
Restructuring programs by tucking statements into functions

Arun Lakhotia and Jean-ChristopheDeprez

The Centerfor AdvancedComputerStudies
University of SouthwesternLouisiana

Lafayette, LA 70504
(318) 482-6766,-5791 (Fax)

arun@cacs.usl.edu

Abstract

Changingthe internal structureof a programwithout changingits behavioris called restructuring.
Thispaperpresentsa transformationcalledtuckfor restructuringprogramsby decomposinglargefunctions
into small functions. Tuck consistsof three steps: Wedge, Split, and Fold. A wedge—asubsetof
statementsin a slice—containscomputationsthat arerelatedand that may createa meaningfulfunction.
The statementsin a wedgearesplit from the restof the codeand folded into a new function. A call to
the new function is placedin the now restructuredfunction. That tuck doesnot alter the behaviorof the
original function follows from the semanticpreservingpropertiesof a slice.

Keywords: ProgramRestructuring;ProgramSlicing

1 Introduction

Softwarerestructuringis the transformationof softwarefrom one representationto anotherat the
samerelativeabstractionlevel, without changingthe externalbehaviorof the subjectsystem[CC90]. A
softwaresystemmayberestructuredto makeit easierto understandandchange,andthereforelesscostly
to maintain [Arn89]. Restructuringmay also be the enabling step for reengineeringa system[SJ87,
Wat88], and for reverseengineeringa systemto extractits abstractions[BL91, HPLH90, War93].

Restructuringin the early days of structuredprogrammingimplied removing the goto statements
[AM71, Bak77, Kas74]. This notion of restructuringis quite matureand hasled to severalautomated
tools[Arn89]. Eventhoughautomaticremovalof goto statementsdoesnot alwaysproduceprogramsthat
aredesirable[Cal88], suchrestructuringis a necessarystepfor creatinghigher, logic-basedabstractions
from code [BL91, HPLH90, War93, Wat88].

This paperinvestigatesthe problemof restructuringprogramsby breakingits large codefragments
andtuckingtheminto new functions.The technicalchallengein creatingnewfunctionslies in capturing
computationsthat are meaningfullyrelated. If that wasnot necessary,onecould simply createfunctions
by breakingoff contiguouspiecesof codeof somepre-setsize, suchas doneby Sneedand Jandrasics
[SJ87]. Sucha straightforwardapproachmay not yield good functionsbecauseof the interleavingof
unrelatedcomputationsin real-world code [RSW96].

We presenta restructuringtransformationtuck to decomposelarge,non-cohesivecodefragmentsinto
small,cohesivefunctions[Dep97]. To tuck, accordingto theAmericanHeritageDictionary, is to “gather
and fold.” This is preciselywhat our transformationdoes. Tuck is a compositionof three primitive

1

1 Procedure Sale_Pay_Profit (days: integer;
 cost: float; var sale: int_array;
 var pay: float; var profit: float;
 process: boolean);
2 var i: integer;total_sale, total_pay: float;
3 begin
4 i:=0;
5 while i < days do begin
6 i := i + 1;
7 readln(sale[i])
8 end;
9 if process = True then begin
10 total_sale:=0;
11 total_pay:=0;
12 for i := 1 to days do begin
13 total_sale := total_sale + sale[i];
14 total_pay := total_pay + 0.1 * sale[i];
15 if sale[i] > 1000 then
16 total_pay := total_pay + 50;
17 end;
18 pay := total_pay / days + 100;
19 profit := 0.9 * total_sale - cost;
20 end;

21 end;

Figure 1 Sample non-cohesivefunction. This function usesthe sameinput to computedifferent outputs. Its
computationalso dependson a flag passedasa parameter.This function is a representativeof
codewith interleavedcomputations[RSW96]. In Section6, using the tuck transformation,this
programis restructuredinto a collection of functionswith an object-basedarchitecture.

1 Procedure Sale_Pay_Profit (days: integer;
 cost: float; var sale: int_array;
 var pay: float; var profit: float;
 process: boolean);
2 var i: integer;total_sale, total_pay: float;
3 begin
4 i:=0;
5 while i < days do begin
6 i := i + 1;
7 readln(sale[i])
8 end;
9 if process = True then begin
10 total_sale:=0;
12 for i := 1 to days do begin
13 total_sale := total_sale + sale[i];
17 end;
 ComputeTotalPay(days, sale, total_pay);
18 pay := total_pay / days + 100;
19 profit := 0.9 * total_sale - cost;
20 end;

21 end;

 Procedure ComputeTotalPay (days: integer;
 sale: int_array;
 var total_pay: float;);
 var i: integer;
 begin
11 total_pay:=0;
12 for i := 1 to days do begin
14 total_pay := total_pay + 0.1 * sale[i];
15 if sale[i] > 1000 then
16 total_pay := total_pay + 50;
17 end;
 end;

Figure 2 Result of tucking computation in Figure 1. This programis createdby tucking
all statementsassigninga value to the variable total_pay .

2

transformations:Wedge,Split, and Fold. To tuck a codefragment,a programmerfirst gatheresrelated
code by driving a wedgein the function, then splits the code isolatedby the wedge,and then folds
[BD77] the split code into a function. Such restructuringmay be performedin order to improve the
architectureof a softwaresystem[Sta82].

Figures1 and2 enumerateby examplethe typeof restructuringperformedby tucking. Theprogram
in Figure1 is not cohesive[SMC74] in that it performsseveralactivitiesat the sametime. It inputs the
sale datafor a givennumberof days . Dependingon thevalueof the flag process , it alsocomputes
pay , the commissionto bepaid asa percentageof sale , andthe resultingprofit . Figure2 contains
a programresultingfrom tucking all the statementsmodifying the variabletotal_pay into a function
ComputeTotalPay . Besidestheassignmentsto total_pay , thenewfunctionalsocontainsthe for
andthe if statementssothatthecomputationof total_pay is preserved.A copyof the for statement
hasbeenretainedin the restructuredfunction to ensurethat total_sale is correctlycomputed.

The tuck transformationimproves upon the extract-function transformationcontainedin
GriswoldandNotkin’s catalogueof restructuringtransformations[Gri91, GN93]. Griswold andNotkin’s
extract-function createsa new function from contiguouscode fragments. Their transformation
is limited to structured programs.In contrast,the tuck transformationevencreatesfunctionsfrom non-
contiguouscode,as enumeratedby the examplein Figures1 and 2. Our transformationis definedfor
unstructured programsas well.

This paperpresentsa summaryof the tuck transformationsand its application. The rest of this
paperis organizedas follows. Section2 definesthe problemand highlights the technicalchallengein
decomposingfunctionsto createsmallerfunctions. Section3 presentssomebackgrounddefinitionsused
later. Section4 presentsour tranformationfor folding a contiguouspieceof codeinto a function. Section
5 containsour transformationfor tucking non-contiguouscode. Section6 gives an exampleof using
this transformationfor restructuringa program.Section7 presentsa comparisonof our work with other
relatedwork. Section8 containsour concludingremarksandplansfor future research.

2 Problem definition

We definethe problemof tucking statementsas follows:

Definition: Tuck. To tuck a set of statements
�

of a function fold is to createtwo functionsfnew and
fS suchthat (a) fold is equivalentto fnew, (b) fnew calls fS, and (c) fS containsthe statementsin S (and
may be other statements).

