
Identifying Enumeration Types Modeled with Symbolic Constants

John M. Gravley and Arun Lakhotia
Center for AdvancedComputerStudies
University of SouthwesternLouisiana

Lafayette, LA 70504
{ jmg, arun}@cacs.usl.edu

Published in: Proc. of the 3rd Working Conference on
Reverse Engineering, IEEE CS Press, November 1996.

Abstract

An importantchallengein software reengineeringis to en-
capsulatecollectionsof relateddata that, due to the ab-
senceof appropriateconstructsfor encapsulationin legacy
programminglanguages,maybedistributedthroughoutthe
code. The encapsulationof such collectionsis a neces-
sarystepfor reengineeringa legacysysteminto an object-
orienteddesignor implementation.Encapsulatinga setof
relatedsymbolicconstantsinto an enumerationtypeis an
instanceof thisproblem.Wepresenta classificationof how
enumerationtypesare modeledusingsymbolicconstantsin
real-world programs,a setof heuristicsto identify candi-
dateenumerationtypes,andan experimentalevaluationof
theseheuristics.

1 Introduction

There is a growing interest in the problem of finding
objectsand abstractdata types in legacy code [1, 2, 4,
10, 11, 14, 23, 25]. Most researchershave presented
solutionswhich assumethat relateddataitems(belonging
to an object) are already encapsulatedusing constructs
suchasstructs,commonblocks, records,types,etc. This
paperaddressestheproblemof groupingrelateddataitems
that were not previouslyencapsulated.Our researchthus
attemptsto fill the void left by other researchers.

Identifying enumerationtypes modeledwith symbolic
constantsis an instanceof the larger problemof encapsu-
lating relateddataand is conceptuallysimpler than iden-
tifying the elementsof a record type. The problem is
sufficiently rich at deeperlevels to exposeall of the is-
suesinvolved in the larger problem. Hence,this problem
is well-suited for comprehensiveinvestigationin a labo-

This work was partially sponsoredby the Departmentof the Army
throughthe Army ResearchOffice. However,the contentsof this paper
do not necessarilyreflect the position or the policy of the government,
andno official endorsementshouldbe inferred.

ratory environmentand will provide considerableinsight
into solving the larger problem.

Our first step in solving this problemis a comprehen-
sive analysisof how enumerationtypes are modeledin
real-worldC programsthat haveevolvedthroughvarious
dialects of the language. This analysis,carried out by
studyingseveralreal-worldprograms,hasyielded a clas-
sificationthatmay be usedto describethe problemspace.
This classificationis analogousto the terminologydevel-
opedby Rugaberet al. [21] for describingissuespertinent
to the problemof understandinginterleavedcode.

Creating collections of symbolic constantssuch that
each collection constitutesan enumerationtype may be
viewed asa classificationproblem. Numeroustechniques
have beenproposedfor classifying various elementsof
softwaresystemsfor varying purposes[9]. Someof these
techniquesdiscover the modular architectureof undocu-
mentedlegacy code [11, 13, 14], othersgroup program
componentsthatarerelatedto thesameerror [7], andstill
otherssimply imposea structureuponan otherwiselarge,
complex, and unstructureddata [3, 12]. However, there
is no single classificationtechniquethat is applicableto
all problems.For a new problem,eitheran existing tech-
nique is customizedor a new techniquethat usesspecial
propertiesof the problemdomainis developed.

Our heuristicsfor grouping macro symbolsare based
upon the principle that: Symbols that are defined (or
declared) in the same context are placed in the same
group. This is a significantdeparturefrom the principle
upon which previoussubsystemclassificationtechniques
arebased,i.e., Symbolsthat areusedin the samecontext
areplacedin thesamegroup. In thecontextof recovering
enumerationtypes,our principle leadsto techniquesthat
are computationallyinexpensiveand yet do not incur a
significant loss in precision.

We performedan experimentto evaluatethe effective-
nessof our heuristicsin creatingcandidateenumeration
types that correspondto actual enumerationtypes. We

1

enum-specifier:: � enum identifieropt { enum-list}
enum-list:: � enumerator

| enum-list,enumerator
enumerator:: � identifier

| identifier � constant-expression

Figure 1. Syntax of the enumeration construct (enum) of
ANSI C and C++. [8, 24].

enum Day { SUN, MON, TUE, WED,
THU, FRI, SAT };

Figure 2. Example in which the enumerator values are
implicitly defined by the compiler.

enum Opcode { ADD = 10,
SUB = 32, MUL = 25 };

Figure 3. Example in which the enumerator values are
explicitly defined by the programmer.

enum {
RED � 1,
GREEN,
BLUE};

typedef enum {
RED � 1,
GREEN,
BLUE} Color;

enum Color {
RED � 1,
GREEN,
BLUE};

(a) (b) (c)

Figure 4. Examples of how enumerations may be declared
explicitly (a) using the enum construct, or (b) using the enum
construct in conjunction with a typedef . Example (a) is an
anonymous enumeration.

comparedthe candidateenumerationtypes recoveredby
our techniqueswith the ideal set of enumerationtypes
as definedby an oracle—inour case,a programmer[9].
Thedatafrom evaluatingour heuristicson eightmoderate-
sized,real-worldsoftwaresystemssuggeststhatheuristics
thatclassifysymbolsbasedupontheproximity of thedec-
larationscan give good resultsfor discoveringcandidate
enumerationtypesin preprocessorsymbols.

The rest of this paperis organizedinto the following
sections.We presentan overviewof C andC++ enumer-
ation types in Section2. In Section3, we describethe
various ways that enumerationsare modeledusing sym-
bolic constantsin C and C++ programs. We presentour
heuristicsfor identifying candidateenumerationtypes in
Section4. We presentthe designof our experimentin
Section5 andanalyzethe resultsin Section6. Finally, we
presentour conclusionsin Section7.

