
Energy Efficient Stochastic Computing with Low-Discrepancy Sequences

A Dissertation

Presented to the

Graduate Faculty of the

Department of Computer Sience and Engineering

University of Louisiana at Lafayette

In Partial Fulfillment of the

Requirements for the Degree

Doctor of Philosophy

By

Sina Asadi

Summer 2023

© Sina Asadi

2023

All Rights Reserved

Energy Efficient Stochastic Computing with Low-Discrepancy Sequences

Sina Asadi

APPROVED:

M. Hassan Najafi, Chair
Assistant Professor of Computer Science

Nian-Feng Tzeng
Professor of Computer Science

Magdy Bayoumi
Professor of Electrical and Computer
Engineering

Ashok Kumar
Associate Professor of Computer Science

Mary Farmer-Kaiser
Dean of the Graduate School

Dedicated to my family.

Acknowledgments

I would like to sincerely thank my supervisor Dr. M. Hassan Najafi for always being

supportive and a better friend to me. Without his guides and supports, I would not be

able to make it and found my true potentials. His solid background, academic integrity,

and hard-working personality inspired me to take steps toward my research. I would

definitely remember each and every single discussion that we had so far and use them

as a shining light in each direction and path of my life.

I want to express my deepest gratitude to my amazing family, for always being

for me and bringing me the best possible and peaceful life I could ever imagine, for your

company and encouragement, for the hope that lifted me up, and for all the emotional

support. I owe you everything I have and have done so far and you are always in my

heart and mind.

v

Table of Contents

Dedication. iv

Acknowledgments. v

List of Tables. viii

List of Figures. x

Chapter 1: Introduction. 1

1.1 Introduction to Stochastic Computing. 1

1.2 Motivation. 2

1.2.1 Motivation for Context-Aware Bit-Stream
Generation. 3

1.2.2 Motivation for Low-Cost FSM-based Bit-Stream
Generation. 6

1.2.3 Motivation for Low-Discrepancy Correlation
Manipulation Circuits. 7

1.3 Dissertation Summary. 8

Chapter 2: Stochastic Computing Basics. 10

2.1 Stochastic Number format. 10

2.2 Stochastic Number Generator Components. 11

2.3 Progressive Precision property. 12

2.4 Stochastic Correlation. 13

Chapter 3: Accelerating Deterministic Stochastic Computing with
Context-Aware Bit-stream Generator[5][6]. 14

3.1 Deterministic Bit-stream Generator. 14

3.1.1 Conventional Design. 14

3.1.2 Proposed Context-Aware Design. 17

3.2 Evaluation. 24

3.2.1 Hardware Cost Comparison. 24

3.2.2 Performance Comparison. 26

3.2.3 Application Case Study: Gamma Correction. 28

3.3 Conclusion. 30

Chapter 4: A Low-Cost FSM-based Bit-Stream Generator for
Low-Discrepancy Stochastic Computing[7][8]. 32

4.1 Proposed LD Bit-Stream Generator. 32

vi

4.2 Evaluation. 34

4.2.1 Accuracy. 34

4.2.2 Hardware Cost. 36

4.2.3 Fault-Tolerance. 42

4.3 Case Study: Convolution Design. 44

4.4 Conclusion. 48

Chapter 5: In-Stream Correlation Manipulation for Low-Discrepancy
Stochastic Computing[9]. 49

5.1 Proposed Low-Discrepancy Correlator. 53

5.2 Proposed Low-Discrepancy Decorrelator. 56

5.3 Correlation and SC Division. 58

5.4 Evaluation. 61

5.4.1 Accuracy Comparison. 61

5.4.2 Cost Comparison. 67

5.5 Case Studies. 69

5.5.1 Sorting. 71

5.5.2 Median Filtering. 72

5.6 Conclusion. 74

Chapter 6: ECO: Enhanced In-Stream Correlation Manipulation for
Low-Discrepancy Stochastic Computing. 76

6.1 Evaluation. 78

6.1.1 Accuracy Comparison. 79

6.1.2 Cost Comparison. 83

6.2 Conclusion. 83

Chapter 7: Summary. 84

Bibliography. 87

vii

List of Tables

Table 3.1. Overhead of the Proposed Designs (CD: Clock Division, Ro:
Rotation, So: Sobol). 25

Table 3.2. Hardware Cost Comparison of the BSC unit. 26

Table 3.3. Performance improvements with the proposed designs.. 27

Table 3.4. Performance improvement with the proposed Clk Div and
Rotation designs for error tolerant applications. *The error rates are the
maximum error for the multiplication operation.. 27

Table 3.5. Performance improvement with the proposed Sobol design for
error tolerant applications. 29

Table 3.6. Energy Consumption of the Gamma Correction Stochastic
Circuit. 30

Table 4.1. MAE (%) Comparison of the proposed and the prior stochastic
designs when multiplying two 8-bit precision data. 33

Table 4.2. Hardware area cost (µm2) of the bit-stream generators for
processing different numbers of inputs (i) and data precisions (n).. 37

Table 4.3. Hardware Area (µm2) and Critical Path Latency (CP) (nS) of
the Comparator-based and the FSM-based LD Generator for the case of
converting 8-bit precision data. 41