For this discussionwe only considerproceduralprogramsthatdonot containglobalvariablesandI/O
statements.A programis madeup of functionsconsistingof statements,bothstructuredandunstructured.
Data is passedback and forth betweenfunctionsthroughvalue and referenceparameters.We consider
two functionsto beequivalentif they producethe sameoutputsfor the sameinputs,wherethe input and
output of a function are definedin termsof its parametersand return values.

When restructuringprogramsfunction fnew will replacefunction fold. Hence the two functions,
besidesbeing equivalentin input/outputmapping,will alsohavethe samename. We usethe subscript
new and old to differentiatethesetwo functions. It may not alwaysbe possibleto tuck a given set of
statementsandensurethat fnew is equivalentto fold. In suchcase,we assumethat tuck terminateswith
error, i.e., without making any changesto the program.

3

The definition of tuck doesnot statewhetherstatementsin S should be included in fnew or not.
Generally, thesestatementswould not be included in fnew. However, requiring that statementsin S
not be includedin fnew may be too stronga constraint. Sometimesit may be necessaryto retain some
statementsof S in fnew in orderto ensurethat the threeconditionsaresatisfied.In suchcase,therelevant
statementsare duplicatedin both fnew and fS.

Thefunction fS mayalsocontainstatementsotherthanthosein S. For instance,whenthestatements
in S are dispersedthroughoutthe code,interspersedwith other statementson which they havecontrol
anddatadependence.In suchcase,fS may containotherstatementsthat affect the computationsat the
statementsin S. Thesestatementsmay further be containedin fnew as well.

Clearly, fnew and fS may alsocontainstatementsthat arenot in fold. Onesuchstatementis the call
to fS from fnew, neededby condition (b) in the definition of tuck. The definition doesnot precludethe
possibility of including in fS or fnew statementsthat are not containedin fold. Since statementsfrom
fold may be copied in both fnew and fS, somenew statementsmay be necessaryto ensurethat fnew is
equivalentto fold in spite of the duplicationof statements.One useof theseadditionalstatementsmay
be to saveand restorevaluesof certainvariablesbeforeor after the call to fS.

While thedefinitionof tuck doesnot requirethatall thestatementsof fold appearat leastoncein fnew

or fS, if we assumethat fold containsonly the statementsthat contributeto its computation,i.e. doesnot
containredundantstatements,then it is pragmaticto requirethis condition. Thus, we expectthat after
tucking, every (useful) statementof fold appearsat leastoncein fnew or fS.

Definition: Original andcopystatements.Let statements’, a statementof either fnew or fsub, be a copy
of a statements in fold. Statements is called the original of s’ ands’ is calleda copyof s.

Structural constraint: While not requiredfrom the definition,our tucking algorithmensuresthat every
statementof fnew or fold haszero or one original statementand every statementof fold hasone or two
copy statements.

To formalize the behavior preservedby tuck we use Horwitz et al.’s operationalsemanticsof
programs,calledHPRsemantics,to characterizethebehaviorof a statement[HPR89]. Givenanexecution
of a function—fold or fnew—with someinitial state� , thebehaviorof astatementis definedasthesequence
of valuesgeneratedat that statement.For an assignmentstatementit is the sequenceof valuesassigned
to thevariableon the left-handside. For a predicatestatement—suchas,if-then-else,while-do—it is the
sequenceof booleanvaluesto which its predicateevaluates.For a function call, it is the sequenceof
tuplesconsistingof the returnvalueand the valuesof its parametersat completionof the function.

Let s be a statementof fold and s’ be one of its copy in fnew or fS. Let
�

(fold)(s)(�) denotethe
sequenceof valuesgeneratedby s for an executionof fold with the initial state � . Let

�
(fnew)(s’)(�)

denotethe sequenceof valuesgeneratedby s’ for an executionof fnew with the initial state � . (Note
that the initial stateis for fnew even if s’ is in fS.)

Definition: Statementequivalence. A statements of fold is equivalentto its copy s’ in fnew or fS if f for
every initial state � for which fold and fnew terminate,s and s’ generatethe samesequenceof values,
i.e.

�
(fold)(s)(�) =

�
(fnew)(s’)(�).

It follows that the functionsfold and fnew are equivalentif all the statementsof fold are equivalent
to their copies in fnew or fS.

4

3 Preliminaries

Our discussionsand algorithmsare restrictedto programsin a procedurallanguagewithout global
variables.The languagecontainsassignmentstatement,branchstatements,goto statement,and function
call statement.For simplicity of presentationwe considera function call to be a statement,i.e., it does
not appearin any expression.A function hasa fixed numberof parameters,eacheitherpassedby value
or by reference.

We considera functionto berepresentedasa controlflow graph(CFG)anda programasa collection
of CFGs. The input and output of our transformationsare CFGs, its components,and somerelations
over thesecomponents.

Definition: Directedgraph. A directedgraph
���������	��

consistsof a set of nodes
�

and a set of
edges

�
�������
.

Definition: Control flow graph. A CFG is
���

(
�

,
�

) is a directedgraph with a uniquestart node����� �
suchthat there is a path from ��� to every node in

�
, and a uniqueend node � ��� �

such
that thereis a path to � � from everynodein

�
. The edgesof a CFG are annotatedT, F, or Always,

as describedbelow.

The nodesof a CFG
�

, exceptnodes��� and � � , representstatementsof the function. Conversely,
the statementsof a function, exceptgoto statements,are representedas nodesin its CFG. The goto
statementsare representedas CFG edges.Henceforth,the term statementrefersto a noderepresenting
a statementin a CFG. A branchstatementhastwo outgoingedges,oneannotatedwith T and the other
with F. An assignmentstatementand a function call statementhasonly one outgoingedge,which for
the sakeof uniformity, is labelledAlways. A CFG edgewith tag T or F is calleda conditionalbranch.
As is the conventionwhencontrol dependencesarecomputed,we treat the start nodeasa branchnode
with an F edgeto the endnode � � anda T edgeto the first statementof the function. A startnodehas
no incoming edgeand an end nodeas no outgoingedge.

Due to the label on its edges,a CFG is not truly a directedgraph. Whenthe labelson an edgedo
not play any significantrole in an operationwe omit the label and treat the CFG as a directedgraph.
This leadsto conciseexpressionof relationswithout losing thegeneralitybecausethe labelon anedgeis
obviousfrom the context.Whenthe label is important,we treatan edgeas2–tuple,asdescribedbelow.

Notation: The pair (��� , �), where ��� is a statementand � � { T, F, Always}, representsa CFG edge
tagged� startingfrom the node ��� . The tuple representsa uniqueCFG edgebecausethereis only one
CFG edgewith a particular tag starting from a node.

Notation: We usethe function Target((��� , �)) to give the endstatementof the edge(��� , �).
The valueandreferenceparametersat a call statementanda function aremodelledas follows.

Definition: Let G be a flowgraphof a function. Ref
� ��

and Value
� ��

give the set of referenceand
value parameters,respectively,of

�
; Local

�!��

gives the set of local variablesof

�
; and Vars

� �"

=

Ref
� �"
$#

Value
� �"
%#

Local
�!��

gives all the variablesof
�

.

Definition: Let � be a function call statementin the CFG
�

. Calls
�!�&� �
 givesthe CFG of the function

called by statement� . Ref
�!�&� �
 and Value

�!�&� �
 give the set of referenceand value parametersfor
the call site � .

