
VIRUS BULLETIN www.virusbtn.com

77777APRIL 2005APRIL 2005APRIL 2005APRIL 2005APRIL 2005

DOC – ANSWERING THE HIDDENDOC – ANSWERING THE HIDDENDOC – ANSWERING THE HIDDENDOC – ANSWERING THE HIDDENDOC – ANSWERING THE HIDDEN
‘CALL‘CALL‘CALL‘CALL‘CALL’ OF A VIRUS’ OF A VIRUS’ OF A VIRUS’ OF A VIRUS’ OF A VIRUS
Uday Kumar Eric, Aditya Kapoor, Arun Lakhotia
University of Louisiana at Lafayette, USA

Malicious programs use obfuscations to hide information
about the system calls they make. Detector of Obfuscated
Calls, or DOC, is a prototype tool which demonstrates a
technique for detecting obfuscated calls and returns in
binaries. DOC identifies several types of obfuscations
statically, promising to speed up the process of determining
whether or not a program is malicious.

INTRODUCTIONINTRODUCTIONINTRODUCTIONINTRODUCTIONINTRODUCTION
One of the first steps in determining whether a program is
malicious is to identify the system calls it makes. If the
program performs certain collections of file operations,
registry operations, or network operations, there may be
good reason to consider it likely to be malicious.

The set (or sequence) of system calls a program makes
is referred to as its behaviour. The behaviour of a program
may be determined either by static analysis or by dynamic
analysis.

In static analysis, a program is analysed (by humans and/or
tools) without running or simulating it. In dynamic analysis,
a program’s behaviour is observed, often by trapping the
calls or sniffing network activity.

Malware writers have developed obfuscation techniques
that make it difficult, using static analysis techniques, to
identify the calls made by their program. Effectively, these
programs make a call without actually using the call
instruction (see Peter Ször and Peter Ferrie, Virus Bulletin
Conference 2001). Doing this increases the difficulty of
analysing a program not least because it defeats the methods
that typical disassemblers use to identify procedure entry
and exit points.

Therefore, anti-virus companies tend to rely on dynamic
methods for determining a program’s behaviour. For
instance, Symantec’s Bloodhound technology executes a
program in a sandbox (or an emulator), traps the calls
made by the program, and then determines whether or not
it is malicious.

However, while dynamic analyses are helpful and often
necessary, they have a tendency to be cumbersome,
time-consuming and fallible.

Malware authors already have many methods for defeating
detection through dynamic analysis, including detecting the
dynamic analysis method, introducing delay loops to bypass

stopping heuristics, and executing their malicious behaviour
only in particular circumstances.

For these reasons alone static analysis is still a critical
component of anti-virus strategies, but methods for
overcoming obfuscation obstacles are extremely desirable.

In this article we present the results obtained by using a
new tool called DOC (Detector of Obfuscated Calls) to
analyse the virus W32/Evol. DOC identifies statically
several types of obfuscations related to the call and return
instructions.

Technical details of the method used by DOC have been
described elsewhere (Lakhotia and Kumar 2004, Fourth
IEEE International Workshop on Source Code Analysis and
Manipulation). In this article will review call/return
obfuscations, describe DOC and how it was applied to
W32/Evol, and summarise some of the successes and
limitations of the approach.

CALL/RETN OBFUSCACALL/RETN OBFUSCACALL/RETN OBFUSCACALL/RETN OBFUSCACALL/RETN OBFUSCATIONSTIONSTIONSTIONSTIONS

Figure 1 shows a classic example of call obfuscation used
by viruses, most notably W32/Evol and Netsky.Z.

In the left-hand column is a
normal call instruction. In
the right-hand column is
code containing a sequence
of two push instructions
and a retn instruction.
These three instructions
do exactly the same work
as the call instruction.
They are semantically
equivalent.

Other related obfuscations include the substitution of retn
instructions and the use of non-contiguous function bodies.
For instance, a retn may be replaced with a pop ip
instruction. Non-contiguous procedure bodies can be
created by intertwining a procedure’s code with the code of
other procedures, thus making it difficult to match a call
instruction to its corresponding retn instructions.

Such obfuscations take away important cues that are used
during both automated and manual analysis. While a
determined, experienced programmer would be able to
discover the obfuscations, the time that it takes to make
the discovery can be very precious when the malware is
spreading actively.

