indicate the start and ending bytes of instructions.

Fig. 4-1. Example showing control flow of program starting at byte 0

Inst 5Inst 4Inst 3Inst 2Inst 1

0 1 2 3 4 5 6 7 8 9

Fig. 4-2. Example showing control flow of program starting at byte 1

Inst 6’Inst 5’Inst4’Inst 2’Inst 1’

0 1 2 3 4 5 6 7 8 9

Inst 3’

Assume Fig. 4-1 represents what is considered to be a “correct” instruction set of

the program. If the disassembly is off by one byte due to incorrect disassembly of data

[17], we might get a different instruction set as shown in Fig. 4-2. Since, 398 out of

possible 512 opcodes in the Intel instruction set are valid, therefore Inst 1’, Inst 2’, and

Inst 3’ could potentially start valid instructions. Fig. 4-2 shows an instruction set starting

from byte 1. It can be seen that the disassembly “self-repairs” [17] itself at byte 6. The

existing disassembly algorithms would consider Fig. 4-2 to be the correct disassembly,

thereby missing the control flow of Fig. 4-1.

To overcome this limitation, it is necessary to consider each byte as potentially

starting an instruction. In our approach each byte could potentially start an instruction,

thereby presenting an exhaustive way of finding all possible instructions. Hence, it is

possible to find all disassembly paths in the binary. The pool of instructions generated by

 20

analyzing all the bytes gives the largest possible instruction set within the binary, i.e., the

algorithm cannot have any false negatives.

4.2 Segment Structure

Fig. 4-3 depicts the structure of a segment. Each segment is the maximal

sequence of instructions and is terminated by an instruction that represents transfer of

control such as jmp, call, loopne etc.

Fig. 4-3. Structure of a segment

Segment

inst (does not explicitly modify program counter (PC))

inst (does not explicitly modify PC)
.
.
inst(explicitly modifies PC)

All instructions implicitly increment the program counter by one address. We say

that an instruction explicitly modifies program counter (PC) if it is a control transfer

operation, i.e., PC does not point to the byte immediately after the instruction. For

example jmp, call and ret explicitly modify PC.

4.3 Segment Relationships

Since each byte may theoretically start an instruction, it may also start a segment.

The byte starting a segment is denoted as segStart; the byte ending a segment is denoted

as segEnd. A unique segment id segId is assigned to each segment.

The segStart and segEnd are actual locations of bytes in a binary file. For any two

segments Si and Sj, Si=Sj iff i=j, for all i, j >= 0. If j > i, then the starting byte of Si is less

than starting byte of Sj, i.e., in the binary file, segment Si starts prior to segment Sj. We

 21

call each segment a “potential segment”, until it is chained successfully (section 5) to

other potential segments, to regenerate the assembly code. These potential segments can

be categorized according to their properties as shown below.

1. Overlapping segment: For any Si, Sj, such that j > i, Sj.segStart < Si.segEnd

implies Si and Sj are overlapping segments.

∀ i,j, such that j>i and Sj.segStart< Si.segEnd ⇔ overlapping (Si,Sj)

2. Intermediate segment: Sj is an intermediate segment of Si iff j > i, and Si and Sj

are overlapping segments. Exactly one instruction is common in both segments.

and Sj.segEnd < Si.segEnd.

ji,∀ , j>i and overlapping (Si,Sj) and |Si ∩ Sj| =1 and Sj.segEnd < Si.segEnd ⇔

Intermediate(Sj, Si).

3. Master Segment: Segment Si is called a master segment if there exists a segment

Sj, such that Sj is an intermediate segment of Si.

∃ Sj.Intermediate(Sj,Si) => masterSegment(Si)

4.4 Segment Construction

Fig. 4-4 depicts the steps for segment creation starting from the byte B0. In the

figure the bytes shown in gray color are not analyzed for possible instruction start. S0 and

S1 are intermediate stages of segment creation, while S2 is the final segment.

 22

* B0, B3, B5 are visited bytes.
* S2 final segment.
* B5 modifies program counter.

Fig. 4-4. Steps of segment creation

S2

B0

S1

B0

B3
B2

B4

S0
B2

B0

B5

B3
B2

B4

B11

Each byte that starts an instruction may lead to a segment that is either valid or

invalid. Fig. 4-5 shows the life cycle of segment creation from S1 to S4. B0, B1 and B2

start valid instructions (shown by black brackets). The segment is represented by gray

bracket, in its various stages of development. Depending upon byte B3, the segment is

termed either a valid potential segment or an invalid/corrupt segment. If B3 is the byte

that starts a valid instruction then S4 is a valid potential segment. In case B3 does not start

any instruction S4 is an invalid/corrupt segment.

 23

 B0 S1 B0 S2 B0 S3 B0 S4

 * B1 B1 B1

 ** B2 B2

 *** B3

B0, B1, B2 starts valid instructions.
B3 does not start any instruction.
*, **, *** shows end of each instruction starting at B0, B1 and B2 respectively.

Fig. 4-5. Segment termination

The algorithm is shown in Fig. 4-6, and uses the following keywords and

methods:

potentialSegmentSize(b) : The algorithm assigns a value corresponding to each byte b

called potentialSegmentSize(b) or PSS(b) (read as potential segment size of byte b). PSS

of each byte is overloaded and has different meaning depending upon its value. There are

three cases for this

Case 1. potentialSegmentSize(b)=0 implies this byte does not start a valid

segment, i.e., a segment that has only valid instructions.

Case 2. potentialSegmentSize(b)=n, where n>0 implies, bytes b to b + n-1 form a

potential segment.

Case 3. potentialSegmentSize(b)=n, where n<0 implies the bytes from b+n

(which is less than b, since n<0) to b+n+potentialSegmentSize(b+n)-1 is

 24

a potential segment, if the potentialSegmentSize(b+n) is not equal to

zero.

getPotentialSegmentSize (byte Æ Int) gives the number of bytes following upto which,

there are, sequence of valid instructions that do not explicitly modify the program counter

(PC).

setPotentialSegmentSize (byte, int Æ void) sets PSS value corresponding to each byte.

We would typically need the longest “potential segment”.

masterSegmentStart (segment, int Æ void) represents the start of a master segment of an

intermediate segment.

 25

1.

2.

3.

4.

5.

6.

computePotentialSegment (b, size)

{

 if (!isVisited(b)) {

 setVisited(b, true);

 }

 if (getPotentialSegmentSize(b) < 0)

 {

 if(getPotentialSegmentSize(b+getPotentialSegmentSize(b))==0)

 {

 /* corrupt segment. Delete ongoing segment and exit */

 setPotentialSegmentSize ((b-size), 0);

 } else { /* instruction part of segment terminate ongoing segment and return */

 setPotentialSegmentSize((b-size), size);

 masterSegmentStart(this,b+getPotentialSegmentSize(b));

 }

 } else if (!isStartsInstruction(b)) {

 /* corrupt segment. Delete ongoing segment and exit */

 setPotentialSegmentSize((b-size), 0);

 } else if (modifiesPC(b)) {

 /* end of segment found */

 setPotentialSegmentSize(b, -size);

 /* mark beginning of segment at b-size */

 setPotentialSegmentSize((b-size),(size + instructionSize(b)));

 } else {

 setPotentialSegmentSize(b, -size);

 local_size=instructionSize(b);

 computePotentialSegment(b+local_size, size+local_size);

 }

}

Fig. 4-6. Pseudocode for segmentation algorithm, Leftmost column specifies code waypoints

 26

main()
{
 Segment segArr[];

 for (i = 0; i< length(program); i++) {
 setVisited(i, false) ;
 setPotentialSegmentSize((i), 0);
 }

segArr=new Segment(length(program));

 for (i = 0; i<length(program); i++) {
 if (!isVisited(i)) {

segArr[i].computePotentialSegment(i,0);
/* if segment exists */
 segArr[i].segStart= i;
segArr[i].segId=i;

}
}

Class segment
{
 int segStart=-1;
 int segEnd=-1;
 int segId=-1;
 int masterSegment=-1;
}

Fig. 4-7. Main program pseudocode for computing segments

4.5 Explanation of algorithm waypoints

The segmentation algorithm is a recursive process. The objective of the

segmentation algorithm is to divide the disassembly into chunks of valid segments, where

each segment represents a sequence of valid instructions. The algorithm starts the

disassembly from a particular starting byte of the program (in the case of PE file it is the

first byte of code section) and tries to form segments. In the process of creating a

segment, each byte encountered will be flagged as visited. The algorithm analyzes each

byte for the following properties.

