Identifying Enumeration Types Modeled with Symbolic Constants

John M. Gravley and Arun Lakhotia
Centerfor AdvancedComputerStudies
University of Southwesterriouisiana
Lafayette, LA 70504
{ jmg, arun}@cacs.usl.edu

Published in: Proc. of the 3rd Working Conference on
Reverse Engineering, [0 IEEE CS Press, November 1996.

Abstract

Animportantchallengein softwake reengineerings to en-
capsulatecollectionsof related data that, due to the ab-

senceof appropriate constructsor encapsulationn legacy
programminganguagesmaybedistributedthroughoutthe
code. The encapsulationof such collectionsis a neces-
sary stepfor reengineering legacysysteninto an object-
orienteddesignor implementation Encapsulatinga setof

relatedsymbolicconstantdnto an enumeratiortypeis an

instanceof this problem.\We presenta classificationof how
enumeratiortypesare modeledusingsymbolicconstantsn

real-world programs,a setof heuristicsto identify candi-
dateenumeratiortypes,and an experimentakvaluationof

theseheuristics.

1 Introduction

There is a growing interestin the problem of finding
objectsand abstractdatatypesin legacy code[1, 2, 4,
10, 11, 14, 23, 25]. Most researcherdave presented
solutionswhich assumehat relateddataitems (belonging
to an object) are already encapsulatedising constructs
suchas structs,commonblocks, records,types, etc. This
paperaddressethe problemof groupingrelateddataitems
that were not previously encapsulatedOur researchthus
attemptsto fill the void left by otherresearchers.
Identifying enumerationtypes modeledwith symbolic
constantds an instanceof the larger problemof encapsu-
lating relateddataandis conceptuallysimpler thaniden-
tifying the elementsof a record type. The problemis
sufficiently rich at deeperlevels to exposeall of the is-
suesinvolved in the larger problem. Hence,this problem
is well-suited for comprehensivenvestigationin a labo-

This work was partially sponsoredby the Departmentof the Army
throughthe Army ResearctOffice. However,the contentsof this paper
do not necessarilyreflect the position or the policy of the government,
andno official endorsemenshouldbe inferred.

ratory environmentand will provide considerablansight
into solving the larger problem.

Ouir first stepin solving this problemis a comprehen-
sive analysisof how enumerationtypes are modeledin
real-world C programsthat have evolvedthroughvarious
dialects of the language. This analysis, carried out by
studyingseveralreal-world programs,hasyielded a clas-
sificationthat may be usedto describethe problemspace.
This classificationis analogoudo the terminology devel-
opedby Rugabertal. [21] for describingissuespertinent
to the problem of understandingnterleavedcode.

Creating collections of symbolic constantssuch that
each collection constitutesan enumerationtype may be
viewed as a classificationproblem. Numeroustechniques
have been proposedfor classifying various elementsof
softwaresystemsfor varying purposeg9]. Someof these
techniquesdiscoverthe modular architectureof undocu-
mentedlegacy code [11, 13, 14], othersgroup program
componentshat arerelatedto the sameerror[7], andstill
otherssimply imposea structureuponan otherwiselarge,
complex, and unstructureddata[3, 12]. However,there
is no single classificationtechniquethat is applicableto
all problems.For a new problem, either an existing tech-
nigue is customizedor a new techniquethat usesspecial
propertiesof the problemdomainis developed.

Our heuristicsfor grouping macro symbolsare based
upon the principle that: Symbols that are defined (or
declaed) in the same context are placedin the same
group. This is a significantdeparturefrom the principle
upon which previous subsystenclassificationtechniques
arebased,.e., Symbolsthat are usedin the samecontext
areplacedin the samegroup. In the contextof recovering
enumeratiortypes, our principle leadsto techniqueghat
are computationallyinexpensiveand yet do not incur a
significantloss in precision.

We performedan experimentto evaluatethe effective-
nessof our heuristicsin creatingcandidateenumeration
types that correspondto actual enumerationtypes. We

enum-specifier:= enum identifielpp { enum-list}

enum-list::= enumerator
| enum-list,enumerator
enumerator:= identifier

| identifier = constant-expression

Figure 1. Syntax of the enumeration construct (enum) of
ANSI C and C++. [8, 24].

enum Day { SUN, MON, TUE, WED,

THU, FRI, SAT };
Figure 2. Example in which the enumerator values are
implicitly defined by the compiler.

enum Opcode { ADD = 10,

SUB= 32, MUL= 25 }
Figure 3. Example in which the enumerator values are
explicitly defined by the programmer.

enum { typedef enum{ enum Color {
RED= 1, RED= 1, RED= 1,
GREEN, GREEN, GREEN,
BLUE}; BLUE} Color; BLUE};
(@) (b) (©

Figure 4. Examples of how enumerations may be declared
explicitly (a) using the enum construct, or (b) using the enum
construct in conjunction with a typedef . Example (a) is an
anonymous enumeration.

comparedthe candidateenumerationtypes recoveredby
our techniqueswith the ideal set of enumerationtypes
as definedby an oracle—inour case,a programmer9].
The datafrom evaluatingour heuristicson eight moderate-
sized,real-world softwaresystemssuggestghat heuristics
that classify symbolsbaseduponthe proximity of the dec-
larationscan give good resultsfor discoveringcandidate
enumeratiortypesin preprocessosymbols.

The rest of this paperis organizedinto the following
sections.We presentan overview of C and C++ enumer-
ation typesin Section2. In Section3, we describethe
various ways that enumerationsare modeledusing sym-
bolic constantdn C and C++ programs. We presentour
heuristicsfor identifying candidateenumerationtypesin
Section4. We presentthe designof our experimentin
Section5 andanalyzethe resultsin Section6. Finally, we
presentour conclusionsin Section?7.

