
Malware Phylogeny Using Maximal πPatterns

Md Enamul Karim, Andrew Walenstein, Arun Lakhotia

Center for Advanced Computer Studies,

Lafayette, LA, U.S.A

and

Laxmi Parida

IBM T. J. Watson Research Center

About Authors
Md. Enamul Karim is a Ph.D. candidate at the Center for Advanced Computer Studies, University
of Louisiana at Lafayette.

Contact Details: c/o Center for Advanced Computer Studies, #2 Rex Street, Lafayette, LA, 70504,
U.S.A, phone 1-337-482-5791, fax 1-337-482-6766, email mek@cacs.louisiana.edu

Andrew Walenstein is a Research Scientist at the Center for Advanced Computer Studies,
University of Louisiana at Lafayette.

Contact Details: c/o Center for Advanced Computer Studies, #2 Rex Street, Lafayette, LA, 70504,
U.S.A, phone 1-337-482-5791, fax 1-337-482-6766, email walenste@ieee.org

Arun Lakhotia is an Associate Professor at the Center for Advanced Computer Studies, University
of Louisiana at Lafayette.

Contact Details: c/o Center for Advanced Computer Studies, #2 Rex Street, Lafayette, LA, 70504,
U.S.A, phone 1-337-482-5791, fax 1-337-482-6766, email arun@cacs.louisiana.edu

Laxmi Parida is a Research Scientist at IBM T. J. Watson Research Laboratory.

Contact Details: c/o IBM T. J. Watson Research Center, P. O. Box 218, Route 134, Yorktown
Heights, New York 10598, Phone : +1 (914) 945-1376 Fax : +1 (914) 945-4104,
parida@us.ibm.com

Keywords
Malware, computer virus, worm, program comparison, phylogeny, feature extraction, clustering,
permutation, πpattern, obfuscation, software evolution

EICAR 2005 Conference: Best Paper Proceedings

- 167 -

Malware Phylogeny Using Maximal πPatterns

Abstract
Construction of malware phylogeny could help in analyzing new malware samples as they arrive.
However, the generated phylogenies must be accurate and be able to contend with the changes and
obfuscations the malware writers create in the codes. We present our approach of using maximal
πpattern, a PQ tree based feature, as a basis for comparing and classifying malwares. We argue
that the πpattern approach is capable of dealing with certain obfuscations imposed in malware
evolution process and demonstrate this possibility using examples of known viruses. We also
suggest this scheme be used for automated naming of malware variants.

Introduction
Systematic code reuse has been an elusive goal for software engineering practice since the term was
first coined, yet in certain respects it is an everyday practice for “malware” authors. The term
“malware” here is being used as the generic name for the class of code that is malicious, including
viruses, trojans, worms, and spyware. Malware authors use generators, incorporate libraries, and
borrow code from others—there exists a robust network for exchange, and some malware authors
take time to read and understand prior approaches (Arief & Besnard, 2003). Malware also
frequently evolves due to rapid modify-and-release cycles, creating numerous strains of a common
form. The result is a tangled network of derivation relationships between malicious programs.

In biology such a relationship network is called a “phylogeny”; significant recent efforts in
bioinformatics involve automatically constructing meaningful phylogeny models based on
information in nucleotide, protein, or gene sequences. Reconstructing malware phylogenies using
similar techniques is expected to help in forensic malware analysis. It could provide clues for the
analyst, particularly in terms of understanding how new samples relate to previously seen samples.
Useful phylogenies could also serve as a principled basis for naming malware. Despite a 1991
agreement on an overall naming scheme and several papers proposing new schemes, malware
naming continues to be a problem in practice (Raiu, 2002).

The question remains, though, as to how useful phylogeny models can be built by studying the
bodies of malware samples. The method should be able to account for the types of evolutionary
change that occurs in malware. Malware authors may try to hide the derivation relationships by
several techniques, including garbage insertion, code reordering, and instruction substitution. Some
metamorphic worms are known to modify their own code between generations; some shuffle the
order of their code (Szor & Perrie, 2001).

We propose to use patterns of permuted code as comparison features for building malware
phylogenies. In particular, we explore the use of so-called “maximal πpatterns”. Methods based on
maximal πpatterns have already proven to be promising in bioinformatics applications (Eres,
Landau & Parida, 2003). These methods may also be well suited to application in malware
phylogeny generation since malware can evolve through code rearrangements such as instruction
reordering and code block shuffling. Matching potentially permuted sequences relaxes
requirements for sequencing that are found in many other approaches for matching strings,
including sequence alignment and large-n n-grams. In addition, the maximal πpattern approach
formalizes a preference for large matches, a matching approach similar in spirit to the use of longest
common subsequence (LCS) for finding minimal edit distances.