• Checks whether the byte start an instruction or not.

• If the byte “b” starts an instruction “I”, then the algorithm checks for one of the

three properties for the instruction “I” to hold.

 27

1. If the instruction “I” modifies the PC explicitly, the byte is marked as an

end of segment.

2. If “I” does not modify the PC, it is examined to determine if it is part of

any existing segment. If “I” belongs to any existing segment, the byte “b”

is marked as last byte of the segment. The current segment is marked

intermediate segment and the existing segment is marked as the master

segment.

3. If the instruction is neither part of any existing segment nor it is a PC-

modifying instruction, it is added to the current segment under formation.

For example, instructions starting from B0, B1, and B2 in Fig. 4-5 are all

added to segment S4, which is under formation.

The program visits each byte only once; this makes the analysis of program linear,

depending upon file size. The program disassembles linearly until it hits a data byte, or an

instruction that modifies PC or any instruction that is part of other existing segments. The

left-most column of Fig. 4-6 depicts the algorithm waypoints.

� Waypoints 1, 2, 3. A negative potential segment size value of a byte represents

that it had been visited. If it is visited, there are two cases: either the byte is part of

any existing segment or it is a data byte. A byte is a data byte if it does not start an

instruction or is a part of a corrupt segment. If the current byte being examined is

part of an already existing segment, then the byte as well as the segment under

formation, is designated a master segment. The current byte is then marked as the

end byte of the segment.

 28

� Waypoint 4. If the byte being analyzed in the current segment does not start an

instruction, the potential segment size associated with the byte starting the

segment (say B0) is assigned zero. This denotes that B0 does not start any

segment.

� Waypoint 5. If we encounter a byte B1 that starts an instruction that explicitly

modifies PC, we assign the byte B0 the length of segment equal to the address

offset between B0 and B1. Positive value at B0 denotes that B0 start a segment of

specified positive length.

� Waypoint 6. The program is called recursively until the end of segment is found

or it hits a data byte. The negative PSS value assigned to a byte denotes that byte

does not start a segment rather is a part of some segment.

Here, each byte is analyzed only once therefore the complexity of the algorithm is

O(N), where N is the number of bytes in the program.

4.6 Segment Overlaps and Special Cases

While analyzing every byte of the program for starting a segment, the analysis

may generate many overlapping segments that may or may not be part of the code. To

understand an overlapping segment, let’s consider the example in Fig. 4-8. In the figure,

B.segStart < A.segEnd, where A and B are overlapping segments (see section 4.2). A

starts at byte 0 while B starts at byte 1 (shown with curly braces). The actual control flow

of the program is shown with black arrows, while the gray arrows represent secondary

control flow, starting from byte 0. Byte 0 is a data byte that generates an instruction along

with byte 1.

 29

Fig. 4-8. Illustrative example of segment overlaps

Segment Length = 4

Segment Length = 5

0 1 2 3 4

There are several cases that may occur when segments overlap:

1. Fig. 4-9 illustrates the case where B is merging into A at point I’, where I is not

an instruction of A. If the first instruction I in Segment B is also an instruction of

Segment A, then segments A and B must end in same byte. In this case the

algorithm would consider A as primary segment and discard B.

2. If I is not an instruction of A then B and A are Overlapping Segments. The first

instruction where B “self-repairs” [7] and merges into A, is the end of segment B

(I’ in Fig. 4-9). B in this case is an intermediate segment while A is a master

segment.

3. In case B merges into an invalid segment A, B is also marked as invalid.

Fig. 4-9. Example showing special case o

 B

I

A

 30
I’
f overlapping

4.7 Illustrative Example

Fig. 4-10 shows an example byte sequence and the target assembly. Fig. 4-11

shows the disassembly generated by our algorithm.

Memory Byte Hex Equivalent of Instruction Assembly Code

401000
401005
401008
40100d
401013
40101d
401022

b8 04 00 00 00
83 c0 06
a3 33 20 40 00
01 05 37 20 40 00
c7 05 3b 20 40 00 00 00 00
b8 30 10 40 00
ff e0

mov eax,4
add eax,6
mov x,eax
add y,eax
mov counter,0
lea eax,label1
jmp eax

Fig. 4-10. Example 2: excerpt of assembly code from a sample program

The above code is an initialization code that finally jumps to label1 to start the

processing. This code excerpt is a simple indirect jump. To disassemble the code, label1

might be calculated using data flow analysis.

Fig. 4-11 shows the segments that are created after using the segmentation

algorithm. All the segments are numbered in ascending order according to their starting

address. Segments 1 and 8 are normal segments that end with instructions that modify the

PC explicitly. Grey blocks denote end of a segment.

Whenever any two segments have the same ending instruction, they form an

intermediate-master segment pair. For example, segment 2 is an intermediate segment of

segment 1, it meets segment 1 at location 401005. Segment 2 is thus an intermediate

segment of segment 1. Similarly segments 3, 4, 5, 6, 7, and 9 are intermediate segments

to segment 1. Although, segment 8 overlaps with segments 1, 7, and 9 it is not an

intermediate segment of any of them. If the disassembly had been off by 2 bytes (due to

any disassembly error), the disassembly would start at 401002 and continue until

 31

instruction 40100d (self-repairing point). In such a case, the true instructions are missed

if any of the linear sweep or recursive traversal methods is used; the segment algorithm

gives all the possible sequences of code. It thus leaves no code behind from

disassembling. Also, note that each byte can belong to up to 4 segments in this case.

Address
(Bytes) Hex Segment 1 Segment 2 Segment 3 Segment 4

401000: b8 mov eax, 4
401001: 04 add al, 0
401002: 00 add byte[eax], al
401003: 00 add byte[eax], al
401004: 00 add[ebx+33a306c0],al
401005: 83 add eax, 6 add eax, 6
401006: c0 rol byte[esi], -5d
401007: 06 push es
401008: a3 mov dword[402033],eax mov dword[402033],eax
401009: 33 xor esp,dword[eax]
40100a: 20 and [eax+0], al
40100b: 40 inc eax
40100c: 00 add byte[ecx], al
40100d: 01 add dword[402037],eax add dword[402037], eax
40100e: 05 add eax , 402037
40100f: 37 aaa
401010: 20 and [eax+0], al
401011: 40
401012: 00
401013: c7 mov dword[40203b],0 mov dword[40203b],0 mov dword[40203b], 0
401014: 05
401015: 3b
401016: 20
401017: 40
401018: 00
401019: 00
40101a: 00
40101b: 00
40101c: 00 add[eax+401030],bh
40101d: b8 mov eax , 401030
40101e: 30 xor byte[eax], dl
40101f: 10 adc [eax+0], al
401020: 40 inc eax
401021: 00 add bh , bh
401022: ff jmp eax jmp eax jmp eax
401023: e0 loopne near ptr 401080

Fig. 4-11. Effect of applying segmentation algorithm on given code block, Grey area shows end of segment.

