
VIRUS BULLETIN   www.virusbtn.com

99999JANUARJANUARJANUARJANUARJANUARY 2005Y 2005Y 2005Y 2005Y 2005

ARE METARE METARE METARE METARE METAMORPHIC VIRUSESAMORPHIC VIRUSESAMORPHIC VIRUSESAMORPHIC VIRUSESAMORPHIC VIRUSES
REALLREALLREALLREALLREALLY INVINCIBLE? PARY INVINCIBLE? PARY INVINCIBLE? PARY INVINCIBLE? PARY INVINCIBLE? PART 2T 2T 2T 2T 2
Arun Lakhotia, Aditya Kapoor, Eric Uday
University of Louisiana at Lafayette, USA

Metamorphic viruses thwart detection by signature-based
(static) AV technologies by morphing their code as they
propagate. The viruses can also thwart detection by
emulation-based (dynamic) technologies. To do so they
need to detect whether they are running in an emulator
and change their behaviour. So, are metamorphic viruses
really invincible?

In part one of this article (see VB, December 2004 p.5) we
presented an overview of mutation engines, followed by a
discussion of the Achilles’ heel of a metamorphic virus: its
need to analyse itself. In this part of the article we present
a case study in which we look at the metamorphic engine
of the virus W32/Evol. This leads to a discussion on
developing ‘reverse morphers’ to undo the mutations
performed by a mutation engine. The article closes with
our conclusions.

W32/EVOL: A CASE STUDYW32/EVOL: A CASE STUDYW32/EVOL: A CASE STUDYW32/EVOL: A CASE STUDYW32/EVOL: A CASE STUDY

W32/Evol is a relatively simple metamorphic virus.
Nonetheless, it is a good example for a case study since the
virus demonstrates properties that are common to all
metamorphic viruses, i.e. it obfuscates calls made to system
libraries and it mutates its code prior to propagation.

The rest of this section describes the details of these
methods.

OBFUSCAOBFUSCAOBFUSCAOBFUSCAOBFUSCATING SYSTEM CALLSTING SYSTEM CALLSTING SYSTEM CALLSTING SYSTEM CALLSTING SYSTEM CALLS

In order to perform a malicious act, a program must access
the disk or the network. Access to these resources is
controlled by the operating system. A quick way to
determine whether a program is malicious is to look at the
system calls it makes.

W32/Evol does not use a ‘normal’ procedure to make
system calls – it obfuscates its calls, which means that a
disassembler such as IDAPro cannot determine directly the
system calls it makes.

W32/Evol uses the following strategies to obfuscate its
calls:

1. It computes the address of the kernel32.dll function
GetProcAddress() by searching for the eight-byte
sequence [0x55 00 01 F2 51 51 ec 8b] on Windows
2000. (The W32/Evol binary at http://vx.netlux.org/

FEATURE 1



VIRUS BULLETIN   www.virusbtn.com

1010101010 JANUARJANUARJANUARJANUARJANUARY 2005Y 2005Y 2005Y 2005Y 2005

TRANSFORM MODULETRANSFORM MODULETRANSFORM MODULETRANSFORM MODULETRANSFORM MODULE

The Transform module maps an instruction into one or
more instructions. A detailed list of all the transformations
is given in the appendix, which can be found at
http://www.virusbtn.com/magazine/blahblah.

The transformation rules can be classified into two
categories: deterministic and nondeterministic. A
deterministic rule always transforms an instruction to the
exact same sequence of instructions.

For example, the following rule for transforming the
instruction movsb (opcode 0xA4) is a deterministic
transformation rule:

movsb push eax

mov al, [esi]

add esi, 1

mov [edi], al

add edi, 1

pop eax

Figure 5 shows the procedure for generating a fixed
transformation for byte 0xA4 representing movsb.

A non-deterministic rule may transform an instruction to a
different sequence of instructions. The following two rules
demonstrate non-deterministic rules:

looks for the byte sequence [0x55 00 00 0f 51 51
ec 8b], which is probably for a different version
of Windows.)

2. It keeps the address of GetProcAddress() in its
stack-based global data store, maintained at a
certain distance from a magic marker pushed on
the stack.

3. It uses a ‘return’ instruction to make a call to
GetProcAddress().

4. It maintains the names of functions to be called
as immediate, double-word operands of multiple
instructions, not as strings in the data store.

MUTMUTMUTMUTMUTAAAAATION ENGINETION ENGINETION ENGINETION ENGINETION ENGINE
The mutation engine of W32/Evol is a function consisting
of the Disassembly and Transform modules described in
part 1 of this article (see VB, December 2004, p.5). It does
not have a Reverse Engineering module since it transforms
one instruction at a time.