EICAR 2005 Conference: Best Paper Proceedings

- 168 -

The following describes our approach of using maximal πpatterns and provides the results from a
case study that suggests the automatically extracted phylogeny model grossly agrees to manual
analysis.

A Maximal πPattern Approach
There have been several attempts to build malware phylogeny models. Goldberg, Goldberg, Phillips
& Sorkin(1998) used 20-grams to generate directed acyclic graphs whose nodes are the viruses and
whose edges map ancestors to descendants. They argued the sensibility of this approach by
suggesting that malicious programs that are descendents of another are likely to have long byte
sequences in common. Carrera & Erdelyi (2004) took a different approach of using a similarity
measure based on static call graphs, and generating an X-tree using a hierarchical clustering
algorithm. Wehner (2005) also used hierarchical clustering, but used an information theoretic
similarity measure computed using a block-sorting compressor (bzip2).

These technique are expected to be at least occasionally problematic. The method by Carerra et. al.
requires accurate call graphs, and these can be expensive and difficult to generate. The other
methods rely on sequence information and, in general, we can expect methods that are strongly
reliant on strict sequences to be suboptimal in cases where evolutionary steps involve significant
permutations. For instance a rearrangement on a 20-byte sequence could hide a derivation
relationship from large-n n-gram techniques. On the other hand small-n n-gram techniques are more
likely to generate false positives.

It may be valuable, therefore, to have an alternative technique that could potentially capture longer
collections of related words (as in LCS), but without absolutely requiring ordering (as in term-
vector techniques like n-grams). One possible avenue for improving the matching of evolved code
is to match on code that can possibly be permuted, i.e., rearranged. It would be desirable to allow
for matching of long permutations, where they exist, yet also match smaller ones where they have
been chopped up, moved around, and changed. The approach through maximal πpatterns matching
is one possible approach.

Maximal πpatterns
Maximal πpatterns were introduced in (Eres et. al., 2003) as a method for finding motifs in protein
sequences. It is defined as a restriction on a collection of permutation patterns called πpatterns.
Given an integer K, a pattern p is πpattern on string S if |p|>1 and p or its permutation appears at
some k≥K distinct locations in S. Parameter K makes it possible to remove infrequent permutations,
a filtering practice reminiscent of infrequent n-gram trimming. Nonetheless the number of possible
πpatterns is O(n2), so without significant filtering, using πpatterns can be intractable for long
sequences, or for matching within many files.

In response to this hurdle, the concept of a maximal πpattern was introduced. It is defined as
follows: let P be the set of all πpatterns on string S. p(a)∈P is non-maximal if there exists p(b)∈P
such that (1) each appearance of p(a) (or its permutation) is covered by p(b) (or its permutation),
and (2) each appearance of p(b)on S covers a minimum of one p(a). A p(b) that is not non-maximal
is maximal. An instance of pattern q covers an instance of p if p appears in q. For example in the
string S=abba with K=2, the permutation of pattern ‘ab’ appears twice (positions 0 and 2) and is
covered by the permutation of pattern ‘abb’, which also appears twice. Thus ‘ab’ is non-maximal
and ‘abb’ is maximal in S given K=2.

EICAR 2005 Conference: Best Paper Proceedings

- 169 -

Maximal πpatterns are known to be equivalent to minimal consensus PQ trees (Eres, Landau &
Parida, 2005). A PQ-Tree (Booth & Lueker, 1976) is a rooted, ordered tree with two types of
internal nodes: P-nodes and Q-nodes. A P-node is known to be a consecutive block of elements, but
with the order of the blocks unknown. A Q-node represents consecutive blocks appearing in a fixed
order or exactly reversed. Effectively, the set of πpattern includes both P and Q nodes.
Interestingly, since P-nodes are not ordered, code reordering is well captured in P-nodes. If inserted
or deletion is performed in the code, P or Q nodes will be split; however, there will still be a match
on effective codes.

Restricting focus to maximal πpatterns reduces the size of the feature space, yet searching for
arbitrarily maximal πpatterns could be expensive. Eres et. al (2003) presented a two-phase
algorithm to compute the collection of maximal πpatterns. The algorithm takes O(Ln log |Σ| log n)
time in the first phase to generate πpatterns of length ≤ L for a sequence of length n. The number
of πpatterns ρ is bounded by O(n2). Assuming the maximum length of a location list is associated
with a πpattern is l, phase 2 runs in O(ρ2l) time. A newer, more efficient algorithm has also been
developed for phase 2 in (Landau, Parida, & Weimann, 2005) which has a time complexity of O(k
m), given k permutations each of length m. Both of these algorithms are two stages and neither
avoids the cost of first generating all of πpatterns.

