
November4, 1993

Contruction of call multigraphs revisited

Arun Lakhotia

The Centerfor AdvancedComputerStudies
University of SouthwesternLouisiana

Lafayette, LA 70504
(318) 231-6766,-5791 (Fax)

arun@cacs.usl.edu

Extended abstract

1 Introduction
This paperpresentsan algorithm for constructingcall multigraphsfor procedurallanguageprograms. The

call graph construction(CGC) problem is analogousto the problem of performing control flow analysis(CFA)
of Scheme[Shi88, Shi91b]. As shownlater, this problemis also analogousto the problemof determiningtypes
(TD) at specific programpoints for object-orientedlanguages[PS91, PR93, Suz81]. Our CGC algorithm may
be easily adaptedto perform CFA and TD. The algorithm is significantsince the CGC, CFA, and TD problems
areof fundamentalimportancefor efficient compilationof programsin procedural,functional,andobject-oriented
languages,respectively.

Pande& Ryder [PR93] haveshownthat the TD problemis NP-hardin the presenceof single-levelpointers.
We showthat the CGC problemis analogousto the TD problem. The CGC problemtoo is, therefore,intractable.
Any polynomialalgorithmfor it canonly give approximateresults.The algorithmpresentedmakesthe following
contributions:

1. It constructscall graphsfor a larger classof procedurallanguageprogramsthan previousalgorithms[Bur87,
CCHK90, HK93, Lak93, Wei80, Spi71, Ryd79].

2. Whencomparedundersuitablemapping,the resultsof our algorithmaremoreprecisethanPandeandRyder’s
type determinationalgorithm for C++ [PR93].

3. When comparedundersuitablemapping,our algorithm is equivalentto Shivers’ 1CFA [Shi88, Shi91b].Our
algorithm is howevera) more efficient since it doesnot require CPS conversionand b) gives more precise
resultsfor pre-CPSconvertedprograms.

Unlike our previous algorithm for the same problem [Lak93], the new algorithm works for programswith
global variablesand referenceparameters.This increasein scopeis broughtabout by using control flow graph
(CFG) representationof programs;the previousalgorithm usedprogramdependencegraphs(PDG) [OO84]. The
improvementcomesat additionalcomputationalcosts.Sincein a CFGthedatadependencebetweenstatementsare
not availableinformation is propagatedthroughall statements,as againstdirectly betweenthe definition and use
statements.Partof this costmay be recoveredby usingsparseevaluationgraphs(SEG)[CCF91] insteadof CFGs.

The call graphof a programis affectedby programaliases.On the otherhand,the setof aliasesin a program
is influencedby thecall graph[Ban79,CBC93,CK89, LR91]. To obtainpreciseresultsthesetwo problemsshould
be solvedsimultaneously.Thoughwe treatglobal variablesandcall by references,two of the sourcesof aliasing,
we ignorethealiasingproblem.It maybe observedthat the pointer-inducedaliasingalgorithmsof [CBC93,LR91]
andour algorithmhavesimilar “structure.”Our algorithmmay be combinedwith oneof the aliasingalgorithmsto
simultaneouslyconstructaliassetsandcall graph.We restrictour focusto thecall graphproblemanddo not delve
into the detailsof how thesealgorithmsmay be combined.

The rest of this article is organizedas follows. In Section2 the CGC is formulatedand its similarity to the
CFA and TD problemsis shown. This sectiondefines the constraintsunder which our algorithm is applicable

1

November4, 1993

andalso definesa conventionto classify the precisionof the solutionsfound by the algorithm. The “essence” of
the algorithm is presentedin Section3. Section4 enumeratesthe applicationof our algorithm on two example
programs.Thecomplexityof thealgorithmis analyzedin Section5. A moredetailedcomparisonof our work with
otherrelatedworks is presentedin Section6. Finally, Section7 summarizesthe work andreportson its status.

2 Problem formulation
We considera while-do languagewith provision for call by value-result,call by reference,andcall by value

parameterpassing.Thelanguagealsoallowsfor procedure-valuedvariables– variableswhosevaluesarereferences
to procedures.A procedure-valuedvariablemay be usedjust like any othervariablei.e. it may be global or local,
it may be passedasa parameterusingany of the referencingstrategies,and it may be assignedto. Furthermore,a
procedure-valuedvariablemay also be usedto makecalls to a procedurereferencedby a variable.

We assumethata program’svariablehasa unique“identity” differentfrom its “name.” Differentvariableswith
the samenameshavedifferent identities. Suchan identity can easily be generatedas a function of the variable’s
nameandthescopein which the it is defined.Theseidentitiesmaybe usedto determineif a variableis “visible” at
a statement,inside,or outsidea procedure.We assumethe existenceof mechanismsto makethesedeterminations.
This permitsour algorithmto uniformly dealwith staticscoperulesarising from nestedprocedures,local, global,
and static variables.

The call graph construction problem may be statedas:

For each call site � in program
�

which is the set ������� of procedures that � could be a call to? I.e. if there is
possible execution of

�
such that the procedure 	 is called from call site � then � must be contained in ������� .