2 Enumeration types

“An enumerationis anorderedlist of [symbolic] values”
[16, p. 137] typically usedto introducea finite (usually
small) numberof symbolicvalues. This sectiongives an
overview of C and C++ enumerations.It introducesthe
salientissuespertainingto constructing,manipulating,and
coercingthe valuesof enumerationtypesin the contextof
anyprogramminglanguagewith emphasison ANSI C and
C++ [24]. Thesectionalsointroducesoperationsthatmay
be consideredviolations in C++ andhighlightsoperations

thatC++ permitsbut maybeviolationsin otherlanguages,
such as Ada.

Figure1 showsthesyntaxfor ANSI C or C++ enumera-
tion types. The two componentsof interestin an enumer-
ation are a set of literal symbolscalled the enumerators
(enum-list) andthe name (identifieropt) of the enumer-
ation. Theenumerationnameintroducesa newtypewhose
valuesconsistof the setof enumerators.An enumeration
without a nameis calledan anonymous enumeration.

The identifiers (or symbols) in the enum-list are
consideredconstantsand may be used as such. Their
valuesmay either be defined implicitly by the compiler
(Figure 2) or be explicitly provided as a constant-
expression (Figure 3). The symbols in an enum-
list are implicitly equatedto successiveintegersstart-
ing from zero. The assignmentof a constant-
expression forces the correspondingsymbol to be
equatedwith the value of that expressionand forces the
valuesof the successivesymbolsto be equatedwith the
successiveintegervalues.Figure4 givesexamplesof how
the colors RED, GREEN, and BLUE may be explicitly
defined as an enumerationtype in some versionsof C
and in C++.

An enum declarationmay have a combinationof the
explicit and implicit mappings,with some enumerators
mappedto explicit valuesand othersmappedto implicit
values,as in:

enum MyBool { NO, YES, OFF = 0, ON };

Suchan explicit mappingof enumeratorsto integershas
the side effect that two enumeratorsin the sameenumer-
ation may be mappedto the sameinteger. In the above
example,both NOandOFF aremappedto zero,andYES
andONaremappedto one. This contrastsC andC++ enu-
merationswith thosein Ada, where eachenumerator(in
an enumeration)is mappedto a uniqueinteger.Thus,un-
like Ada enumerations,C and C++ enumerationsare not
ordinal types.

We refer to enumeratorswith thesameintegermapping
within the sameenumerationas aliases. This word is
commonly usedto group symbolsthat refer to the same
memorylocation. However,sincethe literal symbolsare
constantswhich do not havememorylocations,we extend
the usageof this word to two or moresymbolsmappedto
the sameinteger in the samecontext.

An enumeratorthat belongsto at least two different
enumerationsis saidto havemultiple identity. A language
must provide a way to statically resolvethe namespace
conflict in determiningwhich enumerationan enumerator
belongsto in order to permit enumeratorswith multiple
identity.

Valuesof anenumerationtypearecreatedby the literal
constantsandmay be assignedto a variableof that type,
as in:

2

���������
	�����������
����������� �
!"����	#���$�#�%	���&('������%� �*)+�����,�-�/.0�
�#����	��

1��#����2��435� �(�����%� �6���$� �
1�	87��935�:�����$� �������%� �

; �����%� �*)+�����,�-�/�����,�

Figure 5. Signatures of operations that may be performed
upon C++ enumerations.

Day StartDay; StartDay = MON;

Languagesthat enforcestrict type checkingdo not per-
mit assignmentbetweentwo different enumerationtypes,
which makes

StartDay = RED;

incorrect in suchlanguages.Similarly, the assignmentof
integervaluesto an enumerationvariable:

StartDay = 2;

may not be permittedif strict type checkingis enforced.
A languagemay, however,allow coercionof an enu-

merator to an integer when it is assignedto an integer
variableor is part of an integerexpression,e.g.,

int i; i = RED;

This is usefulwhensomecomputationis performedon all
of thevaluesof anenumeration,asshownin thefollowing
C++ fragment:

Day d;
for (d = SUN; d <= SAT; d = Day(d + 1))

; // do whatever

The expressionDay(d + 1) in this exampleexplicitly
caststhe valueof expressiond + 1 to be of type Day.
Theaboveloop hastheunfortunateeffect thatit terminates
with an out of rangevalueof d (i.e., it computesSAT +
1, which is not a memberof Day). However,the castis
necessarybecausethe statementd = d + 1 would be
incorrectsinced + 1 is implicitly coercedto an integer.

A loop such as that shown above may be used to
enumerateall of the values of an orderedenumeration
when its symbols are mappedto integer values with a
known, periodic interval, evenif the period is not one. It
maybecomecumbersomewith enumerations,suchasthose
in Figure 3, whosenumeric valueshave beenexplicitly
definedanddo not follow any regularinterval.

The operationsthat may be performedon an enumer-
ation type, say Enum, are summarizedby the signatures
in Figure 5. The last signatureis for assignmentandhas
threetermsbecauseassignmentis anexpressionin C++.

3 Modeling enumeration types
using symbolic constants

This section discussesthe modeling of enumeration
types in real-world C programs. This modeling may be
studiedbasedupon (a) how the set of enumeratorsof an
enumerationis declared,(b) how its nameis declared,and

/* define colors */
#define RED 1
#define GREEN2
#define BLUE 3
/*
* end of color
*/

typedef int Color;
const RED = 1;
const GREEN= 2;
const BLUE = 3;

(a) (b)

Figure 6. Examples of how enumerators may be declared
implicitly (a) using the #define directive, or (b) using the
const construct in conjunction with a typedef to declare
an enumeration name.