The mutation engine is located at address 00401FD7.
The engine takes three inputs (all values quoted here are
the values recorded during a test run of W32/Evol in a
debugger):

1. The Relocatable Virtual Address (RVA) of loaded
virus code: RVA = 401000.

2. The length of the original virus code: LEN = arg_4
(1847).

3. Pointer to buffer (BUF1) to store the transformed
code: (Max Size buffer = 4 x LEN = arg_8 (7F0000).

The output of the engine is the transformed program, which
is placed in the buffer BUF1.

DISASSEMBLDISASSEMBLDISASSEMBLDISASSEMBLDISASSEMBLY MODULEY MODULEY MODULEY MODULEY MODULE

The disassembly module of W32/Evol uses the linear
sweep algorithm. It checks whether a byte starts an
instruction, if it does then it gets the size of the instruction,
and disassembles the byte following the instruction. If,
during disassembly, the program comes across a byte that is
not an instruction, the mutation process is abandoned (see
Figure 3).

The mutation engine processes only a limited range of
opcodes of the x86 instruction set. For instance, it does not
process floating-point instructions. The mutation is
abandoned if an instruction outside its accepted range is
encountered.

Figure 4 shows the code fragment from W32/Evol
performing the instruction range check.

Location Instruction
0040227A cmp     al, 0FEh
0040227C jz      short loc_402282

; If the byte under analysis is FE
; goto 00402282

0040227E cmp     al, 0FFh
; If the byte is FF goto 00402282

00402280 jnz  short loc_4022B5
; compare al with next opcode.

00402282 mov     al, [esi+1]
; If byte is either 0xFE or 0xFFload ModR/M
; byte in al

00402285 and     al, 38h
00402287 ror     al, 3
0040228A cmp     al, 7
0040228C jz      loc_402532

; If value of bits 3, 4, 5 of ModR/M byte are
; 1 the instruction does not exist
;  Exit mutation process

Figure 3. Invalid instruction check.

Location Instruction
00402118 cmp     al, 0Fh

; Checking for two-byte opcode.
0040211A jnz     short loc_402152

;compare al with next opcode.
0040211C mov     cl, [esi+1]
0040211F cmp     cl, 80h
00402122 jb      loc_402532

; If byte following 0x0F is less than 0x80
; then exit mutation process

00402128 cmp     cl, 90h
0040212B jnb     loc_402532

; If byte following 0x0F is greater than
; 0x90 then exit mutation process

Figure 4. Invalid instruction ‘range’ check.



VIRUS BULLETIN   www.virusbtn.com

1111111111JANUARJANUARJANUARJANUARJANUARY 2005Y 2005Y 2005Y 2005Y 2005

mov eax, [ebp+4] push ecx

(8B 45 04) mov  ecx, ebp

add  ecx, 41h

mov  eax, [ecx-3Dh]

pop  ecx

mov eax, [ebp+4] push esi

(8B 45 04) mov  esi, [ebp+4]

mov  eax, esi

pop  esi

Whenever the code introduced by a rule modifies a register,
say reg, which was not modified by the original instruction,
the mutated code is wrapped between ‘push reg’ and ‘pop
reg’ instructions.

PAPAPAPAPATCHING RELOCATCHING RELOCATCHING RELOCATCHING RELOCATCHING RELOCATTTTTABLE ADDRESSESABLE ADDRESSESABLE ADDRESSESABLE ADDRESSESABLE ADDRESSES

W32/Evol does not contain any jump and call instructions
that use absolute addresses, rather all the branching
instructions use relative jumps. The virus also contains no
indirect jumps and calls, where the target address is
available in a register or some other memory location.

Since the transformations replace one instruction with
multiple instructions, the mutation engine must also
modify the relative addresses of the jump and call
instructions.

In order to update the relative addresses, the mutation
engine maintains another buffer, BUF2, of size 16 x [length
of virus code]. For each instruction of the virus program,
BUF2 has four entries, as shown in Table 1.

The first entry of the table is Source, this points to the
address of the nth instruction in the virus code. The second
entry, Dest, points to the address in BUF1 where the
transformed virus code is stored. (Note that the mutation
engine takes BUF1 as input.)

The other two entries in the table are zero unless the
instruction carries a relocatable offset, in which case the
third entry points to the address where the calculated
offset is to be stored. The last entry stores the value of the
current offset.

The change in the length of the code results in a change of
relative addresses. To update the relative offsets, the
algorithm searches for all the non-zero ‘Entry 3’ locations,
i.e. instructions that have offsets.