321

5

64

9
8

7

 32

5 Segment Pruning via Segment Chaining

The segmentation algorithm divides the disassembly into chunks of segments

containing valid instructions. It finds all the potential valid segments in the code and

discards the invalid segments. However, overlapping segments can generate false

positives. Segmentation deletes some segments that lead to invalid instructions;

however, in order to delete the potential segments that lead to invalid segments, other

methods are required. We use chaining to delete the segments that cannot logically be

real. This allows regeneration of precise assembly. This chapter elaborates on the

following points:

o Segment Chaining

o Segment Pruning

5.1 Segment-Chaining

A segment can either terminate at an instruction that explicitly modifies the PC, or

it can be an intermediate segment. In the former case, it is possible to chain the segments

through direct jumps or calls. For example when a segment A ends with an explicit jump

(direct jump) to segment B. It can be chained to the beginning of B. We then say,

“Segment A points to segment B” or “Segment A leads to segment B” or “segment A

points to byte b” (byte b does not start a segment).

While chaining a segment S, if some segment in the path is pointing to a bad byte

or data byte (i.e. byte does not start a segment) we discard S. We also discard all the

segments pointing to S. Fig. 5-1 depicts various stages of segmentation. The chaining

stage shows segment chaining by direct jumps. While the pruning stage shows the result

of pruning in case the jump target of some segment is a corrupt byte or byte that does not

start any segment.

Create Chain Prune

B5

B11

B3
B4

B0

B2

SB5

B11

B5

B11

B3
B4
B3
B4

B0

B2

B0

B2

S

Fig. 5-1. Various stages of segmentation

Since we make an intermediate segment point to its master, the intermediate

segment points to the same target locations where its master is pointing. If the master

segment is pruned in the chaining process, we delete all the intermediate segments of this

master segment. In a close to linear traversal of the segments, we can identify and discard

most potential segments that lead to the non-instruction byte. Fig. 5-2 and Fig. 5-3 show

the algorithm to connect all the segments as “one chunk” and it prunes all the segments

that lead to a non-instruction.

5.2 Algorithm: Chaining and Pruning

Chaining finds all the segments and connects them through edges determined by

direct jump targets. In case the target location of a segment S is corrupt or an invalid byte

S gets pruned, then all the segments pointing to S also gets pruned. The segment can end

by any one of the four types of instruction:

• Conditional direct jump,

 34

• Unconditional direct jump,

• Indirect jump (not handled by chaining algorithm) or

• Any arbitrary instruction (Segment is an intermediate segment)

The following steps trace through the waypoints shown in the Fig. 5-2.

1. The positive PSS value v for any byte b denotes start of a segment of length v.

2. If the last instruction of a segment S is either the conditional or unconditional

direct jump, the target location is verified for starting a valid segment S’. In

case S’ is a valid segment S is chained to starting location of S’. Otherwise S

is discarded.

3. In case the last instruction of a segment S is a conditional jump, the next byte

(jbNext) to the branching instruction is also verified along with jump target

(jb) for potentially starting a segment S’’. If it starts a segment then S and S’’

are chained. If both jb and jbNext do not start valid segments, then S is

discarded.

4. If the last instruction of a segment S is any arbitrary instruction that does not

explicitly modify PC, it implies that S is an intermediate segment of a master

segment M. In such a case, we chain S with starting location of M.

 35

1.

2.

3.

4.

for (i = 0; i< length(program); i++)
{
jbNext=-1;
 if (getPSS(b)>0)
 {
 if (last instruction of Segment(b) is a direct jump)
 {
 jb = address of the target of the jump;
 if (conditional jump)
 { jbNext = next byte after segment(b); }
 if (validAddress(jb))
 {
 if (getPSS(jb) == 0 && jbNext == -1)
 deleteSegment(b);
 else if (getPSS(jb) > 0)
 create an edge from b to jb
 else if (getPSS(jb) < 0)
 create an edge form b to jb + getPSS(jb)
 }
 if (validAddress(jbNext)
 {
 if (getPSS(jb) == 0 && getPSS(jbNext) == 0)
 deleteSegment(b);
 else if (getPSS(jbNext) > 0)
 create an edge from b to jbNext
 else if (getPSS(jbNext) < 0)
 create an edge form b to jbNext + getPSS(jbNext)
 }
 if (! (validAddress(jb) && validAddress (jbNext)))
 deleteSegment(b);

 } else if (last instruction of Segment(b) does not modify PC) {
 create an edge from b to masterSegment(jb);
 }
 }
 }

Fig. 5-2. Pseudocode for segment-chaining algorithm, Leftmost column specifies code waypoints.

 36

deleteSegment(b)

{

 for each segment i having edge to segment b

 { deleteSegment(i); }

 Segment(b)=null;

}

Fig. 5-3. Pseudocode for deleting a segment

5.3 Example: Segment Chaining and Pruning

Fig. 5-4 shows some cases of segments and how the chaining and pruning is done

to these segments to reduce the false positives. The figure is showing chaining and ripple

effect in deleting the invalid segments when a segment hits a bad byte.

 *

 **

 S S S S

 B B

* Unconditional direct jump to segment S
** Instruction does not modifies PC (intermediate segment)
*** Direct jump to byte B (byte B does not start any segment)

Fig. 5-4. Example showing segment pruning by chaining

Fig. 5-4 depicts a segment in its various stages of chaining. A deletion of an edge leads

to deletion of the segment. Deletion is marked by symbol X on the edges.

 37

6 Evaluation and Results

This section presents the performance evaluation of the proposed algorithms and

highlights the limitations faced by them. The experimental setup for the evaluation is also

presented. The main aim of this experiment is to study the percentage of valid

instructions and the percentage of reducible false positives in a given binary, after

applying the proposed algorithm. We divide the binaries into three different classes: first

is class of clean Windows executables (e.g. notepad.exe), second is a class of malicious

executables, and finally a class of non-executable† files. The evaluation measures of

interest are: number of valid instructions in a binary (baseline), amount of false positives

with respect to baseline, effect of chaining/pruning on these measures, and amount of

code inflation.

6.1 Theoretical Limitations and Assumptions

In the game of obfuscation/deobfuscation, the fewer assumptions the disassembler

makes, the harder it is for hostile programmers to attack the static analysis. The main

threat in the context of malice is missing malicious code. False positives might give an

imprecise disassembly, but false negatives are the real threats, that give unsafe

disassembly. Our proposed solution does not give any false negatives, if the binary

satisfies certain assumptions.

6.1.1 Attacking the Assumptions

This subsection discusses the limitations of our solution, and how malicious code

writers can attack it. Let’s look at the code snippet from worm Netsky.Z

† Non-executable files include image files as well as compressed files.

� Self-modifying code: The example in Fig. 6-1 shows code that self modifies

itself as it executes. Self-modifying code can cause disassemblers to miss some

code because the instructions are generated at runtime, so what once was data

could become code in the future and vice versa. Prior algorithms silently fail after

giving few disassembled instructions as evident from Fig. 6-1, which shows

disassembly results from an open source debugger Ollydbg. It stops

disassembling after location 00403E6F. Disassembling starting at each byte may

miss only the instruction starting at 00403E6E. However, self-modifying code can

increase false negative manifolds if the code shown is repeated or tweaked

slightly and then repeated. The segmentation algorithm cannot handle this attack.