/* some code */
#define RED 0
/* some more code */
#define GREEN1
#define BLUE 2

Figure 7. Example of a distributed enumerator declaration.
This C code fragment shows a logical group of symbols that
form an enumeration even though they are interleaved with
other code. The interleaving may even occur across files.

(c) how theassociationbetweenthesetof enumeratorsand
thenameis defined.Figure6 givestwo waysof modeling
enumerationsequivalentto thosein Figure 4.

3.1 Declaration of enumerators

The enumeratorsbelonging to an enumerationmay be
declaredusing any combinationof:

1. #define directives,
2. const constructs,
3. an enum construct,

All of the literal symbols belonging to an enumeration
areencapsulated whendeclaredusingan enum construct
(Figure 4) but are unencapsulated if the other constructs
are used. The enumeratorsin the first two casesabove
are frequently groupedby declaring them in succession
andboundingthe declarationsby visual cues,asshownin
Figure 6(a). We call sucha declarationcontiguous. The
enumeratorsmay be interleaved[21] with other declara-
tions, or even acrossseveralfiles when the declarations
areunencapsulated,asillustratedin Figure7. We refer to
suchdeclarationsas distributed.

A more complex intertwining of enumerationdeclara-
tions is createddue to enumeratorswith aliases or with
multiple identity. Two such casesare illustrated by the
codefragmentsin Figures8 and 9.

The fragmentof Figure 8 may be interpretedin two
ways. The first interpretationis that it introducestwo
enumerations,one introducedby the setof #define di-
rectivesand the other by the enum construct. The two
enumerationsarein somesenseequivalentsincethereis a
one-to-onecorrespondencebetweentheir enumeratorsand

3

/* extracted from EDGE */
#define BLACK_BOX0
#define GREY_BOX1
#define WHITE_BOX2
#define SEPARATE_GRAPH3

typedef enum { black = BLACK_BOX,
grey = GREY_BOX,
white = WHITE_BOX,
separate = SEPARATE_GRAPH}

statuses;

Figure 8. Example of aliased enumerators found in the
EDGE system [15]. A similar effect could also be achieved
using a combination of #define directives and const
constructs to introduce the enumerators.

typedef int Starch;
#define Corn 0
#define Rice 1
#define Potato 2
#define Bean 3

typedef int Grain;
/* #define Corn 0 */
#define Wheat 1
#define Rye 2
#define Barley 3
#define Sorghum 4

Figure 9. Example of an enumerator with multiple identity.
The duplicate symbol Corn is commented out just to high-
light that it also belongs to the latter enumeration. In actual
code such a comment may not necessarily exist [5].

thecorrespondingenumeratorshavethesameintegermap-
ping. The secondinterpretationis that the codefragment
introducesoneenumerationconsistingof theunionof sym-
bols introducedby the#define directivesandtheenum
construct.The enumeratorsconsistof pairsof aliases.Ir-
respectiveof which interpretationis chosen,it is clearthat
a programmermay interchangeablyusethe corresponding
pairs of enumeratorsin the two sets.

Figure 9 illustrates intertwining causedby using an
enumeratorwith multiple identity. Creatinganenumerator
with multiple identity using symbolic constantsrequires
that the enumeratorhave the same value in all of the
enumerations. The enumeratorCorn belongs to both
enumerationsin this caseand is mappedto the value 0.
However, in the program text this enumeratormay be
declaredonly once. Thus, it may not actually appearin
the secondlist, not evenas a comment.

3.2 Declaration of enumeration names

An enumerationmay havea type namewhetheror not its

Enumerators
Declaration

encapsulated
unencapsulated

contiguous
distributed

Intertwined
aliases
multiple identities

Enumeration name
Declaration

exists (named)
usinga typedef name
usingan enum tag name

doesnot exist (anonymous)
Associationwith enumerators

attached
contiguous
distributed

Figure 10. A classification of the various issues in the
declaration of enumerations in C programs.

enumeratorsareencapsulated.However,the namecanbe
directly associated,i.e., attached, to the enumeratorsonly
whentheyareencapsulatedsinceonly theenum construct
permits such an association. Namesassociatedwith a
set of unencapsulatedenumerators,or even encapsulated
enumerators,maybeintroducedby usingatypedeclaration
or a macrodeclaration,as in:

typedef int Day;

#define Color int

Sincetheassociationbetweenunencapsulatedenumerators
andtheir type nameis not syntacticallyexplicit, the asso-
ciation is usuallyprovidedby visual cuessuchasplacing
the two declarationsin physicalproximity. Suchan asso-
ciation is termedascontiguous. This associationmay not
be available,evenby visual cues,if certaincoding stan-
dardsrequirethat all type declarationsbe groupedin one
location,all macrodefinitionsbe in anotherlocation,and
all constantsbe in yet anotherlocation. Suchan associa-
tion is termedasdistributed. Finally, an enumerationthat
doesnot have any type nameassociatedto it is termed
an anonymous enumeration.In summary,theenumeration
declarationsin C programsmay be classifiedasshownin
Figure 10.

4 Identifying candidate enumeration types

This sectionpresentsour heuristicsfor identifying can-
didateenumerationtypesby groupingmacrosymbolsin-
troducedusing #define directives. The heuristicsare
“derived” from the classificationpresentedin Section3
(summarizedin Figure 10).