Table 4.4. MAE (%) Comparison of Different LD Bit-stream Generators
when Injecting Different Rates of Soft Error. 43

Table 4.5. Synthesis Results of the Bit-stream Generators for the
Implemented Convolution designs 47

Table 5.1. Accuracy Evaluation of the Proposed Correlator with LD Input
Bit-streams of 2N bits (N=Input Width). 62

Table 5.2. Accuracy Evaluation of the Proposed Correlator and
Decorrelator when Inputs are 28-bit Outputs from SC Multiplication. 64

viii

Table 5.3. Accuracy Evaluation of the Proposed Correlator (CORLD-C)
with Pseudo-random Input Bit-streams. 65

Table 5.4. Accuracy Evaluation of the Proposed Decorrelator (CORLD-D)
for Pseudo-random and LD Bit-streams of 2Nbit.. 68

Table 5.5. Hardware area (µm2) of the proposed CORLD-C and
CORLD-D for different FSs. 70

Table 5.6. Hardware area (µm2) of the synchronizer and decorrelator
circuit of [20] for different depths. 70

Table 5.7. Accuracy Evaluation of the Stochastic Sorting System with the
Proposed and SoA Correlator Technique when Sorting 256-bit
independent LD input bit-streams. 72

Table 5.8. Hardware Cost (µm2) Comparison of the SC Sorting and
Median Filtering System with different number of inputs utilizing
proposed CORLD-C and SoA synchronizer (# of Cor.: # of correlator
needed for the design.) 73

Table 5.9. Accuracy Evaluation of SC Median Filtering System with
256-bit independent LD input bit-streams. 74

Table 6.1. Accuracy Evaluation of the Proposed Correlator (CORLD-C)
and proposed ECO with Pseudo-random Input Bit-streams.. 81

Table 6.2. Accuracy Evaluation of the Proposed Decorrelator (CORLD-D)
and proposed ECO for Pseudo-random and LD Bit-streams of 2Nbit.. 82

Table 6.3. Hardware cost of the proposed ECO for different FSs. 83

Table 7.1. Quick Overview of the Proposed methods. 86

ix

List of Figures

Figure 1.1. Example of multiplication using stochastic bit-streams and AND

gate.. 1

Figure 1.2. Examples of deterministic bit-stream-based multiplication
using (a) clock division (b) rotation method [17].. 4

Figure 2.1. Examples of LD bit-streams with different precisions generated
using the simplest Sobol sequence.. 11

Figure 2.2. Conventional Binary-to-Stochastic Converter (BSC). 12

Figure 3.1. Conventional architecture of a deterministic system based on
the “clock division” method of [17]. 16

Figure 3.2. Conventional architecture of a deterministic system based on
the “rotation” method of [17].. 17

Figure 3.3. The structure of a 4-bit Modified Counter. 18

Figure 3.4. Conventional architecture of a deterministic system based on
LD Sobol sequences [30].. 18

Figure 3.5. Proposed bit-stream generator with Control Unit (CU) and
Modified Counter (MC). 19

Figure 3.6. A 4-bit CU generating control signals for 10/16. 20

Figure 3.7. The structure of an n-bit CU. 20

Figure 3.8. Proposed architecture for a “clock division”-based
deterministic system.. 21

Figure 3.9. Proposed architecture for a “rotation”-based deterministic
system.. 22

Figure 3.10. Proposed architecture for a “Sobol”-based deterministic system.. 22

Figure 3.11. An example of Sobol bit-stream-based multiplication using (a)
conventional design and (b) proposed design. 23

x

Figure 3.12. Modified 4-bit CU for error-tolerant applications. 23

Figure 3.13. Histogram distribution of the resulting bit-stream lengths for
the case of processing two 8-bit precision data using the proposed
context-aware designs.. 28

Figure 3.14. Gamma Correction Stochastic Circuit [33] 30

Figure 4.1. Proposed FSM-based LD bit-stream generator for n=3. The
FSM selects the input bits based on one of the patterns produced by
Algorithm 1. 32

Figure 4.2. First 16 numbers of two Sobol sequences and their
corresponding selected bits in a 4-bit data based on Algorithm 1. 34

Figure 4.3. Hardware area cost of the proposed LD bit-stream generator
for different precisions (4, 8, and 12 bits) and LD patterns (Sobol 1-10).. 37

Figure 4.4. Integrating the FSM-based LD bit-stream generator and the
rotation method of [17] to generate i independent 2i×n-bit bit-streams.. 39

Figure 4.5. An example of the FSMs for converting a 3-bit precision data
to 8-bit LD bit-stream: a) non-parallel with 8 states b) 2× parallel with
4 states c) 4× parallel with 2 states. Each state is processed in one
clock cycle. 40

Figure 4.6. The Probability Conversion Circuit (PCC). 46

Figure 4.7. Converting a large number of inputs from binary to LD
bit-stream representation by sharing one one-hot encoder and one FSM.. 46

Figure 5.1. Example of generating correlated and uncorrelated bit-streams.
X and Y bit-streams are correlated, and both uncorrelated with
bit-stream Z due to using the same and different RNGs in generating
them.. 50