For simplicity and without loss of generality,we assumethat only variablesare passedas actual
parametersin a function call and that at any call statementa variable may occur at most once as an

5

actualparameter*. We alsoassumethat thereis a 1–1 mappingbetweenthe reference(similarly, value)
parametersof a call site and the reference(value) parametersof the function it calls. As a result the
ordering of the parametersis not relevant.

Definition: Postdominator.A CFG node � postdominatesanotherCFG node � , � �� � , in the CFG�
if f every path from node � to node � containsnode � . Node � is the immediatepostdominator

of node � if f every other postdominatorof � also postdominates� . Let ipdom(�) give the immediate
postdominatorof a node � .
Definition: Control dependence. [FOW87] A node ��� is control dependent on an edge(�
	 , �) if f

1. � � postdominatesTarget((� 	 , �)) and
2. if � �
�� � 	 then � � doesnot postdominate� 	 .
Notation: (��� , �) � CD(�����
�) if f in the CFG � the node �
� is control dependenton the conditional
branch(� � , �) and � ���� � � .
Definition: Data dependence. A statement� � is data dependent on a statement� 	 in function � if f (a)
thereexistsa variable � that is usedby � � and is definedby � 	 and(b) in the CFG of � thereexistsa
path from � 	 to � � in which the variable � is not definedby any intermediatenode.

Notation: A statement� � � DD(����� �) if f in CFG � statement� � is datadependenton thestatement� � .
For this discussionwe assumethat a functioncall usesall its valueparametersanddefinesanduses

all its referenceparameters.This assumptionis conservativeandensuresthat our analysisproducessafe
result. More preciseinformation from interproceduralanalysismay be usedto improve the quality of
the results.

Definition: Dependence. A statement� � is dependent in statement� 	 if f it is eitherdatadependenton
� 	 or control dependenton someedge(� 	 , �), for some � .
Notation: A statement� � � D(����� �) if f in CFG � statement� � is dependenton statement� � .
Definition: Slice. A statement� 	 is in the slice of statement� � if f � � is transitivelydependenton � 	
or � 	 � � � .

� 	 � Slice(����� �) if f � 	 � � � or � 	 � D(����� �) or ������� D(����� �) and � 	 � Slice(�����
�).
Definition: Slice for a statement set. Let S be a setof statements,Slice(���!) = "$#�%'& Slice(����().

4 Folding contiguous code

In this sectionwe presenta transformationto fold contiguouscodesegmentsinto newfunctions.The
fold transformation,alsosometimescalledlambda lifting, wasfirst developedby Burstall andDarlington
in the contextof functional programming[BD77] and subsequentlystudiedfor logic programs[TS84].
Griswold and Notkin developedthis transformation,calling it extract-function, for a structured,
imperativelanguage[Gri91, GN93]. We now extendthe transformationto an unstructured,imperative
language.

In the functional domain the fold transformationmay be applied to any expression. In the logic
domain this transformationmay be applied to any primitive predicateor any conjunctionof primitive
predicates.Similarly, in structured,imperativeprograms,any sequenceof statementsmay be folded into

* Sincewe treata function call as an atomic,undecomposableunit, the issueof aliasing—asa result of using the samevariablemultiple
timesin a function call—is not important.

6

Fold(����� �) = < � � ����� >
where

� ����� �	��
 is a flowgraph
� � ���
� � ��� �
 is a foldable subgraphof � �������� �������������
� � is a new start node and ��� is a new end node� � ������ � � � �!��� �
�"� �#� �%$ ���'&(���
 � � � � �
) � �
 � � � � � �����*
�+ � � � � �,� �
 �-� � �
�.� �/�
� � �0�"�*
 is a flowgraphwith) � � � � � and

�,� � � ���1 �
is a new call statementin � � suchthat Calls � � � � 1 �
 � �.� .� � ���
� � ���
 � 1 � �

� � �/� �2$ � � &3� �
 � � 1 � � �,�4�
 � � � � � 1 �
5+ � � �6) �7�
 �8� �
� � �#�
� � �0� �
 is a flowgraphwith) � � �) � and

�,� � � �,�
Ref � �.�*
 = Ref � � � � 1 �
 = Outvar(� � � ���)
Value� �.�*
 = Value� � � � 1 �
 = Value(� � � ���)
Local � �.�9
 = Local� � � � �:�

Figure 3 A transformationto fold a foldable subgraph

a function. However, in the context of unstructured,imperativeprogramsone cannotextrapolatethat
the fold transformationmay be appliedto any statementor any sequenceof statements.In order to be
convertedto a function, it is important that the sequenceof statementsform a single-entry, single-exit
subgraph(SESEsubgraph)—sincethe new function createdwill haveonly a single entry and a single
exit point. Not every sequenceof statementsin an unstructured,imperativeprogrammay satisfy this
constraint. Hence,unlike its functional and logic counterpart,not every sequenceof statementsof an
unstructuedimperativeprogramcan be folded.

Definition: Subgraph. A directedgraph ;�<>=/?A@B<DC6EF<HG is a subgraphof the flowgraph ;#=I?
@BC�EJG if f
@ <�K @ and E < =LENM(?�@ <,O @ < G�P
Definition: SESE subgraph. A subgraph; < =Q?�@ < C�E < G is a single-entry,single-exit(SESE)subgraph
of a directedgraph ?
@BC�EJG if f RTS�U7VAC�W,U7VYXZ@ < P [4\]X�?�@�^_@ < G�C�\ < X`@ < Pa?
*C�\ < G"X`Ecb \ < =QS�U7V and
?
\ < C�\dGeXfEgb \ < =�W,U7V

To fold a SESEsubgraphis to createa new CFG representinga new function and to replacethe
subgraphin the original CFG by a noderepresentinga call to the new function. Whenfolding a SESE
subgraphall nodes,exceptthe endnode,in the subgrapharemovedinto the new function. This implies
thata SESEsubgraphcontaininganedgefrom its endnodeto someintermediatenodecannotbe folded.
Hencewe definea foldable subclassof SESEsubgraphs.

Definition: Foldable (SESE) subgraph. A SESEsubgraph; < =h?
@ < C0E < G is a foldable subgraphof
;i=�?
@BC�EJG if f thereis no edgefrom W,U7V to anynodein @ < , exceptS�U4V or W,U7V , i.e.,[kj < Xe@ < Pl?mW,U4VnC�j < GoX
E < b j < =�W,U V C�j < =cSpU V .

7

A foldablesubgraph; < of a graph ; may be uniquelyrepresentedby (a) the tuple ?
@ < C0E < G , or (b)
its pair of entry andexit nodes,i.e., ?AS U7V C6W U7V G , or (c) by the set of nodesin the subgraph,i.e., @ < . In
the following discussionwe usethe threerepresentationsinterchangeably.

Our foldable SESEsubgraphis different from the SESEregion of Johnson,Pearson,and Pingali
(JPP)[JPP94].The single-entry,single-exit condition of a JPP-SESEregion is definedin terms of a
pair of edges,not a pair of nodes. In addition a JPP-SESEregion also has a strongerconstraintthat
every cycle containingthe start edgealso containsthe end edge,and vice-versa.The JPPdefinition is
motivatedby the needto computecontrol dependenceregions.In contrastour definition is designedfor
folding computationinto a function.