2 Enumeration types

“An enumeratiors anorderedist of [symbolic] values”
[16, p. 137] typically usedto introducea finite (usually
small) numberof symbolic values. This sectiongives an
overview of C and C++ enumerations.lt introducesthe
salientissuegpertainingto constructingmanipulatingand
coercingthe valuesof enumeratiortypesin the contextof
any programminganguagewith emphasion ANSI C and
C++[24]. Thesectionalsointroducesoperationghat may
be consideredriolationsin C++ andhighlights operations

thatC++ permitsbut may be violationsin otherlanguages,
such as Ada.

Figurel showsthe syntaxfor ANSI C or C++enumera-
tion types. The two component®f interestin an enumer-
ation are a set of literal symbolscalled the enumerators
(enum-list) andthe name (identifier,t) of the enumer-
ation. Theenumeratiomameintroducesa newtypewhose
valuesconsistof the setof enumeratorsAn enumeration
without a nameis called an anonymous enumeration.

The identifiers (or symbols)in the enum-list are
consideredconstantsand may be used as such. Their
valuesmay either be defined implicitly by the compiler
(Figure 2) or be explicitly provided as a constant-
expression (Figure 3). The symbolsin an enum-
list areimplicitly equatedto successiventegersstart-
ing from zero. The assignmentof a constant-
expression forces the correspondingsymbol to be
equatedwith the value of that expressionand forcesthe
valuesof the successivesymbolsto be equatedwith the
successivéntegervalues. Figure4 givesexamplef how
the colors RED, GREEN, and BLUE may be explicitly
defined as an enumerationtype in some versionsof C
andin C++.

An enum declarationmay have a combinationof the
explicit and implicit mappings,with some enumerators
mappedto explicit valuesand othersmappedto implicit
values, as in:

enum MyBool { NO, YES, OFF = 0, ON};

Suchan explicit mappingof enumeratorgo integershas
the side effect that two enumeratorsn the sameenumer-
ation may be mappedto the sameinteger. In the above
example,both NOand OFF are mappedto zero,and YES
andONaremappedo one. This contrast®C andC++ enu-
merationswith thosein Ada, where eachenumerator(in

an enumeration)s mappedto a uniqueinteger. Thus, un-
like Ada enumerationsC and C++ enumerationsre not

ordinal types.

We referto enumeratorsvith the sameintegermapping
within the sameenumerationas aliases. This word is
commonly usedto group symbolsthat refer to the same
memorylocation. However,sincethe literal symbolsare
constantsvhich do not havememorylocations,we extend
the usageof this word to two or more symbolsmappedo
the sameintegerin the samecontext.

An enumeratorthat belongsto at leasttwo different
enumerationss saidto havemultiple identity. A language
must provide a way to statically resolvethe namespace
conflictin determiningwhich enumeratioran enumerator
belongsto in order to permit enumeratoravith multiple
identity.

Valuesof anenumeratiortype are createdby the literal
constantsand may be assignedo a variable of that type,
asin:

— Fnum
Enum x Enum — Boolean
Coercelnt: Fnum — int
Castint: int — Enum
=: Enum x Enum — Enum

Literal Symbol :
Relational Op :

Figure 5. Signatures of operations that may be performed
upon C++ enumerations.

Day StartDay; StartDay = MON;

Languageghat enforce strict type checkingdo not per-
mit assignmenbetweentwo different enumeratiortypes,
which makes

StartDay = RED;

incorrectin suchlanguages.Similarly, the assignmenbf
integervaluesto an enumerationvariable:

StartDay = 2;

may not be permittedif strict type checkingis enforced.

A languagemay, however,allow coercionof an enu-
meratorto an integerwhen it is assignedto an integer
variableor is part of an integerexpressiong.g.,

int i; i = RED;
This is usefulwhensomecomputationis performedon all
of thevaluesof anenumerationasshownin the following
C++ fragment:

Day d;

for (d = SUN; d <= SAT; d = Day(d + 1))

;. /I do whatever

The expressiorDay(d + 1) in this exampleexplicitly
caststhe value of expressiond + 1 to be of type Day.
Theaboveloop hasthe unfortunateeffect thatit terminates
with an out of rangevalueof d (i.e., it computesSAT +
1, which is not a memberof Day). However,the castis
necessanpecausehe statemend = d + 1 would be
incorrectsinced + 1 is implicitly coercedto aninteger.

A loop such as that shown above may be usedto
enumerateall of the valuesof an orderedenumeration
when its symbols are mappedto integer values with a
known, periodicinterval, evenif the periodis not one. It
maybecomecumbersomevith enumerationssuchasthose
in Figure 3, whose numeric values have beenexplicitly
definedand do not follow any regularinterval.

The operationsthat may be performedon an enumer-
ation type, say Enum are summarizedby the signatures
in Figure 5. The last signatureis for assignmenand has
threetermsbecausessignmenis anexpressiorin C++.

3 Modeling enumeration types
using symbolic constants

This section discussesthe modeling of enumeration
typesin real-world C programs. This modeling may be
studiedbasedupon (a) how the set of enumerator®f an
enumerations declared(b) how its nameis declaredand

/¥ define colors */
#define RED 1) .
#define GREEN2 typedef it Color;
#define BLUE 3 const RED = 1;
I* const GREEN= 2;
* end of color const BLUE = 3;
*/

(@ (b)

Figure 6. Examples of how enumerators may be declared
implicitly (a) using the #define directive, or (b) using the
const construct in conjunction with a typedef to declare
an enumeration name.