The abovestatementis modelledafter Shivers’ statementfor the control flow analysisproblem[Shi88]:

For each call site � in program
�

, what is the set,
�� � � , of lambda expressions that � could be a call to? I.e.
if there is a possible execution of

�
such that the lambda expression � is called from call site � , then � must

be an element of
�� � � .
Lambdaexpressionsareessentiallyfunctionswithout names.Nestingof lambdaexpressionscorrespondsto nesting
of proceduredeclarations. The two problemsbecomeequivalenta) by assigningunique labels to eachlambda
expression,asdoneby Shivers,andb) by transforminga function into a procedurewith a referenceargumentfor
the returnedvalue.

Notice the weaknessin the aboveproblemdefinition. It requiresonly that if thereis a possibleexecutionof
in which � may be called from � then � be in ������� . Thusprocedure� may be containedin ������� evenif there

is no possibleexecutionin which � may be calledfrom � . The weaknessis deliberatesincethe strongerdefinition
is not computable[PR93]. This is becauseto obtaina precisesolutioneverypossiblestateof the stackin which a
proceduremay be calledwould be needed.Sincethe numberof statesmay be unboundedfor recursiveprograms
and exponentialfor others,maintainingall the stackstatesis not pragmatic. As a result all the CGC, CFA, and
TD algorithmsmaintainsomeapproximationsof the stackstate.

Classifying precision: Shivers[Shi91a]classifieshis CFA algorithmsas0CFA, 1CFA, ����� , nCFA, with thenumeric
prefix giving the depth in the stack upto which the analysisis precise. Insteadof a numericprefix, we usethe
symbol � to denotethe stackdepth. An algorithm that gives preciseresultsfor stacksof maximumdepthone is
said to be ����� precise.Any stateinformationbeyondthe � stackdepthis approximatedto belongto the same
state. A ����� precisionimplies the algorithmis precisefor unboundednumberof stackdepths.

Let us now look at the type determination problem (TD) or more preciselythe problem of point specific
type determinationfor single-levelpointers in C++ [PR93]. Assumingthat pointersonly have a single-levelof
dereferencing,the problem may be statedas:

Determine the class (types) of objects pointed to by a pointer at a program point.

In C++ a statementof the form g –> foo(...) invokesthe methodfoo belongingto the classof the object
pointedto by g. The prime motivation for determiningtypesis that knowing the typesof objectspointedto by g
would help in identifying the setof methodsthat may be invokedby sucha statement.Thereinlies the similarity
betweenthe TD and CGC problems.

2

November4, 1993

Our CGC algorithmfurther requirestwo constraints,referredto as the domainandcompletenessconstraints.

Domain constraint: An assignmentstatementdefininga procedurevariablemayhaveon its right handsideeither
a procedurereferenceconstantor a procedurevariable.

That is, anassignmentto gfoo may takethe form gfoo := &p or gfoo := kfoo , where&p evaluatesto
a referenceto the procedurep andkfoo is a procedurevariable. This constraintis not relevantfor ShiversCFA
algorithms[Shi88,Shi91b]becauseof theabsenceof assignmentstatementsin CPSScheme.Thoughnot explicitly
statedin the literature,the TD problemalsorequiresanalogousconstraints.In C++ a new object instanceof type
T is createdby the statementnew T. Other ways to introduceobject referencesare by the addressoperator“&”.
For instance,if variable f is declaredasan objectof type T then&f givesa referenceto an objectof type T. In
both the casesthe type of an object instanceis statically known directly from declarations.

Completenessconstraint: Only procedurescontainedin a programmay be called from a call-site inside the
program.

In the absenceof this constrainta proceduremay call anotherprocedureexternalto the programwhich may
thencall someprocedurewithin the program. The TD algorithms[PR93,PS91,Suz81]also implicitly requirean
analogousconstraint,i.e. only objectsof typesdefinedin a programmaybe pointedto. Shivers’algorithmsdo not
requirethis contraint. He presentsa safeapproximationfor treatingprocedurereferencesthat “escape”to external
procedures.His safeapproximationcan easily be adaptedfor our algorithm as well.

Realizable paths: In most interproceduralanalysesinformation is propagatedback and forth betweena call-site
and the procedurecalled from there. A naive analysismay propagateinformation generateddue to a call from
onecall-siteto the returnnodeof anothercall site. A propagationpathin which the call-returnnodesarematched
is termedas a realizablepath.

Combiningthe terminologyintroducedby PandeandRyder [PR93] andShivers[Shi88] we may classify our
algorithm as: ��� � preciseCGC algorithm for a procedurallanguagewith single-level function pointers. It
propagatesinformationonly over realizablepaths.Our algorithmmaybecustomizedto createa � � � preciseCFA
algorithmfor functional languagesand � � � preciseTD algorithmfor object-orientedlanguages.

3 A � =1 precise CGC algorithm

This sectiondiscussesthe important issuesrelatedto the algorithm and how our algorithm addressesthem.
The actual“code” is not presenteddueto paucityof space.It would be presentedin the full paper.