In orderto introducea functioncall we alsoneedto identify the parametersthat arepassedbetween
the newcall site andthe newprocedure.The following definitionsareusedto identify theseparameters.

Definition: Region. A region is a set of statementsof a function.

Definition: Variables of a region (Vars). Let Vars(;JC �) give the setof all variablesthat aredefinedor
usedat any statementin the region

�
of CFG ; .

Definition: Input variable of a region (IN?). A variable � is an input variablefor a region
�

if f thereis
at leastonedefinition of � outside

�
that reachesa useof the variable � inside

�
.

IN?(;JC � , �) = R����X � P�� defines ����R
	 X � P��:X DD(;JC�)

Definition: Output variable of a region (OUT?). A variable � is anoutputvariablefor a setof statements�
if f thereis at leastonedefinition of � inside

�
that reachesa useof the variable � outside

�
.

OUT?(;'C � , �) = R�	 X � P�	 defines �
�:R����X � P�	 X DD(;'C��)
Definition: All output variables of a region (Outvar). The set of all variablesthat are output variables
of a set of statements.

Outvar(;JC �) = { ���OUT??
;JC � C�� G }
Definition: Value variables of a region (Value). A variable � is a valuevariablefor a setof statements�

if f it is its input variablebut not its output variable.

Value(;JC �) = { ��� IN? ?�;JC � C�� G���� OUT??
;JC � C�� G }
Definition: Local variables of a region (Local). A variable � is a local variablefor a setof statements�

if f it is neither its input variablenor its output variable.

Local(;JC �) = { ����� IN? ?�;JC � C�� G���� OUT??
;JC � C�� G }
Lemma: Every variable in Vars(;JC �) is containedin one and only one of the setsOutvar(;JC �),
Value(;JC �), Local(;JC �).

Proof: From definitions.

Definition: Fold transformation. Let ;'C�;��dC�;�� be flowgraphs, ; < be a foldable subgraphof ; ,
Fold(;JC�; <) = < ;��dC�;�� > as describedin Figure 3.

The fold transformationdoesnot alter the HPR semanticsof the original flowgraph.

Lemma: Let Fold(; , ; <) = < ;�� C�;�� >. [� C�j�P ! ?�;�G6?
j>G"� =#! ?�;�� G6?�j>G$� .

Proof: By construction,the fold transformationplacesa statementfrom ; in either ;�� or ;�� , i.e.,
@ K @���%F@&� and @��,MF@&�.=#' . Since ; < is a foldablesubgraphof ; , the fold transformationneither
removesany control flow path nor introducesany new control flow path. Hence,it doesnot alter the
HPR semanticsof the program.

8

5 Tucking non-contiguous code

We now presentour transformationfor tucking a setof statements.This transformationtakesthree
inputs: ; ����� , a CFG representingfunction;

�
, a setof statementsof ; ����� ; and ;�� , a foldablesubgraph

of ; ����� containing
�

. If the statements
�

can be tuckedwithout changingthe externalbehaviorof the
function ; ����� , the transformationreturnstwo CFGs, ;�� and ; � , where ;�� replaces; ����� and ;�� is a
new function containingthe statements

�
.

The tuck transformationis composedof three transformations:Wedge,Split, and Fold. The fold
transformationwas introducedin the previoussection. The other two transformationsare developedin
this section.

Definition: Wedge. Let
�

be a set of statementsand ; � =#?
@ � C�E � G be a foldable subgraphof ; �����
such that ; � containsall the statementsin

�
.

Wedge(; ����� C ; � C �) = Slice(; ����� C �) M @ � .
Wedgetakesthe samethreeinputsasTuck andreturnsthosestatementsin Slice(; �	��� , S) which arealso
in the foldable subgraph; � .

To definethe split transformationwe usethe following graphoperations.

Definition: Graph union. ;�
�=I?�@�
 C!E

5G , ;�� = ?�@���C�E
�5G , ;�
 % ;�� = ?�@�
 % @���C�E

 % E
�5G .
Definition: Graph difference. ;�
�=2?
@�
�C�E

0G , ;���= ?�@�� C!E
� G , ;�
 ^8;���=2?
@�
 ^-@���C�E

 ^8E
�5G .
Definition: Node deletion. Deletethe node j�XB@ from the graph ;2=�?�@BC�EJG . ;��pjB=�?�@e<�C�E.< G where
@B< =�@�^��pj�� and E.< =�?�E�M ?�@e< O @B<�G6G�%��d?	��C ipdom?
j>G!G �T?���C�j>G XeE�� . The edge ?	�3C ipdom?�j>G6G
has the sametag as the edge ?���C�j>G .
Definition: Deleting a set of nodes. Deletethe setof nodes

�
from the graph ; . ;�� � =���������;��! .

The node deletionoperationis the sameas the CFG node elimintation operationdefinedby Ball
and Horwitz [BH93].

Definition: Node replacement. In the graph ;2=�?�@BC!E G replacethenode j�Xe@ by a newnode " �Xe@ .# "$�pj&%�;N=/?
@B< C0E.<lG where @B<>=I?
@ ^'��j(� G %)��"*� and E.<�=+� ?� < C-,d<�G � ?	 >C., G X ?
E%Me?�@e< O @e<�G!G�Pl?� =
j �/ <,=0"�12 �=/j �2 <,=+ 7G and ?	,B=/j �2,d<,=3"�12,��=Ij �2,d<,=0, G4�
Definition: Subgraph replacement. In thegraph ; replacetheSESEsubgraph; � by theSESEsubgraph
;�5 . # ;�5!�p; � % ; = ?!? # S�U7698;:�<>=@?BAC<7D98;AC<E=;FHG�IKJLGNMOICPQG�R

We use two operationsfor sequentiallycomposinggraphs. In the first operationtwo graphsare
composedby introducinga new edgefrom the endof onegraphto the start of the other graph. In the
secondoperationthe compositionis performedby replacingthe endnodeof the first graphby the start
node of the secondgraph.

Definition: Sequentialcompositionby edge introduction. Let G�S and G�T be foldable subgraphs.
G�S�UVG�T�WXG�S
PYG�TZP\[]�?V^_[`AC<ba.?B:�<>cdI�e .
Definition: Sequentialcompositionby end nodesubstitution. Let G�S and G�T be foldable subgraphs.
G�S
fgG�TQWh[Vij:�< c 8;AC< a FkG�SdIlPmG�T .
Definition: Split transformation. As definedin Figure 4.

The Split transformationsplits a foldablesubgraphinto two foldablesubgraphswithout alteringthe
behaviorof the original program.This transformationtakesa CFG G�n	o�p , a setof seedstatementsq , and

9

Split(G n�o�p ? G � ?dq I = G������
where

G n�o�p W [� n�o�p ?	� n	o�p I
G � W [� � ?
� � I is a foldable subgraphof G�n�o�p
- - Separatecomputationrelatedto S and the renamingcomputation� W � � J AC<
�� W Wedge[�G�n�o�p�?BG � ?9qKI = Slice[G�n�o�p�? q I�� � ��� W � J �
� W Wedge[�G�n�o�p�?BG � ?

