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Hardware-Software Co-optimization of
Long-latency Stochastic Computing

Sercan Aygun ID , Lida Kouhalvandi ID , M. Hassan Najafi ID , Serdar Ozoguz ID , Ece Olcay Gunes ID

Abstract—Stochastic computing (SC) is an emerging paradigm
that offers hardware-efficient solutions for developing low-cost
and noise-robust architectures. In SC, deterministic logic systems
are employed along with bit-stream sources to process scalar
values. However, using long bit-streams introduces challenges
such as increased latency and significant energy consumption.
To address these issues, we present an optimization-oriented
approach for modeling and sizing new logic gates, which results
in optimal latency. The optimization process is automated using
hardware-software cooperation by integrating Cadence and
MATLAB environments. Initially, we optimize the circuit topol-
ogy by leveraging the design parameters of two-input basic logic
gates. This optimization is performed using a multi-objective
approach based on a deep neural network. Subsequently, we
employ the proposed gates to demonstrate favorable solutions
targeting SC-based operations.

Index Terms—analog optimization, co-processing, latency re-
duction, stochastic computing.

I. INTRODUCTION

STOCHASTIC computing (SC) is a re-emerging computa-
tion paradigm experiencing a resurgence due to its ability

to reduce area and power consumption. In SC, deterministic
logic gates are driven by random pulses, taking into account
the probability values of each input. The resulting output
is obtained as another pulse train after processing the input
pulses. Previous research has demonstrated how each digital
logic gates perform a specific function based on input proba-
bilities [1]. Specifically, multiplication is achieved using AND
gates, while addition is achieved using multiplexers (MUXs).

The random pulses serve as inputs, carrying binary informa-
tion with N logic values. The correlation between input pulses
plays a crucial role in SC operations. Logic gates exhibit
different behaviors based on correlation level. At the mid-
point of positive and negative correlation, where there is no
correlation, logic gates correspond to well-known arithmetic
operations such as the AND multiplier [1]–[3]. Increasing N
or the bit-stream length improves the accuracy. In theory,
deterministic results equivalent to traditional binary arithmetic
operations can be achieved as N approaches infinity. However,
larger values of N introduce significant latency. Various
solutions have been proposed to address this latency issue,
including area-delay optimization [4], deterministic shuffling
[5], variable-latency approaches [6], and D flip-flop insertion
methods [7]. Instead of focusing on higher-level solutions,
this work addresses low-level design challenges. We employ
multi-objective optimization methods at the transistor level
to model and size new logic gates to minimize latency
and power consumption. We focus on circuit-level design
optimization and address the latency problem through stream
processing techniques. Our approach aims to leverage low-
level optimized design primitives.

Recently, there has been a growing interest in employing
deep neural networks (DNNs) as an optimization framework
due to their ability to deliver accurate outcomes [8], [9]. In this
study, we employ DNNs to make the best decisions regarding
transistor geometry. We draw inspiration from the work by
Kouhalvandi et al. [8], who successfully handle data regres-
sion for Gallium Nitride (GaN)-based transistors to predict op-
timal design parameters, considering nonlinear multi-objective
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Fig. 1. Proposed SC-targeted Hardware (HW) - Software (SW) co-
optimization steps and proposed contributions.