Figure 5.2. Synchronizer circuit of [20] with depth = 1. 51

Figure 5.3. Decorrelator circuit of [20] with depth = 4. 51

Figure 5.4. 8-input SC Minimum Circuit. 54

xi

Figure 5.5. Proposed Correlator (CORLD-C) with FS=2. 56

Figure 5.6. Proposed Decorrelator (CORLD-D) with FS=2. 57

Figure 5.7. CORDIV SC Division Circuit [10]. 58

Figure 5.8. ISCBDIV SC Division Circuit[39] 60

Figure 5.9. (left) Proposed FSM-based correlator for SC division (right)
An example for n=3.. 60

Figure 5.10. Schematic representation of a CAS block (a) Ascending order,
(b) Descending order. 70

Figure 5.11. 4-input Sorting Network. 70

Figure 5.12. 3× 3 median filter using 19 CAS blocks [32]. 73

Figure 6.1. Correlation manipulation of a stochastic bit-stream by 1)
bit-stream regeneration (in top branch) and 2) in-stream manipulation
with proposed method consisting of ECO and CORLD techniques (in
bottom branch).. 77

Figure 6.2. Proposed ECO Example with FS = 2. 79

Figure 6.3. Proposed ECO FSM. (S: Saved, I: Input, O: Output). 79

xii

Chapter 1: Introduction

1.1 Introduction to Stochastic Computing

Stochastic computing (SC) [15, 4] is an unconventional computing paradigm offering

low-cost and noise-tolerant solutions for a wide range of arithmetic operations from

multiplication [33, 37] to division [10, 39, 11], square root [27], scaled addition,

subtraction, minimum and maximum value functions [2, 32], trigonometric, logarithmic,

and exponential function [31, 16]. SC treats data as probabilities presented by streams

of random bits. This unconventional method of representing data leads to extremely

simple computation circuits for complex arithmetic operations. Orders of magnitude

saving in the hardware costs compared to the conventional binary radix designs are

common with SC [4]. A single AND gate, for example, can perform multiplication in the

stochastic domain (see Figure1.1).

Recently, SC has been utilized in important applications such as image

processing and different Neural Network architectures. The paradigm has shown

significant reductions in hardware area and power cost. However, there exist some

important challenges in current SC designs, which we aim to address in this

dissertation. Our goal is to advance the SC paradigm to the best possible extent. In this

Figure 1.1. Example of multiplication using stochastic bit-streams and AND gate.

A= 2/4
AND

1000010000000000

1 1 0 0 1 1 0 0

1 0 1 0 0 1 0 0
B= 1/4

1 1 0 0 1 1 0 0

0 0 1 0 0 0 0 0

C=2/16

1

chapter, we discuss the motivations behind the main contributions of this dissertation.

1.2 Motivation

Growing developments in electronic devices have brought up many challenges in energy

consumption, area occupancy, and performance. In 1965, Gordon E. Moore observed a

constant growth rate for manufacturing semiconductors in terms of the density of

components per integrated circuit. This has become a self-fulfilling prophecy known as

Moore’s law [35]. This rule has been preserved for many years, and many scientists and

manufacturers have contributed to maintaining it. Dennard’s scaling law [12] states

that, as transistors get smaller, their power density stays constant. However, this rule

has come to an end due to voltage supply limits. The leakage power has increased more

rapidly proportional to voltage drop, leading to heating up the chip, further increasing

static power and threatening thermal runaway. This fact solidifies the demand for

energy-efficient architectures to keep pace with today’s emerging technologies. At the

same time, newfound applications increasingly require fast and highly parallel

computational components that put more stress on computing technologies, further

restraining the growth rate. Emerging design technologies are being employed to fill the

gap between chip manufacturing and application requirements.

SC is a re-emerging computational model offering power- and area-efficient

hardware designs for different applications to push the market toward maintaining the

predicted growth rate. In contrast to the radix-2 number system, well-known as binary,

the inputs of this unconventional computing paradigm are bit-streams. All bits in a

bit-stream have the same weight regardless of their positions. This makes the data

2

representation significantly error tolerant, therefore, well suited for noisy environments

such as speech recognition systems where different types of noise affect the target voice

or in image or video processing where sensors gather data in various conditions (i.e.,

different brightness). A single bit flip in a most significant bit of a binary number

considerably diverts the computation result. However, with SC, one or a few bit flips

have minimal impact on the computation accuracy.

1.2.1 Motivation for Context-Aware Bit-Stream Generation

SC designs consistently achieve 50× to 100× reduction in gate count compared to

conventional binary radix designs [23]. For instance, multiplication, as a common but

complex operation used in many applications, can be performed using standard AND

gate in the stochastic domain. Input data in the [0,1] interval is represented using

uniformly distributed random (i.e., interleaved) or unary (i.e., first all ‘1’s followed by

all ‘0’s) bit-streams. The ratio of the number of ones to the length of the bit-stream

determines the bit-stream value in this paradigm. For example, 10100, 01010, and

1111000000 are all stochastic bit-streams representing 0.4. While this unconventional

representation of data is not compact compared to the weighted binary representation,

it ensures the computation against soft errors (i.e., bit flips). Multiple bit-flips in a long

bit-stream produce small and uniform deviations from the nominal value [33].