/* some code */
#define REDO

/* some more code */
#define GREEN1
#define BLUE 2

Figure 7. Example of a distributed enumerator declaration.
This C code fragment shows a logical group of symbols that
form an enumeration even though they are interleaved with
other code. The interleaving may even occur across files.

(c) howtheassociatiorbetweerthe setof enumeratorsind
the nameis defined.Figure 6 givestwo waysof modeling
enumerationgquivalentto thosein Figure 4.

3.1 Declaration of enumerators

The enumeratorsbelonging to an enumerationmay be
declaredusing any combinationof:

1. #define directives,

2. const constructs,

3. an enum construct,

All of the literal symbolsbelongingto an enumeration
are encapsulated when declaredusing an enum construct
(Figure 4) but are unencapsulated if the other constructs
are used. The enumeratordn the first two casesabove
are frequently groupedby declaringthem in succession
andboundingthe declarationdy visual cues,as shownin
Figure 6(a). We call sucha declarationcontiguous. The
enumeratoramay be interleaved[21] with other declara-
tions, or even acrossseveralfiles when the declarations
areunencapsulatedisillustratedin Figure 7. We refer to
suchdeclarationsas distributed.

A more complexintertwining of enumeratiordeclara-
tions is createddue to enumeratorswith aliases or with
multiple identity. Two such casesare illustrated by the
codefragmentsin Figures8 and 9.

The fragmentof Figure 8 may be interpretedin two
ways. The first interpretationis that it introducestwo
enumerationspne introducedby the setof #define di-
rectivesand the other by the enum construct. The two
enumerationgrein somesensesquivalentsincethereis a
one-to-onecorrespondencbetweertheir enumeratorand

/* extracted from EDGE?*

#define BLACK_BOXO

#define GREY_BOX1

#define WHITE_BOX2

#define SEPARATEGRAPH3

typedef enum { black = BLACK_BOX,
grey = GREY_BOX,
white = WHITE_BOX,
separate = SEPARATEGRAPH}
statuses;

Figure 8. Example of aliased enumerators found in the
EDGE system [15]. A similar effect could also be achieved
using a combination of #define directives and const
constructs to introduce the enumerators.

typedef int Starch;
#define Corn 0
#define Rice 1
#define Potato 2
#define Bean 3
typedef int Grain;
/¥ #define Corn 0 */
#define Wheat 1
#define Rye 2
#define Barley 3
#define Sorghum 4

Figure 9. Example of an enumerator with multiple identity.
The duplicate symbol Corn is commented out just to high-
light that it also belongs to the latter enumeration. In actual
code such a comment may not necessarily exist [5].

thecorrespondingnumeratorfiavethe sameintegermap-
ping. The secondinterpretationis that the codefragment
introduceneenumeratiorconsistingof theunion of sym-
bolsintroducedby the #define directivesandthe enum
construct. The enumeratorgonsistof pairs of aliases.Ir-
respectiveof which interpretationis chosenit is clearthat
a programmeimay interchangeablyisethe corresponding
pairs of enumeratorsn the two sets.

Figure 9 illustrates intertwining causedby using an
enumeratowith multiple identity. Creatingan enumerator
with multiple identity using symbolic constantsrequires
that the enumeratorhave the samevalue in all of the
enumerations. The enumeratorCorn belongsto both
enumerationsn this caseand is mappedto the value 0.
However, in the programtext this enumeratormay be
declaredonly once. Thus, it may not actually appearin
the secondlist, not evenas a comment.

3.2 Declaration of enumeration names

An enumeratiormay havea type namewhetheror not its

Enumerators
Declaration
encapsulated
unencapsulated

contiguous
distributed
Intertwined
aliases

multiple identities
Enumeration name
Declaration
exists (named)
usingatypedef name
usingan enum tag name
doesnot exist (anonymous)
Associationwith enumerators
attached
contiguous

distributed

Figure 10. A classification of the various issues in the
declaration of enumerations in C programs.

enumeratorare encapsulatedHowever,the namecan be
directly associatedi.e., attached, to the enumerator®nly
whenthey areencapsulatedinceonly the enum construct
permits such an association. Names associatedwith a
set of unencapsulateénumeratorspr even encapsulated
enumeratoranaybeintroducedby usingatypedeclaration
or a macrodeclaration,asin:

typedef int Day;

#define Color int
Sincethe associatiorbetweernunencapsulatednumerators
andtheir type nameis not syntacticallyexplicit, the asso-
ciationis usually providedby visual cuessuchas placing
the two declarationsn physical proximity. Suchan asso-
ciationis termedas contiguous. This associatiormay not
be available,evenby visual cues,if certaincoding stan-
dardsrequirethat all type declarationse groupedin one
location, all macrodefinitionsbe in anotherlocation,and
all constantde in yet anotherlocation. Suchan associa-
tion is termedasdistributed. Finally, an enumeratiorthat
doesnot have any type name associatedo it is termed
an anonymous enumerationln summary the enumeration
declarationdn C programsmay be classifiedas shownin
Figure 10.

4 |dentifying candidate enumeration types

This section presentsour heuristicsfor identifying can-
didate enumeratiortypesby groupingmacrosymbolsin-
troducedusing #define directives. The heuristicsare
“derived” from the classificationpresentedn Section3
(summarizedn Figure 10).