If an instruction, I, with a non-zero offset is found, it adds
the original offset (Entry 4) to Source (Entry 1), to obtain
address a. Address a is the original destination address in
the W32/Evol code. Since this destination address should
start a valid instruction, there should be a valid record in
BUF2 such that Source is equal to a. (Note that BUF2
has records corresponding to each valid instruction in
virus code.)

The difference between the values of Dest at the location
of instruction I and Dest at location a gives us the new
offset. This offset gives the number of bytes that have been
added in the transformed code. The offset is then patched
back to the location pointed by Entry 3 at the location of
instruction I.

DEFEADEFEADEFEADEFEADEFEATING W32/EVOLTING W32/EVOLTING W32/EVOLTING W32/EVOLTING W32/EVOL
W32/Evol is no longer considered to be a major threat
– most of the current AV scanners can catch it because of
its relatively simple morphing engine. Yet it may be worth
contemplating how this virus could be defeated. The
insights could lead to the development of methods for
defeating other metamorphic viruses.

W32/Evol uses some very interesting techniques to
obfuscate system calls. It is probably beyond the scope of
current static analysis techniques to undo these obfuscations
and identify the system functions being called by the virus.
It appears to be futile to follow that direction.

However, the limitations of the metamorphic engine of
W32/Evol are clearly its weaknesses.

• It uses linear sweep for disassembling itself. Hence,
it can be disassembled by most disassemblers.

• It cannot use indirect jumps and calls because it
cannot transform them correctly. Thus, its control
flow graph can be created easily, thereby simplifying
its reverse engineering.

Location Instructions
004023B0 cmp al, 0xA4

;if byte is not 0xA4 goto next step
004023B2 jnz 004023CE
004023B4 add esi,1

; Increment esi to analyze nextbyte
004023B7 mov eax, 83068A50
004023BC stos dword ptr es:[edi]
004023BD mov eax, 78801C6
004023C2 stos dword ptr es:[edi]
004023C3 mov eax, 5801C783
004023C8 stos dword ptr es:[edi]

; If al contains 0xA4, insert the equivalent byte
; sequence 50 8A 06 83 C6 88 07 83 C7 01 58
; at the buffer location pointed to byedi

004023C9 jmp 00401FF8
; goto analyze next byte

Figure 5. Transformation of byte 0xA4.

Table 1.  A record in the buffer BUF2.

Entry 1
(DWord)

Entry 2
(DWord)

Entry 3
(DWord)

Entry 4
(DWord)

Source Dest Next address
following
opcode

Original
offset



VIRUS BULLETIN   www.virusbtn.com

1212121212 JANUARJANUARJANUARJANUARJANUARY 2005Y 2005Y 2005Y 2005Y 2005

• Its deterministic transformation rules essentially
replace a certain byte with a certain fixed sequence
of bytes. These rules can be applied in reverse.

• The code generated by non-deterministic
transformation rules follows the pattern: push reg,
instructions, pop reg, where the instructions does
not contain push or pop. The push and pop
instructions form a pair of parenthesis. All such
pairs are properly matched in the generated code.
It should be possible to undo the transformation
using a parenthesis-matching algorithm.

Now consider a program Undo.Evol that does the following:
it disassembles a program using linear sweep and then
applies the transformations of W32/Evol in reverse. The
program continues to apply the transformations until none
of the transformations can be applied.

Will Undo.Evol program help in detecting versions of
W32/Evol?

Since the transformations of W32/Evol always result in an
increase in the code size, when they are applied in reverse
they will always decrease the code size. Thus, Undo.Evol
will always terminate.

It is a matter of further study whether Undo.Evol will
always terminate on a single program. If it can be shown
that Undo.Evol terminates on a single program, say
Min.Evol, then to detect W32/Evol one may apply
Undo.Evol on a binary and check for the signature of the
Min.Evol.

CONCLUSIONSCONCLUSIONSCONCLUSIONSCONCLUSIONSCONCLUSIONS

Anti-virus scanner technology is constrained by the
theoretical limits of program analysis techniques. A
metamorphic virus is a manifestation of these limits. In
fact, metamorphic viruses also depend on program analysis
techniques, because in order to mutate, a metamorphic
virus must analyse its own code. Thus a metamorphic virus
cannot use tricks that will fool its own analyser.

This handicap of metamorphic viruses can potentially be
exploited to develop AV scanners. However, to reverse
the mutations in order to defeat a virus, the AV research
community faces several key questions, such as: How
does one extract the assumptions of a virus and the
transformations it performs? Will reverting the
transformations lead to a single result? Will the reverse
transformations terminate in polynomial time? And how
does one separate virus code from the code of the host?

The answers to some of these questions would be crucial in
developing technology that takes advantage of the Achilles’
heel of a virus.