The inaccuracy of processing bit-streams was the main issue with the

conventional SC designs. Random fluctuations in generating bit-streams and correlation

between bit-streams led to computations that were only correct approximately. Some

3

Figure 1.2. Examples of deterministic bit-stream-based multiplication using (a) clock
division (b) rotation method [17].

A= 2/4
AND

1100000000000000

1 1 0 0 1 1 0 0

1 1 1 1 0 0 0 0
B= 1/4

b3

a3 a2a1a0

1 1 0 0 1 1 0 0
a3 a2a1a0 a3 a2a1a0 a3 a2a1a0

0 0 0 0 0 0 0 0
b3 b3b3b2b2 b2b2b1b1 b1b1b0b0 b0b0

C=2/16

A= 2/4 1000010000000000

1 1 0 0 1 1 0 0

1 0 0 0 0 1 0 0
B= 1/4

b3

a3 a2a1a0

1 1 0 0 1 1 0 0
a3 a2a1a0 a3 a2a1a0 a3 a2a1a0

0 0 1 0 0 0 0 1
b2 b1b0b0b3 b2b1b1b0 b3b2b2b1 b0b3

(a)

(b)

C=2/16AND

deterministic methods for processing bit-streams were introduced recently to produce

completely accurate results with SC circuits. Relatively prime bit-stream lengths [26],

clock dividing bit-streams, and rotation of bit-streams [17] are the three recently

proposed methods that guarantee deterministic and accurate processing with stochastic

logic. These methods were initially proposed based on unary bit-streams [17].

Figure 1.2 exemplifies the clock division- and the rotation-based multiplication of data

using unary bit-streams. Najafi and Lilja [29] enhanced the performance of the three

deterministic methods by replacing unary bit-streams with pseudo-random bit-streams.

More recently, deterministic methods based on low-discrepancy (LD) bit-streams are

also proposed [30, 25, 3]. The results produced by all these deterministic methods are

completely accurate, the same as the results from conventional binary design.

A common property to all these deterministic methods is that for operations

such as multiplication that require independent input bit-streams [33] producing exact

(i.e., completely accurate) results requires generating and processing bit-streams for

4

2m×n clock cycles, where m is the number of inputs and n is the precision of input data.

For example, processing two 8-bit precision numbers requires generating 216-bit

bit-streams in 216 cycles. Obviously, the processing time increases exponentially by

increasing the number of inputs and the precision of data. This latency quickly

becomes unacceptable for any application. Long latency further translates to high

energy consumption (energy = power × time). The long latency and the high energy

consumption make the current deterministic designs of SC inefficient for applications

that expect high accuracy.

The first and most costly step in processing data using deterministic systems of

SC is to convert the data from conventional binary to bit-stream representation. The

conventional bit-stream generators used in these systems generate bit-streams

regardless of the data value. Whether the input is 128/256 or 13/256, the same length

bit-stream (e.g., 256-bit) is generated. 13/256 is a real number with the data-width

(i.e., precision) of eight bits. It then requires a bit-stream of at least 256 bits to be

precisely represented. However, 128/256 (=1/2) is a real number with the data-width

of one bit. It can therefore be represented precisely using a short bit-stream of only 2

bits (i.e., 10 or 01). This dissertation proposes some context-aware methods for

generating stochastic bit-streams. The proposed methods significantly reduce the

latency of the deterministic methods. We propose a control unit to determine the

bit-width of input data and dynamically adjust the system to generate the bit-streams

with the minimum required length. The proposed bit-stream generators reduce the

number of operation cycles up to 86% compared to the current bit-stream generators.

5

1.2.2 Motivation for Low-Cost FSM-based Bit-Stream Generation

Low-discrepancy (LD) bit-streams such as Halton-[3] and Sobol-based [24] bit-streams

were proposed recently to improve the accuracy and reduce the processing time of SC.

1’s and 0’s are uniformly spaced in these bit-streams. Random fluctuations are removed

from bit-stream generation, and deterministic and accurate bit-streams are generated.

Progressive precision of Sobol sequences [24], in particular, has made them popular for

LD bit-stream generation [30, 6]. The first 2n numbers of any Sobol sequence include

all possible n-bit precision values in the [0,1] interval. This allows 2n-bit Sobol-based

bit-streams to precisely represent any n-bit precision value.

For generating an LD bit-stream, a quasi-random number (e.g., a Sobol number

from a Sobol sequence) is compared to a target number using a binary comparator.

The output of this comparison generates one bit of the LD bit-stream in each cycle.

Quasi-random number generators, however, are costly. A 4-, 8-, and 16-bit precision

Sobol sequence generator takes 2.8×, 4.7×, and 9.1×, respectively, more hardware area

cost than the same-precision pseudo-random number generator [28]. The high hardware

cost limits the potential benefits and the scalability of the conventional

comparator-based LD bit-stream generator [4][28]. Sim et al. [37] recently introduced

an FSM-based LD bit-stream generator to convert data from binary to LD bit-stream.