4

4.1 Problem formulation

Identifying candidateenumerationtypes that have been
created using macro symbols requires partitioning the
macrosymbolsof a programinto setsof symbols,where
eachset logically constitutesan enumerationtype. Our
heuristicsfor identifying candidateenumerationtypesare
baseduponthe principle that symbolsthat aredefined(or
declared) in thesamecontextareplacedin thesamegroup.
This principle is basedupon the observationsthat:

1. macrosymbolsrepresentinganenumerationtypeare
most often placedin the samefile,

2. thesesymbolsare most often declaredin a lexical
sequence.

Theaboveobservationsfurther imply: If relatedmacro
symbolsare(mostoften)declaredin thesamefile in a lex-
ical sequence,then the problem of identifying candidate
enumerationtypes is to split the sequenceof #define
directivesin a file into non-empty,non-overlappingsub-
sequencessuchthat themacrosymbolsintroducedin each
subsequencerepresenta candidateenumerationtype.

4.2 Problem space

The #define directive providesa mechanismto define
symbolic macrosthat are expanded,often referredto as
preprocessed,beforea C programis compiled.This direc-
tive is usedto introducesymbolicnamesfor constants,to
introducemacro “functions,” and to introduceconstructs
that are not directly supportedby the language.Further-
more, the directivemay be usedto introduceexpressions
that evaluateto constantsafter preprocessing.

The only macro symbols that are candidatesfor be-
coming enumeratorsare those that have a value in the
rangeof type int when expandedsince symbols intro-
ducedby enum constructsare mappedto valuesof type
int. Hence,all other macro symbolsmay be excluded
from the problem space.

4.3 Heuristics

Thissectionpresentnineheuristicsfor grouping#define
directivesto createcandidateenumerations.The first six
heuristicsare the subjectsof experimentalevaluation.

Thefirst four heuristicsarebasedupontheintuition that
programmersleavenon-syntactic“visual cues”to delineate
blocks of relatedcode.

1. Blank Line heuristic: Group successive#define
directives boundedby lines consisting of “white
space.”

2. Line Commentheuristic: Group successive#de-
fine directivesboundedby lines consistingof a
completecomment(i.e., /* ... */).

3. Block Commentheuristic: Group successive#de-
fine directivesboundedby lines consistingof a

completecommentacrosstwo or more lines.
4. Any Visual Cue heuristic: Group successive#de-

fine directivesboundedby linesconsistingof any
of heuristics1–3.

The next two heuristicsare basedupon the intuition
that since enumerationtypes are ordinal types in many
languages,it is likely thatprogrammersassignconsecutive
numericvaluesto thesymbolsin an implicit enumeration.
Theseheuristicsgroup consecutive#define directives
whosevaluesareeitherincreasingby oneor decreasingby
onecontinuously.For example,if a consecutivesequence
of macrosymbolsintroducesthevalues0, 1, 2, 3, 10, then
the symbolsintroducing0, 1, 2, and 3 are placedin the
samegroup.

5. SequenceLevel I heuristic: Group all successive
#define directiveswhose values form either an
increasingor a decreasingsequence.

6. SequenceLevel II heuristic: Creategroups based
uponAnyVisual Cueheuristicanddecomposeeach
groupinto groupsusingtheSequenceLevelI heuris-
tic.

The next heuristicprovidesthe minimum baselinefor
evaluationin that it representsthe worst casegroupingof
#define directivesin an include file. This heuristic is
usedasa control aspartof theevaluationof heuristics1–6.

7. File heuristic: Placeall of the#define directives
in a file in a group.

The last two heuristicswereusedby our oracle,a pro-
grammer,to manuallygeneratethe expected,or bestcase,
groupingsof #define directives. They werenot imple-
mentedin our prototypebecausethey are subjective,and
thereforeimprecise.SeeSection5.3 for morediscussion.

8. LexicalSimilarity heuristic: Group#define direc-
tives whosesymbolscontain“significant” common
prefixes,suffixes,or othercharactersequences.This
heuristic is influencedby the observationthat pro-
grammerstend to usecommonprefixes or suffixes
for symbolsthat are related. This heuristic is intu-
itively very easyto understandbut very difficult to
define precisely.

9. Domain Similarity heuristic: Group #define di-
rectivesthatintroducesymbolsthatarerelatedbased
uponprogramminganddomainknowledge.

5 Experiment design

This section presentsthe design of our experiment to
evaluatethe effectivenessof the heuristicspresentedin
Section4.3. It describes(a) the subjectsystemsusedfor
the experiment,(b) the prototypethat implementedthese
heuristicsalongwith its limitations,(c) theoracleusedfor
identifying theexpectedsetsof enumerationtypes,and(d)
themeasureof effectivenessusedfor analyzingtheresults.

5

5.1 Subject systems

Two important criterion have influencedour choice of
subject systemsfor this experiment. First, the systems
must be representativeof the real-world. Second,they
must be available to other researchersfor repeatingour
experimentor comparingour resultswith the resultsof
other heuristics. Basedupon thesecriteria, we chosethe
following eight systems:

1. BTOOL: A set of tools for measuringbranchcov-
erageof C programsfrom the University of Illinois
(Brian Marick: marick@testing.com).

2. EDGE: Extendiblegrapheditor from the University
of Karlsruhe[15].

3. FIELD: Friendly IntegratedEnvironmentfor Learn-
ing andDevelopmentfrom Brown University [18].

4. GCC:GNU C/C++Compilerversion2.7.1from the
FreeSoftwareFoundation.

5. GHOSTSCRIPT:PostScriptinterpreterversion2.6.0
from Aladdin Enterprises(PostScriptis a trademark
of Adobe Systems,Inc.)

