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Abstract

We presenta techniquefor restructuringfunctionswith
low cohesioninto functionswith high cohesion.Suchre-
structuringis desirablewhenre-architectinga legacysys-
teminto an object-orientedarchitecture. Therestructured
systemhasfunctionswith highercohesionandhencelower
coupling. Thisenablesfiner-grainedgroupingof functions
into objects.

Automaticallydecomposinga function is difficult when
its computationsare interleaved.Thechallengelies in pro-
grammaticallyidentifyingandseparatingthevariousactiv-
ities performedby a complexcodesegment.Thetechnique
presentedpartitionsthesetof outputvariablesof a function
on thebasisof their pairwisecohesion.Programslicing is
thenusedto identify the statementsthat performcomputa-
tions for eachvariable group in the partition. New func-
tionscorrespondingto theslicesare createdto replacethe
original function.

Experienceswith restructuringreal-world codeusinga
tool that implementsthe techniqueare presented.

1. Introduction

Legacy software is a softwarethat is hard to change
and is still alive (operational),an indication that its users
are still in business.The premiseof this paper,and that
of mostwork on softwarerestructuringandreengineering,
is that (a) to continueto stay in businessthe users(and,
more so, the developers)realize that the structureof the
legacysystemneedsto beoverhauledsuchthat it is easier
to adaptto changesand(b) it is not pragmaticto redevelop
or replacethesystem.Thispremiseis supportedby several
opinion leadersof the softwareindustry [8, 27, 42].

In this paper the terms software restructuring and
reengineeringareusedasdefinedby Chikofsky andCross
[10]. “Software restructuringis the transformation[of
software] from one representationform to anotherat the
samerelative abstractionlevel, while preservingthe sub-
ject system’sexternalbehavior(functionality and seman-
tics). Reengineeringis the examinationand alterationof
a subjectsystemto reconstituteit in a new form and the
subsequentimplementationof the new form.”

A softwaresystemmay be restructuredto makeit less
costly to maintainby making it easierto understandand
change[2]. Restructuringmay also be the enablingstep
for reengineeringa system[35, 40], andfor reverseengi-
neeringa systemto extractits abstraction[7, 16, 39].

Restructuringin the early daysof structuredprogram-
ming implied removing the ‘goto’ statements[3, 4, 20].
This notion of restructuringis quite matureand has re-
sulted into severalautomatedtools, surveyedpreviously
by Arnold [2]. Even though automaticremoval of goto
statementsdoesnot alwaysproduceprogramsthat arede-
sirable[9], suchrestructuringis a necessarystepfor creat-
ing higher, logic-basedabstractionsfrom code[7, 16, 39,
40].

Restructuringby removing goto statementsis not the
subjectof this paper.This papermakesa contributionto-
wards restucturingprogramfragmentsby breakingthem
into small, cohesivepieces.Decomposingfunctionswith
low cohesioninto severalfunctionswith high cohesionis
an importantstepof Stankovic’smethodof improving the
architectureof asoftwaresystemwithoutcompromisingits
performance[36]. Stankovichadproposedmanualtrans-
formationsfor this step. The restructuringtechniquepre-
sented,developedwithout prior knowledgeof Stankovic’s
method,providesa way to automatethat step.

Theneedfor decomposinglarge(usuallynon-cohesive)
codefragmentsis not new. It hasbeenexperiencedby al-
mosteveryprogrammersincetheearlydaysof computers.
The difficulty in decomposinglarge code fragmentslies
not so much in creatingsmall functions, but in creating
small functions that are meaningful. This is exemplified
by the following story:

In the late1960smostdataprocessingmanagersbeganto
recognizethe worth of modularity. Unfortunatelymany
existing programswere monolithic, e.g., 20,000lines of
undocumentedFORTRAN with one2500line subroutine.
To bring his environmentto thestateof theart, a manager
askedhis staff to modularizesucha programthat under-
went maintenancecontinuously.This was to be done“in
your sparetime.”
Under the gun, one staff memberasked(innocently) the
properlengthfor a module. “Seventy-fivelines of code,”
camethe reply. Shethen obtaineda red penand a ruler,
measuredthe linear distancetakenby 75 lines of source



1  Procedure Sale_Pay_Profit (days: integer; 
                        cost: float; var sale: int_array; 
                        var pay:  float; var profit: float; 
                        process: boolean); 
2   var i: integer;total_sale, total_pay: float; 
3   begin 
4      i:=0; 
5      while i < days do begin 
6           i := i + 1; 
7           readln(sale[i]) 
8      end; 
9      if process = True then begin 
10      total_sale:=0; 
11      total_pay:=0; 
12      for i := 1 to days do begin 
13          total_sale := total_sale + sale[i];  
14          total_pay := total_pay + 0.1 * sale[i]; 
15          if sale[i] > 1000 then 
16              total_pay := total_pay + 50; 
17       end; 
18       pay := total_pay / days + 100; 
19       profit := 0.9 * total_sale - cost; 
20    end; 

21  end; 

Figure1 Samplenon-cohesivecode.This function uses
the sameinput to computedifferentoutputs. Its
computationalsodependon a flag passedasa
parameter.This function is an exampleof code
with interleaved computations[32].

code, and drew a red line on the source listing, then
anotherand another. Each red line indicateda module
boundary. [31, page334]

While thisapproachappearshumorous,it doeshighlight
the centralproblemin decomposingcodefragments:

How does one [programmatically]decide which set of
statementsmay be extractedas independentunits (such
as functions,procedures)?