Program representation Our algorithmrequiresprogramsto be representedasa collectionof control flow
graphs(CCFG).A CCFGconsistsof a setof CFGs,onefor eachprocedurein theprogrambeinganalysed.A CFG
is a directedgraphsimilar to programflow graphsdescribedin [ASU86]. In a CFG everystatementof a program
is representedby one or more nodes. An assignmentor a conditional statementis representedby one node. A
procedurecall, direct or indirect, is representedby two nodes- a call nodeanda return node.Eachprocedurealso
hastwo specialnodes- entry andexit. The edgesin this graphrepresentthe sequencingof statementsin the code.
Thereare,however,no edgesgoing out of call nodesor terminatingat return nodes.

Our CCFG differs from Landi andRyder’s ICFG (interproceduralCFG) [LR92] in that in a CCFGthereare
no edgesconnectingnodesof two CFGs. In an ICFG a calling relationshipbetweena call site and the procedure
called is representedby edgesbetweenthe verticesof the CFGscontainingthe call site and the procedure.Since
our problemis to constructthis relationshipwe cannotassumeits existence.The computationalcomplexityof our
algorithmmay be improvedby usingsparseevaluationgraphs(SEG) [CCF91] assuggestedby [CBC93] for their
aliasingalgorithm. Unlike a CFG,a SEGis constructedspecificallyfor a problem. It hasthe samesetof nodesas
a CFG but a different set of edges.The edgesare createdso as to allow a propagationalgorithm for the chosen
problemto combineinformationasearlyaspossible.This reducesthenumberof intermediatenodesthroughwhich
information generatedat a statementis propagatedto statementsusing it.

3

November4, 1993

Information propagated The call graphconstructionalgorithm is an iterative algorithm. Startingwith an
initial state,andusingsomerules,thealgorithmpropagatesinformationover theCCFGtill a fixed point is reached.
The information propagatedby our algorithm consistsof 3-tuplesof the form:

<binding, trigger, site-of-descent>

Thesetof elementsof this typeis calledtriple . We usethefield namesasaccessfunctionsto getandsetvalues
of the correspondingfield. The elementsof binding and trigger fields are2-tuplesrepresentedas

v = p

wherev denotesa programvariableandp a procedurereference.Informally, the triple:

<v 1 = p1, v2 = p2, s>

at a vertexn in theprocedurep3 meansthat: if procedurep3 is calledfrom call-sites with variablev2 referringto
procedurep2 thenthereis anexecutionpathfrom theentry of p3 to noden overwhich variablev1 mayrefer to
procedurep1. Notice that variablev2 is from the staticscopeof site s while variablev1 is from n’s staticscope.

Thereis a 1–1 correspondencebetweenthe fields of our triple and the 3-tuplespropagatedby Choi et. al.’s
aliasingalgorithm[CBC93]. Thecorrespondenceis not in fields’ contentsbut, in anabstractsense,the information
they represent.On the other hand the TD algorithm of Pandeand Ryder [PR93] propagates2-tuplescontaining
fields analogousto our binding and trigger fields. Their 2-tuplesdo not retain the site-of-descent
information. The informationmaintainedby Shivers’algorithms[Shi88,Shi91b]correspondto 2-tuplesconsisting
of thebinding andsite-of-descent fields. For instance,correspondingto theabovetriple Shivers’abstract
interpreterwould maintaina relationship<b, v1> �� p, statingthat thevariablev1 takesthevaluep in “contour”
b. In the specialcaseof the1CFA algorithmthereis a 1–1correspondencebetween“contours” andcall sites.The
site-of-descent s may, therefore,be usedin placeof contourb.

With every nodeof eachCFG is associatedan attributenamedinfo :

• info: cfg-node � set(triple)
The value of this attributeis computedby the algorithm. At any time, the set of proceduresknown to be called
from an indirectsite maybe found from the info attributesat the correspondingcall node. If at sites an indirect
call is madeusing the value of variablev , i.e. site s hasthe statement(*v)(...) , then the set of procedures
calledfrom site s aregiven by ��� s � � �

p � � v=p �������	�
���� info(s) � , where ��� standsfor any value.

Outline of the algorithm The algorithmpropagatestriples over CFG nodes.It maintains

• workset: a set of <n, e> wheren is a CFG nodeand e a triple.

An elementis randomlyremovedfrom this setandprocessed.Whenprocessinganelement,say<n, e>, thetriple
e is includedin info(n) . If this inclusionchangesinfo(n) then,basedon the typeof thenoden, a function is
invokedwith n ande asits arguments.Theprocessingat this functionmayaddsomemoreentriesto theworkset .

Our CGC algorithm may be divided into four parts:

a. Initialization.
b. Top level workset managementand invokation of appropriatefunctions.
c. Establishmentof a calling relation.
d. Processingof a triple receivedat a node.

The workset managementpart hasalreadybeenoutlined. Initialization involves

1. initializing the set of proceduresin the call-graphto be � and
2. establishinga call relation from a site null to the top-level proceduremain .

The seconditem aboveestablishescalling relationsdefinedby direct calls from all procedurestransitively
called by main . It also initializes worksetas describedbelow.