Location Column 1 Column 2

 Hex Disassembly Hex Disassembly

00403E5F B8 6E3E4000 MOV EAX, 00403E6E B8 6E3E4000 MOV EAX, 00403E6E
…
00403E64 8000 28 ADD BYTE PTR DS:[EAX],28 8000 28 ADD BYTE PTR DS:[EAX],28
…
00403E67 40 INC EAX 40 INC EAX

00403E68 8100 67452301 ADD DWORD PTR
DS:[EAX],1234567

8100 67452301 ADD DWORD PTR
DS:[EAX],1234567

…
00403E6E 90 NOP B8 32BC5C00 MOV EAX, 005CBC32
00403E6F CB RETF
00403E70 76 DB 76
00403E71 39 DB 39
00403E72 FF DB FF
00403E73 50 DB 50 50 PUSH EAX

Fig. 6-1. Runtime self-modifying obfuscation (Netsky.Z)

� Structured exception handling (SEH). Exception handling in windows is like a

try catch block in Java where whenever an exception is raised in try block it is

caught in the catch block. In Windows programming the programmer can

associate a handler to each exception. Whenever any particular exception is

raised, the corresponding handler code is invoked. Exception handling can also be

 39

used to confuse the jump target. Malicious code writer can craft an exception to

confuse disassembler inserting the malicious code at the location of the handler.

Neither the current algorithms nor the proposed algorithm can deal with such a

situation. Fig. 6-2 gives an example of exception handling used to hide malicious

code.

Location

Hex Disassembly
00403E5F B8 6E3E4000 MOV EAX, 00403E6E
…
00403E64 8000 28 ADD BYTE PTR DS:[EAX],28
…
00403E67 40 INC EAX
00403E68 8100 67452301 ADD DWORD PTR DS:[EAX],1234567
…
00403E6E B8 32BC5C00 MOV EAX, 005CBC32
…
00403E73 50 PUSH EAX
00403E74 64FF35 000000 PUSH DWORD PTR FS:[0]
00403E7B 648925 000000 MOV DWORD PTR FS:[0],ESP
00403E82 33C0 XOR EAX,EAX
00403E84 8908 MOV DWORD PTR DS:[EAX],ECX
00403E86 90 NOP

Fig. 6-2. Obfuscation through exception handling

 At location 00403E82 the virus writer set eax to 0 and the next instruction at

location 00403E84 accesses the memory location 0, this will raise a divide by zero

exception that is handled by the handler at location 005CBC32. At this handler location

the virus writer puts the malicious code hidden from all disassemblers.

6.1.2 Attacking the Implementation

Code outside the code sections: In ordinary binaries, code is normally restricted to

the code sections. However, in the case of viruses and worms code may generally be

contained in data sections. Our current implementation assumes that all the code is found

in the code sections and code in data sections will not be found.

 40

Alignment byte spoofing: Alignment bytes are frequently used to align code to

page boundaries. They are commonly found either in the form of 0x00s or sequence of

0xCCs. However, 0xCC is also a one byte instruction int 03, and 0x00 followed by

another 0x00 makes a two byte instruction add byte[eax]. Our current implementation

assumes that after X bytes in succession, the bytes form either a data block or an

alignment block. Hostile programmers could craft extra byte sequences using these

alignment bytes, so that the disassembler assumes it to be a data block and does not

disassemble it. Nonetheless, the threshold length is an implementation-specific parameter

that can be changed, so it could easily be increased to catch the instruction, although

doing so may result in increased false positives on data blocks. On a positive note,

attacking disassemblers in such a way might greatly increase the size of the executable,

something, which hostile programmers generally try to avoid.

6.2 Experimental Setup and Analysis

The aim of this study is to analyze disassembly results when the proposed

algorithm is applied on different classes of binaries or data files. The results would be

used to understand the differences between clean, malicious and non-executable data

files.

6.2.1 Setup

For analysis of a binary file, we need a disassembler and a collection of binaries.

We developed a Java based plugin-disassembler using Eclipse PDE (Plugin development

environment). To parse the PE header, we attached C code provided by Sang Cho [10] to

the disassembler using JNI [8, 12, 16]. In order to parse the instructions, Intel instruction

information is gathered from Intel Architecture Software Developer's Manual [3].

 41

6.2.2 Analysis Parameters

The results presented here are the statistical outcome of multiple runs of

segmentation algorithm, on different pools of binary files. The following parameters are

calculated to study the results.

I. Total Valid Instructions (TVI): The instructions disassembled before the

segmentation algorithm is applied are Total Valid Instructions in a binary. TVI

indicates maximum number of instructions possible in a binary starting from each

byte, excluding alignment bytes. This parameter shows the statistical differences

of TVI depending upon file size and file class.

II. Reduction in false positives (RFP) before and after chaining: Segmentation

algorithm divides the program in segments. The instructions that are not part of

these segments are invalid. This leads to reduction of instructions from initial set

TVI. Let R1 represent total number of instructions in valid segments, where, R1 is

a subset of TVI. The ratio 1 – (R1: TVI), depicted by R2, gives the percentage

reduction in the instructions due to segmentation.

Chaining further removes the valid segments and hence further reduction

of valid instructions from the set R1. The subset of R1 thus created is termed R1’.

R1’ and R2’ represent the results due to chaining. The instruction count

information before and after segmentation shows the reduction in target locations

of possible indirect jumps and gives the estimate of code that has to be analyzed

even if brute force approach as this one is used. It is very hard to hide instructions

by using junk insertion or jump in the middle of other instructions as we analyze

each byte using brute force.

 42

III. Segment Pruning (SP) through chaining: “Number of segments present in the

code,” is another metric for analysis of performance of proposed algorithm. The

more segments are removed during chaining, the more unique disassembly is

generated.

R3 represents the total number of valid segments that are created after

segmentation, whereas R4 is the percent of valid segments in the binary. Only

instructions in the set TVI take part in creating segments. The percentage of valid

segments is the ratio between valid and total segments wherein total segments

contains both valid and invalid segments. Note that Invalid segments are segments

terminated due to hitting some data byte during initial segmentation. R3’

represents the decrease in segments due to segment chaining. If the decrease is not

significant, we would require more heuristics measures to further remove the

invalid segments.

IV. Code Inflation Index (CII): Since dealing with each byte for the possibility of

instruction start, it is possible that a byte may belong to more than one instruction

and, thus, more than one segment. Whenever a byte belongs to more than one

segment, it is counted twice towards the code. Such inflation of code might

provide interesting statistical data. The ideal target of algorithm is to keep the

results close to one so that no one byte can finally belong to more than one

instruction. In that case, we get a unique disassembly. CII or Code Inflation Index

represents the number of segments to which each byte belongs. Only the bytes

present in segments duplicate the code. So, if the file size is 10 bytes and if CII is

two, it does not mean that the disassembled code size is 20 bytes. However, if

 43

seven out of ten bytes are present in valid segments, then the disassembled code

size will be 14 bytes with value of CII equal to two. R5 and R5’ represents the

values of CII before and after chaining.

6.2.3 Data Analysis: “Clean” Executable

The following collection of windows executables were tested for the above

discussed analysis parameters: cat.exe, cut.exe, gcc.exe, grep.exe, javac.exe, notepad.exe,

eclipse.exe, calc.exe, winmine.exe. The result for these binaries is shown in Table 6.1.