6. SGEN: SynthesizerGeneratorfrom GrammaTech,
Inc. [19, 20].

7. StandardUnix Include Files for SunOS Release
4.1.3_U1(Unix is a registeredtrademarkof AT&T).

8. WPIS: WisconsinProgramIntegrationSystemfrom
University of Wisconsin[6].

All of these systemsare real-world in that they have
“lived” for severalyearsnow, have undergone multiple
releases,andare being usedby severalpeopleother than
their developers.Of these,BTOOL, EDGE,FIELD, GCC,
andGhostscriptareavailablein thepublic domain;SGEN
and the Unix include files are commercialproducts;and
WPIS, a productof academicresearch,is availablefor a
modestfee.

Table 1 summarizessomeof the interestingstatistics
of our subject systems. We have assumedthat all of
the (relevant)#define directivesfor thesesystemsare
availablein the includefiles, i.e., the .h files. This table
presentsthe number of thesefiles and their sizes, the
numberof #define directivesin eachsystem,and the
numberof macrosymbolsthatareenumeratorcandidates.
Thecriteriafor selectingthesecandidateswill bediscussed
later.

5.2 Prototype

We developeda prototype system that implementsthe
heuristicspresentedin Section4. The following compro-
miseswere madeto facilitate the quick developmentof
our prototype:

1. Only symbolsthat introduceintegerliteral constants
are consideredas candidate enumerators.That is,
we excludesymbolsthat introducehexadecimal,oc-

Table 1. Summary of interesting statistics of the subject
systems.

System
Number

of .h
files

Size in
LOC of

the .h
files

Number
of

#defines

Number
of

candidate
symbols

BTOOL 33 4937 428 44
EDGE 53 3842 368 217
FIELD 25 2175 52 12
GCC 57 13649 1090 160

GHOST-
SCRIPT

128 11212 1305 299

SGEN 125 12230 1648 234
/usr/include 75 4918 1225 533

WPIS 66 7150 849 75

Table 2. Distribution of different usages of macro symbols
in the files /usr/include/*.h of SunOS 4.1.3_U1.

Total numberof include(.h) files 75
Total numberof #defines 1225

Total numberof #definesintroducingconstantliterals
Integer 533
Hexadecimal 169
String 59
Octal 49
Floatingpoint 23
Character 10

Other typesof #defines 382

tal, and characterconstantseven though they are
potentialenumerators.

2. The conditional compilation directivesof the pre-
processorareignored,implying that in our analysis
theremaybemultiple declarationsof thesamesym-
bol which may not occurduringactualcompilation.

3. A #define directivewithin a commentis consid-
eredto bevalid, althoughit is ignoredby compilers.

Table 2 presentssomedata to assessthe implications
of the abovecompromises.This tablegivesa distribution
of macrosymbolsthat introducevarioustypesof constant
literals in the includefiles of the SunOS4.1.3_U1library.
761 of the symbolsare integralvaluedandare,therefore,
potentialenumerators.533(or 70%)of the integralvalued
symbolsare candidateenumeratorsdue to the exclusions
of compromiseone. Compromisestwo and three imply
that our systemprocessesmore symbols than it should.
Although we haveno precisedata,we haveobservedthat
the numberof suchspurioussymbolsis relatively small.
Consequently,thesespurioussymbolshaveno significant
affect upon our analysis.

5.3 Oracle

No oraclesor expecteddata setsexistedfor the subject

6

systems.Hence,we manuallyconstructedasetof expected
datafor eachsystemusing the following approach.

For each.h file, we extractedall of the integervalued
symbolsin theorderin which theyweredeclared,but with
no interveningtext or visualcues.We thenpartitionedthe
symbolsinto groupsusing the following rules: consecu-
tively declaredsymbolswereplacedin thesamepartitionif
(a) they werelexically similar, suchasINPUT andOUT-
PUT, or (b) they appearedrelatedfrom their namesbased
upon our programmingand domain knowledge,such as
TRUE andFALSE, andYES andNO.

5.4 Congruence measure

A heuristic is, by definition, “a speculativeformulation
servingasaguidein theinvestigationor solutionof aprob-
lem†.” It is very unlikely thatanyheuristicin general,and
onefor recoveringenumerationtypesin particular,would
leadto a preciselycorrectsolutionunderall circumstances.
Hence,the quality of a heuristic, i.e., its effectivenessin
identifying the correctsetsof enumerationtypes,may be
measuredin termsof the “degreeof similarity” between
the solution it generatesand the correspondingideal so-
lution, such that a “closer” solution is assigneda higher
value of effectiveness.

In our context,eachsystemis alreadypartitionedinto
files. An enumerationtype recoveryheuristic only par-
titions the set of symbolswithin eachindividual file. A
measureof the effectivenessof a heuristicshouldsumma-
rize its performanceover all files in a system. Thus, our
measureof effectivenessconsistsof two parts:

1. A measure of congruence betweentwo partitionsof
the samesetof elementsfor quantitativelycompar-
ing the degreeof similarity betweenthe recovered
andexpectedsetsof enumerationtypesin a file.

2. A weighted average of congruence measures overall
of thefiles in asystemto summarizetheperformance
of a heuristicover an entire system.

The congruencebetweentwo partitions
�

and � may
be measuredas a fraction of the total pairs of elements
that aresimilarly placed in both of the partitions,wherea
pair of elements� and � aresaidto be similarly placedin�

and � if the following conditionsaresatisfied:(a) if �
and � appearin the samegroupin onepartition then they
appearin the samegroup in the otherpartition, and(b) if� and � appearin different groupsin one partition then
they appearin differentgroupsin the otherpartition [17].
This may be definedmore formally as follows. Let � be
the set of all macrosymbolsin a programand let � be
the set ����� . A partition of � , say

�
, is essentiallyan

equivalencerelation over � suchthat 	
�������� � implies� and � are in the samegroup in
�

. Thus,
��� � .