4

November4, 1993

Establishing a calling relation When it is found that a procedurep is called from a site s the a calling
relation is establishedby performing the following tasks:

1. Establishthe relation that procedurep is called from site s .
2. Mark that the procedurep canbe reachedby a sequenceof calls from the top-levelproceduremain .
3. Initialize the info attributefor all the nodesof the CFG of procedurep.
4. Make triples for eachassignmentof the type ‘v := &q’ . Propagatethemto the statementssuccessors.
5. Make triples for eachprocedurereferencein the actualparametersof direct calls from p. Propagatethem to

the entry node of the called procedure.
6. Recursivelyestablishthe calling relationsknown from the direct call sitesof p.

Tasks2 through6 are performedonly when the first call to a procedureis found. In the following discussionthe
algorithm performing thesetasksis called establish-a-call .

Tasks1, 2, and3 do not createany workset entriesandthosecreatedby task6 may be definedrecursively.
In task4, the workset entriesfor procedurereferencesin an assignmentstatementarecreatedso asto propagate
bindingsto its CFG successors.The trigger andsite-of-descent fields of thesetriples are set to null to
imply that the triple was not generateddue to any procedurecall.

In task 5 workset entriesare createdsuchthat triples containingbindingsdue procedurereferencesin the
actualparameterlist at a direct call-site are propagatedto the entry nodeof the procedurecalled. Thesetriples
bind theprocedurereferenceto thecorrespondingformal parameterof thecalledprocedure.The trigger field of
thesetriples recordthe actualparameterthat containedthe procedurereference.Their site-of-descent field
record the direct call-site whoseactualparametercreatedthe triple.

Processingat various nodes In the discussionthat follows we usethe following symbols:

1. at-node - the nodeat which processingis being performed,
2. in-val - the triple reachingthis node, and
3. v - the variable bound by in-val

Any triple reachingan entry, return, or branchnodeis propagatedto all the CFG successorsof the node.

Assignmentnode: If at-node is an assignmentnodethe processingis relatively simple. If v is not modifiedat
at-node thenin-val is propagatedto all theCFGsuccessorsof thenode.Further,if v is usedon theright-hand
sideof the assignmentthena newtriple representingbindingsdueto the assignmentis created.The trigger and
site-of-descent fields of the new triples arecopiedfrom the correspondingfields of in-val .

Dir ect call site: Whenprocessinga triple at a direct call-site,distinction is madeon whetherthe variablebound
by the triple can be modified by the call or not. A triple binding a variable that cannotbe modified by a call
can simply be propagatedto the correspondingreturn node. Otherwise,one may assumethat the binding may
be killed by the call. If the variable is usedas an actualparameter,assumingcall by referenceor value-result,
the binding is propagatedto the correspondingformal parameter.If the variableis visible in the calledprocedure
the original binding is propagatedto the procedure.In both cases,however,the trigger field of a propagated
triple reflects the fact that the triple was createddue to the incoming binding, i.e. trigger(new-triple)
= binding(in-val) , and that the new triple was createdat the call site being processed,i.e. site-of-
descent(new-triple) = at-node .

If variablev boundby in-val is usedasan actualparameterin the call then the binding field of new-
triple binds the correspondingformal parameterof the called procedure. If v is visible to the call then the
binding(new-triple) binds v . If both the conditionsare possiblethen different new triples are createdto
satisfy different conditions.

Indir ect call site: The processingat an indirect call site is a generalizationof that doneat a direct call site. The
differencescome from the observationsthat:

1. more than one proceduresmay be called from an indirect site,
2. a triple binding a variable usedfor indirection and one binding a “global” variablesor a variable usedas

parametermay appearin arbitrary order, and

5

November4, 1993

3. eventhoughthe variableboundby triple in-val may be visible in a procedurecalled from an indirect site,
the binding may not be propagatedto it.

Owing to the secondobservation,whenevera triple binding the indirection variablereachesan indirect call site
all triples previouslyreceivedat this site areconsideredascandidatesto be propagatedover the newly established
call. Similarly, whenevera binding for any variablereachesan indirect call-site it is consideredasa candidateto
be propagatedto all proceduresknown to be called from this site.

Owing to the third observation,we say that a triple is only a “candidate”for propagationand is not actually
propagated.Ignoring this issuewould result into a � � �

algorithm. Let ��� be a triple that is a candidatefor
propagation.Let ��� be a triple binding the indirection variableat at-node , i.e. binding(� �) = (v=q) , for
someprocedurereferenceq. To ensure� � � precision,a new triple ��� is propagatedto the procedureq if:

1. the site-of-descent(� �) = site-of-descent(� �) , i.e. both the triples were triggereddue to some
propagationfrom the samecall site, or

2. site-of-descent(� �) = null or site-of-descent(��) = null, i.e. one of the triple is not
triggeredby any call.

The trigger field of the propagatedtriple reflects the fact it was createddue to the bindings in ��
 , i.e.
trigger(���) = binding(��
), andthat thenew triple wascreatedat thecall-sitebeingprocessed,i.e. site-
of-descent(���) = at-node. This may be illustratedfrom the programin Figure2.