Sim’s generator selects xn−i or the (n− i)th bit of the binary input X first at cycle 2i−1

and thereafter every 2i cycles. The hardware cost of Sim’s generator is considerably

lower than that of the comparator-based LD generator [37]. The challenge is that Sim’s

generator can only generate one fixed LD pattern. Hence, it cannot be used in SC

6

designs in which multiple independent LD bit-streams are needed. This includes

multi-input multipliers, scaled adders [4], and the ReSC-based designs such as the

Gamma correction circuit [33], to name a few. These designs still have to employ

conventional comparator-based LD generators.

We propose a low-cost FSM-based LD bit-stream generator that supports the

generation of any number of LD patterns. We develop an algorithm to implement

different LD patterns based on different Sobol sequences [24]. The proposed generator

is able to generate any number of independent bit-streams. SC systems implemented

based on the proposed generator are able to produce completely accurate results, the

same as the results from the conventional binary counterparts.

1.2.3 Motivation for Low-Discrepancy Correlation Manipulation Circuits

In stochastic systems, both correlated and uncorrelated bit-streams are needed subject

to the desired function. Two bit-streams are positively correlated when all 1’s in the

two bit-streams are completely overlapped, i.e., they are exactly in the same bit

positions. An important part of a stochastic system is the data conversion unit that

converts the input data from positional binary to bit-stream representation, where

bit-streams correlation is managed. While this method is common for controlling the

correlation between the inputs of the stochastic system at the first stage of

computations, it cannot be used in the next stages of the system as the data are

already in the bit-stream form. A naive method for manipulating correlation in the

intermediate stages is to convert the bit-streams back to the positional binary format

7

and then re-generate them with the desired correlation. But this approach incurs

significant area and power overheads. Developing low-cost correlation manipulation

circuits for in-stream (i.e., without re-generating bit-streams) and managing of

correlation between bit-streams is an ongoing research.

The mentioned issue has motivated us to strive for an in-stream-based approach

that can prepare the bit-streams for any arithmetic operations despite the level of

correlation between input bit-streams. Our approach, called CORLD, proposes an in

stream correlator that can increase positive correlation between stochastic bit-streams

while generating low-discrepancy bit-streams. We further develop a decorrelator circuit

that can make input bit-streams uncorrelated with negligible impact on their value.

1.3 Dissertation Summary

This dissertation aims to develop novel solutions for some on-going and important

challenges in designing SC systems. In particular, we target the state-of-the-art

low-discrepancy methods of SC and address their design challenges from bit-stream

generation to correlation manipulation. Chapter 2 starts with the basic definitions of

SC such as stochastic numbers (SN) and different methods of bit-stream generation

from conventional models to novel approaches. Progressive precision is one of the

important properties of SC which will be discussed in Chapter 2 besides the

background on SC correlation. Chapter 3 to chapter 5 present the main contributions

of this dissertation. The challenges of the most recent and relevant works will be

analyzed to demonstrate the determined track of our methods. We compare our

proposed design approaches with the relevant and state-of-the-art methods evaluating

8

their performance and implementation costs.

9

Chapter 2: Stochastic Computing Basics

A brief introduction to Stochastic Computing (SC) has been provided in the previous

chapter. In this chapter, the Stochastic Number (SN) format or bit-stream is

thoroughly explained, and different generation techniques are shown. We also introduce

the SC progressive precision property and its effect on the latency and energy

consumption, and the SC correlation characteristic and SC functions’ requirements

concerning the correlation between bit-streams to achieve higher accuracy.

2.1 Stochastic Number format

SN is a stream of bits (1s or 0s), irrespective of their positions, showing the expected

probability value based on the number of 1s embedded in the bit-stream. Figure 2.1

shows examples of some SNs with different probabilities. They are produced by the

simplest Sobol sequence generator. The first 16 numbers of the simplest Sobol sequence

and examples of LD bit-streams are generated in this example. A ’1’ is generated in the

bit-stream if the Sobol number is less than the target number. For example, the

probability of 0.75 is shown with a 4-bit long bit-stream, having three 1s. Although the

distribution of 1s can profoundly affect any SC operation’s result, it does not have an

impact on an SN representation. Mentioned unipolar SN is limited to the unit interval

of [0,1]; therefore, any operation requires inputs beyond this interval, and the inputs

must be scaled in advance.

The SN representation can also be extended to several further formats, such as

signed numbers. For negative numbers, SC bipolar format has been introduced as

follows: if the value X in unipolar format is mapped to Y, which is in bipolar format,

10

Figure 2.1. Examples of LD bit-streams with different precisions generated using the
simplest Sobol sequence.

0
𝟏

𝟐

𝟏

𝟒

𝟑

𝟒

𝟏

𝟖

𝟓

𝟖

𝟑

𝟖

𝟕

𝟖

𝟏

𝟏𝟔

𝟗

𝟏𝟔

𝟓

𝟏𝟔

𝟏𝟑

𝟏𝟔

𝟑

𝟏𝟔

𝟏𝟏

𝟏𝟔

𝟕

𝟏𝟔

𝟏𝟓

𝟏𝟔
. . .