Theapproachusedin theaboveanecdoteis notsatisfactory
becauseit doesnot takeinto accountwhetherthereis any
relationshipbetweenthe computationsperformedby each
75 consecutivelines of code extractedas a FORTRAN
subroutine.

The problem of restructuringfunctions into “separate
[functions] which can be compiled and testedseparately
and which can be connectedto other [functions] through
a parameterinterface” was first studied by Sneedand
Jandrasics[35]. This problem has more recently been
studiedby Kim et al. [21] andKang andBieman[19]

We presenta restructuringtechniquethat,we argue,at-
temptsto restructurea programusingrulesa goodhuman
programmerwould use. Theserules, referred to as the
rules of cohesion, were arrived at by machineencoding
[22, 29] the “associativeprinciples” of cohesiondiscov-

eredtwo decadesago by Steveset al. [38, 43]*. These
associativeprinciplessummarizedecisionsmadeby human
designersin choosingbetweenalternativedesigndecom-
positions,andform a fundamentalcomponentof theStruc-
turedDesignmethodof softwaredevelopment.Theuseof
theseprinciples in decomposingfunctions thus promises
to createsmall, cohesivefunctionsthat performa natural
unit of activity.

The rest of the paperis organizedas follows. Section
2 preciselyformulatesthe restructuringproblemstudiedin
this paper.Section3 summarizesLakhotiaandNandigam
measurefor cohesion.Section4 presentsour restructuring
technique.Section5 gives an overview of its implemen-
tation in WolfPack. Section6 presentsthe resultsof us-
ing this techniqueon benchmarkprogramsandreal-world
code. Section7 presentsa comparisonwith other related
works. Section8 presentsour conclusions.

2. Problem formulation

We now preciselydescribethe problemto be solvedin
this paper,and also differentiatethe intendedgoals from
our previousresults.

The problemaddressedin this papermay be statedas
follows:

Givena function that performsseveralactivities,how can
one“automatically” decomposethat function into several
functions, each performing only a single activity or a
single set of relatedactivities?

Theword “activity” maytakedifferentmeaningsat dif-
ferentlevel of abstractionsof a program.In this paperwe
considerthemodificationof anoutputvariableasanactiv-
ity. An outputvariableis anyvariable,referenceparameter
or global variable,modifiedby a function. Files, or more
generallyI/O streams,arealsoconsideredoutputvariables
by associatingimplicit global variablesto them. Multiple
modificationsto the sameoutput variableis considereda
single activity.

Considerfor examplethe programin Figure 1. The
function readsthe amountof sale per day, for a given
numberof days andcomputes(a) the total_sale for
the period, (b) the commissionto be paid, pay , as 10%
of the sale, with an addedbonusof $50 if the sale for
a particularday is over $1,000,and (c) the profit for
the whole period, given the cost at the beginning,as a
percentageof sale. While the function is small, that it
performsseveralactivitiesmakesit non-cohesive.

Figure2 containsa programequivalentto thatof Figure
1. Thoughit is larger in size, as measuredin numberof

* The readeris encouragedto review the references[28, 38, 43] to
assessour useof the word “discovered.”The notionof cohesionandthe
associativeprincipleswereactuallyidentifiedby StevensandConstantine
by interviewingexpertsoftwaredesigners.



Procedure Sale_Pay_Profit (days: integer; 
 cost: float; var sale: int_array; 
 var pay:  float; var profit: 

float; 
                         process: boolean); 
begin 
     Read_Input(days, sale); 
     if process = True then begin 
         pay := Compute_Avg_Pay(days, sale); 
        profit := Compute_Profit(cost, sale); 
     end; 
end; 
 
Procedure Read_Input(days:integer; 
     var sale: int_array); 
var i: integer; 
begin 
     i:=0; 
     while i < days do begin 
          i := i + 1; 
          readln(sale[i]); 
     end; 

end;  

Function  Compute_Pay(days: integer; 
          sale: int_array): float; 
var  total_pay: float; 
         j: integer; 
begin 
     total_pay := 0; 
     for j := 1 to days do 
     begin 
          total_pay := total_pay + 0.1 * sale[j]; 
          if sale[j] > 1000 then 
               total_pay := total_pay + 50; 
     end; 
     return (total_pay); 
end; 
 
Function Compute_Sale(days: integer; 
         sale: int_array): float; 
var  total_sale: float; 
        j: integer; 
begin 
     total_sale := 0; 
     for j := 1 to days do 
     begin 
          total_sale := total_sale + sale[j]; 
     end; 
     return (total_sale); 

end; 

Function Compute_Avg_Pay 
     (days: integer; sale: int_array): float; 
var total_pay: integer; 
       pay: float; 
begin 
    total_pay := Compute_Pay(days, sale); 
     pay := total_pay / days + 100; 
     return (pay); 
end; 
 
Function Compute_Profit 
     (cost: float; sale: int_array): float; 
var  total_sale, profit: float; 
begin 
     total_sale := Compute_Sale(days, sale); 
     profit := 0.9 * total_sale - cost; 
     return (profit); 
end;

Figure2 Resultsexpectedfrom “automatically” restructuringprogramin Figure 1

lines, this programis cohesive.Insteadof onemonolithic
function that performs several activities, it has several
small functions,eachperforminga singleactivity.