Table 6-1. Results: Clean Executable (instruction, segments, and overlaps)

Instructions
(RFP)

Segments
(SP)

Code Inflation
(CII)

Before
chaining

After
chaining

Before
chaining

After
chaining

Before
chaining

After
chaining

Filename
(.exe)

File
Size
(In

byes)

Total Valid
Instructions

(TVI)

R1 R2 R1’ R2’ R3 R4 R3’ R4’ R5 R5’
Cat 17,408 13,070 10,761 82.33 8,747 66.92 3,697 81.11 3,090 67.79 2.86 2.65
Cut 18,944 14,547 12,581 86.48 10,268 70.58 4,560 84.47 3,823 70.82 2.96 2.73
Javac 28,794 7,979 6,319 79.19 6,122 76.72 2,115 75.88 2,048 73.48 2.79 2.77
Notepad 50,960 23,898 19,356 80.99 18,702 78.26 7,383 78.74 7,154 76.3 2.77 2.72
Gcc 82,432 70,360 54,559 77.54 46,491 66.07 20,210 75.89 17,828 66.95 2.67 2.52
Grep 85,504 72,811 58,640 80.53 53,707 73.76 20,302 75.27 18,711 69.37 2.76 2.67
Eclipse 86,016 49,769 42,326 85.05 39,722 79.81 14,701 81.55 14,037 77.86 2.82 2.69
Calc 91,408 69,346 45,262 65.26 43,833 63.21 17,623 67.1 17,152 65.3 2.57 2.54
Winmine 96,528 13,375 11,072 82.78 10,530 78.72 4,163 79.9 3,992 76.62 2.76 2.7
Average 61,999 37,239 28,986 77.83 26,458 71.04 10,528 77.76 9,759 71.61 2.77 2.66

* Note: Ri denotes results before chaining and Ri’ denotes result after chaining

• R1 = Instructions in valid segments.
• R2 = % Instructions constituting valid segments (CODE) = (R1/TVI) *100
• R3 = Total valid segments.
• R4 = Percent valid segments = (R3/ Total segments)*100
• R5 = Number of segments to which each byte belongs.

The columns for Total Valid Instructions, Instructions, Segments and Code

Inflation show the values of analysis parameters TVI, RFP, SP and CII respectively. Note

that in case of intermediate-master segment pair we can have one instruction in more

than one segment such instruction is counted only once as a part of master segment.

 44

Table 6-1 depicts that in case of clean executables average TVI is approx. 60%

(Avg. TVI / Avg. File Size) i.e. if file size is N bytes, 0.60(N) bytes may start valid

instructions. However, after segmentation actual instructions in the segments is approx

78% of 0.60(N). This implies that segmentation further removes approximately 22% of

the false positives in case of clean windows executables. The reduction is shown by

average value of R2 in the table. The results of RFP after chaining depicts that R2’ is

71.04 % i.e. a further drop of approx. 7 %.

Fig. 6-3 shows the actual reduction of invalid instructions. We got the highest

reduction in instructions for calc.exe for which we got almost 37% reductions. Average

reduction for the test runs is 28.96 % (that is the amount of definite data found).

0

10,000

20,000

30,000

40,000

50,000

60,000

70,000

80,000

ca
t

cu
t

java
c

Notepad
gcc grep

Eclip
se Calc

Winmine

N
um

be
r o

f i
ns

tr
uc

tio
ns

Total
Instructions
(TVI)

Valid
instructions after
segmentation
(R1)
Instructions after
chaining (R1')

Fig. 6-3 Pruning of invalid instructions: clean executables

Fig. 6-4 depicts the results of SP (Segment Pruning) due to chaining. The results

show that approximately 30% of segments on the average are reduced due to

segmentation followed by chaining in the “clean” executable.

 45

0

5,000

10,000

15,000

20,000

25,000

Win3
2.e

vo
l

ca
t

cu
t

jav
ac

Note
pa

d
gc

c
gre

p

Eclip
se Calc

Winm
ine

File Names

N
um

be
r o

f v
al

id
 s

eg
m

en
ts

Before Chaining
(R3)

After Chaining
(R3')

Fig. 6-4 Segment comparisons: clean executables

Fig. 6-5 shows code inflation index of each file. The statistical data presented here show

that the average CII after segment chaining is applied is 2.178.

1.95

2

2.05

2.1

2.15

2.2

2.25

2.3

2.35

cat cut javac Notepad gcc grep Eclipse Calc Winmine

File names

C
od

e
in

fla
tio

n
in

de
x

Code inflation index before chaining Code inflation index after chaining

Fig. 6-5. Code inflation index: clean executables

It implies that even after applying segment chaining there are false positives that have to

be removed.

 46

6.2.4 Data Analysis: “Malicious” Executable

The analysis parameters were again tested for the following malicious executables

in order to compare the results with clean files. The collection of malicious executables

includes win32.evol.a, win32.volcano, win32.donut, win32.parvo.a, win32.driller,

win32.etap, and win32.apparition. Table 6-2 shows the results for these malicious

binaries.

Table 6-2 Results: Malicious Executable (instruction, segments, and overlaps)

Instructions
(RFP)

Segments
(SP)

Code Inflation
(CII)

Before
chaining

After
chaining

Before
chaining

After
chaining

Before
chaining

After
chaining

Filename
(.exe)

File Size
(In byes)

Total Valid
Instructions

(TVI)

R1 R2 R1’ R2’ R3 R4 R3’ R4’ R5 R5’
Evol 12288 5655 4689 82.91 4549 80.44 1788 79.08 1736 76.78 2.126 2.104
vulcano 12288 5199 4181 80.41 3993 76.80 1489 78.53 1411 74.41 2.12 2.11
donut 12800 5480 3034 55.36 3031 55.31 1151 58.27 1148 58.12 1.87 1.87
Zombie 19131 8848 2204 61.52 2006 56 831 63.19 773 58.78 2.15 2.08
parvo 80093 3147 2261 71.84 2250 71.49 893 69.98 886 69.43 2.05 2.05
Zmist 86016 41539 28126 67.7 27031 65.07 10587 65.87 10203 63.48 2.15 2.12
driller 94208 82390 77843 94.48 10386 12.60 4518 71.14 3888 61.22 1.18 1.93
Stepar 150528 14141 11161 82.24 10432 76.87 4061 78.97 3838 74.64 2.22 2.16
etap 160256 39184 33715 86.04 32897 83.95 12618 83.53 12368 81.88 2.36 2.33
Apparition 542861 36583 29786 81.42 24136 65.97 10500 77.49 8911 65.76 2.15 2.01
Average 117046.9 24216 19700 61.14 12071 49.84 4843 72.58 4516 68.43 2.04 2.07
* Note: Ri denotes results before chaining and Ri’ denotes result after chaining

• R1 = Instructions in valid segments.
• R2 = % Instructions constituting valid segments (CODE) = (R1/TVI) *100
• R3 = Total valid segments.
• R4 = Percent valid segments = (R3/ Total segments)*100
• R5 = Number of segments to which each byte belongs.

Fig. 6-6 shows the actual reduction of invalid instructions. We got the highest

reduction in instructions for driller.exe for which the reduction is approximately 87%.

Average reduction for the test runs is 50.14% (100% - 49.84%). Approximately 21%

increase over results from clean files.

 47

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

Evol vulcano donut Zombie parvo Zmist driller Stepar etap Apparition

N
um

be
r o

f v
al

id
 in

st
ru

ct
io

ns

Total Instructions

Valid instructions after
segmentation (R1)

Instructions after chaining
(R1')

Fig. 6-6 Pruning of invalid instructions: malicious executables

Fig. 6-7 depicts results of SP (Segment Pruning) due to chaining. The results

show that approximately 33% of segments are reduced due to segmentation followed by

chaining the “malicious” executable.