The rules for creatingbinding(� �) may be derivedfrom thosefor creatingbinding(new-triple) at
direct call-sites. Somelanguagespermit a variable to be visible to a collection of proceduresbut not necessarily
all procedures,suchasa static global variablein C. It is, therefore,possiblethat a variablemay be visible to one
procedurecalled from an indirect call-site but not to another. A triple binding sucha variablehas to be treated
as if the variablecould be both visible as well as not visible in a call. If a variable is neitherusedas an actual
parameternor is visible to someprocedurecalled from the indirect site, the triple in-val may be propagatedto
the correspondingreturn node.

Thereis somespecialwork requiredwhenin-val identifiesa new from an indirect call-site. The procedure
establish-a-call is calledto recordit. Let p be the proceduredetectedto be calledfrom at-node. If this
is the first call to establish-a-call for p it propagatesprocedurereferencesat assignmentstatementsand
direct call-sitesin procedurestransitively called from p. Notice that establish-a-call doesnot processthe
procedurereferencesin the argumentlist of indirect call-sites.Therefore,the procedurereferencesin the argument
list of at-node have not yet beenpropagatedto procedurep. This task is performednow. The procedure
referenceconstantsin the argumentlist of the indirect call arepropagatedto the correspondingformal parameters
of the called procedure.

Furthermore,it is quite likely that procedurep was previously called from someother site. At that time
establish-a-call may havedetectedprocedurereferencebindingscreatedfrom within p, i.e. not due to a
call to p. Thesebindings, identified by a null site-of-descent field, may havealreadybeenpropagatedto
the exit nodeof p and shouldnow be propagatedto the return nodecorrespondingto at-node. The rules for
deriving thebinding field of triples sentto the returnnodesare the sameas thoseusedat the exit nodes.

Exit node: Triples reachingan exit nodeshouldbe propagatedto the returnnodesof the call-sitesthat may call
the procedure,sayp, containingat-node. However,not all triples may be propagatedto all suchcall-sites. A
triple may be propagatedto the return nodeof a site either if it was generatedas a result of a call from that site
or if it was not triggeredby any call.

Whenthe triple in-val is not triggeredby a procedurecall, i.e. site-of-descent(in-val) = null,
new triples are sent to all the return nodesof call-sitesknown to call the procedurecontainingat-node. The
site-of-descent andtrigger fields of the new triples propagatedis alsosetto null. This propagatesthe
knowledgethat the binding is not due to any procedurecall. This meansthat all triples generatedas a result of
thesetriplesandreachingthe exit nodeof thecalling proceduremayalsobe propagatedto all thecall-sites.Notice
that if an indirect call-site is later known to call procedurep then the triple in-val will be propagatedto it due
to the processingat that indirect call-site.

6

November4, 1993

Example program tuple to
process label i:

Info/ Worklist
tuple ti -> node ni

call
relation

1: <i=c, null , null> -> s2 s2 -> t

2: <ft1=d, a14=d, s4> -> entry(t) s4 -> t

1 3: <ft1=c, a12=c, s2> -> entry(t)

2 4: <ft1=d, a14=d, s4> -> s6

3 5: <ft1=c, a12=c, s2> -> s6

4 6: <ft2=d, a14=d, s4> -> exit(t)

7: <ft1=d, a14=d, s4> -> exit(t)

5 8: <ft2=c, a12=c, s2> -> exit(t)

9: <ft1=c, a12=c, s2> -> exit(t)

6 10: <x=d, null , null> -> return(s4)

procedure main ()

local i, x;
s1: i := &c;
s2: t(i, x);
s3: (*x)();
s4: t(&d, x);
s5: (*x)();

end

procedure t(ft1, ft2)

s6: ft2 := ft1;

end

7

8 11: <x=c, null , null> -> return(s2)

9

10 12: <x=d, null , null> -> s5

11 13: <x=c, null , null> -> s3

s2 s4 s5s3

t dc 12 14: <x=d, null , null> -> return(main) s5 -> d

13 15: <x=c, null , null> -> s4 s3 -> c

14

15 16: <ft2=c, a24=c, s4> -> entry(t)

Call graphshowingwhich site calls
which procedure.The calls due to
dashededgesarenot found by our
algorithm. They would be found if
propagationwasover unrealizable
paths.

16 17: <ft2=c, a24=c, s4> -> s6

17

Figure 1 Exampledemonstratingpropagationof informationover realizablepaths. The table
enumeratesour CGC algorithm for the given program. SeeSection4 on how to interpretthe table.

To seewhat our algorithm doeswhen in-val is triggeredby a procedurecall let us sketcha scenarioof
how in-val may have beencreated.

A triple e1 reached the call-site s1 which calls procedure p. The processing at the call-site propagates a triple
e2 to the entry node of procedure p. The processing of e2 at this node leads to the propagation of in-val
to at-node, the exit node of p.

Let new-val be the new triple created. Our algorithm ensuresthat new-val is sent to the return node
of s1 and that trigger(new-val) = trigger(e1) and site-of-descent(new-val) = site-
of-descent(e1). To achievethis the triple e1 and site s1 needto be known. The site s1 is known from
site-of-descent(in-val). The triple e1 is found by searchingtheinfo entriesof s1 for a triple whose
binding is the sameas trigger(in-val).