3/4 1 1 1 0 (2-bit precision)

6/8 1 1 1 0 1 1 1 0 (3-bit precision)

11/16 1 1 1 0 1 1 1 0 1 1 1 0 1 0 1 0

Simplest Sobol Sequence

the formula is Y = 2X - 1. In other words, a bit-stream with only 0 bits has a value of

-1 in bipolar representation ((Y = -1) = 2(X = 0) - 1). Many alternative data formats

have been proposed for SC, nevertheless, arithmetic functions in each format might

come with certain SC circuits. While in unipolar format, an AND gate performs a

multiplication operation, XNOR gate on the other hand processes the multiplication in

bipolar format.

2.2 Stochastic Number Generator Components

To process data with the stochastic systems, we need first to convert the data from

binary-radix to bit-stream representation. Figure 2.2 shows the conventional structure

of a binary-to-stochastic converter (a.k.a. stochastic number generator (SNG)). A

number source is compared to a constant number (based on the target input data), and

the output of the comparison produces one bit of the bit-stream in each cycle. A one is

generated at the output of the comparator if “Number Source” < “Constant Number”.

The number generator determines the type of the produced bit-stream. As noted

earlier, the value of a bit-stream is dependent on the number of 1s, while the type of

representation is different. A pseudo-random number source such as LFSR generates a

11

Figure 2.2. Conventional Binary-to-Stochastic Converter (BSC)

…0101000100010101

(n-bit) Number Generator
(Sobol, Pseudo-Random,…)

(n-bit) Constant Number
(register)

(n-bit)
Comparator

type of bit-streams that might not be at a consistent pace. An n-bit counter can also be

a number source starting from zero ending in 2n that generates a series of bits (1s

followed by zeros) called Unary bit-streams. On the other hand, Low Discrepancy (LD)

sequences such as the Sobol sequence produce deterministic bit-streams that increases

the accuracy of SC operations due to their inherent characteristics. Quasi-random (or

low discrepancy) sequences are sequences for which the convergence to the uniform

distribution on [0; 1)s occurs rapidly [38].

2.3 Progressive Precision property

In SC, accuracy is defined as the level of bit-stream conformity with the actual value. If

the accuracy of representation increases with the length of the bit-stream, it is called

progressive precision. This property is clearly shown in figure 2.1. If the actual

probability is 11/16, as the precision of the data, or the length of the bit-stream,

increases, the accuracy gets closer to the actual value.

This property plays an important role in reducing the number of cycles if an

application is resilient to some degree of inaccuracy. LD bit-streams have the best

progressive precision behavior among all types of SNs so that within 8 clock cycles the

required accuracy is provided in some cases.

12

2.4 Stochastic Correlation

The correlation between two bit-streams X and Y is quantified using the SC

Correlation (SCC) as defined in [2]:

SCC(X, Y) =

ad− bc

N ×min(a+ b, a+ c)− (a+ b)(a+ c))
ad > bc

ad− bc
(a+ b)(a+ c)−N ×max(a− d, 0)

else

In this formula, a is the number of bit positions where both bit-streams (X and Y) are

1, b is the number of bit positions where X is 1, and Y is 0, c is the number of bit

positions where X is 0 and Y is 1, and d is the number of bit positions where both

bit-streams are 0. An SCC equal to 0 means the bit-streams are completely

uncorrelated. SCC values close to +1 or -1 show high positive or negative correlation,

respectively. A positive correlation of +1 means that there is a maximal correlation

between the two bit-streams.

13

Chapter 3: Accelerating Deterministic Stochastic Computing with
Context-Aware Bit-stream Generator[5][6]

Deterministic approaches to SC were proposed recently to produce completely accurate

results with stochastic logic. Real-valued numbers in the [0,1] interval are converted to

unary or pseudo-random bit-streams and processed using the relatively prime

bit-stream length, clock division, or rotation method. Fast converging deterministic

methods based on low-discrepancy bit-streams were also introduced. Long latency is

the main issue with all these deterministic methods. To process m n-bit precision

numbers, bit-streams of 2m×n bits must be generated. In this dissertation, we propose a

context-aware bit-stream generator to improve the performance of deterministic

bit-stream processing systems. The proposed design reduces the processing time up to

86% for the cases where completely accurate results are desired. When the application

can tolerate some small rates of inaccuracy, orders of magnitude reduction in the

latency are achievable. This chapter’s material has been published in [6] and [5].

3.1 Deterministic Bit-stream Generator

In this section, we first discuss the current binary-to-stochastic converter (BSC) used in

the deterministic SC. We then show the architecture of the state-of-the-art clock

division [17], rotation [17], and LD [30] deterministic designs. Finally, we propose our

context-aware architectures for these deterministic systems.

3.1.1 Conventional Design

The conventional design of the of a binary-to-stochastic converter is reviewed earlier in

chapter 2 which is currently used in the deterministic designs of SC. An

14

increasing/decreasing number from an up/down counter (for the clock division and

rotation methods) or a Sobol number from a Sobol sequence generator (for the LD

method) is compared to a constant number (based on the target input data), and the

output of comparison produces one bit of the bit-stream in each cycle. A one is

generated at the output of the comparator if “Number Source” < “Constant Number”.