�� I = Slice[G�n�o�p�?
�� I�� � ��� W � J �

- - Determineif splitting will causeconflict
if Outvar[�G�n�o�p;? � I�� Outvar[�G�n�o�p�? � I��W] then

conflict

else

- - Find the variable that shouldbe renamed� W Local[G n�o�p ? � I P Value[G n�o�p ? � I
- - Computetwo new subgraphs
G�� WhG � 8

��
G�� W G � 8

��
- - Composethe two new subgraphs
G ��� W��>i i � F F U.G � f+i i � F FkG �
- - Replacethe composedsubgraphin the original graph
G������ W i�G����K8�G � F G n�o�p

fi

Figure 4 Transformationfor splitting a foldable subgraph

a foldablesubgraphG � containingstatementsq . It createsa newCFGthat is similar to G�n�o�p , exceptthat
the subgraphG � is split into two subgraphsG�� and G�� that aresequentiallycomposedinto G��\fmG�� .

While the statementsin G�� and G�� arederivedfrom the statementsin G � , theyarenot necessarily
identicalto thosestatements.Thesplit transformationmayrenamesomevariablesin thenewsubgraphsin
orderto preservethebehaviorof theoriginal program.In doingso the transformationmayalsointroduce
someadditionalassignmentsto initialize the newly introducedvariables. The following operationsare
used for this purpose.

Definition: Introducenewvariables. Let
�

be a setof variables. i i � F F representsa setof orderedpairs
[��E? ��! I where �#" �

and ��! is a new variable(not usedin the CFG being transformed).Eachvariable
� is paired with a different new variable �$! .
Definition: Introducenewassignments. Let

�
be a setof variables. �>i i � F F representsa graphconsisting

of a sequenceof assignmentstatementsof the form � !
% W&� , 'b[��E? � ! I("mi i � F F . The orderof the statements
is not significantsincea variable is only renamedonce.

10

Definition: Renamevariables in subgraph. Let
�

be a set of variablesand G ! a foldable subgraph.
i i � F FHG ! is the flowgraphresultingfrom consistentlyreplacingall occurrencesof a variable � by � ! in the
statementsof G ! , where [��E? � ! I "+i i � F F .

The split transformationis given in Figure4. It consistsof the following steps:

1. Separatecomputationrelated to S from the remainingcomputation. This requiresseparatingthe
statementsof G � in two possibly overlappingsets

�
and

�
, where

�
containsthe computation

relatedto q and
�

containsthe remainingcomputation.
2. Determineif splitting will causeconflict. A conflict occurswhen both

�
and

�
modify a variable

that is usedoutsideof
�

and
�

, respectively.That is, Outvar[� I � Outvar[� I��W] .
3. Find the variablesthat shouldbe renamed. If there is no conflict then the set of variables

�
of

�
that shouldbe renamedis determined.Theseare variablesthat are modified or usedin

�
, but that

do not belongto Outvar[� I . This is a conservativecomputation.It renamesa larger setof variables
than may be necessary.

4. Computetwo new subgraphs. Createtwo subgraphsG�� and G�� from G � . The subgraph G��
(similarly, G��) is createdby deletingfrom G � all the statementsthat are not in

�
(similarly,

�
).

Both G�� and G�� contain AC< � .
5. Composethetwo newsubgraphs. Createa newsubgraphG���� by composing(1) �7i i � F F , a sequenceof

new assignmentstatementsthat initialize the renamedvariables,(2) G�� , and(3) i i � F FkG�� , the graph
G � with variablesof

�
renamed.�>i i � F F and G � arecomposedby introducinga new edge,whereas

G�� and i i � F FkG�� arecomposedusingnodedeletion.Since AC< � is containedin both G�� and G�� node
deletionensuresthat G���� has only one AC< � .

6. Replacethe composedsubgraphin the original graph. Createa graph G ����� from G�n�o�p by replacing
G ��� for G � .

In the following discussionsthe symbolsare usedwith respectto Figure 4.

Lemma: ij: < � 8!A <�� FkG � and i i � F F G � are foldable subgraphsof G � ��� .

Proof: Follows from construction.

The set
�

consistsof all the statementsof G � , except AC<
� . The sets
�

and
�

arenot disjoint but
containall the statementsof

�
. Henceeverystatementof

�
may bemappedto at leastonestatementof

G�� ��� , either in G�� or in i i � F FkG�� , andat most two statements,one in G�� andthe secondin i i � F F G�� .

Theorem: The Split transformation is behavior preserving. 'b[� ? � ! I " ��� '�� � 	 [�G�n	o�p!I4[� I
� W	 [�G � ��� IB[� ! I
� , where
�

is a set of orderedpair [� ? � ! I such that � belongsto G n	o�p , � ! belongsto
G�� ��� and � ! is a copy of � .

Proof: Not included.

Definition: Tuck. As defined in Figure 5.

ThattuckdoespreservestheHPRsemanticsof theoriginalprogramfollows from thesimilarproperty
of Wedge,Split, and Fold.

6 Implementation and use

We now presenta scenarioof using the abovetransformationsto restructurefunctionsand discuss
our experiencewith implementingthesetransformations.

11

Tuck(G n�o�p ?.G � ?9qKI = < G�S�?4G�T >
where

G�� ��� W Split [G n�o�p ?BG � ?dqKI
G�� is as definedin Figure 4
� G�S�?.G�T��NW Fold(G�� ��� , G��)

Figure 5 Transformationfor tucking codein a foldablesubgraph

The tuck transformationsrequiresthreeparameters:the function to be restructured,a set of seed
statements,and a foldable subgraphcontaining the seedstatements.A tool implementingtuck must
addresshow theseparameterswould be identified. This in turn would dependon whetherthe tool is a
batchor interactive.We first discussour vision of an interactiveenvironmentwe aredeveloping[Lak98]
and then discussour experiencewith developinga batchsolution [Lak97].

Whethera batch or an interactivetool, the selectionof a foldable subgraphcontainingthe seed
statementsis a problem that requiressomeautomatedsupport. Since there may be severalfoldable
subgraphscontaininga given set of seedstatements,the problem may be split into two steps. First,
identify all the foldablesubgraphscontainingthe seedstatements.Second,selectone foldablesubgraph
and use it as a parameterfor tuck.

Johnsonet al.’s definitionof SESEregion[JPP94]is strongerthanourdefinitionof a foldable(SESE)
subgraph,in thateveryJPP-SESEregionalsodefinesa foldablesubgraph,whereastheremaybefoldable
subgraphsthatdo not definea JPP-SESEregion. TheJPP-SESEregionsof a programcanbeorderedasa
tree,calledtheprogramstructure tree, eachof whosenodedefinesa JPP-SESEregion. Sincethis treecan
becomputedin linear-time,in our subsequentdiscussion,we usea JPP-SESEregionasa foldableregion.

Definition: Singledefinite control (SDC). The SDC of a set of statementsq is a JPP-SESEregion
containingthe statementsq .

Thenearestcommonancestorof thestatementsq in theprogramstructuretreeis anSDCof q . This
is calledthe nearestSDC. Similarly, all the ancestorsof this nearestSDC of q arealsoSDCsof q .

Lemma: The entry nodeof :�< is an SDC of everysubsetof statementscontainedin CFG G .

Proof: By definition.