This paper addressesthe problem of “automatically”
restructuringprogramof Figure1 to theprogramof Figure
2.

In anearlierpaperwe introducedformal definitionsand
algorithmsfor a transformationcalled tuck that aidsin the
type of restructuringbeing discussed[24]. Besidesthe
programbeing restructured,the tuck transformationtakes
two inputs: (a) a setof seedstatementsS and(b) a single-
entry, single-entry(SESE)regioncalled the restructuring
context. The tuck transformation(1) identifies the code
affecting the computationat seedstatementsS within the
restructuringcontext, (2) moves this code into a new
function, and (3) replacesthe movedcodewith a call to
the new function. A tuck transformation,if needed,may
duplicatecode to ensurethat the behaviorafter tucking
remainsunchanged.The tuck transformationis performed
as a sequenceof three(smaller) transformations:wedge,
split, and fold.
Transformation: Wedge. A wedgeis a programslice[41]
boundedwithin a given restructuringcontext. The wedge
is computedfor a set of seedstatementsS, similar to a
slicing criterion.
Transformation: Split. The split transformationsplits a
restructuringcontextinto two SESEregions,onecontain-
ing all the computationsrelevantto a set of statementsS
and the other containingall the remainingcomputations.
The transformationintroducesnew variablesor renames

variablesandcomposesthe two new regionssuchthat the
overall computationremainsunchanged.When it is not
feasibleto split a regionin sucha way, the transformation
leavesthe region unchanged.
Transformation: Fold. The fold transformationcreates
a function for a given set of statementsand replacesthe
statementsby a call to this function.

The tuck transformations,and its sub-transformations,
provide the theoreticalfoundationfor splitting functions
into smaller functions [24]. The applicationof the tuck
transformationrequiresidentifying its two parameters:the
seedstatementsandthe SESEregionforming the restruc-
turing context. Theseparametersmay eitherbe identified
by a programmeror may be identified automatically,or a
combinationof the two. Automatic identificationof these
parameters,the subjectof this currentpaper,can lead to
batch tools for restructuringprograms.On theotherhand,
havinga programmeridentify the parametersleadsto in-
teractive tools.

Our proposalfor theDIME environmentis orientedto-
wards an interactive approachfor softwarerestructuring
[23]. UsingtheDIME environment,currentlyunderdevel-
opment,a programmermay interactively,usinga mouse,
identify the seedstatementsandthe restructuringcontext,
andthe systemwould performthe tucking operation.The
interactive environmentgives better control to the pro-
grammer. However, it may not alwaysbe the bestalter-
nativewhena major restructuringof a programis desired.

In this paperwe focus on the problemsrelatedto de-
velopinga batchtool for restructuring.Thoughwe do not



Table1 Stevenset al.’s rules for cohesion.Associative
principle betweentwo processingelements
and the correspondingcohesionin
increasingorderof levels [22].

Cohesion Associative principles

Coincidental
(Low)

Noneof the following associations
hold.

Logical At eachinvocation,oneof themis
executed.

Temporal Both areexecutedwithin the same
limited periodof time during the
executionof the system.

Procedural Both areelementsof someiterationor
decisionoperation.

Communi-
cational

Both referencethe sameinput dataset
and/orproducethe sameoutputdata
set.

Sequential The outputof oneservesasinput for
the other.

Functional
(High)

Both contributeto a singlespecific
function.

believethat it is possibleto restructurea programwithout
humanintervention,the intent of this study is to look at
the other extremeof the problem. This will give us in-
sight into how much of the work can be deferredto the
machine,therebylaying thefoundationof a effectivestrat-
egy for developingrestructuringenvironments.

3. Computing cohesion

The restructuringtechniquepresentedin the next sec-
tion requirescomputingcohesionbetweenvariousoutput
variablesof a program.We useLakhotiaandNandigam’s
rule-basedmeasurefor cohesion[22, 29]. Their measure
is summarizedin this section.

Thedegreeof interrelationbetweenactivitiesperformed
by a codefragmentis called cohesion, a term coinedby
researchersin IBM T. J. WatsonResearchLaboratoriesin
theearly1970s[38]. Theseresearchersalsoidentifieda set
of “associativeprinciples” usedby systemsanalystswhen
evaluatingalternativedesigns. Theseassociativeprinci-
ples,summarizedin Table 1, are orderedin sevenlevels.
Designsdemonstratingassociationsplacedat higher lev-
elsareconsideredto bebetter(hencemorepreferred)than
thoseplacedat lower levels.