design specifications. We employ multi-objective optimiza-
tion methods such as long short-term memory (LSTM) and
Thompson Sampling Efficient Multiobjective Optimization
(TSEMO) algorithm, due to their proven effectiveness [8].
Then, we train the neural network to generate regression
points corresponding to the most suitable combinations of
width (W) and length (L) to achieve desired latency and power
consumption levels. The TSEMO algorithm [10] functions as
a multi-objective optimization approach, evaluating optimal
values based on various criteria. Identifying the Pareto optimal
front (POF) is crucial to establish reference points for the
DNN. We optimize the latency × power value in the neural
network output by leveraging transistor geometries at the
network input. Unlike [8], where power amplifier parameters
are used, we employ transistor geometries as inputs. We
utilize a shorter network consisting of two LSTM layers. The
LSTM structure is chosen to modify transistor geometries
individually in a one-dimensional time-like sequence and
feed them to the neural network. By feeding the network
with consecutive geometries, we evaluate the optimal output
for latency × power within the DNN. In contrast to [8],
our output layer does not involve parameters related to a
power amplifier model but rather incorporates information
associated with latency and stochastic computation linked to
transistor power. Moreover, considering multiple optimization
criteria, we determine Pareto points within a multi-objective
optimization framework and train the DNN accordingly. We
explore 106 data points, covering various transistor geometry
possibilities, to determine the optimal geometry within this
design space. We introduce a novel two-input basic logic gate
library tailored for SC, with optimization focusing on latency
and power consumption (i.e., objective optimization function).

The process begins by updating the logic gates’ function-
ality through Shannon decomposition [11], which involves
re-modeling each transistor-based logic gate. “Dummy tran-
sistors” are added where necessary to equalize the number
of transistors used in the pull-up and/or pull-down branches.
Subsequently, the presented regression DNN method from [8]
is employed to determine the circuit design parameters, W
and L, automatically. We utilize the TSEMO algorithm [10],
to optimize latency and power consumption, which leverages
the POF and effectively generates the set of optimal trade-
offs. This algorithm offers improved efficiency compared to
other methods reported in [10].

Our proposed SC logic gate library is specifically beneficial
for SC-based image processing (e.g., edge detection, mean
filtering) and machine learning applications such as quan-
tized neural networks (QNNs). Weight quantization in SC-
based systems needs a cascaded topology with finer-grained
divisions for network weight values. Deeper modules are
employed to achieve smaller weights, requiring a latency-
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aware solution to meet critical path delay constraints. The
proposed optimization technique uses LSTM network archi-
tecture to model and size logic gates. This approach enables
the construction of stochastic logic gate libraries that are
both latency and power-efficient. Subsequently, we apply a
previously proposed module by Li et al. [12], [13] in a QNN
application to measure the delay by further checking the
accuracy performance. Finally, we provide a co-simulation of
circuit design within the overall system, along with a prelim-
inary latency analysis. In summary, the main contributions of
this work are as follows:

• We present a co-simulation environment between Ca-
dence and MATLAB, creating a unique automated envi-
ronment for transistor level optimization (refer to Fig. 1).

• We propose a novel CMOS-based logic gate specifically
designed for SC applications.

• We employ a combination of a multi-objective method
and DNN to size the transistors involved.

• We concurrently optimize latency and power using POF-
based multi-objective optimization methods.

• We demonstrate real engineering applications by utilizing
the proposed environment and gate library for SC-based
image processing and machine learning applications.

II. PROPOSED OPTIMIZATION METHOD USING DEEP
NEURAL NETWORK

This section presents an optimization-oriented strategy for
modeling and sizing logic gates for SC. Firstly, we propose an
approach for modeling the structure of logic gates. Then, we
explain an optimization process based on a DNN for sizing
transistors. We propose stochastic logic gates named “SLG”,
where both latency and power consumption are optimized.

A. Modeling of SLGs
As discussed in [6], latency issues are prevalent in SC

designs, leading to the misalignment of rise-time and fall-time
in the output phase. To address this problem, equalizing the
worst-case and best-case propagation delays for both high-
to-low and low-to-high input patterns is crucial. This can
be achieved by implementing parallel branches of transis-
tors, where one branch is active (logic 1), and the other
is inactive (logic 0). Consequently, Shannon decomposition
(FShannon = xifxi + x̄if̄xi) is employed. By utilizing this
expansion, we can ensure that xifxi evaluates to logic 1 and
x̄if̄xi evaluates to logic 0. Hence, each parallel branch will
be active only once. The propagation delays can be equal
for all input patterns by equalizing the number of transistors
in each parallel branch and incorporating necessary dummy
transistors.