0

2000

4000

6000

8000

10000

12000

14000

Evol vulcano donut Zombie parvo Zmist driller Stepar etap Apparition

N
um

be
r o

f v
al

id
 s

eg
m

en
ts

Before Pruning (R3)

After Pruning (R3')

Fig. 6-7 Segment comparisons: malicious executables

Fig. 6-8 shows code inflation index of each file. The statistical data presented

here shows that the average CII after segment chaining is applied is 2.07.

 48

0

0.5

1

1.5

2

2.5

Evol vulcano donut Zombie parvo Zmist driller Stepar etap Apparition

C
od

e
In

fla
tio

n
In

de
x

CII before
chaining (R5)

CII after
chaining (R5')

Fig. 6-8 Code inflation index: malicious executables

6.2.5 Data Analysis: Non-Executables

In order to see whether we can classify a binary file in one of the clean, malicious

or non-executable category, using just the results from the proposed algorithm, we need

data analysis of non-executables as well. The pool of non-executables consists of eight

image files and two encrypted files that use data segments as well. The images are further

divided as four JPGs and four GIFs (converted from same jpgs) for generality of results.

Table 6-3 Image files used for data analysis.

Tomcat Jesus Solar Navy_Sub

Table 6-3 illustrates the images used as a binary input to the disassembler. The

tool used to convert JPGs to GIFs is ReaConverterPro [1]. The limitation of the current

algorithm is evident from Fig. 6-9 in case of the two compressed executables namely

Crypto and Sentinel.

 49

Table 6-4 shows the actual reduction of invalid instructions. We got the highest

reduction in instructions for navy_sub.jpg for which the reduction is approximately 48%.

The average reduction for the test runs is 45.87%.

Table 6-4 Results: Non-Executable (instruction, segments, and overlaps)

Instructions
(RFP)

Segments
(SP)

Code Inflation
(CII)

Before
chaining

After
chaining

Before
chaining

After
chaining

Before
chaining

After
chaining

Filename

File
Size
(In

byes)

TVI

R1 R2 R1’ R2’ R3 R4 R3’ R4’ R5 R5’
sentinel_A 16384 547 540 98.72 57 10.42 121 97.58 22 17.74 2.50 1.35
solar.jpg 25382 19756 9370 47.42 9070 45.91 3800 49.03 3700 47.74 1.89 1.86
crypto 49152 326 226 69.33 222 68.10 93 69.40 92 68.66 1.86 1.87
Tomcat.jpg 49641 43984 25734 58.50 24764 56.30 10367 58.66 10062 56.94 1.90 1.88
jesus.jpg 67260 60269 34573 57.36 33561 55.68 13784 57.28 13438 55.84 1.92 1.90
navy_sub.jpg 87958 77978 42822 54.91 41276 52.93 17508 55.22 16993 53.60 1.91 1.89
solar.gif 130845 118542 66904 56.43 64877 54.72 26322 56.50 25674 55.11 2.05 2.03
Navy_sub.gif 194923 176784 98272 55.58 95440 53.98 38471 55.60 37543 54.26 2.05 2.03
Tomcat.gif 196819 178524 99634 55.81 96388 54.00 39095 55.79 38132 54.42 2.06 2.04
jesus.gif 244972 223537 125019 55.92 121674 54.43 49102 56.13 48079 54.99 2.09 2.07
Average 106333 90024 50309 55.88 48732 54.13 19866 61.12 19373 51.93 2.02 1.89
* Note: Ri denotes results before chaining and Ri’ denotes result after chaining

• R1 = Instructions in valid segments.
• R2 = % Instructions constituting valid segments (CODE) = (R1/TVI) *100
• R3 = Total valid segments.
• R4 = Percent valid segments = (R3/ Total segments)*100
• R5 = Number of segments to which each byte belongs.

Fig. 6-9 depicts results of SP (Segment Pruning) due to chaining. The results

show that approximately 49% of segments are reduced due to segmentation followed by

chaining the non-executable.

 50

0

50000

100000

150000

200000

250000

sentinel_A solar.jpg crypto Tomcat.jpg jesus.jpg navy_sub.jpg solar.gif Navy_sub.gif Tomcat.gif jesus.gif

N
um

be
r o

f I
ns

tr
uc

tio
ns

Total Instructions Valid Instructions After Segmentation (R1) Instructions After Chaining (R1')

Fig. 6-10 Pruning of invalid instructions: non-executables

0

10000

20000

30000

40000

50000

60000

sentinel_A solar.jpg crypto Tomcat.jpg jesus.jpg navy_sub.jpg solar.gif Navy_sub.gif Tomcat.gif jesus.gif

File Names

N
um

be
r o

f S
eg

m
en

ts

Before Chaining (R3) After Chaining (R3')

Fig. 6-9 Segment comparisons: non-executables

Fig. 6-11 show code inflation index of each file. The statistical data presented

here show that the average CII after segment chaining is applied is 2.07.

 51

0.00

0.50

1.00

1.50

2.00

2.50

3.00

sentinel_A solar.jpg crypto Tomcat.jpg jesus.jpg navy_sub.jpg solar.gif Navy_sub.gif Tomcat.gif jesus.gif

File Names

C
od

e
In

fla
tio

n
In

de
x

CII before chaining CII after chaining

Fig. 6-11 Code inflation index: non-executables

6.2.6 Inference of Data Analysis

Study of data analysis, with respect to analysis parameters, may provide some

insight into the feasibility of using the above mentioned statistical approach, in either

classifying a binary as clean, malicious or data file or evaluating performance of the

suggested algorithms. If we have a file to analyze, differentiating data file from an

executable is a simple approach. However, if we were given a buffer of bytes it would be

difficult to determine whether it is a buffer of executable bytes or data bytes.

 The analysis of clean executables showed that approximately on the average out

of every 10 bytes six start a valid instruction i.e. approximately 60%. Whereas in

malicious executable only 2 bytes start the instruction out of ten. The results of non-

executable data files show that more than 8 bytes start an instruction out of every 10

bytes analyzed. So, can we assume that this is the general trend of all files and we can

classify the files on this basis? No, Since there are many factors limiting these results for

example if we see results from driller and apparition in Table 6-2, these results vary the

final outcome significantly, also the collection of files is too small to statistically prove it.

However, there is another significant result worth looking at. It is the percentage

 52

reduction† of instructions due to segmentation and chaining. This particular information

provides information of the performance of algorithm on certain classes of files. The

percentage reduction of instructions in case of clean files came out to be 28.95%, in case

of malicious files this value is 45.86%. The significant improvement in reduction of

instructions may be due to more sparse code distribution, well connected through jumps,

in malicious files. The well-connected yet sparse code is best fit for dividing the program

into better-connected segments leading to more reduction through the “ripple effect”

described earlier in chapter 5. Thus, the results show that the suggested algorithm is

efficient in pruning the invalid instructions and segments from a malicious file leading

towards a cleaner disassembly. Finally, the results from data/ non-executables are highly

debatable. Nonetheless, the 50% reduction of the instructions due to segmentation and

chaining might give an insight of how we can distinguish between data and executable

files.

† Percentage reduction = (1-R1’/TVI)*100

 53

7 Related Work

In this section, we briefly describe some reverse engineering techniques (as a

representative of flow sensitive and insensitive methods) and show why and how these

are prone to malicious attacks with the intent of thwarting static analysis.