For instance,a procedurecontaininga computedgoto
(or a case statement)only one of whosebranchis ex-
ecutedduring any invocationof the procedureis consid-
eredto be poorly designed(with logical cohesion). The

Table2 Rulesfor computingpairwisecohesion
betweenoutput variables.

i
Cohesion��� Associative principles or Rules�����	� ��
��� ��� �� �����������	� ��

1. Coincid-
ental

����� �����! !" " "$#&% ���'�(� � �&)+*!,�-&-

2. Logi-
cal

.�/ �+021 �&3 / �547698�: ;=< )�> / �?476@8�: A2;B<
,C>D��� / �547698�: E$< ) > / �?476@8�: E$< ,F-

3. Proce-
dural

.�/ �+0 3 / � 47698G: ;H< )I> / � 47698G: ;H< ,

4. Commu-
nicational

.�/ 3 1J�+0 �73 �K� / � 47698G: ;H< ) > / � 47698�: A�;B<
,�-L>M�K� / � 47698G: ;H< ) > / � 47698�: ;B<
,�-=>N�O� / � )P> / � ,�-RQN��) � / >S, � / -&-

5. Sequen-
tial

) � ,NQD, � )

rationalebeingthatthecomputationperformedin different
brancheswerenot relatedto eachotherandcould aswell
have beenplacedin different procedures. On the other
hand,a procedureperforminga sequenceof computations,
wheretheresultsof onearefed into theotheris considered
to havea betterdesign,sincethereis a strongrelationship
betweenthe computations. However, even such a pro-
cedureis not as good as one that performsjust a single
computation.

LakhotiaandNandigamhavetranslatedStevenset al.’s
rules into an objectivemeasure[22, 29]. They achieved
this by analyzingthe sourcesof ambiguity in the IBM’s
associativeprinciplesand choosingan interpretationthat
removedthis ambiguity. They then translatedtheserules
into formal logic. Finally, Nandigamfine-tunedthe rules
by experimentingwith a large setof real-worldprograms
[29]. This formalization,summarizedin Table2, consists
of expressionsdenotingthedataandcontrol flow relation-
ships in a program.

In Lakhotia and Nandigam’sapproachcohesionof a
moduleis determinedby first computingthe pairwiseco-
hesionbetweeneverypair of output variablesof the pro-
gram. Computationof pairwise cohesionrequirescom-
puting control anddatadependencerelationshipsbetween
variables. Notice that suchdependencerelationshipsare
usually associatedto statements,ratherexpressions.The
dependencebetweenvariablesarecomputedby simply ab-
stracting the correspondingdependencesbetweenassign-
ment statementsof the variables.

Thepairwisecohesionis computedasthehighestcohe-
sion level assignedto a pair of variablesasper therulesin
Table2. In this table ) and , denoteoutputvariables.The
notationx �

c(n, k) y meansthat the variable , is defined
in the

0
th branchof the branchstatement

�
whosepred-
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Figure3 Pairwisecohesiongraphfor output
variablesof function in Figure1

icate containsthe variable � . The expressionx � c(n, k)
� y is analogousexceptthat the variable � is defined in
a branchother than k. The notation � ����� meansthat
hereis a def-usechain [1] from a statementdefining � to
a statementdefining � . [22]

Lakhotia andNandigam’sapproachof assessingcohe-
sion hasan importantadvantageover methodsthat assign
numericvalues[6, 30]. The rule-basedapproachdoesnot
just assignlevelsof cohesionto a module,it canalsogive
the rationalebehindthat assignment.As a result we find
LakhotiaandNandigam’sformalizationis especiallysuit-
able for programrestructuring.

4. Restructuring technique

The automatedrestructuringwe desire may be per-
formed by repeatedlytucking computationsof a function
into a new function. Eachapplicationof the tuck transfor-
mation requirestwo parameters,the seedstatementsand
the restructuringcontext. Our restructuringproblemmay
be thereforebe reducedto that of automaticallyfinding
parametersto the successivetuck transformations.

A restructuringcontext for a tuck transformationis a
SESEregion containingall the seedstatements.For any
set of seedstatements,thereare as many alternativesfor
restructuringcontextas the SESEregionscontainingthe
seed statements. An automatic restructuringtechnique
must thereforeautomaticallychooseone of thesemany
restructuringcontexts. In this study we simply choose
the SESE region defined by the function entry as the
restructuringcontext.The functionentry is a SESEregion
for every possibleseedstatementsand is also the largest
SESE region. Though this simplistic choice does not
alwaysyield optimal results,it helpsus narrowthe focus
further.