Figures 3.1 and 3.2 depict the conventional architecture of the SC system based

on the clock division and rotation method. Input data is converted from binary to

unary bit-streams using counter-based BSC units. A stop signal determines when the

result is ready and the system must stop processing. As shown in Figure 3.1, in the

clock division design, the stop signal is produced at no additional hardware cost by

using the same counters used in the converter modules. The rotation-based design, on

the other hand, utilizes some additional counters chaining the overflow (full) output of

each converter’s counter to the clock inputs of the next input counters to generate the

inhibit signals [17]. With this design, the n-bit counter of the ith converter module is

inhibited every 2n·i cycles.

Sobol sequences are also used to generate and process bit-streams

deterministiclly [30, 28, 25, 7]. Direct use of different Sobol sequences in converting

input data to LD bit-streams can guarantee deterministic and accurate processing of

bit-streams [30]. The output converges to the expected result faster than the unary

bit-stream-based designs. However, the number of processing cycles to produce

completely accurate results is the same as the unary designs. The down-side is the high

cost of generating Sobol sequences [30]. Figure 3.4 demonstrates the architecture of a

15

Figure 3.1. Conventional architecture of a deterministic system based on the “clock
division” method of [17].

deterministic system based on LD Sobol bit-streams. Each BSC unit compares the

input data to a Sobol number from a Sobol number generator. As elaborated in [30], an

m× n-bit counter is shared between all convertor modules.

The full output of this counter serves as the required stop signal of the system.

In all these deterministic systems, m independent inputs are converted from

binary to bit-stream representation using m converter modules. Each system runs for

2m×n cycles to produce completely accurate result. The processing is stopped by

sending a stop signal to the stochastic-to-binary converter (SBC) unit. The stop signal

turns to “1” when the system operates for exactly 2m×n cycles.

16

Figure 3.2. Conventional architecture of a deterministic system based on the “rotation”
method of [17].

3.1.2 Proposed Context-Aware Design

3.1.2.1 Structure for Completely Accurate Computation

The conventional architectures discussed in Section 3.1.1 , generate bit-streams

regardless of the value of the input data. Multiplying 10/16 (1010 in binary radix) and

8/16 (1000 in binary radix) using these architectures takes the same number of cycles

as multiplying 9/16 and 15/16. In both cases, the system must run for 24+4(=256)

cycles to produce the exact result. The deterministic methods of SC, however, can

produce the exact result of multiplying 10/16 and 8/16 in only 23+1 (=16) cycles if

effectively change 10/16 to 5/8 and 8/16 to 1/2, and represent each one using its

minimum required bit-stream length (i.e., 8 and 2 bits, respectively). For this set of

17

Figure 3.3. The structure of a 4-bit Modified Counter

Figure 3.4. Conventional architecture of a deterministic system based on LD Sobol
sequences [30].

inputs running the system for more than 16 clock cycles wastes the time and more

importantly the energy resources of the system.

Figure 3.5 shows our proposed context-aware bit-stream generator for the clock

division- and rotation-based designs. The regular counter of the BSC unit shown in

Figure 2.2 is replaced with a modified counter (MC). A control unit (CU) is also added

to determine the data-width. The control unit reads the input data from the constant

register and determines the minimum data-width to precisely represent input data.

18

Figure 3.5. Proposed bit-stream generator with Control Unit (CU) and Modified
Counter (MC)

…0101000100010101

. . .

(n-bit) Modified Counter

Control Unit

(n-bit)
Comparator

Xn Xn-1 … X2 X1
Constant
Register

MSB

MSB

MSB

MSB

LSB LSB

LSB

LSB. . .

. . .
. . .

. . .

(n-bit)
Input

Figure 3.6 shows how CU produces the control signals for A=10/16 (1010 in binary).

10/16 is equivalent to 5/8 and has a data-width of 3 bits. CU sends 011 to the MC,

forcing it to work as a 3-bit counter (counting from 0 to 7) instead of a 4-bit counter.

Figure 3.3 shows the structure of a 4-bit MC. The output bits of the MC are connected

to the comparator in reverse order. Considering the fact that the simplest Sobol

sequence can be generated by simply reversing the output bits of a counter [25], by

connecting the output bits of the MC to the comparator in reverse order the effective

bits of the constant register (e.g., 101 in 1010 and 1 in 1000) is compared to a new

Sobol number in each cycle. This results in converting the input binary data to a fast

converging LD bit-stream instead of a unary bit-stream (by comparing to the output

bits of a counter in normal order), at no additional hardware cost. LD bit-streams are

preferred to unary bit-streams as they enjoy the progressive precision of random

bit-streams [30]. Figure 3.7 shows the structure of an n-bit CU for the proposed

bit-stream generator.

Figure 3.8 depicts our proposed architecture for a “clock division”-based

19

Figure 3.6. A 4-bit CU generating control signals for 10/16

1 0 1 0

(4-bit) Constant Register
(Input)

1010

SNG
Toward SPU

CU
(Control

Unit)

0

1

1CS1

CS2

CS3

Figure 3.7. The structure of an n-bit CU

deterministic design. The system operates for 2Q1+Q2+...+Qm cycles (instead of 2m×n

cycles), where Qi is the data-width of input i and m is the number of independent

inputs in the system. The conventional architecture of a “rotation”-based system uses

regular counters to inhibit the converters at the powers of the operands

(i.e., bit-streams) lengths. Figure 3.9 shows our proposed architecture for a

“rotation”-based system. The proposed design similarly replaces the regular counters

with MC units. The inhibit and stop signals are generated depending on the bit-width

determined by the CU units.