Most obfuscation techniques are based on confusing the two basic algorithms

Linear Sweep and Recursive Traversal, by making control flow analysis tougher,

inserting junk bytes or delaying inherent property of re-synchronizing of Intel IA-32

architecture after being digressed [17]. Almost all obfuscators and malicious code writers

try to attack basic limitations of control flow analysis and data flow analysis. The paper

[17] discusses in much detail techniques that can be used to further thwart static analysis

by thwarting RT.

 In [13] to defeat the static analysis, the authors use techniques to make control-

flow analysis of a program dependent on data, they show that this approach will reduce

precision of analysis to useless levels. They also prove that the theoretical bound of

analysis of programs transformed in such manner is NP complete. We contend that such

techniques of attacking flow sensitive methods, if used by hostile programmers, may

result in malicious code that is very hard to statically analyze. This is supported by some

obfuscation results presented by these obfuscation techniques, wherein [17] shows that

the best disassembly tool commercially available fails to disassemble over 65% of the

instructions.

The most recent attempt to reduce the indirect jump targets come from [7] who

use values set analysis to get the abstract store of possible jump locations. They remove

any address from the set, which are successors of jump but does not start any instruction.

The work we are proposing will help further reduce this abstract set as we are removing

whole segments of instructions in such cases.

The closest work to our techniques is the work done by [21]. Their work uses

various heuristics to disassemble the binary and separate code and data, but is also

dependent upon the knowledge of control flow. The main drawback in the approach to

avoid unsafe binary instrumentation is that they mark code as data (i.e. gives false

negative) whenever in doubt. This renders an “imprecise” disassembly of the binary file.

We say it is closest to our work because it uses a notion of “reset point” that tends to

analyze the bytes unmarked (as either code) or data after using control flow analysis. The

algorithm scans for a byte that start an instruction from reset point, and as soon as it hits a

data byte, it marks all the bytes from reset point till the end byte as data thus, it does not

analyze all the bytes for possibly starting an instruction. Thus, this method too results in

false negatives. In the next section we show by example how the current algorithms [24]

are prone to give false negatives and discuss the new approach in this context.

We recently came across a work [14] almost parallel to the disassembly algorithm

we are proposing; the work deals with obfuscated binaries, i.e., it has almost same motive

we do to make the disassembler robust against obfuscation and hostile attacks. Their idea

of disassembly is close to what we thought i.e., they take this fact that each byte can start

an instruction. However, both the works are coming out at the same time, the

development of our algorithm is indigenous and independent of the work they have

mentioned in their paper. We will briefly discuss the differences and similarities between

our approach and the approach [14] is taking.

 55

The approach proposed by [14], follows some assumptions, in that they assume

that valid instructions must not overlap and reason that it is extremely hard to find such

instructions in real executables. In the segmentation algorithm we are not making this

assumption and that leads to more precise disassembly. We can always craft a code that

uses bytes in an instruction twice by jumping back into the middle of instruction. This

can be a crucial assumption to make in case the hostile programmer decides to obfuscate

the code, keeping this in mind. We contend that we are making the fewest assumptions

possible to make it more difficult to be exploited by hostile programmer.

Their algorithm starts with dividing whole code into smaller regions called

functions. They search for the start of each function through function prologue, where

function prologue is the sequence of bytes normally present at function start. Their

algorithm searches for all such prologues and divides the code into functions. In our

approach we do not divide the executable into functions and disassemble the binary as a

whole (we can assume that we are taking whole code as one function). Hostile

programmers can change the function prologue by obfuscating it or can insert some junk

bytes that look like prologue. This work specifically mentions that, if they get “function

start,” that looks like a valid prologue but is not in reality a prologue they might get less

accurate results. An obfuscator can easily insert more junk bytes that look like prologue

and can increase confusion and resulting in even less accurate results. Once they get

functions they disassemble each and every byte of the function as we do for whole

program to find all the possible instructions. Since they make assumption that no two

valid instructions can be overlapping, they might miss some valid instructions while we

are getting all the possible instructions in segmentation algorithm. They divide each

 56

function into basic blocks equivalent to a segment but they cannot have two valid

overlapping basic blocks as we have segments, again since they are against the idea of

two valid overlapping instructions.

 57

8 Conclusion and Future Work

We have described a novel approach towards disassembly of malicious

executables. Our method analyzes each and every byte for possibly starting an

instruction, i.e., it does not leave any code behind from disassembly. This approach gives

all the possible instructions in the binary executable, thus making it harder for a hostile

programmer to hide the malicious program by common obfuscation techniques. Thus the

approach may be used with current disassembly techniques to enhance the disassembler

capabilities, since this method is more resilient to attacks and based on minimum

assumptions.

The proposed method uses a segmentation-based approach wherein it divides the

whole code into various overlapping segments giving no false negatives and reducing the

false positives. The segmentation-based approach, however, has some limitations that

might force it to give some false negatives. It might lead to less precise disassembly, but

will not throw the disassembler into complete disarray as is the case with current

disassemblers. The main challenge with a segmentation-based disassembler is to remove

false positives. The test results of malicious executables show that it is able to reduce up

to 87% of instructions (pure data) and up to 46% on the average. The statistics also show

that code inflation index on the average is 2.07%; i.e., the valid instructions can reach

approximately twice the amount of actual instructions.

In the future work we would like to be able to compare performance of our

algorithm with the existing algorithms. We would also be developing more heuristic and

statistical approaches to get a unique disassembly instead of multiple paths of

disassembly. The tool is being developed based on segmentation algorithm, using java

and eclipse framework. It can be made interactive such that user can decide which path of

disassembly to choose and which ones to discard.

 Although the segmentation-based approach makes disassembly more resilient to

attacks that use common obfuscation techniques like control flow obfuscation and junk

byte insertion, it is susceptible to the obfuscations like SEH and self-modifying code.

Attacks on disassembly by obfuscation through SEH or Structured Exception

Handling are dangerous, as they obfuscate jump instruction in a way that makes it hard to

statically analyze the jump target and, hence, may miss some code while disassembling.

The future work might involve development of disassembly techniques / heuristics that

counter these attacks.

Attacks to thwart disassembly by obfuscation through code modification at

runtime are tougher to counter, since the code changes dynamically as the program runs.

We need to develop some methods, as future work, that can deal with such attacks.

 59

Bibliography

[1] Reasoft Software, "Change Jpg to Gif," http://www.reasoft.com/rea-jpg-change-
gif.shtml, Last accessed November 16, 2004.

[2] Datarescue, "Datarescue Sa/Nv, Liege, Belgium, Ida Pro,"

http://www.datarescue.com/idabase, Last accessed November 24, 2004.

[3] Intel, "Intel Architecture Software Developer's Manual: System Programmer's Guide

Volume 3," http://developer.intel.ru/design/pentium4/manuals/253668.htm, Last
accessed November 16, 2004.

[4] Swanson Technologies, "Understanding Intel Instruction Sizes,”

http://www.swansontec.com/sintel.htm, Last accessed June 28, 2004.

[5] VX Heavens, "Virus Creation Tools," http://vx.netlux.org, Last accessed June 30,

2004.

[6] Mi2g, "2004-03-08, News Alert, Economic Damage from Bagle, Mydoom & Netsky

2004-03-30, News Alert, Netsky Climbs to 2nd Worst Malware since 1995,"
http://www.mi2g.com/, Last accessed June 30, 2004.

[7] G. Balakrishnan and T. Reps,"Analysing Memory Accesses in X86 Executables," in
International Conference on Compiler Construction, pp. 5-23, 2004.

[8] C. Batty, "Using the Java Native Interface," http://www.cs.umanitoba.ca/~eclipse/8-

JNI.pdf, Last accessed June 30, 2004.