Havingfixed therestructuringcontextour problemthen
is reducedto finding seedstatementsfor tuck transforma-
tions. A methodto do preciselythat is the key technical

sale

stdin profit

pay

Figure4 Cohesiongraphafter removingedges
representingcohesionlevel below (and
including) communicationalcohesion

contribution of this paper. We use the following steps
to find the seedstatementsidentifying computationsto be
tucked:

1. Identify all the outputvariablesof the function.
2. Computepairwisecohesionbetweentheseoutputvari-

ablesusingLakhotiaandNandigam’srule-basedmea-
sure for computingcohesion(Table 2). The pairwise
cohesioncanberepresentedby a completelyconnected
graph.

3. Removefrom the pairwise cohesiongraph all edges
representingcohesionbelow a given thresholdlevel.

4. Partition the set of output variablesbasedon the new
graph. Each connectedcomponentof the new graph
definesan equivalenceclass.

5. Eachequivalenceclassof variablesdefinesasingletuck
transformation. All the assignmentstatementsof the
variablesin an equivalenceclassform theparameterto
tuck.

These steps are elaboratedby applying them to the
function (really, procedure)in Figure 1.

Our examplefunction hasfour outputvariablessale,
pay, profit andstdin. The first threeare explicitly
declaredas referenceparameters. The last one is the
variablerepresentingtheinput streamimplicitly associated
with the readln statement.

The graphin Figure3 gives the pairwisecohesionbe-
tweenthesevariables. Variablessale andstdin have
sequentialcohesionbecausesale hasdatadependenceon
stdin. Thereis logicalcohesionbetweensale andpay
becausepay is not computedif the valueof process is
False. For thesamereasonthereis logical cohesionbe-
tweensale andprofit, betweenstdin andpay, and
betweenstdin andprofit. Thereis communicational
cohesionbetweenpay and profit becausethey both
dependon a commonvariablesale.



Procedure Sale_Pay_Profit (days: integer; 
 cost: float; var sale: int_array; 
 var pay:  float; var profit: float; 

                         process: boolean); 
begin 
   F_sale(days, sale); 
   F_pay(pay, days, sale, process); 
   F_profit(profit, cost,  days, sale, process); 
 end; 
Procedure F_sale(days:integer; 
     var sale: int_array); 
var i: integer; 
begin 
     i:=0; 
     while i < days do begin 
          i := i + 1; 
          readln(sale[i]); 
     end; 

end;  

Function  F_pay(var pay: float; 
       days: integer; 
          sale: int_array; 
           process: boolean) ; 
var  total_pay: float; 
         j: integer; 
begin 
 If process = True then begin 
     total_pay := 0; 
     for j := 1 to days do 
     begin 
          total_pay := total_pay + 0.1 * sale[j]; 
          if sale[j] > 1000 then 
               total_pay := total_pay + 50; 
     end; 
      pay := total_pay/days + 100 
    end; 
end;

Function F_profit(var profit: float; 
      cost: float;  
      days: integer; 
       sale: int_array; 
       process: boolean); 
var  total_sale, profit: float; 
      j: integer; 
begin 
 If process = True then begin 
     total_sale := 0; 
     for j := 1 to days do 
     begin 
          total_sale := total_sale + sale[j]; 
     end; 
     total_sale := Compute_Sale(days, sale); 
     profit := 0.9 * total_sale - cost; 
    end; 
 end;

Figure5 Final programcreatedby “automatically” restructuringthe programin Figure1

Figure 4 gives the graph resulting from removing all
edgesbelow (and including) communicationalcohesion.
The equivalenceclassesdefinedby the connectedcompo-
nentsof theresultinggraphare: { stdin , sale }, { pay },
and { profit }. Theseclassesdefineseedstatementsto
threetuck transformation,as follows:

1. Statement readlin(sale[i]) , since it assigns
variablesstdin and sale .

2. Statementpay := total_pay/days +100 , since
it assignsto variablepay .

3. Statementprofit := 0.9 * total_sale —
cost , sinceit assignsto variableprofit .

The result of applying the three tuck transformations,
seeFigure 5, containsthreenew functions,one readsthe
input and computessale , anothercomputespay , and
the last computesprofit . These three functions are
individually morecohesivethan the original function.

The function decompositionin Figure 5, the final de-
composition,is not the sameas that in Figure 2, the ex-
pecteddecomposition,the onewe setout to achieve.The
differencesbetweenthetwo give insight into thelimitation
of automatedrestructuring. There are two major differ-
encesbetweenthetwo decompositions.First, theexpected
decompositionhasmorefunctionsthanthefinal decompo-
sition. Second,the if statementcontrolling whetherpay
andprofit arecomputedis in thehighestlevel function
in theexpecteddecomposition,whereasin thefinal decom-
position this statementis movedto lower level functions
and is also duplicated.

It appearsat first glancethat the extra functionsin the
expecteddecompositioncan be constructedby further re-
structuringthe new functionscreatedin the final decom-
position. That, however, is not true. Our restructuring
algorithm only separatescomputationsrelated to output
variables. Eachof the two new functions have a single

outputvariable,so they cannotbe split any further. Thus,
to split a functionwith only oneoutputvariablewe should
eitheradaptour currentstrategyor elseinvent a new one.