Similarly, ���� ����� gives the pairs of elementsnot in

† The AmericanHeritageDictionary,SecondCollegeEdition, 1985.

the samegroup in partition
�

. The congruencemeasure��� 	 � ���� is then definedas:

� � 	 A,B � �"! #%$'&�!)(+** �#%$ �&�**! � !
The congruencemeasureyields a value in the rangeof 0
to 1, wherea higher value indicatesa greaterpercentage
of similarly placedelementsbetweenthe partitionsbeing
compared.

The overall effectiveness,��,-,/.10324657.98/.1:;:<	>=?�@-� , of a
heuristic is definedas:A"B�CED � � 	>F-	HGI�J�6K7L)M7N)OQP9	QG/�>� �SR�	QGT�A B�CUD R�	VGT�
where = is a softwaresystem,@ is a heuristic, , is a file in
thesystem,@/	6,T� givesthepartitionsfor file , generatedby
heuristic @ , oracle(,) givesthe correspondingpartition for
file , generatedby the oracle,andw(,) gives the weight
associatedto file , .

We have chosenthe weight function: R�	QGT� �XW B , the
numberof candidate symbolsin file , . This function in-
creasesthe weight linearly with the size of the problem
space.Alternatively,onemay choose(a) a constantfunc-
tion R�	YG/� �[Z if the increasein weight is not desired,(b)
a quadraticfunction R�	VG/� �XWT\B if a faster increaseis de-
sired,or (c) a logarithmic function R�	VG-� � OVK9]^	 W B � for a
slow, yet positive, increase.

6 Discussion of experiment results

We now presentan analysisof the data basedupon
the criteria of precisionand impact. Sinceencapsulating
a set of symbolsinto an enumerationtype improvesthe
readabilityand reliability of programs[22], thesecriteria
enableus to evaluatethe potential improvementin code
quality that a heuristicoffers.

Theprecisionof variousheuristicsin recoveringcorrect
enumerationsis assessedusingthecongruencemeasurein-
troduced in Section 5.4. Since this measure is normalized,
it does not give an indication of the size of the problem
space. For example, a 90% congruence in recovering enu-
merations for a system does not indicate whether the sys-
tem has 10 or 1,000 symbols.

The size of the problem space is useful for evaluating
the expected impact of solving the problem. In our context,
a 90% recovery on a space of 1,000 symbols would have
a greater impact on improving code quality than a similar
recovery on 10 symbols.

6.1 Discussion of precision

Table 3 summarizes the number of candidate symbols
in each subject system and the _�`-`ba1c3degf7a9h/a9i1i of each
heuristic in recovering the correct sets of enumeration

7

Table 3. Effectiveness of various heuristics in recovering enumeration types proposed by an oracle.
Visual cues

System Candidate
symbols

File Blank Line Line
Comment

Block
Comment

Any Visual
Cue

Sequence
Level I

Sequence
Level II

BTOOL 44 0.52 0.86 0.75 0.38 0.76 0.75 0.63
EDGE 217 0.33 0.66 0.54 0.33 0.66 0.79 0.80
FIELD 12 0.72 0.89 0.89 0.72 0.89 0.31 0.42
GCC 160 0.63 0.94 0.83 0.79 0.89 0.89 0.83
GHOST-
SCRIPT

299 0.72 0.86 0.92 0.76 0.93 0.40 0.40

SGEN 228 0.49 0.92 0.74 0.62 0.94 0.85 0.86
usrInc 533 0.35 0.74 0.73 0.52 0.98 0.78 0.85
WPIS 75 0.86 0.85 0.86 0.77 0.85 0.39 0.39
Minimum

�����������
	�����������
0.33 0.66 0.54 0.33 0.66 0.31 0.39

Maximum
������������	�����������

0.86 0.94 0.92 0.79 0.98 0.89 0.86

typesas proposedby the oracle. We havenot performed
any significantstatisticalcomparisonsto determinewhich
heuristic is “better” sincewe haveonly eight datapoints
per heuristic. Instead,we usethe following rules to qual-
itatively evaluatethe heuristics.

A heuristic is consideredgood if:
Rule 1: It consistently performs better than the File

heuristic.
Rule 2: Its ������������� �!�"#�$%$ is consistentlygreater than

somethreshold.
Rule 3: Its �&�'�'������� �!�("#�%$�$ is consistentlyamongthe top

two for eachsystem.
Rule 4: Its rangeof �&�'�'���������)��"#�%$�$, as definedby the

minimumandmaximum�&�'�'������� �'��"#�%$�$, is “bet-
ter” than the others.

The datain Table 3 showsthat:
• only the Line Comment and Any Visual Cue heuristics

are consideredgood basedupon Rule 1. We can also
include the Blank Line heuristic if we are willing to
accepta 1% error factor for the WPIS system.

• Blank Line andAny Visual Cue maybeconsideredgood
usingRule 2 if a thresholdof 66% is used.

• Any Visual Cue is the only heuristic that may be con-
sideredgoodbaseduponRule 3. It is theonly heuristic
with an �����'�������*�)�+"#�%$%$ amongthe top two for all of
the systemsexceptEDGE, for which it is amongthe
top three.

• Blank Line andAny Visual Cue arealsoconsideredgood
basedupon Rule 4, since they yield the two highest
minimum andmaximum �&���'�%�����*�'�%"#��$%$.
These results suggestthat partitioning the candidate

symbolson theAny Visual Cue heuristicconsistentlygives
as good or better resultsthan any of the other heuristics.
Further,simply partitioningon the Blank Line heuristicis
consideredgoodusing threeof the four rules.