4.1 Problem formulation

Identifying candidateenumerationtypes that have been
created using macro symbols requires partitioning the
macrosymbolsof a programinto setsof symbols,where
eachset logically constitutesan enumerationtype. Our
heuristicsfor identifying candidateenumeratiortypesare
baseduponthe principle that symbolsthat are defined(or
declaed) in the samecontextareplacedin thesamegroup.
This principle is baseduponthe observationghat:

1. macrosymbolsrepresentinginenumeratiortypeare

most often placedin the samefile,

2. thesesymbolsare most often declaredin a lexical

sequence.

The aboveobservationgurtherimply: If relatedmacro
symbolsare (mostoften) declaredn the samefile in alex-
ical sequencethen the problemof identifying candidate
enumerationtypesis to split the sequenceof #defi ne
directivesin a file into nhon-empty,non-overlappingsub-
sequencesuchthatthe macrosymbolsintroducedin each
subsequencespresenta candidateenumeratiortype.

4.2 Problem space

The #def i ne directive providesa mechanismto define
symbolic macrosthat are expanded often referredto as
preprocessedyeforea C programis compiled. This direc-

tive is usedto introducesymbolic namesfor constantsto

introduce macro “functions,” and to introduce constructs
that are not directly supportedby the language. Further-
more, the directive may be usedto introduceexpessions
that evaluateto constantsafter preprocessing.

The only macro symbolsthat are candidatesfor be-
coming enumeratorsare those that have a value in the
rangeof type i nt when expandedsince symbolsintro-
ducedby enum constructsare mappedto valuesof type
i nt. Hence,all other macrosymbolsmay be excluded
from the problem space.

4.3 Heuristics

This sectionpresennine heuristicsfor grouping#def i ne
directivesto createcandidateenumerations.The first six
heuristicsare the subjectsof experimentakvaluation.

Thefirst four heuristicsarebasedupontheintuition that

programmergeavenon-syntactic¢visual cues”to delineate
blocks of related code.

1. Blank Line heuristic: Group successivetdef i ne
directives bounded by lines consisting of “white
space.”

2. Line Commentheuristic: Group successivetde-
fi ne directivesboundedby lines consistingof a
completecomment(i.e.,/* ... */).

3. Block Commentheuristic: Group successivetde-
fi ne directivesboundedby lines consistingof a

completecommentacrosstwo or morelines.

4. Any Visual Cue heuristic: Group successivetde-
fi ne directivesboundedby lines consistingof any
of heuristics1-3.

The next two heuristicsare basedupon the intuition
that since enumerationtypes are ordinal types in many
languagesit is likely thatprogrammersssignconsecutive
numericvaluesto the symbolsin animplicit enumeration.
Theseheuristicsgroup consecutive#def i ne directives
whosevaluesareeitherincreasingoy oneor decreasingdgy
one continuously.For example,if a consecutivesequence
of macrosymbolsintroduceghevalues0, 1, 2, 3, 10, then
the symbolsintroducingO, 1, 2, and 3 are placedin the
samegroup.

5. Sequencd.evel | heuristic: Group all successive
#def i ne directiveswhose valuesform either an
increasingor a decreasingsequence.

6. Sequencd.evel Il heuristic: Create groups based
upon Any Visual Cue heuristicand decomposeach
groupinto groupsusingthe Sequencéevell heuris-
tic.

The next heuristic providesthe minimum baselinefor
evaluationin that it representshe worst casegroupingof
#def i ne directivesin an include file. This heuristicis
usedasa control aspartof the evaluationof heuristics1-6.

7. File heuristic: Placeall of the#def i ne directives
in a file in a group.

The lasttwo heuristicswere usedby our oracle,a pro-
grammer to manuallygeneratehe expectedpr bestcase,
groupingsof #def i ne directives. They were not imple-
mentedin our prototypebecausehey are subjective,and
thereforeimprecise.SeeSection5.3 for more discussion.

8. LexicalSimilarity heuristic: Group#def i ne direc-
tives whosesymbolscontain“significant” common
prefixes,suffixes, or othercharactesequencesThis
heuristicis influencedby the observationthat pro-
grammerstend to use commonprefixes or sufiixes
for symbolsthat are related. This heuristicis intu-
itively very easyto understandut very difficult to
define precisely.

9. Domain Similarity heuristic: Group #def i ne di-
rectivesthatintroducesymbolsthatarerelatedbased
upon programmingand domainknowledge.

5 Experiment design

This section presentsthe design of our experimentto
evaluatethe effectivenessof the heuristicspresentedin
Section4.3. It describeqa) the subjectsystemsusedfor
the experiment,(b) the prototypethat implementedthese
heuristicsalongwith its limitations, (c) the oracleusedfor
identifying the expectedsetsof enumerationtypes,and(d)
the measuref effectivenessisedfor analyzingtheresults.

5.1 Subject systems

Two important criterion have influenced our choice of
subject systemsfor this experiment. First, the systems
must be representativeof the real-world. Second,they
must be availableto other researcherdor repeatingour
experimentor comparingour resultswith the results of
other heuristics. Basedupon thesecriteria, we chosethe
following eight systems:

1. BTOOL: A setof tools for measuringbranchcov-
erageof C programsfrom the University of Illinois
(Brian Marick: marick@testing.com).