[9] G. Caprino, "Rec - Reverse Engineering Compiler,"

http://www.backerstreet.com/rec/rec.htm, Last accessed June 28, 2004.

[10] S. Cho, "Win32 Disassembler," http://www.geocities.com/sangcho, Last accessed

June 30, 2004.

[11] C. Cifuentes and M. V. Emmerik, "Uqbt: Adaptable Binary Translation at Low

Cost," in IEEE Computer org, vol. 33, pp. 60-66, 2000.

[12] E. Gabrilovich and L. Finkelstein, "Jni - C++ Integration Made Easy,"

http://www.cs.technion.ac.il/~gabr/papers/cuj_jni.pdf, Last accessed November
16, 2004.

[13] R. N. Horspool and N. Marovac, "An Approach to the Problem of Detranslation of

Computer Programs," The Computer Journal, vol. 23, pp. 223-229, 1979.

http://www.reasoft.com/rea-jpg-change-gif.shtml
http://www.reasoft.com/rea-jpg-change-gif.shtml
http://www.datarescue.com/idabase
http://www.swansontec.com/sintel.htm
http://vx.netlux.org/
http://www.mi2g.com/
http://www.cs.umanitoba.ca/~eclipse/8-JNI.pdf
http://www.cs.umanitoba.ca/~eclipse/8-JNI.pdf
http://www.backerstreet.com/rec/rec.htm
http://www.geocities.com/sangcho
http://www.cs.technion.ac.il/~gabr/papers/cuj_jni.pdf

[14] C. Kruegel, W. Robertson, F. Valeur, and G. Vigna, "Static Disassembly of
Obfuscated Binaries," in USENIX Security Symposium, San Diego, pp. 255-270,
2004.

[15] A. Lakhotia and P. K. Singh, "Challenges in Getting 'Formal' with Viruses," Virus

Bulletin, pp. 15-19, 2003.

[16] B. Lee, "Eclipse Project Cdt (C/C++) Plugin Tutorial," Department of Computer

Science, University of Manitoba, Winnipeg, Manitoba, Canada February 20,
2004.

[17] C. Linn and S. Debray, "Obfuscation of Executable Code to Improve Resistance to

Static Disassembly," in Conference on Computer and Communications Security,
Washington, DC, pp. 290-299, 2003.

[18] M. Ludvig, "Instruction Format," http://www.logix.cz/michal/doc/i386/chp17-

02.htm#17-02, Last accessed June 30, 2004.

[19] N. Mehta and S. Clowes, "A Security Microcosm Attacking and Defending Shiva,"

http://opensores.thebunker.net/pub/mirrors/blackhat/presentations/bh-asia-03/bh-
asia-03-clowes.pdf, Last accessed June 30, 2004.

[20] R. Muth, S. K. Debray, S. Watterson, and K. De Bosschere, "Alto: A Link-Time

Optimizer for Compaq Alpha," Software - Practice and Experience, vol. 31, pp.
67-101, 2001.

[21] M. Prasad and T.-c. Chiueh, "A Binary Rewriting Defense against Stack Based

Buffer Overflow Attacks," in USENIX 2003 Annual Technical Conference, pp.
211-224, 2003.

[22] B. Schwarz, S. Debray, and G. Andrews, "Disassembly of Executable Code

Revisited," in Ninth Working Conference on Reverse Engineering (WCRE'02),
Richmond, VA, pp. 45-54, 2002.

[23] R. L. Sites, A. Chernoff, M. B. Kirk, M. P. Marks, and S. G. Robinson, "Binary

Translation," Communications of the ACM, vol. 36, pp. 69-81, 1993.

[24] L. Vinciguerra, L.Wills, N. Kejriwal, P. Martino, and R. Vinciguerra, "An

Experimentation Framework for Evaluating Disassembly and Decompilation
Tools for C++ and Java," in 10th Working Conference on Reverse Engineering,
pp. 14-23, 2003.

[25] L. Zeltser, "Reverse Engineering Malware," http://www.zeltser.com/sans/gcih-

practical/revmalw.html, Last accessed June 30, 2004.

 61

http://www.logix.cz/michal/doc/i386/chp17-02.htm
http://www.logix.cz/michal/doc/i386/chp17-02.htm
http://opensores.thebunker.net/pub/mirrors/blackhat/presentations/bh-asia-03/bh-asia-03-clowes.pdf
http://opensores.thebunker.net/pub/mirrors/blackhat/presentations/bh-asia-03/bh-asia-03-clowes.pdf
http://www.zeltser.com/sans/gcih-practical/revmalw.html
http://www.zeltser.com/sans/gcih-practical/revmalw.html

Abstract

Analysis of a binary executable starts with disassembly. Current methods start

disassembling a program from an entry point, and continue disassembling either by a

simple linear scan or by following the execution paths using static analysis. A hostile

programmer can easily fool such methods for disassembly and cause confusion between

code and data.

A method for disassembling that does not leave any code behind is proposed. The

method does not depend on an entry point; instead, it treats every byte as a potential entry

point. It partitions the code into segments where a segment is a largest sequence of

instructions terminated by an instruction, such as JUMP, that explicitly modifies the

program counter. A segment is invalid if its execution will always lead into data. The

method filters out invalid segments. It finally connects all the code segments to give a

“precise disassembly.” Results from using the method on ten programs are presented.

 We have implemented Binary Disassembler for Malicious Executables (BDME).

BDME is a disassembler that is written specifically to target malicious code and

obfuscated binaries. For our test data, we are able to reduce up to 87% of false positives

while getting no false negatives. BDME is able to find all the potential instructions in the

code, thus making it very hard to hide malicious code from analysis through disassembly.

The average reduction of 46% of false positives further helps the disassembler in keeping

the disassembly precise.

Biographical Sketch

Mr. Aditya Kapoor was born in Bareilly, India on January 5, 1980. He graduated with a

degree of Bachelor of Technology, with distinction, in Computer Science and

Engineering from the Institute of Engineering and Technology, Chatrapati Sahu Ji

Maharaj University (formerly Kanpur University), Kanpur, India in 2001. He entered the

master’s program in Computer Science at the University of Louisiana at Lafayette in Fall

2002. Following completion of this degree, he will pursue a Ph.D. in the area of software

security.

	Introduction
	Motivation
	Research Objectives
	Research Contributions
	Impact of the Research
	Organization of Thesis

	Background
	Disassembly Overview
	Disassembly Challenges
	Methodologies of Static Disassembly
	Flow Insensitive Analysis
	Flow Sensitive Analysis
	Combined Linear Sweep and Recursive Traversal
	Interactive Disassembly
	Disassembly Heuristics

	PE Architecture and Intel Instruction Format
	PE file format
	Intel Instruction format
	Intel Opcode Maps
	Addressing modes

	Segmentation Overview
	Segmentation Efficacy
	Segment Structure
	Segment Relationships
	Segment Construction
	Explanation of algorithm waypoints
	Segment Overlaps and Special Cases
	Illustrative Example

	Segment Pruning via Segment Chaining
	Segment-Chaining
	Algorithm: Chaining and Pruning
	Example: Segment Chaining and Pruning

	Evaluation and Results
	Theoretical Limitations and Assumptions
	Attacking the Assumptions
	Attacking the Implementation

	Experimental Setup and Analysis
	Setup
	Analysis Parameters
	Data Analysis: “Clean” Executable
	Data Analysis: “Malicious” Executable
	Data Analysis: Non-Executables
	Inference of Data Analysis

	Related Work
	Conclusion and Future Work
	Bibliography
	Abstract
	Biographical Sketch