WPISis theonly systemfor whichnoneof theheuristics
outperformsthe File heuristic. Examinationof the datain
Table 1 revealsthe cause: an averageof 1.14 candidate
symbolsper file. Sincewe only group symbolsdeclared

in afile, anaverageof 1.14symbolsperfile impliesthatthe
groupingsdueto the oraclecannotbe very different from
the File heuristic. This is reflectedin Table 3 the 86%
�&�'���%����� ���%"#��$%$ of the File heuristic. Thus,for the WPIS
system,the File heuristicis amongthe bestheuristics.

6.2 Discussion of impact

In the absenceof a singlemeasurefor impact,we usethe
distribution of size of groupscreatedby various heuris-
tics to make somequalitative comparisons. We present
the distribution of only one subjectsystemdue to space
constraints.This distributiongivesanindicationof thepo-
tential improvementin codequality that a heuristicgives,
subjectto theassumptionthatall of thegroupsit identifies
are correct.

Table 4 gives the distribution of the size of
the groups created by various heuristics for the
/usr/include/*.h files of SunOS4.1.3_U1. Each
column, except the first, gives the distribution for a
heuristic. The File heuristicprovidesa control in that it
givesthenumberof files containinga particularnumberof
candidatesymbols. Sinceall other heuristicsdecompose
the set of candidatesymbols in a file, they all have (a)
at least as many groups of size 1 as the File heuristic
and (b) at least as many total numberof groupsas the
File heuristic.

The total numberof groupswith at leasttwo elements
is an indicator of how many enumerationtypes may be
created,sinceit is not meaningfulto createanenumeration
type with just one element. For the data in Table 4, the
heuristicAny Visual Cue (labeledAny V/Cue)proposesthe
highestnumberof enumerationtypes,and hencemay be
consideredbetterthan others. The next bestperformeris
the Sequence Level II heuristic(labeledSeq, II).

7 Conclusions

We haveintroducedthe problemof identifying candidate
enumerationtypes from C code. This is a sub-problem
of the broaderproblemof object recovery.Prior research

8

Table 4. Distribution of the size of groups in partitions cre-
ated by various heuristics for the files /usr/include/*.h.

Size
of

File Comments Blank Any Seq. Seq.

group block line lines V/Cue I II
1 9 16 24 45 53 129 135
2 4 6 10 10 13 12 12
3 2 6 9 10 17 14 15
4 4 4 4 8 10 5 7
5 1 1 2 2 1 5 4
6 2 2 7 3 6 3 3
7 1 3 2 4 4 3 5
8 1 1 5 6 2 4
9 2 3 2 2 4 2

10 1 1 3 3
11 1 1 2 1 2 2
12 1 5 5 6 3 5
13 1 2 1
14 1 1 2 1 2
15 1 1
16 1 1 1
17 1 1 1 1 1
18 1 1 1 1 2 2
19 1 1 1 1 1
23 1
25 1
29 1
32 1 1 1
33 1 1 1 1 1
35 1 1
36 1
41 1
43 1
44 1 1 1

137 1
147 1 1

Total numberof groups
38 55 79 100 128 189 200

Numberof groupsof size> 1
29 39 55 55 75 60 65

Numberof elementsin groupsof size> 1
524 517 509 488 480 404 398

on object recoveryhas assumedthe existenceof an en-
capsulatedcollection of data. Our work extends this line
of researchto the recoveryof unencapsulatedcollections
of data. This is an importantstepin reengineeringlegacy
codeinto the object-orientedparadigmfor programswrit-
ten in languagesthat lack constructsfor encapsulatingre-
lateddata. Our dataindicatesthat about70% of the sym-
bolic constantsintroducedusing#define directiveshave
a valuerepresentableby the type int, andhencequalify
to be part of an enumeratedtype (Table 2).

Wehavepresentedandexperimentallyevaluatedasetof
heuristicsto partitionthesetof macrosymbolsinto groups
suchthat eachgroupconstitutesan enumeratedtype. The
heuristicsare: Blank Line, Line Comment, Block Comment,
Any Visual Cue, Sequence Level I, and Sequence Level II.

Thefirst four heuristicsarebasedupontheintuition thatthe
visualcuesprogrammersuseto delineateblocksof related
code may be used for partitioning the macro symbols
as well. The first three heuristicspartition the symbols
basedupon visual cuesprovided by blank lines, single-
line comments,andmultiple-line comments,respectively,
whereasthe fourth partitionsthe symbolsbaseduponany
of thefirst threeheuristics.TheSequence Level I heuristic
groupssuccessivesymbolsthat introducean incrementing
or decrementingsequenceof integer values. It is based
upon the intuition that enumeratedconstantsymbolsare
frequentlyassignedsuccessivenumeric values. The last
heuristicfirst createspartitionsusing the Any Visual Cue
heuristicandthendecomposeseachgroupagainusingthe
Sequence Level I heuristic.

We performeda quantitativeanalysisof the effective-
nessof theseheuristicson a set of eight moderate-sized,
real-world programs. The data suggestsa 66% to 98%
match between the enumeratedtypes proposedby the
Blank Line and Any Visual Cue heuristicsand thosepro-
posedby a programmer.In contrast,the Sequence Level I
heuristic—thefirst heuristicwe thoughtof—producesonly
a 31% to 89% match, which is not a very good perfor-
mancein comparisonto the 33% to 86% matchachieved
by simply creatinga singlegroupfrom themacrosymbols
in a file.