2. EDGE: Extendiblegrapheditor from the University
of Karlsruhe[15].

3. FIELD: Friendly IntegratedEnvironmentfor Learn-
ing and Developmentfrom Brown University [18].

4. GCC:GNU C/C++Compilerversion2.7.1from the
Free Software Foundation.

5. GHOSTSCRIPTPostScripinterpreterversion2.6.0
from Aladdin EnterpriseqPostScriptis a trademark
of Adobe Systems,Inc.)

6. SGEN: SynthesizerGeneratorfrom Gramma€ch,
Inc. [19, 20].

7. StandardUnix Include Files for SunOS Release
4.1.3_U1(Unix is aregisteredrademarkof AT&T).

8. WPIS: WisconsinProgramintegrationSystemfrom
University of Wisconsin[6].

All of these systemsare real-world in that they have
“lived” for severalyearsnow, have undegone multiple
releasesand are being usedby severalpeopleother than
their developers Of these BTOOL, EDGE,FIELD, GCC,
andGhostscriptare availablein the public domain; SGEN
and the Unix include files are commercialproducts;and
WPIS, a productof academicresearchjs availablefor a
modestfee.

Table 1 summarizessome of the interestingstatistics
of our subject systems. We have assumedthat all of
the (relevant)#def i ne directivesfor thesesystemsare
availablein the includefiles, i.e., the . h files. This table
presentsthe number of thesefiles and their sizes, the
numberof #def i ne directivesin eachsystem,and the
numberof macrosymbolsthat areenumeratorcandidates.
Thecriteriafor selectingthesecandidatesvill bediscussed
later.

5.2 Prototype

We developeda prototype systemthat implementsthe
heuristicspresentedn Section4. The following compro-
miseswere madeto facilitate the quick developmentof
our prototype:
1. Only symbolsthatintroduceintegerliteral constants
are consideredas candidate enumerators.That is,
we excludesymbolsthatintroducehexadecimalpc-

Table 1. Summary of interesting statistics of the subject
systems.

Number Sizein Number Number
LOC of of
System of .h of :
. the .h . candidate
files) #defines
files symbols
BTOOL 33 4937 428 44
EDGE 53 3842 368 217
FIELD 25 2175 52 12
GCC 57 13649 1090 160
GHOST-
SCRIPT 128 11212 1305 299
SGEN 125 12230 1648 234
/usr/include 75 4918 1225 533
WPIS 66 7150 849 75

Table 2. Distribution of different usages of macro symbols
in the files / usr/i ncl ude/ *. h of SunOS 4.1.3 UL.

Total numberof include (.h) files 75
Total numberof #defines 1225
Total numberof #definesintroducingconstantiterals
Integer 533
Hexadecimal 169
String 59
Octal 49
Floating point 23
Character 10
Othertypesof #defines 382

tal, and characterconstantseven though they are
potential enumerators.

2. The conditional compilation directives of the pre-
processomreignored,implying thatin our analysis
theremay be multiple declaration®f the samesym-
bol which may not occurduring actualcompilation.

3. A #def i ne directivewithin a commentis consid-
eredto bevalid, althoughit is ignoredby compilers.

Table 2 presentssomedatato assesghe implications

of the abovecompromisesThis table givesa distribution

of macrosymbolsthat introducevarioustypesof constant
literalsin the includefiles of the SunOS4.1.3_Ullibrary.

761 of the symbolsare integralvaluedand are, therefore,
potentialenumerators533 (or 70%) of theintegralvalued
symbolsare candidateenumeratorsiue to the exclusions
of compromiseone. Compromiseswo and three imply

that our systemprocessesnore symbolsthan it should.
Although we haveno precisedata,we haveobservedhat

the numberof suchspurioussymbolsis relatively small.

Consequentlythesespurioussymbolshaveno significant
affect upon our analysis.

5.3 Oracle

No oraclesor expecteddata sets existedfor the subject

systems.Hence we manuallyconstructed setof expected
datafor eachsystemusingthe following approach.

For each. h file, we extractedall of the integervalued
symbolsin the orderin which theyweredeclaredbut with
no interveningtext or visual cues. We thenpatrtitionedthe
symbolsinto groupsusing the following rules: consecu-
tively declaredsymbolswereplacedin the samepartitionif
(a) they werelexically similar, suchas| NPUT and QUT-
PUT, or (b) they appearedelatedfrom their namesbased
upon our programmingand domain knowledge, such as
TRUE and FALSE, and YES and NO.

5.4 Congruence measure

A heuristicis, by definition, “a speculativeformulation
servingasaguidein theinvestigationor solutionof a prob-
lem™.” It is very unlikely thatany heuristicin generaland
one for recoveringenumeratiortypesin particular,would

leadto a preciselycorrectsolutionunderall circumstances.

Hence,the quality of a heuristic,i.e., its effectivenessn
identifying the correctsetsof enumeratiortypes, may be
measuredn termsof the “degreeof similarity” between
the solution it generatesand the correspondingdeal so-
lution, suchthat a “closer” solution is assigneda higher
value of effectiveness.

In our context, eachsystemis alreadypartitionedinto
files. An enumerationtype recovery heuristic only par-
titions the set of symbolswithin eachindividual file. A
measuref the effectivenesf a heuristicshouldsumma-
rize its performanceover all files in a system. Thus, our
measureof effectivenessconsistsof two parts:

1. A measure of congruence betweentwo partitionsof
the samesetof elementsfor quantitativelycompar-
ing the degreeof similarity betweenthe recovered
and expectedsetsof enumeratiortypesin a file.

2. A weighted average of congruence measures overall
of thefilesin a systento summarizeheperformance
of a heuristicover an entire system.