A new triple createdfor propagationshouldbind a variablein the staticscopeof the calling procedure.Thus
if triple in-val binds a formal parameter,the new triple should bind the correspondingactual parameter. If
in-val binds any other variable then the new triple would bind the samevariable. But if the variablebound
by in-val is not visible to the calling procedureand is also not a formal parameterthen its binding neednot
be propagatedto any caller.

7

November4, 1993

4 Two examples

Figures1 and 2 eachcontaina program,a table,and a graph. The graphin Figure 1 hasedgesfrom nodes
representingcall-sitesto nodesrepresentingprocedures.It gives the setof procedurecalled from a call-site. The
graphin Figure2 hasedgesfrom nodesrepresentingproceduresto nodesrepresentingprocedures.It showsthe set
of procedurescalledfrom a procedure.Differentgraphrepresentationsareusedbecausethe examplesdemonstrate
different aspectsof the algorithm. The first figure demonstratesthat the algorithm propagatesinformation over
realizablepaths. The secondfigure demonstratesthat it is ����� precise.The graphsdiagrammaticallyrepresent
the final call graphs. Dashededgesin both the graphsrepresentcalling relationsthat may havebeenfound a) if
informationwaspropapagtedover non-realizablepathsor b) if the algorithm had ����� precision.

The table in eachfigure completelyenumeratesthe applicationof our CGC algorithm for the corresponding
program.The wide middle columnplays the dual role of maintainingtheworkset andtheinfo attribute. This
columnhasthreeparts: a numberfollowed by a “:”, a triple, andan“->” followed by a nodeidentifier. Thenumber
gives a label for the triple andnodein a cell. Thus, if the label is � the triple in that cell is referredto as �
	 and
the nodeas �� . The nodeidentifier for statementsare the sameas the labelsusedin the program. Additionally,
the functions entry and exit give the entry and exit nodeof a procedure. The function return gives the
return node correspondingto a call site.

Eachrow of the table representsprocessingof a triple. The first column gives the label of the triple to be
processed.Let the first columnof row � containthe label � . Let � be the last label in the middle columnof row
� . The workset at the instantwhenthe triple � is processedconsistsof ������������� where ����� �!� . The entries" �$#%�$� in the middle column representthe info attributesas follows: �'&%(info(�)&) . As an example,with
respectto Figure1, let � be the column containing * in the first column. Then ��+�* and �,+�- . The workset
consistsof ./�0�)12�3�'14�5�6�0�)72�3�'78�5�9�!�:;�<�
:4�=�6�!�)>?�3�'>4�A@ . Further,info(s6)= .6�CB��3�
DE@ , since �BF+G�)DH+ s6 ;
info(entry(t))= .9�'I?�<�
J/@ , since �)I5+K�J + entry(t) ; and info(s2)= .6�'LM@ .

Therightmostcolumnof eachtablemaintainsthecall relationestablishedasa resultof theprocessingindicated
by that row. The initial call relation,null –> main , is not shown. When a row � is being processedonly
proceduresappearingin call relationsabovethe row � areknown to be includedin the call graph.

Tracing the propagationof triple � I or � J in Figure 1 showshow information is propagatedover realizable
paths. The point to focus is on the creationof thesetriples and the processingof the triples � 1 and � : at the exit
node of proceduret .

Tracing the propagationof triples in Figure2 showshow N�+ " precisionis achieved.The point to focus is
on the processingof the triples �'1 and �
: at indirect site s3 . Oneof the triple is propagatedto entry(a) while
the other is propagatedto entry(b) . A NO+QP algorithmwould propagateboth the triples to both the nodes.

5 Complexity analysis

The complexityof the CGC algorithmdependson severalparameters.A simpler asymptoticboundin terms
of : R�S?T2U?V - the CCFG’s(andhenceprogram’s)size, WAXYUMZV - the numberof procedurereferences,and [�\��]�'UMV -
the numberof indirect call-sitesmay be derived if we assumethat:

a. ^Y_��?V , the maximumnumberof variablesvisible in any procedure,is boundedby a constantfactor of the size
of the program,i.e. `ba L , a constant,suchthat ^Y_��?V,�ca Led R�S?T�UMV .

b. \��f�'UgV , the total numberof call-sitesin a program,is boundedby a constantfactor of the size of the program,
i.e. `ba9I , a constant,such that \h�f�'UMVi�ja9I d R�S?T�UMV .

Since the processingat individual nodeis dominatedby the processingat indirect call-sites,we derive two sets
of complexity measuresbasedon the [2\h�f�'UMV;kMR�S?T�UMV – the proportionof indirect call-sitesin the program. The
asymptoticcomplexity of our algorithm is boundedby lnm3R�S?T�UgV 1 d W5XAUMZoV Igp for [2\��]�'UMVgkMR�S?T�UMV ratio closeto 1
and lnmCRqS?T;UMV D d W�XYUMZV p for [/\��f�'UgV�kMR�S?T�UgV ratio close to 0.