Substituting call instructions, in particular, breaks most
automated methods for detecting a virus since these
methods depend on recognizing call instructions both
to identify the kernel functions used by the program and to

 Normal call-ret

 call L5
L1: …
…
L5: ret

Obfuscated call

 push L1
 push L5
 ret
L1: …
…
L5: ret

L1 top of stack

Figure 1. Call obfuscation.

TECHNICAL FEATURE

VIRUS BULLETIN www.virusbtn.com

88888 APRIL 2005APRIL 2005APRIL 2005APRIL 2005APRIL 2005

identify procedures in the code. As is shown later, IDA Pro,
a disassembler used very widely in the anti-virus industry,
gives incorrect and misleading results in the presence of
call/return obfuscations.

ABOUT DOCABOUT DOCABOUT DOCABOUT DOCABOUT DOC

DOC is implemented in Java as a plug-in to the Eclipse
Platform (see http://www.eclipse.org/). Figure 2 shows a
screenshot of DOC when opening an assembly file (.asm
extension).

DOC allows any number of projects to be opened at the
same time. The navigator view (on the left-hand side) is
used to browse and open files in a project. The files are
displayed in the file view (shown on the right).

DOC takes as its input an assembly file or a disassembled
binary obtained from a disassembler such as IDA Pro. The
user may select any of the following three analyses:

• Match call-ret instructions

• Detect obfuscated calls

• Detect obfuscated returns

DOC returns its results by highlighting and annotating the
assembly. The annotations contain links to related code
when there are multiple occurrences of the same type of
obfuscation.

INSIDE DOCINSIDE DOCINSIDE DOCINSIDE DOCINSIDE DOC
DOC uses abstract interpretation, a technique commonly
used in static analysis. In this technique a program is
interpreted using abstract values, instead of real values. The
key challenge in using abstract interpretation is in choosing
the right abstraction.

DOC creates an abstraction of the stack and its contents.
A specific instance of a real stack is represented as an
abstract stack.

Further, the set of all possible abstract stacks for all possible
executions of a program is represented as an abstract stack
graph. Although the set of all abstract stacks (or real stacks)
for all possible executions of a program may be infinite, the
abstract stack graph is finite.

The abstract stack graph for a given assembly program is
constructed by interpreting each instruction of the program.
The operations performed by the instruction on a real stack
are performed instead on an abstract stack graph. Each
instruction is interpreted at most once.

Once the abstract interpretation terminates, the abstract
stack graph contains an abstraction of all possible stacks at
each statement. DOC analyses the abstract stack to match
call-ret instructions, detect obfuscated calls, and detect
obfuscated returns.

W32/EVOLW32/EVOLW32/EVOLW32/EVOLW32/EVOL – REVEALING THE HIDDEN – REVEALING THE HIDDEN – REVEALING THE HIDDEN – REVEALING THE HIDDEN – REVEALING THE HIDDEN

It was our efforts at analysing W32/Evol statically that
led us to develop DOC. It all started a few years ago as a
result of our first attempt at developing an anti-virus scanner
based on formal, static analysis. We had implemented a
behaviour-based analyser using model checking – however,
our analyser failed miserably when we exposed it to
W32/Evol.

A closer analysis revealed that the virus was obfuscating
all system calls, and our analyser made the assumption that
IDAPro would detect system calls correctly in disassembled
code. It failed and, as is so common in developing new
technologies, its failure provided the impetus to explore
new methods.

Here we describe some of the causes for disassembly failure
and show how DOC can detect these.

CCCCCall/rall/rall/rall/rall/ret obfuscation in W32/Evolet obfuscation in W32/Evolet obfuscation in W32/Evolet obfuscation in W32/Evolet obfuscation in W32/Evol

The common sequence of instructions to make a system
call (for example GetTickcount) in a Windows environment
is as follows:

push add1 ; “kernel32.dll”

push add2 ; “GetTickCount”

call GetProcAddress

call [eax] ; “call GetTickCount”

Here, addr1 and addr2 are pointers to the strings
‘kernel32.dll’ and ‘GetTickCount’ located in the data
segment. The addresses of these strings are pushed on
the stack.

The kernel32.dll function GetProcAddress is called, which
returns the address of the function ‘GetTickCount’ in the

Navigator view

File view

Choices view

Figure 2. DOC user interface.

