
VIRUS BULLETIN   www.virusbtn.com

55555DECEMBER 2004DECEMBER 2004DECEMBER 2004DECEMBER 2004DECEMBER 2004

ARE METARE METARE METARE METARE METAMORPHIC VIRUSESAMORPHIC VIRUSESAMORPHIC VIRUSESAMORPHIC VIRUSESAMORPHIC VIRUSES
REALLREALLREALLREALLREALLY INVINCIBLE? PARY INVINCIBLE? PARY INVINCIBLE? PARY INVINCIBLE? PARY INVINCIBLE? PART 1T 1T 1T 1T 1
Arun Lakhotia, Aditya Kapoor and Eric Uday Kumar
University of Louisiana at Lafayette, USA

In the game of hide and seek, where a virus tries to hide and
AV scanners try to seek, the winner is the one that can take
advantage of the other’s weak spot. So far, the viruses have
enjoyed the upper hand since they have been able to exploit
the limitations of AV technologies.

Metamorphic viruses are particularly insidious in taking
such advantage. A metamorphic virus thwarts detection by
signature-based (static) AV technologies by morphing its
code as it propagates. The virus can also thwart detection
by emulation-based (dynamic) technologies. To do so it
needs to detect whether it is running in an emulator and
change its behaviour.

So, are metamorphic viruses invincible?

INTRODUCTIONINTRODUCTIONINTRODUCTIONINTRODUCTIONINTRODUCTION
When you consider all the tricks that a virus writer can
use to break AV scanners, metamorphic viruses, such as
Win32/Evol, Metaphor (aka W32/Simile, see VB, May
2002, p.4) and W95/Zmist (see VB, March 2001 p.6)
appear invincible. These viruses transform their code as
they propagate, thus evading detection by analysers that
rely on static information extracted from previously
observed virus code. The viruses also use code obfuscation
techniques to hinder deeper static analysis. Such viruses
can also beat dynamic analysers by altering their behaviour
when they detect that they are executing under a controlled
environment.

Lakhotia and Singh have discussed at length how a virus
can fool AV scanners, even those based on the most
advanced formal techniques (see VB, September 2003,
p.15). The limits of an AV scanner stem directly from the
limits of static and dynamic analysis techniques, the
foundation of all program analysis tools, including
optimizing compilers. For AV scanners, the limits are
debilitating for they operate in an environment where a
programmer is the antagonist.

Metamorphic viruses enjoy their apparent invincibility
because the virus writer has the advantage of knowing the
weak spots of AV technologies. However, we could turn the
tables if we could identify similar weak spots in
metamorphic viruses. Indeed, Lakhotia and Singh close
their otherwise gloomy article with one optimistic thought:
‘The good news is that a virus writer is confronted with the
same theoretical limit as anti-virus technologies… It may be

FEATURE



VIRUS BULLETIN   www.virusbtn.com

66666 DECEMBER 2004DECEMBER 2004DECEMBER 2004DECEMBER 2004DECEMBER 2004

worth contemplating how this could be used to the
advantage of anti-virus technologies.’

This article investigates the above remark and identifies
what promises to be the Achilles’ heel of a metamorphic
virus.

The key observation is that, in order to mutate its code
generations after generations, a metamorphic virus must
analyse its own code. Thus, it too must face the limits of
static and dynamic analysis. Beyond that a metamorphic
virus has another constraint: it must be able to re-analyse
the mutated code that it generates. Thus, the analysis within
the virus, of how to transform the code in the current
generation, depends upon the complexity of transformations
in the previous generation.

To overcome the challenges of static and dynamic analyses,
the virus has the following options: do not obfuscate the
transformed code in any generation; use some coding
conventions that can aid it in detecting its own obfuscations;
or develop smart algorithms to detect its specific
obfuscations.

So, are metamorphic viruses really invincible? They are
surely not as invincible, as they first appear. A metamorphic
virus’s need to analyse itself is its Achilles’ heel. If a virus
can analyse itself, then an AV scanner should also be able to
analyse it by using whatever method the virus uses to work
around its own obfuscations. It is then conceivable that one
could create a reverse morpher that applies the
transformation rules of the virus in reverse, thus undoing its
attempt to hide from scanners.

Is there a catch? Before one can use a virus’s methods on
the virus itself, one has to extract those methods. One must
first have a sample of the virus in order to extract its
transformation rules, assumptions and algorithms.

This chicken-and-egg problem is no different from that
faced by the current AV technologies for extracting
signatures and behaviours. The important thing is that, once
a set of tricks has been identified and countered by the AV
software, the virus writer is forced to invent new tricks, thus
raising the bar for the virus writer. Because of the additional
constraints, the virus writer has to be more imaginative than
the makers of AV scanners.

The rest of this two-part article is organized as follows. The
next section provides an overview of mutation engines. It is
followed by a discussion on the Achilles’ heel of a
metamorphic virus. In the second part of the article (which
will appear in the January 2005 issue of Virus Bulletin) we
present a case study by analysing the metamorphic engine
of Win3/Evol. This leads to a discussion on developing
reverse morphers to undo the mutations performed by a
mutation engine. The article closes with our conclusions.

MUTMUTMUTMUTMUTAAAAATION ENGINESTION ENGINESTION ENGINESTION ENGINESTION ENGINES

At the heart of a metamorphic virus is a mutation engine,
the part of the virus code responsible for transforming its
program. A mutation engine takes an input program and
morphs it to a structurally different but semantically
equivalent program.

Figure 1 identifies the three modules of any mutation
engine: disassembly module, reverse engineering module
and transformation module. Development of each of these
modules poses different challenges and limitations.