We used a single stage algorithm based on the following observations: (i) if (Pb covers Pa) and (Pc
covers Pb) then Pc covers Pa. and (ii) if Pb covers Pa then |Pb| > |Pa|. Our algorithm for finding all
maximal πpatterns till length l proceeds as follows:

1. Construct an empty list, Max, of maximal πpatterns.
2. For w=n-K+1 downto l do :

Slide a window of length w along the string and check if the pattern in the window is a
πpattern and is covered by any larger pattern in Max , i.e., by any of the larger maximal
πpatterns generated so far; if yes continue onto the next window, else add this to list of
maximal πpatterns.

This stores only O(n) πpatterns and the m maximal πpatterns at any instance instead of O(n2)
πpatterns and reduces O(ρ2l) time complexity to O(ρml).

Phylogeny Model Generation Method
One way to use maximal πpatterns for building phylogeny models is as follows. First prepare the
raw malware samples, if necessary (e.g., by filtering, disassembling, or abstracting), and then
catenate the resulting strings together using unique separation markers. Then extract the collection
of maximal πpatterns. This collection can be viewed as a set of non-redundant features contained in
the malware samples modulo reordering. These can be used for feature-based model building or, if
one defines a distance using the features, for distance-based model building.

Given the maximal πpatterns, the remaining issue is the method for phylogeny extraction. A simple
method is to use the maximal πpatterns as binary features, represent the programs as binary vectors,
and compute similarity as the number of bits set after exclusive-NOR-ing them. This technique has
been used to construct phylogenies from gene sequences. The intuition behind using XNOR
instead of, say, AND (which counts only features in common) is that both common features and
mismatched features count towards these core. Call this the ``XNOR'' approach.

An alternative method is real-vector similarity measure, such as cosine similarity (e.g., see (Zobel
& Moffat, 1998)). We have employed CLUTO (Karypis, 2003) to build phylogeny models using

EICAR 2005 Conference: Best Paper Proceedings

- 170 -

both XNOR and cosine similarity measures. CLUTO implements cosine similarity comparisons
directly, and we provided it similarity matrices for clustering using XNOR similarity. We used its
agglomerative clustering functionality to build dendograms, meaning the phylogeny models being
generated cannot capture multiple inheritance relationships. Although in general this may be a
limitation our experiences suggest the trees are a good and simple starting point for exploring the
underlying maximal πpattern similarity technique.

Malware Naming
A useful naming scheme would ensure that as new malware samples arrive, the previously assigned
names do not change. This requires stability in the tree, and implies that the initial tree should be
built with a complete database of known malware. Here we provide a method for attempting to
build and maintain a suitable phylogeny, although it falls short of actually generating human-
readable names for the malicious programs.

To add an unknown virus u to the existing tree we follow the following algorithm,

• Find the best match to the stored list of πpatterns down to the leaf.

• If the match exceeds a threshold k at leaf l, do the following:

• Split l to two new leaves l1 and l2.

• Store l to l1 and u to l2.

• Store the consensus πpatterns of l1 and l2 at the node joining them.

• Name u as a new variation of l1.

Else, do the following:

• Add a new root rn with two children: the old root r and a new leaf ln.

• Store u to ln.

• Store the consensus πpatterns of r and ln at rn.

• Assign u a new name.

Case Study
We performed a small study to investigate the potential in using maximal πpatterns, and to develop
some initial feedback as to the relative merits of XNOR and cosine similarity measures.

Materials and Procedure
We selected several Windows-based malicious programs taken from an online database
(vx.netlux.org) of malware. . We selected two worms and a virus and chose samples that were not
encrypted or packed, and could thus be disassembled. We collected groups of samples known be in
the same family so that we could evaluate how well family ties are reconstructed. 9 different
samples of Win32.Alcaul (0-8), 3 of Win32.Belial (9-11), and 6 of Win32.Eva (12-17) were used.
For three of the variants we also used a second disassembler, yielding 18 different code sequences.

EICAR 2005 Conference: Best Paper Proceedings

- 171 -

Figure 1b. Results using XNOR similarity

Figure 1a. Results using cosine similarity

These worms were disassembled and only the opcodes were selected as characters. The character
sequences representing the worms were then catenated together, and maximal πpatterns were
extracted. The 18 samples generated 1570 maximal πpatterns.