Our study introduces two types of logic gates: pass transis-
tor logic (PTL) and CMOS logic gates. In PTL-based logic
gates, Shannon’s law is satisfied, where one branch is active
(logic 1), and the other is inactive (logic 0). Additionally,
an equal number of transistors are employed in each branch.
However, our proposed modeling approach becomes essen-
tial for CMOS-based logic gates, specifically NOR-2 and
NAND-2 gates. We apply Shannon decomposition and incor-
porate dummy transistors to address this. XOR-2 and MUX
2:1 gates have their own Shannon decomposition equations
and do not require dummy transistors. Fig. 3 illustrates the
structures of these logic gates for PTL-based gates and Fig. 4
for CMOS-based gates.

B. Multi-objective optimization for sizing transistors
The optimization of transistor sizing for analog circuits,

particularly for SC designs, involves considering two crucial
factors: latency and power consumption. A multi-objective
optimization process is necessary to address this, utilizing
objective functions related to these two metrics. The authors
in [8] employ the TSEMO approach, which relies on POF
and demonstrates high calculation accuracy. Similarly, we
adopt the TSEMO process to optimize and determine the
POF for latency and power. The sizing of transistor width
(W) and length (L) is performed within this optimization.
Fig. 2 illustrates the automated optimization process based
on a DNN for sizing the SC Logic Gates (SLGs).

After obtaining suitable models for the logic gates in
Section II-A, the sizes of the transistors are optimized using
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Fig. 2. DNN construction for multi-objective optimized transistor sizes.

TABLE I
COMPARATIVE DELAY RATIOS OF EXISTING LOGIC LIBRARY, PROPOSED

PTL, AND CMOS LIBRARIES.

Gates Logic Gate Library in AMS 180 nm
WR/WF BR/BF WR/BF BR/WF WR/BR WF/BF

Inverter 2.15 2.15 2.15 2.15 1.00 1.00
Buffer 1.53 1.53 1.53 1.53 1.00 1.00
XOR 1.40 3.00 6.63 3.09 2.20 9.31

MUX 2:1 1.06 1.34 2.51 1.98 1.86 2.67
NOR 4.56 4.57 5.66 3.68 1.23 1.24

NAND 1.70 1.06 2.44 1.34 2.29 1.43

Gates Proposed PTL Logic Gates
WR/WF BR/BF WR/BF BR/WF WR/BR WF/BF

Buffer 1.00 1.00 1.00 1.00 1.00 1.00
XOR 1.03 1.05 1.06 1.05 1.06 1.09

MUX 2:1 1.10 1.11 1.14 1.12 1.20 1.12
NOR 1.07 1.04 1.11 1.01 1.06 1.03

NAND 1.08 1.01 1.09 1.20 1.11 1.19

Gates Proposed CMOS Logic Gates
WR/WF BR/BF WR/BF BR/WF WR/BR WF/BF

Inverter 1.00 1.00 1.00 1.00 1.00 1.00
XOR 1.01 1.06 1.38 1.48 1.47 1.39

MUX 2:1 1.06 1.44 1.18 1.82 1.71 1.26
NOR 1.02 1.00 1.13 1.17 1.14 1.16

NAND 1.08 1.03 1.08 1.14 1.04 1.18

the proposed multi-objective optimization method. To achieve
this, a DNN is trained using data generated from a co-
simulation environment between MATLAB and Cadence [14].
The logic gate circuits described in Section II-A are re-
designed to incorporate transistor sizing. The transistor width
(W) and length (L) are randomly iterated, and the simulation
results of the circuits are fed into MATLAB to generate
appropriate training data.