We excludedsymbolsintroducing hexadecimal,octal,
andcharacterliteral constantsbaseduponour initial bias
towardstheSequence Level I heuristic.Wehadanticipated
theneedto developa differentsetof heuristicsfor theselit-
eral constants.Extrapolatingfrom our preliminaryresults,
however,it appearsthattheBlank Line andAny Visual Cue
heuristicswill performequallywell for theseconstantsand
that a separateheuristicmay, in fact, not be needed.

Acknowledgments
The authorsthank A. J. Ciallella, K. Covington,andD. Hillard
for their proofreadingandhelpful suggestionsin thedevelopment
of this paper. We also thank the anonymousrefereesfor their
commentsthat helpedsubstantiallyimprove this paper.

References

[1] G. Canfora,A. Cimitile, and M. Munro. A reverseengi-
neeringmethodfor identifying reusableabstractdatatypes.
In Proceedings of the Working Conference on Reverse En-
gineering, pages73–82.IEEE CS Press,May 1993.

[2] G. Canfora, A. Cimitile, M. Tortorella, and M. Munro.
A precise method for identifying reusableabstractdata
types in code. In International Conference on Software
Maintenance, pages404–413.IEEE CS Press,Sept.1994.

[3] S.C. Choi andW. Scacchi.Extractingandrestructuringthe
designof large systems.IEEE Software, 7(1):66–71,Jan.
1990.

[4] A. Cimitile, M. Tortorella, and M. Munro. Programcom-
prehensionthroughthe identificationof abstractdatatypes.
In Proceedings of the 3rd Workshop on Program Compre-

9

hension, pages12–19.IEEE CS Press,Nov. 1994.
[5] N. Dale,C. Weems,andM. Headington.Programmingand

ProblemSolvingwith C++ . D. C. Heath,1996.
[6] S.Horwitz, J.Prins,andT. Reps.Integratingnon-interfering

versions of programs. In Proceedingsof the Fifteenth
Annual ACM Symposiumon Principles of Programming
Languages,SanDiego, pages133–145,1988.

[7] D. H. HutchensandV. R. Basili. Systemstructureanalysis:
Clustering with data bindings. IEEE Trans. Softw. Eng.,
pages749–757,Aug. 1985.

[8] B. W. Kernighanand D. M. Ritchie. The C Programming
Language. PrenticeHall, Secondedition, 1988.

[9] A. Lakhotia.A unified frameworkfor expressingarchitec-
ture recoverytechniques.Journalof SystemsandSoftware,
1996. (to appear).

[10] S. Liu and N. Wilde. Identifying objectsin a conventional
procedurallanguage:An exampleof datadesignrecovery.
In Proc. IEEE Conferenceon Software Maintenance, pages
266–271,Nov. 1990.

[11] P. E. Livadasand T. Johnson.A new approachto finding
objects.TechnicalReportSERC-TR-63-F,SoftwareEngi-
neeringResearchCenter,Computerand Information Sci-
encesDepartment,University of Florida, June1993.

[12] H. A. Müller andJ.S.Uhl. Composingsubsystemstructures
using (K,2)–partitegraphs.Proceedingsof the Conference
on Software Maintenance, pages12–19,Nov. 1990.

[13] R. M. Ogando, S. S. Yau, S. S. Liu, and N. Wilde.
An object finder for program structureunderstandingin
software maintenance.Journal of Software Maintenance
Research and Practice, 6(5), Sep-Oct1994.

[14] C. Ong and W. T. Tsai. Classand object extractionfrom
imperativecode. J. Object Oriented Programming, pages
58–68,Mar–Apr 1993.

[15] F. N. PaulischandW. F. Tichy. EDGE:An extendiblegraph
editor. Software–Practice and Experience, 20(S1):63–88,

June1990.
[16] T. W. PrattandM. V. Zelkovitz. ProgrammingLanguages:

Design and Implementation. PrenticeHall, Third edition,
1996.

[17] W. M. Rand. Objective criteria for the evaluation of
clustering methods.Journal of the American Statistical
Association, 66(336):846–850,Dec. 1971.

[18] S. P. Reiss.Connectingtools usingmessagepassingin the
Field environment.IEEE Software, 7(4):57–66,July 1990.

[19] T. Repsand T. Teitelbaum.TheSynthesizerGenerator:A
Systemfor ContructingLanguage-BasedEditors. Springer-
Verlag, New York, NY, 1988.

[20] T. Reps and T. Teitelbaum. The SynthesizerGenerator
ReferenceManual. Springer-Verlag, New York, NY, third
edition, 1988.

[21] S. Rugaber,K. Stirewalt,andL. M. Wills. The interleaving
problem in program understanding.In Second Working
Conferenceon ReverseEngineering, pages166–175.IEEE
ComputerSocietyPress,July 1995.

[22] R. W. Sebesta.Concepts of Programming Languages.
Benjamin/Cummings,1989.

[23] I. Silva-Lepe.An empiricalmethodfor identifying objects
and their responsibilities in a procedural program. In
Technology of Object-Oriented Languagesand Systems
Europe Conference, pages 136–149, Versailles, France,
1993.Prentice-Hall.Also availableastechnicalreportNU-
CCS-93-2,NortheasternUniversity.

[24] B. Stroustrup.TheC++ ProgrammingLanguage. Addison-
Wesley,Secondedition, 1991.

[25] A. S.Yeh,D. R. Harris,andH. B. Reubenstein.Recovering
abstractdatatypesandobjectinstancesfrom a conventional
procedurallanguage.In Proceedingsof the 2nd Working
Conferenceon ReverseEngineering, pages227–236.IEEE
CS Press,July 1995.

10