In the final decomposition,the if statementhasbeen
movedto thenewfunctionbecausewe definethe function
entry as the restructuringcontext. To keepthe if state-
mentat the topmostlevel, the restructuringcontextshould
bethebodyof the if statement.This couldbeachievedif
the restructuringcontextwaslimited to thesmallestSESE
regioncontainingthe seedstatements.For structuredpro-
grams,this smallestregionwould bethesameasthenear-
estcommonancestorof all the seedstatementsin the ab-
stract syntax tree. While that alternativemay yield the
desiredresult for the examplefunction chosen,it is not
guaranteedto behaveasdesiredfor all functions.

Instead of using communicational cohesion as the
thresholdlevel if we useproceduralcohesionasthethresh-
old we get the following equivalenceclasses: { stdin ,
sale }, { pay , profit }. Thesedefine seedstatements
for two tuck transformations.The first transformationis
the sameas earlier. The seedstatementsof the second
transformationwill consistof two statements,the assign-
mentsto pay andprofit . Theresultcontainsa function
that computesboth pay andprofit . This is still more
cohesivethan the original function, but it is lesscohesive
than the previousresult.

If asearchfor themostcohesivefunctionis thepurpose,
thenonewould set the thresholdlevel to functionalcohe-
sion. We then get four equivalenceclasses,one for each
outputvariable. In this casehoweverthe tuck transforma-
tion is not feasible. Reason,sale cannotbe computed
without performingreadln so it mustbe in the function
defining sale . In addition stdin may be computedin
a separatefunctionby just performingreadln . This will
leadto duplicationof readln , somethingthat cannotbe
permittedsincestdin is an implicit global variable.



5. Implementation

We have developeda systemcalled WolfPack * that
implementsthe proposedrestructuringapproach. Wolf-
Packis developedusingCBMS, formerly calledSoftware
Refinery, from Reasoning,Inc.†. It restructuresC pro-
grams.

The WolfPacksystemconsistsof the following signif-
icant modules:

Module 1. Convert source code to internal format
(control-flow graph,abstractsyntaxtree).

Module 2. Computedataandcontroldependencerelations
on statements.

Module 3. Abstractdataandcontroldependencerelations
for variables.

Module 4. Computepairwisecohesiongraph.
Module 5. Identify seedstatementsfor tucking.
Module 6. Tuckcomputationrelatedto a setof seedstate-

mentsinto separatefunctions.
Module 7. Generatesourcecode.

Thetuck transformation,Module6, operateson abstract
syntaxtree(AST) of theoriginal functionandcreatesASTs
for the new functions. Module 6 prints theseASTs into
format.

The system,as implemented,is quite limited in that it
doesnot perform aliasanalysis.Hencethe resultsit pro-
ducesare unsafe. It does,however,provide a reasonable
platform to experimentwith restructuringprogramsthat
do not have aliases.

6. Empirical observations

We haveusedWolfPack to restructureover 100 small
and large functions of programsfrom the public domain
andthoseof our sponsors.The largestprogramwe exper-
imentedwith is of 35,000lines. This sectionsummarizes
our observations.

Thesetof functionswe analyzedmaybeclassifiedinto
three categories:

1. Classic
2. Real
3. Special.

* Information on WolfPack is available on-line at
http://www.cacs.usl.edu/˜arun/Wolf ,
† SoftwareRefineryandCBMS are trademarksof Reasoning,Inc.

The classiccategorycontainsfunctionshandcraftedto
representclassictextbookexamplesusedfor demonstrating
a particular type of cohesion,and to representclassic
examplesused by other researchersto demonstratethe
applicationof slicing for decomposition.Thesefunctions
representthebestcasescenariofor thetypeof restructuring
discussed.One expectsthe techniqueto perform well at
least on thesefunctions.

The real categorycontainsfunctionsextractedfrom ac-
tual programs,takenfrom third-partysources,suchasstu-
dent programs,textbooks,public domain, and our spon-
sors. Theseprogramsarereal in that they werenot hand-
crafted by us.

The special category contains functions handcrafted
to representcomplexcontrol flows, with goto-statements
branchingin and out structuredprogrammingconstructs.
Thesewereconstructedto verify thecorrectnessof theslic-
ing algorithmandto checkthecorrectnessof thealgorithm
to constructnew abstractsyntaxtrees.

WolfPackworkedperfectlywith the classicandspecial
programs. Since we used theseprogramsto iteratively
improveour algorithm,this performancewasexpected.

In realprogramswe foundWolfPackto havetwo short-
comings.First, its analysis,beingunsafe,did not give cor-
rect results.Second,the cohesionrulesdid not work well
whena struct like datastructurewasimplementedasa
collection of independentvariables.

The first shortcomingwasnot a surprisebecauseWolf-
Packsystemwas designedas a prototypeto demonstrate
proof-of-concept. In the role of a prototype it did help
us evaluateour strategyfor decomposinga function. We
found that except for situationscapturedin the second
shortcoming,our methoddid work extremelywell in par-
titioning outputvariables.The groupingof variablespro-
posedby our algorithmat variousthresholdlevel appeared
quite “intelligent.”