We apply the TSEMO method in MATLAB, utilizing the
training data to construct an accurate DNN model representing
the SLGs. Fig. 2 illustrates the structure of the LSTM-based
DNN, which consists of two LSTM layers, each with 50
neurons and one fully connected layer. During the training
phase, we obtain the labeled values of W and L for the
desired latency-power consumption values. Fig. 3 and Fig. 4
present the optimized transistor sizes for the two-input PTL
and CMOS-based logic gates, respectively.

Table I compares the ratios of worst-case rise time (WR),
worst-case fall time (WF), best-case rise time (BR), and best-
case fall time (BF) between the standard built-in logic libraries
and the proposed SLG library. The results demonstrate that
the proposed SLG library achieves a latency ratio of approxi-
mately 1, indicating consistent delays across all input patterns.
This finding highlights the successful resolution of latency
issues in SC circuit designs. We simulated and optimized the
logic gates using the AMS 180 nm technology in the Cadence
environment.

III. APPLICATION OF THE PROPOSED SLG LIBRARY

In this section, we show how the optimized SLG is utilized
in different applications.

A. SC Image Processing
We first evaluate the performance of the proposed library

for the state-of-the-art (SOTA) SC image-processing edge
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TABLE II
SC-BASED EDGE DETECTORS FROM SOTA WORKS.

Ref. Implemented Filter Design

[15] Roberts cross
2 × NOT gate,
3 × 2:1 MUX,

2 × SC abs. value
[16] Gaussian 8 × 2:1 MUX

[17] Roberts cross
(using correl. inputs)

2 × NOT,
2 × XOR,

1 × 2:1 MUX
[18] Prewitt 4 × 2:1 MUX,

1 × XOR gate

[19] Sobel
4 × 2:1 MUX,
1 × XOR gate,
2 × AND gate

[20] Prewitt 5 × 2:1 MUX,
1 × NOT gate

TABLE III
POWER CONSUMPTION (mW ) OF THE SOTA SC-BASED EDGE

DETECTOR DESIGNS WITH AND WITHOUT SLG.

Optimization [15] [16] [17] [18] [19] [20]
w/o SLG 17.56 25.03 12.51 13.22 18.11 15.12
w/ SLG 15.47 22.51 11.24 10.56 16.18 12.97

detection architectures. We utilize a Cadence library and
the proposed circuit-level logic gates to implement the SC
designs. Table II lists the implemented SC edge detection
designs. Table III compares the implemented designs in terms
of power consumption with (w/) and without (w/o) using the
proposed SLG library. As can be seen, using the proposed
library reduces power consumption in all cases. Fig. 5 (a)
and (b) visually depict the performance of the SLG library.
The Caravan sample image was processed using the Cadence-
MATLAB co-operated environment for the edge detection
application. The noise removal mean filtering application was
also evaluated using the Lena image in Fig. 5 (b). We observed
that the accuracy performance of the SLG library is in the
acceptable range of peak signal-to-noise ratio (PSNR) values.
Like edge detection, the mean filtering application also proves
the power effectiveness of the proposed SLG.

→N=256, using circuit topology of [18], w/ optimized library, SLG, total
P=10.56mW . →N=256, using circuit topology of [20], w/ optimized library, SLG,
total P=8.56mW , while w/o optimization P=11.67mW .

Fig. 5. Real applications of the cooperative environment using SLG: Visual
result of (a) Edge detection, (b) Mean filtering for noisy (µ = 0 and σ2 =
0.008) image.

B. SC QNNs
Prior work has applied SC to design hardware-efficient

neural network systems [21]–[24]. Li et al. [12], [13] re-
redesigned the SC-based NN with the quantization prop-
erty [25]. By using their SOTA stochastic unary code adder
(SUC-adder), we measure the performance of the SLG in
terms of critical path delay. For the experiments, we set the
quantization sensitivity to 2 bits for the network parameters.
This representation requires 1/4, 1/2, and 3/4 fractional
values in the weight bit-streams. Fig. 6 depicts the proposed
simulation environment. The overall system is simulated
in MATLAB Simulink, co-processing the Cadence Virtuoso
environment. Thus, the optimized circuit module is set for
measurement on the same platform by using the partial design
property of the simulation platform. The authors in [12] and
[13] efficiently used the SUC-adder for quantized weight
processing. The number of logic 1s in the weight stream is
adjusted fractionally depending on the quantization sensitivity.
This affects the topology of the SUC-adder in terms of the
cascaded elements. The SUC-adder can be considered a MUX-
like structure, where the select input stream is trivially applied
like the weight inputs in fractions.