The congruencebetweentwo partitions A and B may
be measuredas a fraction of the total pairs of elements
thataresimilarly placed in both of the partitions,wherea
pair of elementse andy are saidto be similarly placedin
A and B if the following conditionsare satisfied: (a) if «
andy appeaiin the samegroupin one partition thenthey
appearin the samegroupin the other partition, and (b) if
z and y appearin different groupsin one partition then
they appearin differentgroupsin the other partition [17].
This may be definedmore formally asfollows. Let £ be
the set of all macrosymbolsin a programandlet 7 be
theset £ x E. A partitionof F, say A, is essentiallyan
equivalenceelation over E suchthat (z,y) € A implies
z andy are in the samegroupin A. Thus, A C 7.
Similarly, A = 7 — A givesthe pairsof elementsnot in

T The AmericanHeritageDictionary, SecondCollege Edition, 1985.

the samegroup in partition A. The congruenceneasure
CM(A, B) is thendefinedas:

JANB|+ |[ANB|
|7 |

CM(A,B) =

The congruenceneasureyields a value in the rangeof 0
to 1, wherea higher value indicatesa greaterpercentage
of similarly placedelementsbetweenthe partitionsbeing
compared.

The overall effectiveness,E f fectiveness(S, k), of a
heuristicis definedas:

> res CM(R(f), oracle(f)) x w(f)
> oo (f)

whereS is a softwaresystem is a heuristic, f is afile in
thesystemp(f) givesthepartitionsfor file f generatedy
heuristich, oracle(f) givesthe correspondingpartition for
file f generatedyy the oracle,andw(f) givesthe weight
associatedo file f.

We have chosenthe weight function: w(f) = ny, the
numberof candidate symbolsin file f. This functionin-
creaseghe weight linearly with the size of the problem
space.Alternatively, one may choose(a) a constantfunc-
tion w(f) = 1 if theincreasein weightis not desired,(b)
a quadraticfunction w(f) = nJ% if a fasterincreases de-
sired, or (c) a logarithmic function w(f) = log (ns) for a
slow, yet positive, increase.

6 Discussion of experiment results

We now presentan analysisof the data basedupon
the criteria of precisionand impact. Since encapsulating
a set of symbolsinto an enumerationtype improvesthe
readabilityand reliability of programs[22], thesecriteria
enableus to evaluatethe potentialimprovementin code
quality that a heuristic offers.

The precisionof variousheuristicsn recoveringcorrect
enumerationss assessedsingthe congruenceneasuren-
troduced in Section 5.4. Since this measure is normalized,
it does not give an indication of the size of the problem
space. For example, a 90% congruence in recovering enu-
merations for a system does not indicate whether the sys-
tem has 10 or 1,000 symbols.

The size of the problem space is useful for evaluating
the expected impact of solving the problem. In our context,
a 90% recovery on a space of 1,000 symbols would have
a greater impact on improving code quality than a similar
recovery on 10 symbols.

6.1 Discussion of precision

Table 3 summarizes the number of candidate symbols
in each subject system and the F f fectiveness of each
heuristic in recovering the correct sets of enumeration

Table 3. Effectiveness of various heuristics in recovering enumeration types proposed by an oracle.

Visual cues

System Candidate File | Blank Line Line Block ‘ Any Visual Sequence Sequence

symbols Comment Comment Cue Level | Level Il
BTOOL 44 0.52 0.86 0.75 0.38 0.76 0.75 0.63
EDGE 217 0.33 0.66 0.54 0.33 0.66 0.79 0.80
FIELD 12 0.72 0.89 0.89 0.72 0.89 0.31 0.42
GCC 160 0.63 0.94 0.83 0.79 0.89 0.89 0.83
GHOST-
SCRIPT 299 0.72 0.86 0.92 0.76 0.93 0.40 0.40
SGEN 228 0.49 0.92 0.74 0.62 0.94 0.85 0.86
usrinc 533 0.35 0.74 0.73 0.52 0.98 0.78 0.85
WPIS 75 0.86 0.85 0.86 0.77 0.85 0.39 0.39
Minimum E'f fectiveness 0.33 0.66 0.54 0.33 0.66 0.31 0.39
Maximum Ef fectiveness 0.86 0.94 0.92 0.79 0.98 0.89 0.86

typesas proposedby the oracle. We have not performed

any significantstatisticalcomparisongo determinewhich

heuristicis “better’ sincewe haveonly eight datapoints
per heuristic. Instead , we usethe following rulesto qual-
itatively evaluatethe heuristics.

A heuristicis consideredgood if:

Rule1: It consistently performs better than the File

heuristic.

Its Effectiveness is consistentlygreaterthan

somethreshold.

Its E f fectiveness is consistentlyamongthe top

two for eachsystem.

Its rangeof Effectiveness, as definedby the

minimumandmaximumk f fectiveness, is “bet-

ter” thanthe others.

The datain Table 3 showsthat:
 only the Line Comment and Any Visual Cue heuristics

are consideredgood basedupon Rule 1. We can also

include the Blank Line heuristic if we are willing to
accepta 1% error factor for the WPIS system.

» Blank Line and Any Visual Cue may be consideredyood
usingRule 2 if athresholdof 66% is used.

* Any Visual Cue is the only heuristic that may be con-
sideredgoodbaseduponRule 3. It is the only heuristic
with an E f fectiveness amongthe top two for all of
the systemsexceptEDGE, for which it is amongthe
top three.

» Blank Line andAny Visual Cue arealsoconsideredjood
basedupon Rule 4, since they yield the two highest
minimum and maximum E f fectiveness.

These results suggestthat partitioning the candidate
symbolson the Any Visual Cue heuristicconsistentlygives
asgood or betterresultsthan any of the other heuristics.
Further,simply partitioning on the Blank Line heuristicis
consideredgood using three of the four rules.