For instance,the public domain systemsc , a 10,000
lines C spreadsheetprogram,containsa function called
update . This function is 142 lines long and hasseven
output variables: stcol , FullUpdate , strow , cur-
col , line , currow , andlinelim . Thenamesof these
variablesindicatethat variablesstcol andcurcol are
related,strow and currow are related,and line and
linelim are related. The pairwise cohesionalgorithm
indeed found sequentialcohesionbetweenthe first two
pairs of variables. It indicatedthat variablesline and
linelim had proceduralcohesion,i.e., they were both
being modified in the sameloop, but did not have any
control and data dependence.The algorithm also found
that FullUpdate had sequentialcohesionwith stcol
and curcol .

Inspectionof the142linesof codeindeedvalidatedthe
strengthof the relationshipsas proposedby the system.



That is, we found that the code segmentsusing stcol
andcurcol were quite isolatedfrom the codesegments
using strow and currow. It was further surprising
becausethesepairs of variablesappearedtogetherin not
just one but severalinterleaved code segments.For the
purposeof extractingtheir computation,this groupingwas
perfect. Similarly, the low cohesionbetweenline and
linelim was also perfect, in spite of similarity in their
names.Theseare, in a relativesense,unrelatedvariables.
Variable line was used to computeexpressionvalues
beforeplacingtheminto thematrix containingthecontents
of the spreadsheet.Whereaslinelim wasa flag usedto
trackif certainlimit in thematrix wasreached.While they
areboth relatedthe matrix,linelim did not imposeany
limit on line. The variableFullUpdate was also a
flag. It trackedwhetherthe matrix had beenchanged.It
wasrelatedto stcol andcurcol becausethe flag was
usedto checkif the matrix hadchangedin the contextof
processingrows. This happensto be a coincidence,for
theprogrammercouldaswell havecheckedtheflag in the
contextof processingcolumns.

In a nutshell, the grouping proposedby the pairwise
algorithm matchedvery well what we, as programmers,
would have done.

The systemdid not alwaysfunction that well. The one
scenariothat it invariably failed in indicatesa weakness
in our methodof assigningcohesion,as also of that of
others.In a 1000line programimplementedby a graduate
studentaspart of his doctoralwork we found that instead
of groupingtwo relatedvariablesasstruct, the author
had chosento keep them as separateparameters. (To
visualize, consideran implementationof stack with two
variables:buffer an array to keepthe dataandsp an
index into the array representingthe top of stack. The
two variablesarekept separate,andarenot collectedinto
a single unit using struct. Thesevariablesare passed
as parametersto any function operatingon stack.) There
were functions that modified the two parameterswithout
causing any control or data dependence. As a result,
our systemindicatedthat thesevariableshadcoincidental
cohesion. In the absenceof any designknowledge,we
would makethe sameassertion.However,in the context
of the additional piece of information treating the two
variablesascoincidentalis definitely incorrect.

The largestprogramwe analyzed,about30,000lines,
testedthe limit of our implementation. Processingpro-
gramsof this size becameunwieldy becauseof the time
andspacerequiredto performdataandcontrol flow anal-
ysis. That we neededto retaintheabstractsyntaxtreefur-
ther addedto the memoryrequirement.Which wasmade
worsebecauseCBMS doesnot provideany(easy)method
to deleteunneededintermediatestructures,suchasthecon-
trol flow graphs.It wasa challengeto just computeall the

information of this program. The first time we tried we
exhausted40 MB of swapspaceafter havingrun the pro-
gram for a whole day. The secondtime we exhausted
patience. Thus, when experimentingwith sc we manu-
ally locatedthe largecodefragmentsandplacedtheminto
separatefiles, beforeperformingany analysis.

Thisdifficulty with processinglargeprogramsis notany
indicationof the limits of the proposedmethodor that of
performingdataflowanalysis. It is primarily an indicator
of poor design, somethingthat can be overcomeby a
betterengineeredproduct. For instance,with CBMS we
wereconstrainedto keepall the intermediatestructuresin
memory.A betterdesignwouldbeto keeptheintermediate
structuresin files. This would reducethe load on the
primary memory, therefore reducing the time spent in
managingswap space.

7. Related works

We now comparethe work presentedwith otherefforts
in (a) restructuringfunctions [19, 21, 35], (b) using pro-
gram slicing for decompositions[13, 12, 11, 14, 15], (c)
identifying computationsthat areinterleaved[34, 33, 32],
(d) and the inverseproblem of function compositionor
integration[17, 25].

Sneedand Jandrasicshave presenteda techniquethat
usesthe control flow of a COBOL programto identify
code segmentsthat can be convertedinto modules[35].
For instance,they createa modulefor a loop or a section
containingmore than 200 statements.In the absenceof
anycuefrom controlstatements,theyproposebreakingoff
continuousblocksof 800statementsinto separatemodules.
Sincea statementis placedin at most one module, their
approachdoesnot lead to any duplication of code. On
the other hand, the modules this approachcreatesare
also not guaranteedto containcodethat performsrelated
computations.