In our experiments, we obtained model inferences using
a 2-hidden-layer multi-layer perceptron (784-200-100-10) for
classifying the MNIST handwritten digit dataset [26]. We start
the training process on Python using the Keras framework
for full precision training. Subsequently, we apply a post-
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Fig. 6. Proposed simulation for QNN with 2-bit quantization.

TABLE IV
LATENCY OF THE SUC-ADDER IN QNN FOR DIFFERENT DESIGNS.

Critical Path (ns)
[CMOS] - MUX

Critical Path (ns)
[PTL] - MUX

2:1 4:1 8:1 16:1 2:1 4:1 8:1 16:1
0.992 1.272 1.864 2.017 1.118 1.773 2.401 3.117

training method to quantize weights and activations. The
activation function is a sigmoid, selected to produce positive-
only outputs for neurons. To simulate the hardware, we built
a co-processing environment using MATLAB Simulink and
Cadence Virtuoso, combining digital and analog components.
When using 2-bit quantization, our network model achieves an
accuracy of 97.39% for N=64-bit SC bit-streams. Table IV
compares the critical path latency of the CMOS and PTL
design approaches applied to the SUC-adder module design.
For N=64, the CMOS design provides better critical path
delays, while the latency changes are reported for different
MUX structures.

Finally, we evaluate the performance of classifying cor-
rupted handwritten images using the MNIST-C dataset [27].
For the experiments, we employ a multi-layer perceptron
(784-200-100-10) with two hidden layers for classification.
Like in previous experiments, the training process begins
in the Keras framework for training with full precision.
Subsequently, we employ a post-training approach to quantize
weights and activations, employing a fine-tuning technique,
as mentioned earlier. The chosen activation function is again
sigmoid, which ensures positive-only neuron outputs. Fig. 7
illustrates the classification accuracy for five different cor-
ruption types based on 2-bit, 3-bit, and 4-bit quantization
levels facilitated by the SLG-based MUXs. The performance
of the QNN can be compared by considering the corruption
types and the quantization levels. Our results demonstrate
the applicability of the SLG approach and its efficiency.
The proposed platform is flexible not only from a hardware
perspective but also for the exploration of multiple datasets
considering the application performance.

IV. CONCLUSION

In this study, we introduced a novel methodology for opti-
mizing basic logic gates for SC designs. Initially, we modeled
the logic gates by applying Shannon decomposition to stan-
dard logic gates. To determine the sizes of the transistors, we
utilized an LSTM-based DNN trained through regression to
optimize latency versus power using the Pareto optimal front.
The optimization process was automated and performed using
the Cadence 180 nm technology in the MATLAB platform.
Once the optimal logic gates were obtained, we proceeded
to simulate the SUC-adder in the QNN. We evaluated the
critical path latency in the 2-to-1, 4-to-1, 8-to-1, and 16-to-
1 MUX structures, considering both PTL and CMOS-based
design primitives. This work demonstrates how low-level
optimization techniques can be applied to high-level appli-
cations. We compared the power consumption of the SOTA
SC-based image processing architectures with and without the
optimized library utilization. QNN performance in the case of
multiple datasets and quantization levels was evaluated using
the designed SLG and the cooperative platform. Finally, we
presented an analog and digital design co-simulation on a
unified platform leveraging the capabilities of MATLAB and
Cadence tools.

Fig. 7. Accuracy of QNN architecture constructed by SLG (N=64).
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