WPISis theonly systemfor which noneof theheuristics
outperformsthe File heuristic. Examinationof the datain
Table 1 revealsthe cause: an averageof 1.14 candidate
symbolsper file. Sincewe only group symbolsdeclared

Rule 2:

Rule 3:

Rule 4:

in afile, anaverageof 1.14symbolsperfile impliesthatthe
groupingsdueto the oraclecannotbe very differentfrom
the File heuristic. This is reflectedin Table 3 the 86%
L f fectiveness of the File heuristic. Thus,for the WPIS
system,the File heuristicis amongthe bestheuristics.

6.2 Discussion of impact

In the absenceof a single measurdor impact,we usethe
distribution of size of groupscreatedby various heuris-
tics to make some qualitative comparisons. We present
the distribution of only one subjectsystemdue to space
constraints.This distributiongivesanindicationof the po-
tentialimprovementin codequality thata heuristicgives,
subjectto the assumptiorthatall of the groupsit identifies
are correct.

Table 4 gives the distribution of the size of
the groups created by various heuristics for the
/fusr/include/*.h files of SunOS4.1.3 Ul. Each
column, except the first, gives the distribution for a
heuristic. The File heuristicprovidesa control in that it
givesthe numberof files containinga particularnumberof
candidatesymbols. Sinceall other heuristicsdecompose
the set of candidatesymbolsin a file, they all have (a)
at least as many groups of size 1 as the File heuristic
and (b) at least as many total numberof groupsas the
File heuristic.

The total numberof groupswith at leasttwo elements
is an indicator of how many enumerationtypes may be
createdsinceit is not meaningfulto createan enumeration
type with just one element. For the datain Table 4, the
heuristicAny Visual Cue (labeledAny V/Cue)proposeshe
highestnumberof enumeratiortypes, and hencemay be
consideredbetterthan others. The next bestperformeris
the Sequence Level 11 heuristic (labeledSeq II).

7 Conclusions

We haveintroducedthe problemof identifying candidate
enumerationtypes from C code. This is a sub-problem
of the broaderproblemof objectrecovery. Prior research

Table 4. Distribution of the size of groups in partitions cre-
ated by various heuristics for the files/ usr /i ncl ude/ *. h.

S(I;e File Comments | Blank| Any | Seq.| Seq.
group block | line | lines | V/ICug | 1
1 9 16 24 45 53| 129| 135
2 4 6 10 10 13 12 12
3 2 6 9 10 17 14 15
4 4 4 4 8 10 5 7
5 1 1 2 2 1 5 4
6 2 2 7 3 6 3 3
7 1 3 2 4 4 3 5
8 1 1 5 6 2 4
9 2 3 2 2 4 2
10 1 1 3 3
11 1 1 2 1 2 2
12 1 5 5 6 3 5
13 1 2 1
14 1 1 2 1 2
15 1 1
16 1 1 1
17 1 1 1 1 1
18 1 1 1 1 2 2
19 1 1 1 1 1
23 1
25 1
29 1
32 1 1 1
33 1 1 1 1 1
35 1 1
36 1
41 1
43 1
44 1 1 1
137 1
147 1 1
Total numberof groups
38 55 79 100 128 189 200
Numberof groupsof size> 1
29 39 55 55 75 60 65
Numberof elementsn groupsof size> 1
524 517 509 488 480 404 398

on object recoveryhas assumedhe existenceof an en-
capsulatectollection of data. Our work extends this line
of researchto the recoveryof unencapsulatedollections
of data. This is animportantstepin reengineerindegacy
codeinto the object-orientecparadigmfor programswrit-
tenin languageghatlack constructdor encapsulatinge-
lated data. Our dataindicatesthat about70% of the sym-
bolic constantsntroducedusing#def i ne directiveshave
a valuerepresentabléy the typei nt , and hencequalify
to be part of an enumeratedype (Table 2).

We havepresenteé@ndexperimentallyevaluated setof
heuristicsto partitionthe setof macrosymbolsinto groups
suchthat eachgroup constitutesan enumeratedype. The
heuristicsare: Blank Line, Line Comment, Block Comment,
Any Visual Cue, Sequence Level |, and Sequence Level 1.

Thefirst four heuristicsaarebasedipontheintuition thatthe
visual cuesprogrammersiseto delineateblocks of related
code may be used for partitioning the macro symbols
aswell. The first three heuristicspartition the symbols
basedupon visual cuesprovided by blank lines, single-
line commentsand multiple-line commentsrespectively,
whereaghe fourth partitionsthe symbolsbaseduponany
of thefirst threeheuristics. The Sequence Level | heuristic
groupssuccessivesymbolsthatintroducean incrementing
or decrementingsequenceof integer values. It is based
upon the intuition that enumeratedconstantsymbolsare
frequently assignedsuccessivenumeric values. The last
heuristicfirst createspartitionsusing the Any Visual Cue
heuristicandthendecomposegsachgroupagainusingthe
Sequence Level | heuristic.

We performeda quantitativeanalysisof the effective-
nessof theseheuristicson a set of eight moderate-sized,
real-world programs. The data suggestsa 66% to 98%
match betweenthe enumeratedtypes proposedby the
Blank Line and Any Visual Cue heuristicsand thosepro-
posedby a programmer.n contrastthe Sequence Level |
heuristic—théfirst heuristicwe thoughtof—producesonly
a 31% to 89% match, which is not a very good perfor-
mancein comparisonto the 33% to 86% matchachieved
by simply creatinga singlegroupfrom the macrosymbols
in a file.