Figures6 through8 illustratehow we envisionthe tuck transformationwill be usedto interactively
restructureprograms.A restructuringstepin this interactivemodelconsistsof the following activities:

1. The userselectsa set of seedstatements.
2. (a) Thesystemhighlightsthe SDCsof the seedstatements.(b) Userpicks an SDC which the system

usesto createa wedge.
3. The systemverifies whetherthe wedgedcodecanbe tuckedinto a function. If so, it tucks it.

Figures6 (a) and (b) showsthe detailsof performingthe aboveactivitiesonce.

1.1 The userselectsthe readln statementas the seed.
1.2aThe systemhighlights two SDCs,the while statementand the procedureentry.
1.2b The userselectsthe procedureentry and the systemcomputesa wedgewithin this region.

12

1 Procedure Sale_Pay_Profit (days: integer;
 cost: float; var sale: int_array;
 var pay: float; var profit: float;

 process: boolean);
2 var i: integer;total_sale, total_pay: float;
3 begin

4 i := 0;
5 while i < days do begin

6 i := i + 1;
7 readln(sale[i]);
8 end;
9 if process = True then begin
10 total_sale:=0;
11 total_pay:=0;
12 for i := 1 to days do begin
13 total_sale := total_sale + sale[i];
14 total_pay := total_pay + 0.1 * sale[i];
15 if sale[i] > 1000 then
16 total_pay := total_pay + 50;
17 end;
18 pay := total_pay / days + 100;
19 profit := 0.9 * total_sale - cost;
20 end;

21 end;

1.2a

1.1

SDC

Seed

1 Procedure Sale_Pay_Profit (days: integer;
 cost: float; var sale: int_array;
 var pay: float; var profit: float;

 process: boolean);
2 var i: integer;total_sale, total_pay: float;
3 begin
4 i:=0;

5 while i < days do begin
6 i := i + 1;
7 readln(sale[i]);
8 end;
9 if process = True then begin
10 total_sale:=0;
11 total_pay:=0;
12 for i := 1 to days do begin
13 total_sale := total_sale + sale[i];
14 total_pay := total_pay + 0.1 * sale[i];
15 if sale[i] > 1000 then
16 total_pay := total_pay + 50;
17 end;
18 pay := total_pay / days + 100;
19 profit := 0.9 * total_sale - cost;
20 end;

21 end;

1.2b Wedge

(a) (b)

Figure 6 Selectionof codeto be extracted into a function. (1.1) The userselectsthe seed.(1.2a)The systemhighlightsthe
two SDCsof the seed.EachSDC definesa SESEregion in which to boundthe slice. The userselectsoneSDC.
(1.2b) The systemidentifiesthe statementsinfluencingthe seedwithin the regiondefinedby the SDC. In this step,
the userselectsthe readln statementasthe seedwith the intent to separatethe userinterfacefrom the computation.

1.3 The wedgedcode is tucked into a new procedure.

Theresultof thewedgetransformationis shownin Figure6(b). Thesubsequentrestructuringis performed
usingsimilar steps.This examplehasbeentakenfrom Deprez[Dep97]. Detailsaboutthe intermediate
stepsand the formal definition of the transformationsmay be found in his thesis.

We havedevelopeda batchtool that usesthe tuck transformationto restructurecode[Lak97]. We
identify functionsthat needto be restructuredusing a measureof cohesionproposedby Lakhotia and
Nandigam[Lak93,Nan95]. Thecohesionof a moduleis computedasa functionof thecohesionbetween
pairsof variables.The pairwisecohesionbetweenvariablesis alsousedto createthe seedfor tucking.
This is achievedby creatinga partitionof variables,eachpartitioncontainingvariablestransitivelyrelated
to anothervariableby someminimum thresholdcohesion.The assignmentstatementsfor the variables
in eachpartition belongto the seed.Our currentimplementationusesthe whole functionasthe foldable
subgraphparameterof tuck.

The batch implementationwe have thus takes a threshold cohesion level as a parameterand
restructuresall the functions in a systemthat havea cohesionbelow that threshold. Furthermore,the
new functionscreatedareguaranteedto be at leastas cohesiveas the given threshold.

7 Related works
One of the strongestevidenceof the needfor restructuringof the type proposedherecomesfrom

observationsmade by Rugaberet al. [RSW95]. They have investigatedthe problem of detecting

13

 Procedure Sale_Pay_Profit (days: integer;
 cost: float; var sale: int_array;
 var pay: float; var profit: float;
 process: boolean);
 var i: integer;
 total_sale, total_pay: float;
 begin
 Read_Input(days, sale);
 if process = true then begin
 total_sale := 0;
 total_pay := 0;
 for i:= 1 to days do

 begin
3.1 total_sale :=total_sale + sale[j];
 total_pay := total_pay + 0.1 * sale[j];

 if sale[j] > 1000 then
2.1 total_pay := total_pay + 50;

 end;
4.1 pay := total_pay / days + 100;
5.1 profit := 0.9 * total_sale - cost;
 end;

 end;

Procedure Read_Input(days: integer;
 var sale: int_array): int_array;
var i: integer;
begin
 i := 0;
 while i < days do
 begin
 i := i + 1;
 readln(sale[i])
 end;

end;

2.2,3.2,4.2,5.2

1.3New function

Figure 7 Completion of function extraction, and input for subsequent steps (1.3) The codeselectedin Figure6 is
extractedandconvertedinto a function. The selectedcodeis replacedby a call to this function. Sincethe selected
codedid not interleavewith any othercodethe decisionaboutwhereto placethe call wasstraightforward.User
selectedseedsandthe SDC for steps2, 3, 4, and5 areshown. The next figure containsthe resultof thesesteps.

Procedure Sale_Pay_Profit (days: integer;
 cost: float; var sale: int_array;
 var pay: float; var profit:

float;
 process: boolean);
begin
 Read_Input(days, sale);
 if process = True then begin
 pay := Compute_Avg_Pay(days, sale);
 profit := Compute_Profit(cost, sale);
 end;
end;

Procedure Read_Input(days:integer;
 var sale: int_array);
var i: integer;
begin
 i:=0;
 while i < days do begin
 i := i + 1;
 readln(sale[i]);
 end;

end;

Function Compute_Pay(days: integer;
 sale: int_array): float;
var total_pay: float;
 j: integer;
begin
 total_pay := 0;
 for j := 1 to days do
 begin
 total_pay := total_pay + 0.1 * sale[j];
 if sale[j] > 1000 then
 total_pay := total_pay + 50;
 end;
 return (total_pay);
end;

Function Compute_Sale(days: integer;
 sale: int_array): float;
var total_sale: float;
 j: integer;
begin
 total_sale := 0;
 for j := 1 to days do
 begin
 total_sale := total_sale + sale[j];
 end;
 return (total_sale);

end;

Function Compute_Avg_Pay
 (days: integer; sale: int_array): float;
var total_pay: integer;
 pay: float;
begin
 total_pay := Compute_Pay(days, sale);
 pay := total_pay / days + 100;
 return (pay);
end;

Function Compute_Profit
 (cost: float; sale: int_array): float;
var total_sale, profit: float;
begin
 total_sale := Compute_Sale(days, sale);
 profit := 0.9 * total_sale - cost;
 return (profit);
end;

1

2

3

4

5

Figure 8 Final result of restructuring program in Figure 1. The annotations1 to 5 indicatethe restructuringsteps,with
respectto previousfigures,in which the function wascreated.To createfunctionsin steps2 and3 required
separatinginterleavedcomputations.This wasachievedby duplicatingsomecodesegment.