8

November4, 1993

Example program tuple to
process label i

Info/Worklist
tuple t i -> node ni

call
relation

1: <fp1=a,a11=a, s1> -> entry(p) s1 -> p

2: <fp2=c, a21=c, s1> -> entry(p)

3: <fp1=b, a12=b, s2> -> entry(p) s2 -> p

4: <fp2=d, a22=d, s2> -> entry(p)

1 5: <fp1=1, a11=a, s1> -> s3

2 6: <fp2=c, a21=c, s1> -> s3

3 7: <fp1=b, a12=b, s2> -> s3

4 8: <fp2=d, a22=d, s2> -> s3

5 9: <fp1=a, a22=d, s2> -> exit(p) s3 -> a

6 10: <fa1=c, a13=c, s3> -> entry(a)

7 11: <fp1=b, a12=b, s2> -> exit(p) s3 -> b

8 12: <fb1=d, a13=d, s3> -> entry(b)

9

10 13: <fa1=c, a13=c, s3> -> s4

11

procedure main ()

s1: p(&a, &c);
s2: p(&b, &d);

end

procedure p(fp1, fp2)

s3: (*f p1)(fp2);

end

procedure a(fa1)

s4: (*f a1)();

end

procedure b(fb1)

s5: (*f b1)();

end

procedure c() end
procedure d() end

12 14: <fb1=d, a13=d, s3> -> s5

13 15: <fb1=c, a13=c, s3> -> exit(a) s4 -> c

14 16: <fb1=d, a13=c, s3> -> exit(b) s5 -> d

15 17: <fp2=c, a21=c, s1> -> return(s3)a b

p

c d

16 18: <fp2=d, a22=d, s2> -> return(s3)

17 19: <fp2=c, a21=c, s1> -> exit(p)

18 20: <fp2=d, a22=d, s2> -> exit(p)

19

Call graphshowingwhich
procedurecalls which procedure.
Calls representedby dashededges
arenot found by our algorithm. A
����� algorithmwould find those
calls.

20

Figure 2 Exampledemonstratingthat our algorithm achieves����� precision. The table
enumeratesour CGC algorithm for the given program. SeeSection4 on how to interpretthe table.

6 Comparison with related works
In this sectionwe compareour CGC algorithmwith thoseof others.We alsocompareour algorithmwith the

point-specific type determinationfor object-orientedlanguagesandShivers’algorithmsfor control flow analysisof
functional languages[Shi88, Shi91b].

The CGC algorithmsmay be comparedon a) the programminglanguagethey are applicablefor and b) the
precisionof the call graph they construct. Due to the differencein their domain and results,comparingtheir
computationalcost is not meaningful. The algorithmsof Burke [Bur87], Callahanet. al. [CCHK90], Hall &
Kennedy[HK93], andRyder [Ryd79] areapplicablefor Fortran-likelanguagesin which a) only formal parameters

9

November4, 1993

canbe procedure-valuedvariables,b) theseformal parameterscannot be assignedto, andc) procedurereferences
can only be usedas actualparameters.All but Ryder’s algorithm are applicablefor recursiveprograms.Ryder’s
and Callahanet. al.’s algorithmsare N + � precisewhereas thoseof Burke and Hall & Kennedyare Ni+�P .
Spillman’s[Spi71] andWeihl’s [Wei80] algorithmsareapplicablefor languagespermitingassignmentto procedure
variables,aliasing,and label-valuedvariables.Their algorithmsare N +QP preciseandpropagateinformationover
non-realizablepaths. Differencesbetweenour CGC algorithm and that presentedin [Lak93] hasbeendiscussed
earlier in the Introduction.

Therearetwo keydifferencesbetweenouralgorithmandShivers’1CFA algorithm[Shi91b]. Shivers’algorithm
a) requiresconvertingprogramsto continuationpassingstyle (CPS)andb) is basedon abstractinterpretation.A
procedurecall in CPSneverreturns,insteadit calls a continuation function passedas a parameter.Shivers1CFA
algorithm gives N�+ " precisionover a CPSconvertedprogram. Its precisionwith respectto the programbefore
CPSconversionis, however, N +QP becauseadditionof new proceduresandcontinuationsdueto CPSconversion
increasesthe numberof calls neededto reachoneprocedurefrom another.In contrastour algorithmgives N�+ "
precisionfor theoriginal program.Shivershasdelvedinto someadditionalissuesthatwe haveignored.The issues
are a) assignmentof procedurereferencesto a structure(suchas recordor array) andb) treatmentof incomplete
programs.Decisionsequivalentto thosemadeby Shiverscaneasily be incorporatedin our CGC algorithm.

Thetypedeterminationalgorithmof Pande& Ryder[PR93]andour algorithmarebothworklist basedinterative
algorithms. As mentionedearlier, the Pande-Ryder algorithm propagates2–tupleswith fields equivalentto the
binding andtrigger fields of our 3–tuple; it doesnot havethe site-of-descent field. As a result the
Pande-Ryder algorithmcannot determinewhetherbindingsreachingan indirect call-sitehavedescendedfrom the
samecall site or not. This rendersit ���

�
precise.

7 Summary and status
An algorithmfor constructingcall graphfor a procedurallanguageis presented.The algorithm is applicable

for a larger classof languagesthan previousalgorithms. The CGC problemis analogousto control flow analysis
of Schemeandtypedeterminationin C++. Our algorithmis adaptablefor theseproblemsandimprovesupontheir
previousalgorithms[PR93, PS91,Shi91b, Suz81].