VIRUS BULLETIN www.virusbtn.com

99999APRIL 2005APRIL 2005APRIL 2005APRIL 2005APRIL 2005

Figure 3. W32/Evol code with multiple obfuscations.

eax register. The program then does an indirect call to the
address in eax, effectively making a call to GetTickCount.

Disassemblers such as IDA Pro can detect such patterns of
call and aid in detecting system calls. Figure 3 shows a code
fragment from W32/Evol for calling the function
GetTickCount. This code has multiple obfuscations, none
of which are detected by IDA Pro. The reasons for this
are instructive.

IDA Pro assumes that the retn instruction at address
0040156A actually returns from the procedure. Thus, it
deems this statement as ending the procedure that has an
entry at address 00401530.

IDA Pro indicates the end of a procedure by introducing the
dummy directive endp. Thus it deduces that the retn
statement matches ‘call 00401530’ instructions.

The retn instruction, it turns out, is performing a call. The
value returned from GetProcAddress is moved to the stack,
and the stack pointer is modified such that when the retn
instruction is executed, it transfers control to GetTickCount.

This can be verified by analysing the virus manually in a
debugger such as OllyDbg.

Figure 4 presents the code of Figure 3 with annotations
created by such a manual analysis.

Detecting call obfuscationsDetecting call obfuscationsDetecting call obfuscationsDetecting call obfuscationsDetecting call obfuscations

Figure 5 shows a portion of the code where DOC detects the
obfuscated call to the kernel function GetTickCount().

The push instruction at address 00401557 and the retn
instruction at address 0040156A are instrumental in
obfuscating the call to GetTickCount(). This is indicated by
highlighting these instructions in red. The annotation ‘(0)’ at
the end of these instructions indicates that the two belong to
the same call obfuscation.

W32/Evol uses similar code to make system calls in 25
locations. IDA Pro misses all of these calls, whereas DOC
highlights every such retn instruction as making a call.

Matching call-rMatching call-rMatching call-rMatching call-rMatching call-retn instretn instretn instretn instretn instructionsuctionsuctionsuctionsuctions

Figure 6 shows the same code as that shown in Figure 3, but
it also shows of the results of running DOC’s analysis for
matching call-retn instructions.

The two call instructions at addresses 00401558 and
0040155E are highlighted and are annotated ‘(2)’ and ‘(3)’,
respectively. These numbers are arc labels in the effective
call graph.

Figure 7 shows return sites corresponding to these
statements. These statements are annotated with the
numbers ‘(2)’ and ‘(3)’, which are matched to the call sites
so labelled. This figure also shows retn statements matching
call sites annotated as ‘(0)’ and ‘(1)’. As is expected, one
retn statement may match multiple call sites. DOC correctly
found matching retn statements for all 33 call statements of

0040153F mov dword ptr ds:[eax], 54746547 ;‘TteG’

00401545 mov dword ptr ds:[eax+4], 436B6369 ;‘Ckci’

0040154C mov dword ptr ds:[eax+8], 746E756F ;‘tnuo’

00401553 mov byte ptr ds:[eax+c], 0; ‘\0’

00401557 push eax; ptr to “GetTickCount”.

00401558 call 00401280; gets base address of
kernel32.dll base.

0040155D push eax;

0040155E call 004012A7; obfuscated call to
GetProcAddress()

00401563 mov dword ptr ss:[ebp], eax; addr of
GetTickCount().

00401566 add esp, 10

00401569 pop ebp

0040156A retn; transfer control to GetTickCount().

Figure 4. Annotated code of Figure 3.

Figure 5. Using DOC to detect obfuscated call.

VIRUS BULLETIN www.virusbtn.com

1010101010 APRIL 2005APRIL 2005APRIL 2005APRIL 2005APRIL 2005

Figure 6. Using DOCs to detect valid calls.

W32/Evol. In several instances the procedure code was not
contiguous.

CONCLUSIONSCONCLUSIONSCONCLUSIONSCONCLUSIONSCONCLUSIONS

DOC is efficient, being linear in both space and time. And
it is demonstrably effective in finding the sort of call/retn
obfuscations found inW32/Evol. We believe its techniques
could become an important part of an anti-virus researcher’s
toolkit, and that they can significantly speed up analysis of
obfuscated binaries.

DOC does have a number of limitations. It is restricted
solely to detecting call obfuscations, and cannot handle
some of these, including manual stack manipulation. Efforts
to overcome some of these limitations are currently in
progress in our laboratory.

Figure 7. Using DOC to detect valid call-ret sites.