“interleaved”computation,whereinterleavingis definedas “the merging of two or more distinct plans
within somecontiguoustextualareaof a program.”A plan is a “computationalstructureto achievesome

14

purposeor goal.” Rugaberet al. observethat if a subroutine(function) hasmultiple outputsthereis a
high likelihood that it has interleavedcomputation. They report that 25% of subprogramsin a library
of 600 Fortranprogramshad multiple outputsnot all of which were usedby the calling routines. The
transformationwe proposeheremay be usedto restructuresuchlibraries,say by specializingfunctions
with multiple output to computeonly a certainset of outputs.

The problemof restructuringfunctionsinto “separate[functions] which canbe compiledandtested
separatelyand which can be connectedto other [functions] through a parameterinterface” was first
studiedby Sneedand Jandrasics[SJ87]. Griswold and Notkin’s identified the extractionof code into
a separatefunction as one of severaltransformationsuseful in programrestructuring[Gri91, GN93].
They developedan automatedrestructuringtool that wassubsequentlyusedby Bowdidgefor extracting
functions belonging to an abstractdata type [Bow95]. Sneed,Griswold and Notkin, and Bowdidge
efforts differs from oursin that theylimited their focusto movingcontiguouspiecesof codeinto separate
functions.

The restructuringtechniquesof Kim et al. [KCK94] and Kang and Bieman [KB96] is closestto
our work. They both usethe cohesion(thoughKim et al. call it coupling)betweenoutputvariablesof
a function to identify computationsthat may be extractedinto separatefunctionsand thenuseprogram
slicing to extract the neededstatements.Their focus hasbeenin the applicationof cohesionmeasures
for identifying relatedcomputations.They havenot developedthe formal foundationfor usingprogram
slicing for this purpose. Hence, they have overlookedseveral issues,as for instance,restructuring
unstructuredprograms,creatingslicesthat spanonly a part of a function,andresolvingconflict between
the slice to be extractedand the remainingstatements.

The formal transformationto tuck computationinto a function providedin this papercomplements
(andcompletes)Kim et al. [KCK94] andKang andBieman’s[KB96] effort. The measuresof cohesion
theyuse,or theoneproposedby LakhotiaandNandigam[Lak93,Nan95],or BiemanandOtt [BO94] may
beusedby anautomatedtool to identify non-cohesivemodulesandto createtheinitial seedto restructure
thesemodules.The computationrelatedto the seedmay thenbe tuckedusingour transformation.

From thevery beginningprogramslicing hasbeenproposedasa methodfor decomposingprograms
to aid varioussoftwaremaintenanceactivities. Weiser[Wei79] envisagedits usefor systemgeneration,
which in today’sterminologymaybecalledtheextractionof a specializedsystemfrom anexistingsystem
or the extractionof reusablecomponents.The extractionof suchspecializedcomponentsusingprogram
slicing hasrecentlybeenstudiedby LanubileandVisaggio[LV97] andby RepsandTurnridge[RT96].

GallagherandLyle [GL91, Gal92,Gal96]useprogramslicing to decomposeprogramsbut not for the
purposeof restructuring.They computesliceson the outputvariablesof a function at its last statement
and organizethe resultingslices into a lattice basedon a partial order relation definedbetweenslices.
Theyhavedevelopedaneditor that,usingthis lattice, identifiestheprogramfragmentsthatshouldnot be
affectedwhencomputationfor a variableis changedand thenhides(or write protects)suchfragments.
This helpsin identifying and controlling ripple effect during codemodifications.

Jain introducesa novel notion of a projection of a logic program[Jai95]. Jain’sprojectionsremove
piecesof code to obtain the core control structureof a logic program. His approachworks well for
incrementalprogramconstructionmethods. Jain’s decompositionof logic programsusing projections
is not for restructuringlike we discusshere; instead,he usesprojectionsto orthogonallydecompose
interleaving computationsso that the interleaving computationscan be independentlydevelopedand
understood.

15

Horwitz et al. [HPR89] haveusedprogramslicing to decomposeprogramsbut for the purposeof
separatingmodificationsperformedin two differentversionsof thesameprogram.Oncethemodifications
are identified they createa compositeprogramthat integratesthe changesfrom both the versions.

8 Conclusions and future research
Theneedfor reengineeringandrestructuringsoftwareis motivatedby Lehman’ssecondlaw of soft-

wareevolution: “As a largeprogramis continuouslychanged,its complexitywhich reflectsdeteriorating
structure,increasesunlesswork is doneto maintainor reduceit” [LB85, p. 253]. To reducethe deterio-
ration of a program’sstructurea programmertypically hasto undosomepreviousdesigndecisionsand
modify thecodesuchthat it conformsto a newdesignthat is moresuitablefor thechangedrequirements.
That is essentiallythe aim of softwarereengineeringand restructuring.

We havepresenteda transformation,Tuck, thatmaybeusedto restructurea programby breakingits
largefunctionsinto small functions,without changingit behavior.Tuck createsa newfunctioncontaining
a given setof statements,calledthe seedstatements,andreplacesthesestatementsby a call to this new
function. If theseedstatementsarenot contiguous,the transformationidentifiesthestatementsneededto
performall thecomputationin a single-entry,single-exit(SESE)subgraph,alsoprovidedasa parameter.

The tuck transformationconsistsof three steps: Wedge, Split, and Fold. Given a set of seed
statementsone first createsa wedge that containsall the statementsthat influencethe seedstatements.
A wedgeis a programslice boundedwithin a SESEsubgraphof the control flow graph. The depthof
the wedgeis controlledby meansof selectinga subgraphthat containsall the statementsin the slicing
criterion,thesetof seedstatements.Thefunctionis thensplit suchthatall thestatementsin thewedgeare
placedcontiguouslyin its flowgraph. This contiguouspieceof code,that also forms a SESEsubgraph,
is then folded into a function.

The automatedrestructuringtransformationpresentedin this paper may be used to reducethe
deteriorationof aprogram’sstructure.Thetransformationmaybeincorporatedin a completelyautomated
tool for restructuringlegacycodeor it may be part of an interactiveprogramdevelopmentenvironment
that providesrestructuringoperationsas primitives. An automatedtool would automaticallyidentify
code that ought to be restructuredand restructureit as well [KB96, KCK94, Lak97, SJ87]. In an
interactive environmenta programmermay interactively select the transformationduring his routine
programmodificationactivities,thuspreventingthe codefrom deterioratingin the first place[Lak98].

Acknowledgments: Thework waspartially supportedby a contractfrom theDepartmentof Defense
and a grant from the Departmentof Army, US Army ResearchOffice. The contentsof the paperdo
not necessarilyreflect the position or the policy of the funding agencies,and no official endorsement
should be inferred.

9 References

[AM71] E. Aschroft and Z. Manna. The translation of ‘goto’ programs to ‘while’ programs. In
Proceedings of the 1971 IFIP Congress, pages250–260,Amsterdam,The Netherlands,1971.
North-Holland.

[Arn89] RobertS. Arnold. Softwarerestructuring.Proc. IEEE, 77(4):607–617,April 1989.

16

[Bak77] B. Baker.An algorithmfor structuringflowgraphs.Journal of the ACM, 24(1):98–120,January
1977.