We excludedsymbolsintroducing hexadecimaloctal,
and charactediteral constantdasedupon our initial bias
towardsthe Sequence Level | heuristic. We hadanticipated
theneedto developa differentsetof heuristicsfor thesdit-
eral constants Extrapolatingfrom our preliminaryresults,
however it appearshatthe Blank Line andAny Visual Cue
heuristicswill performequallywell for theseconstantand
that a separateheuristicmay, in fact, not be needed.

Acknowledgments

The authorsthank A. J. Ciallella, K. Covington,andD. Hillard
for their proofreadingandhelpful suggestionin the development
of this paper. We also thank the anonymousrefereesfor their
commentsgthat helpedsubstantiallyimprove this paper.

References

[1] G. Canfora,A. Cimitile, and M. Munro. A reverseengi-
neeringmethodfor identifying reusableabstractdatatypes.
In Proceedings of the Working Conference on Reverse En-
gineering, pages7/3—-82.IEEE CS Press,May 1993.

[2] G. Canfora, A. Cimitile, M. Tortorella, and M. Munro.
A precise method for identifying reusableabstractdata
types in code. In International Conference on Software
Maintenance, pages404—-413.1[EEE CS PressSept.1994.

[3] S.C. ChoiandW. ScacchiExtractingandrestructuringthe
designof large systems.|EEE Software, 7(1):66—71,Jan.
1990.

[4] A. Cimitile, M. Tortorella, and M. Munro. Programcom-
prehensiorthroughthe identificationof abstractatatypes.
In Proceedings of the 3rd Workshop on Program Compre-

hension pagesl12—-19.IEEE CS PressNov. 1994.

[5] N. Dale,C. Weems andM. HeadingtonProgrammingand
ProblemSolvingwith C++. D. C. Heath,1996.

[6] S.Horwitz, J.Prins,andT. Reps.Integratingnon-interfering
versions of programs.In Proceedingsof the Fifteenth
Annual ACM Symposiumon Principles of Programming
LanguagesSanDiego, pages133-145,1988.

[7] D. H. HutchensandV. R. Basili. Systemstructureanalysis:
Clusteringwith data bindings. IEEE Trans. Softw. Eng,
pages749-757,Aug. 1985.

[8] B. W. Kernighanand D. M. Ritchie. The C Programming
Language PrenticeHall, Secondedition, 1988.

[9] A. Lakhotia.A unified frameworkfor expressingarchitec-
ture recoverytechniquesJournal of Systemsind Softwae,
1996. (to appear).

[10] S. Liu andN. Wilde. Identifying objectsin a conventional
procedurallanguage’An exampleof datadesignrecovery.
In Proc. IEEE Confeenceon Softwae Maintenance pages
266—271,Nov. 1990.

[11] P. E. Livadasand T. JohnsonA new approachto finding
objects.TechnicalReport SERC-TR-63-F Software Engi-
neering ResearchCenter,Computerand Information Sci-
encesDepartmentUniversity of Florida, June1993.

[12] H. A. Milller andJ. S. Uhl. Composingsubsystenstructures
using (K,2)—partite graphs.Proceedingsf the Confeence
on Softwae Maintenance pages12—-19,Nov. 1990.

[13] R. M. Ogando, S. S. Yau, S. S. Liu, and N. Wilde.
An object finder for program structure understandingn
software maintenanceJournal of Softwae Maintenance
Reseach and Practice 6(5), Sep-Oct1994.

[14] C. Ong and W. T. Tsai. Classand object extractionfrom
imperative code. J. Object Oriented Programming pages
58-68, Mar—Apr 1993.

[15] F. N. PaulischandW. F. Tichy. EDGE: An extendiblegraph
editor. Softwae—Practice and Experience 20(S1):63-88,

10

June 1990.

[16] T. W. PrattandM. V. Zelkovitz. ProgrammingLanguages:
Design and Implementation PrenticeHall, Third edition,
1996.

[17] W. M. Rand. Objective criteria for the evaluation of
clustering methods.Journal of the American Statistical
Association 66(336):846—850Dec. 1971.

[18] S. P. Reiss.Connectingtools using messaggassingin the
Field environmentIEEE Softwae, 7(4):57—-66,July 1990.

[19] T. RepsandT. Teitelbaum.The SynthesizeGenerator: A
Systenfor ContructingLanguage-Base#ditors Springer-
Verlag, New York, NY, 1988.

[20] T. Repsand T. Teitelbaum. The SynthesizerGenerator
RefeenceManual Springer-\érlag, New York, NY, third
edition, 1988.

[21] S.RugaberK. Stirewalt,andL. M. Wills. Theinterleaving
problem in program understandingIn SecondWorking
Confeenceon ReverseEngineering pagesl66—175.1JEEE
ComputerSociety Press,July 1995.

[22] R. W. Sebesta.Concepts of Programming Languages
Benjamin/Cummings1989.

[23] I. Silva-Lepe.An empirical methodfor identifying objects
and their responsibilitiesin a procedural program. In
Technology of Object-Oriented Languagesand Systems
Europe Confeence pages 136-149, Versailles, France,
1993. Prentice-Hall Also availableastechnicalreportNU-
CCS-93-2,NortheasternJniversity.

[24] B. StroustrupTheC++ ProgrammingLanguage Addison-
Wesley, Secondedition, 1991.

[25] A. S.Yeh,D. R. Harris,andH. B. ReubensteirRecovering
abstractatatypesandobjectinstancegrom a conventional
procedurallanguage.ln Proceedingsof the 2nd Working
Confeenceon ReverseEngineering pages227-236.[EEE
CS Press,July 1995.