The restructuringtechniquesof Kim et al. [21] and
Kang andBieman[19] is closestto our work. They both
usethe cohesion(thoughKim et al. call it coupling)be-
tween output variablesof a function to identify compu-
tationsthat may be extractedinto separatefunctionsand
thenuseprogramslicing to extractthe neededstatements.
The differenceslie in how eachtechniquemeasurescohe-
sion, how it usesthis measureto group relatedvariables,
andthe classof programsfor which the techniqueis safe
(i.e., doesnot produceincorrectresults),andthe classfor
which it producescorrect results.

Kim et al.’s [21] definition of cohesionhastwo major
weaknesses.First, it appearsto split coincidentalandlog-
ical cohesioninto procedural,communicational,andfunc-
tional cohesion. Second,their cohesionrules are not ro-
bust. The cohesionassignedby their rules changesby



slight perturbationof theprogram,suchasintroducingas-
signmentstatementsthat simply copy value of variables
without changingthe program. Kim et al. definedepen-
dencebetweenoutput variable as a result of the direct
dependencebetweenassignmentstatementsof that vari-
able. They do not accountfor flow due to a chain of
indirect assignments.Thus, output variablesthat depend
on eachother may be consideredas independentof each
other. Furthermore,unlike tuck, their transformationis
not formally definedand doesnot alwayspreserveorigi-
nal behavior. For instance,it introducescalls to the new
function in any orderwithout taking into accountthe data
dependencesbetweenthem.

KangandBieman’smethodfor partitioningvariablesis
very closeto ours[19]. Their measureis basedon Lakho-
tia’s original measure[22], though using a different set
of dependencerelationsbetweenvariables. To compute
pairwisecohesionwe usedataandcontroldependencebe-
tweenall the variableswhetherinput, output,or local. In
contrast,Kang and Bieman use data and control depen-
dencebetweenonly the input and output variables. The
informationlost dueto this abstractionis significantsince
it leadsto unsaferestructuringwhentwo outputvariables
have sequentialcohesion,but whoseassignmentscannot
be reordered.They too do not provide a formal transfor-
mation for actually extractinga function, thus leading to
similar errors as Kim et al.

Lanubile and Visaggio’s work on extracting reusable
functions from program flow graphssolves one part of
the problemdiscussedhere[26]. They extracta reusable
function without changingthe original program. In order
to identify a reusablefunction they requirea partial spec-
ification of the program’sinput andoutput. They too use
programslicing, albeitboundedwithin a regionof theflow
graph,to extract the reusablefunction.

GallagherandLyle’s [13] latticeof decompositionslices
is usefulin identifying changesthatmay ripple throughto
othercomputations.Their latticeorderstheslicesof output
variablesusingthepropersubsetrelation,which theyrefer
to asstrong dependence. Thattwo slicesdonothavestrong
dependencedoesnot imply that theyhaveno dependence.
The intersectionof the slices may still be non-empty,a
relation that Gallagherand Lyle call weak dependence.
Weak dependencebetweenthe slices of output variables
plays an important role when splitting functions. But
this relation is not capturedin the decompositionslice.
Hence, restructuringbasedon decompositionslice may
yield unsaferesults.

Rugaberet al. [33] haveinvestigatedthe problemof
detecting“interleaved”computation,whereinterleavingis
defined as “the merging of two or more distinct plans

within some contiguoustextual area of a program.” A
planis a “computationalstructureto achievesomepurpose
or goal.” A programplan is not necessarilythe sameas
our notion of a program’scomputationrepresentedby the
computationof a variable.Yet Rugaberet al. observethat
if a subroutine(function) has multiple outputsthere is a
high likelihood that it hasinterleavedcomputation.They
reportthat25%of subprogramsin a library of 600Fortran
programshadmultiple outputs.While Rugaberet al. have
investigatedtheissueof detectinginterleavedcomputation,
they havenot investigatedhow the subprogramsmay be
restructuredto reduceor eliminatethe interleaving.

Restructuringa functionby decomposingit is inversely
relatedto theproblemof creatinga functionby composing
smallerfunctions.This inverseproblemhasbeenunderthe
namesof programintegration[18], programcomposition
[25, 37], and programmerging [5].

8. Conclusions

The main contribution of this paper is a method for
automatically restructuringfunctions with low cohesion
by splitting theminto smallerfunctionswith highercohe-
sion. The methodusesLakhotia and Nandigammeasure
for computingcohesion[22, 29] to identify computations
that can be extractedfrom a function. It usesprogram
tuckingto actuallytransformtheprogram[24]. This trans-
formation movesinto a new function code that affects a
set of statementsand replacesthe movedstatementby a
call to the new function.

The methodproposedmaybe usedto automaticallyre-
structurea program. Though good restructuringwithout
humaninterventionis most likely not feasible,the authors
have investigatedthis problem to gain insights into the
limits of machinecapability. This work lays the founda-
tion for sophisticatedinteractiverestructuringtools using
which a programmermay restructureprogramsby simply
choosingbetweenalternativesprovidedby the machine.
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