[BD77] R. M. Burstall and J. Darlington.A transformationsystemfor developingrecursiveprograms.
Journal of the ACM, 24(1):44–67,January1977.

[BH93] ThomasBall and SusanHorwitz. Slicing programswith arbitrary control-flow. In P. Fritzson,
editor, Proceedings of the First International Workshop on Automated and Algorithmic
Debugging, volume749of Lecture Notes in Computer Science, pages206–222.Springer-Verlag,
1993.

[BL91] Peter T. Breuer and Kevin Lano. Creating specificationsfrom code; reverse-engineering
techniques.Journal of Software Maintenance: Research and Practice, 3:145–162,1991.

[BO94] JamesM. Bieman and Linda M. Ott. Measuringfunctional cohesion.IEEE Transactions on
Software Engineering, 20(8):476–493,June1994.

[Bow95] RobertW. Bowdidge.Supporting the Restructuring of Data Abstractions through Manipulation
of a Program Visualization. PhD thesis,University of California, SanDiego,November1995.

[Cal88] Frank W. Calliss. Problemswith automaticrestructurers.SIGPLAN Notices, 23:13–21,March
1988.

[CC90] Elliot J. Chikofsky and J. H. CrossII. Reverseengineeringand designrecovery:A taxonomy.
IEEE Software, 7(1):13–17,January1990.

[Dep97] Jean-ChristopheDeprez.A context-sensitiveformal transformationfor restructuringprograms.
Master’s thesis, The Center for Advanced Computer Studies, University of Southwestern
Louisiana,Lafayette,Louisiana,December1997.

[FOW87] JeanneFerrante,Karl J. Ottenstein,andJoeD. Warren.Theprogramdependencegraphandits
use in optimization.ACM Transactions on Programming Languages and Systems, 9(3):319–
349, 1987.

[Gal92] K. Gallagher.Evaluatingthe surgeon’sassistant:Resultsof a pilot study.In Proceedings of the
Conference on Software Maintenance - 1992, pages236–244,November1992.

[Gal96] Keith Gallagher.Visual impactanalysis.In International Conference on Software Maintenance,
1996.

[GL91] Keith B. Gallagherand J. R. Lyle. Using program slicing in software maintenance.IEEE
Transactions on Software Engineering, 17(8):751–761,August 1991.

[GN93] William G. Griswold andDavid Notkin. Automatedassistancefor programrestructuring.ACM
Transactions on Software Engineering, 2(3):228–269,July 1993.

[Gri91] William G. Griswold. Program Restructuring as an Aid to Software Maintenance. PhD thesis,
University of Washington,July 1991.

[HPLH90] Philip A. Hausler,Mark G. Pleszkoch,RichardC. Linger,andAlan R. Hevner.Usingfunction
abstractionto understandprogrambehaviour.IEEE Software, 7(1):55–65,January1990.

[HPR89] SusanHorwitz, JanPrins,andThomasReps.Integratingnon-interferingversionsof programs.
ACM Transactions on Programming Languages and Systems, 11(3):345–387,July 1989.

[Jai95] AshishJain.Projectionsof logic programsusingsymbolmappings.In Proceedings of the Twelfth
International Conference on Logic Programming, pages483–496.The MIT Press,1995.

17

[JPP94] RichardJohnson,David Pearson,and KeshavPingali. The programstructuretree: Computing
control regions in linear time. In Proceedings of the ACM SIGPLAN’94 Conference on
Programming Language Design and Implementation (PLDI), pages171–185.ACM Press,1994.

[Kas74] Takumi Kasai. Translatabilityof flowcharts into while programs.Journal of Computer and
System Sciences, 9:177–195,1974.

[KB96] Byung-Kyoo Kang and JamesBieman. Using design cohesion to visualize, quantify, and
restructuresoftware.In Eighth International Conference on Software Engineering and Knowledge
Engineering (SEKE’96), pages222–229,Skokie,IL, June1996.KnowledgeSystemsInstitute.

[KCK94] Hyeon Soo Kim, In Sang Chung, and Yong Rae Kwon. Restructuringprogramsthrough
programslicing. International Journal of Software Engineering and Knowledge Engineering,
4(3):349–368,September1994.

[Lak93] Arun Lakhotia. Rule-basedapproachto computingmodulecohesion.In Proceedings of 15th
International Conference on Software Engineering, pages35–44,Los Alamitos,CA, May 1993.
IEEE ComputerSociety Press.

[Lak97] Arun Lakhotia. Restructuring complex program fragments into small cohesive units.
http://www.cacs.usl.edu/ arun/Wolf , May 1997.

[Lak98] Arun Lakhotia. DIME: A direct manipulationenvirobmentfor evolutionary developmentof
software.In Proceedings of the International Workshop on Program Comprehension (IWPC’98),
pageto appear,Los Alamitos, CA, June1998.IEEE ComputerSocietyPress.

[LB85] M. M. Lehmanand L. A. Belady.Program Evolution. AcademicPress,1985.

[LV97] Filippo Lanubile and GiuseppeVisaggio. Extracting reusablefunctions by flow graph-based
programslicing. IEEE Transactions on Software Engineering, 23(4):246–258,April 1997.

[Nan95] JagadeeshNandigam.A measure for module cohesion. PhD thesis,University of Southwestern
Louisiana,The Centerfor AdvancedComputerStudies,Lafayette,Louisiana,1995.

[RSW95] SpencerRugaber,Kurt Stirewalt,andLinda M. Wills. Detectinginterleaving.In Proceedings
of the International Conference on Software Maintenance, pages265–274,Los Alamitos,CA,
1995. IEEE ComputerSocietyPress.

[RSW96] SpencerRugaber,Kurt Stirewalt,andLinda Wills. Understandinginterleavedcode.Automated
Software Engineering, 3(1-2):47–76,June1996.

[RT96] Thomas Reps and T. Turnidge. Program specializationvia program slicing. In O. Danvy,
R. Glueck,and P. Thiemann,editors,Lecture Notes in Computer Science, volume 1110,pages
409–429.Springer-Verlag, New York, NY, 1996.

[SJ87] Harry M. SneedandGaborJandrasics.Softwarerecycling.In Proceedings of the Conference on
Software Maintenance, pages82–90,Los Alamitos,CA, 1987.IEEE ComputerSocietyPress.

[SMC74] W. P. Stevens,G. J. Myers, and L. L. Constantine.Structureddesign.IBM Systems Journal,
13(2):115–139,1974.

[Sta82] JohnA. Stankovic.Goodsystemstructurefeatures:Their complexity and executiontime cost.
IEEE Transactions on Software Engineering, SE-8(4):306–318,July 1982.

[TS84] H. TamakiandT. Sato.Unfold/fold transformationsof logic programs.In Proceedings of Second
International Conference on Logic Programming, (Sweden), pages127–138,1984.

18

[War93] Martin Ward.Abstractinga specificationfrom code.Journal of Software Maintenance: Research
and Practice, 5:101–122,1993.

[Wat88] RichardC. Waters.Programtranslationvia abstractionandreimplementation.IEEE Transactions
on Software Engineering, 14(8):1207–1228,August 1988.

[Wei79] M. Weiser.Program Slicing: Formal, Psychological and Practical Investigations of an Automatic
Program Abstraction Method. PhD thesis,The University of Michigan, Ann Arbor, Michigan,
1979.

19