In order to mutate its program, the virus must first
disassemble it. One of the important tasks of disassembly is
to differentiate between the virus code and data. If a virus
cannot distinguish between code and data, it may transform
the data, leading to incorrect behaviour. There are two
known strategies for disassembly: linear scan and recursive
traversal (Schwarz et al. 2002, Ninth Working Conference
on Reverse Engineering). Each of these strategies has its
own limitations (Linn, Debray 2003, Conference on
Computer and Communications Security).

The third module, transform, generates a transformed
version of the original program. A program must be
transformed significantly in order to avoid being detected
by a signature-based AV scanner. In the simplest case, the
module may transform one instruction at a time. At the
other extreme the module may analyse blocks of code and
replace them with equivalent code fragments. To ensure
accuracy of transformation a block must be a single entry,
single exit piece of code. That means that control should not
jump into the middle of the block, or else it becomes harder
to create semantic-preserving transformations. One could
also imagine transformations that replace segments of
control flow graphs (CFGs) with other control flow graphs.

The second module, the reverse engineering (RE) module,
supports the transformation module. The challenges for this
module depend upon the technique chosen for
transformation. As the transformations become more
complex, so does the work of reverse engineering. If the
transformation module works on one instruction at a time
then the RE module does not need to do anything. However,

Dissamble Reverse
Engineer

Transform

Mutation Engine

Program Program

Figure 1. Stages of program transformation.



VIRUS BULLETIN   www.virusbtn.com

77777DECEMBER 2004DECEMBER 2004DECEMBER 2004DECEMBER 2004DECEMBER 2004

 Location Hex   Disassembly

00403E5F B8 6E3E4000    MOV EAX, 00403E6E

…

00403E64 8000 28        ADD BYTE PTR DS:[EAX],28

…

00403E6E 90             NOP

00403E6F CB             RETF

00403E70 76             DB 76

00403E71 39             DB 39

00403E72 FF             DB FF

00403E73 50             DB 50

if the transformation module works on blocks of code, the
RE module must identify blocks. Similarly, if the
transformation module works on CFGs, the RE module
should identify CFGs.

THE ACHILLES’ HEELTHE ACHILLES’ HEELTHE ACHILLES’ HEELTHE ACHILLES’ HEELTHE ACHILLES’ HEEL

Lakhotia and Singh argued that virus writers enjoy the
upper hand because they can exploit the limitations of
static analysis as well as dynamic analysis to hide their
code. Junk byte insertion, jump into the middle of
instruction and self-modifying codes are a few obfuscation
techniques that make it even harder to distinguish statically
between data and code in a binary executable. Insertion of
large loops and anti-debugging techniques test the patience
and speed of dynamic analysis. A mutation engine that
changes the virus code with every few generations as
well as adding the complex obfuscation techniques to the
newly created virus body might create a virus that is close
to invincible.

Figure 1 shows that the steps involved in mutating a
program are very similar to the steps outlined by Lakhotia
and Singh for checking whether a program is malicious
using program analysis techniques. There are two
differences. First, a metamorphic virus uses the analysis of
the first two steps for creating a transformed program. A
scanner would use similar information to determine whether
a program is malicious. Second, the output of the last step
of a metamorphic virus becomes its input, albeit in a
different execution of the program.

The feedback loop in Figure 1 has catastrophic
consequences for a virus. A metamorphic virus has to
analyse its own mutated code in order to mutate it further.
If, after transformation, the virus introduces obfuscations
that prevent its disassembly, then in the next generation the
virus may not be able to diassemble itself. If it introduces
obfuscations that prevent reverse engineering of the virus
code – say, for instance, identifying its program blocks, then
the virus will also not be able to detect its own blocks. Thus,
the virus cannot introduce obfuscations that prevent those
analyses that are performed by the virus itself.

To understand the problems faced in writing a metamorphic
virus, let us analyse an obfuscation technique introduced by
a non-metamorphic virus, W32/Netsky.Z.

The virus Netsky.Z introduces an obfuscation using a
technique known as self-modifying code. Here, the virus is
modifying code at location 00403E6E at run time. It adds
28h to the opcode 90h, which converts the NOP instruction
to MOV instruction, thus modifying the code, as shown in
Figure 2b. If we try to analyse it using a static technique we
get the wrong analysis, as shown by Figure 2a.

Now suppose a metamorphic virus writer has mutated its
code such that the current generation is self-modifying. In
order to mutate its code further it has to know statically the
instruction that is changing at runtime. This challenge poses
a serious limit to the obfuscation techniques a metamorphic
virus can impose during mutation.

This highlights the Achilles’ heel of a metamorphic virus: a
metamorphic virus must be able to disassemble and reverse
engineer itself. Thus, a metamorphic virus cannot utilise
obfuscation techniques that make it harder or impossible for
its code to be disassembled or reverse engineered by itself.

WIN32/EVOLWIN32/EVOLWIN32/EVOLWIN32/EVOLWIN32/EVOL

Win32/Evol is a relatively simple metamorphic virus.
Nonetheless, it is a good example for a case study since the
virus demonstrates properties common to metamorphic
viruses – i.e. it obfuscates calls made to system libraries and
it mutates its code before propagation. Part two of this
article (in next month’s VB) will describe the details of these
methods and discuss the development of reverse morphers
to undo the mutations performed by a mutation engine.

Figure 2b. Modified code.

Figure 2a. Obfuscation through runtime code modification.

90

Location Hex              Disassembly

00403E5F B8 6E3E4000    MOV EAX, 00403E6E

…

00403E64 8000 28   ADD BYTE PTR DS:[EAX],28

…

00403E6E B8 CB7639FF        MOV EAX, FF3976CB

00403E6F

00403E70

00403E71

00403E72

00403E73 50            PUSH EAX