Results
According to the existing naming, the phylogeny structure should look like, ((0-8),((12-17),(9-11))).
Phylogenies we generated are shown in Figures 1a and 1b.

Discussion
In the figures, the multiple disassemblies (named with suffix “.0”) of the same code are grouped by
pairs as they should be. The phylogeny creates new questions to be investigated. It suggests
Win32.Alcaul.h and Win32.Belial.2609 may have stronger phylogenic relationship through they are
known to be two different species. It also shows that current variant sequencing may not be right,
e.g., the phylogeny says Win32.Eva.a and Win32.Eva.d have a closer relationship than
Win32.Eva.a and Win32.Eva.b or Win32.Eva.c and Win32.Eva.d. Hand investigation shows that
our sample of Win32.Alcaul.h is significantly different from the other Win32.Alcaul variants.

The two different similarity measures do make a difference in the dendograms generated. For
instance Win32.Belial.2609 is in an unrelated subtree in the XNOR dendogram (Figure 1(b)),
whereas it is considered to be more closely related to Alcaul according to cosine similarity
measures. Thus given that Win32.Alcaul.h is known to be substantially different, the XNOR
appears to generate a more accurate phylogeny model, at least in this case.

Conclusions
We propose the use of maximal πpatterns for building phylogenies for forensic analysis, and
provide efficient algorithms for generating the features for clustering. Our case study is limited and
does not allow us to generalize about how well the techniques can be expected to work.
Nonetheless the study suggests that permutation-based matching and, in particular, maximal
πpattern-based matching may be a viable alternative to other phylogeny model generation methods.

EICAR 2005 Conference: Best Paper Proceedings

- 172 -

The study also illustrates that the similarity methods used for phylogeny generation can make a
difference to the quality of the results, and suggests that the XNOR approach of counting both
matches and mismatches may have value for generating phylogenic models of malware evolution.

The study also suggests avenues for further investigation. In the present work we used exact
matching of πpatterns, i.e., in order to match two πpatterns should have exactly same set of
elements. We like to investigate how approximate matching of πpatterns affects the making of the
tree/evolutionary relationship. We also need to study on determining the right value of the
threshold to decide whether a virus is a variant or is independently developed.

EICAR 2005 Conference: Best Paper Proceedings

- 173 -

References
Arief, B. & Besnard, D. (2003). Technical and human issues in computer-based systems security.

University of Newcastle upon Tyne. (CS-TR-790).

Booth, S. & Lueker, S. (1976). Testing for the consecutive ones property, interval graphs, and graph
planarity using PQ-tree algorithms. J. Comput. Syst. Sci., 13. pp. 335–379

Carrera, E. & Erdelyi, G. (2004). Digital genome mapping: advanced binary malware analysis.
Virus Bulletin Conference, pp 187-197, Sept 2004

Eres, R., Landau, G. M. & Parida, L. (2003). A combinatorial approach to automatic discovery of
cluster patterns. In G. Benson & R. Page (Eds.), Algorithms in Bioinformatics: Third
International Workshop (pp. 139-150). Berlin: Springer-Verlag.

Goldberg, L. A., Goldberg, P.W., Phillips, C. A. & Sorkin, G. (1998). Constructing computer virus
phylogenies. J. of Algorithms, 26(1), pp.188-208.

Karipys, G. (November, 2003). CLUTO: A clustering toolkit, Release 2.1.1. University of
Minnesota (Report #02-017).

Kolter, J. Z. & Maloof, M. A. (2004). Learning to detect malicious executables in the wild,
SIGKDD 2004. Seattle, WA, USA. ACM Press.

Landau, G. M., Laxmi, P. & Oren, W. (2005). Gene proximity analysis across whole genomes via
PQ trees. Retrieved 15 March, 2005 from http://cs.haifa.ac.il/LANDAU/gadi/LPW.pdf

Raiu, C. (2002, June 3). A virus by any other name: Virus naming practices. Security Focus.
Retrieved 5 March, 2005 from http://www.securityfocus.com/infocus/1587

Szor. P. & Ferrie, P. (September 2001). Hunting for metamorphic. In Proceedings of the Virus
Bulletin Conference (pp 123-144).

Wehner S.(2005). Analyzing Worms Using Compression. Retrieved 5 March, 2005 from
http://homepages.cwi.nl/~wehner/worms

Zobel, J. & Moffat, A. (1998). Exploring the Similarity Space. SIRIG Forum, 32(1), pp. 18-34.

EICAR 2005 Conference: Best Paper Proceedings

- 174 -