A prototypeof thealgorithmhasbeenimplementedin Refine[Rea92].Thisprototypedemonstratestheworking
of the algorithmon a “toy” procedurallanguagethat modelsscoperulesandparameterpassingconventionsof C.
Implementationof the algorithm for C is currently in progress.

8 Bibliography

[ASU86] A. Aho, R. Sethi,andJ. Ullman. Compilers:Principles,Techniques,andTools. Addison-Wesley,1986.

[Ban79] J. P. Banning.An efficient way to find the side effects of procedurecalls and the aliasesof variables.
In ConferenceRecord of the Sixth Annual Symposiumon Principles of ProgrammingLanguages, pages
29–41. ACM Press,1979.

[Bur87] M. Burke. An interval-basedapproachto exhaustiveand incrementalinterproceduralanalysis.Technical
ReportRC 12702,IBM ResearchCenter,Yorktown Heights,NY, September1987.

[CBC93] Jong-DeokChoi, MichaelBurke,andPaulCarini. Efficient flow-sensitiveinterproceduralcomputationof
pointer-inducedaliasesandside-effects.In ConferenceRecord of theTwentiethAnnualACM Symposium
on Principlesof ProgrammingLanguages, pages232–245.ACM Press,January1993.

[CCF91] Jong-DeokChoi, Ron Cytron,andJeanneFerrante.Automaticcontructionof sparsedataflow evaluation
graphs.In ConferenceRecord of the EighteenthAnnualACM Symposiumon ProgrammingLanguages,
pages55–66.ACM Press,January1991.

10

November4, 1993

[CCHK90] D. Callahan,A. Carle,M. W. Hall, andK. Kennedy.Constructingtheprocedurecall multigraph.IEEE
Transactionson Software Engineering, 16(4):483–487,April 1990.

[CK89] Keith D. Cooper and Ken Kennedy.Fast interproceduralalias analysis.In Conference Record of the
SixteenthAnnualACM Symposiumon Principles of ProgrammingLanguages, pages49–59.ACM Press,
January1989.

[HK93] Mary W. Hall andKen Kennedy.Efficient call graphanalysis.ACM Letterson ProgrammingLanguages
and Systems, 1(3):227–242,1993.

[Lak93] Arun Lakhotia. Constructingcall multigraphs using dependencegraphs. In ACM SIGACT/SIGPLAN
Symposiumon Principlesof ProgrammingLanguages(POPL’93), pages273–284,January1993.

[LR91] William Landi and BarbaraG. Ryder. Pointer-inducedaliasing:A problemclassification.In Conference
Record of the EighteenthAnnual ACM Symposiumon Principles of ProgrammingLanguages, pages93–
103. ACM Press,January1991.

[LR92] William Landi andBarbaraG. Ryder.A safeapproximationalgorithmfor interproceduralpointeraliasing.
In ACM SIGPLAN’92Conferenceon ProgrammingLanguageDesignandImplementation, pages235–248,
July 1992.

[OO84] Karl J. Ottensteinand Linda M. Ottenstein.The programdependencegraph in a softwaredevelopment
environment.ACM SIGPLANNotices, 19(5), May 1984.

[PR93] HemantD. Pandeand BarbaraG. Ryder. Static type determinationfor C++. TechnicalReportTD-93-1,
Tata ResearchDevelopmentand DesignCenter,Pune,India, 1993.

[PS91] JensPalsberg andMichael I. Schwartzbach.Object-orientedtype inference.In OOPSLA’91:Conferenceon
Object-OrientedProgrammingSystems,Languages,andApplications, pages146–161,1991.

[Rea92] ReasoningSystems,Inc. Refine user’sguide, 1992.

[Ryd79] BarbaraG. Ryder.Constructingthecall graphof a program.IEEE Transactionson Software Engineering,
SE-5(3):216–226,May 1979.

[Shi88] Olin Shivers.Control flow analysisin Scheme.In SIGPLAN’88Conferenceon ProgrammingLanguages
Design and Implementation, pages164–174,1988.

[Shi91a] Olin Shivers.Control-flow Analysisof Higher-Order Languages. PhDthesis,Schoolof ComputerScience,
CarnegieMellon University, 1991.

[Shi91b] Olin Shivers.Thesemanticsof Schemecontrol-flowanalysis.In Proceedingsof theSymposiumonPartial
Evaluationand Semantics-BasedProgram Manipulation, pages190–198,1991.

[Spi71] T. C. Spillman. Exposing side-effets in a PL/I optimizing compiler. In ProceedingsIFIPS (Computer
Software) Conference, pages56–60,1971.

[Suz81] NorihisaSuzuki.Inferring typesin Smalltalk.In ConferenceRecord of theEighthAnnualACMSymposium
on Principlesof ProgrammingLanguages, pages187–199.ACM Press,January1981.

[Wei80] W. E. Weihl. Interproceduraldataflow analysisin thepresenceof pointers,procedurevariables,andlabel
variables.In ConferenceRecord of the SeventhAnnualACM Symposiumon Principles of Programming
Languages, pages83–94.ACM Press,January1980.

11