We also develop a context-aware architecture for the Sobol-based deterministic

20

Figure 3.8. Proposed architecture for a “clock division”-based deterministic system.

system. The first 2n bits of a Sobol-based bit-stream can precisely represent any n-bit

precision data [30]. Due to this property of Sobol-based bit-streams, no change in the

structure of the converter modules is necessary to adapt the system to input data. Only

the stop signal must be set accordingly. Figure 3.10 presents our proposed architecture.

CU receives the input data from the constant register and sends some control signals to

the MC unit. Figure 3.11 demonstrates an example of deterministic multiplication

using the conventional and the proposed LD design. As can be seen, shorter bit-streams

are generated and processed by stopping the operation at the point needed to get the

accurate result.

3.1.2.2 Structure for Error Tolerant Applications

In binary radix representation, least significant bits (LSBs) have less impact on the

accuracy of computation than most significant bits (MSBs). This impact is further

21

Figure 3.9. Proposed architecture for a “rotation”-based deterministic system.

Figure 3.10. Proposed architecture for a “Sobol”-based deterministic system.

decreased when the data bit-width increases. The difference between two 8-bit precision

numbers A=10000000 and B=10000001 is only on the LSB. A represents 0.5 while B

represents 0.5039. The absolute difference between these two values is only 0.0039, a

negligible difference in many applications. If the application can tolerate small rates of

22

Figure 3.11. An example of Sobol bit-stream-based multiplication using (a) conven-
tional design and (b) proposed design.

A= 2/4

AND
1000 0000 0010 0000

1 0 1 0 1 0 1 0

1 0 0 0 0 1 0 0
B= 1/4

1 0 1 0 1 0 1 0

0 0 1 0 0 0 0 1

C=2/16

A= 2/4

AND
1000 0000

1 0 1 0 1 0 1 0

1 0 0 0 0 1 0 0
B= 1/4

(a)

(b)

C=1/8

Figure 3.12. Modified 4-bit CU for error-tolerant applications

inaccuracy, it is feasible to further decrease the processing time of the deterministic

system for many input cases. For example, if setting the LSB of B=10000001 to 0, the

data can be precisely represented using a stream of only 2 bits rather than a stream of

28 bits. This significantly reduces the number of processing cycles at the cost of a

negligible accuracy loss. Figure 3.12 shows a modified CU for a system that processes

4-bit precision data and can tolerate small rates of inaccuracy. Assume two 4-bit

inputs, A=1001 and B=1001, are to be multiplied. With the proposed design, the

length of bit-streams and so the number of processing cycles decreases from 28 to 22 at

the cost of 0.06 absolute error.

23

3.2 Evaluation

3.2.1 Hardware Cost Comparison

The overhead of the proposed designs is some additional logic gates due to adding the

CU and MC units. As shown in Figure 3.7, CU s include some standard OR gates. MC s

also contain some additional XNOR gates compared to the regular counters. The

overhead cost of these units is insignificant compared to the total cost of the system.

Table 3.1 shows the overhead of the proposed designs for different input data-widths in

terms of the required additional logic gates. For example, for the 16-bit precision

design, 14 additional OR and 15 additional XNOR gates are required for both the clock

division- and the Sobol-based system, and 14 additional OR and 30 additional XNOR

gates are required for the rotation-based system.

By accepting inaccuracy in the computation not only the overhead but also the

overall area occupancy of the system decreases compared to the conventional

deterministic architectures. This additional saving is due to the reduction in the size of

the MC units. For example, assume the data bit-width is 16 and the application can

tolerate up to 2 percent error rate in the result. This allows the system to ignore up to

six LSBs (i.e., set six LSBs to 0) for a 2-input multiplier design. The modified design

for such an error-tolerant application has an overhead of 8 OR and 9 XNOR gates (for the

clock division and Sobol-based designs) and can work with a 10-bit counter instead of a

16-bit one. For some rates of error the hardware savings from reducing the size of the

counter is greater than the overhead cost of additional gates added to the system. In

these cases, the proposed design reduces the hardware cost compared to the

24

Table 3.1. Overhead of the Proposed Designs (CD: Clock Division, Ro: Rotation, So:
Sobol)

Input
Precision

of Ignored
LSB Bits

of OR Gates # of XNOR Gates Saved Components

CD & Ro & So CD & So Ro CD & So Ro

4-bit
0

(Exact)
2 3 6 0

1 1 2 4
1 Flip Flop,
1 AND Gate

2 Flip Flops,
2 AND Gates

8-bit

0
(Exact)

6 7 14 0

1 5 6 12
1 Flip Flops,
1 AND Gates

2 Flip Flops,
2 AND Gates

2 4 5 10
2 Flip Flops,
2 AND Gates

4 Flip Flops,
4 AND Gates

3 3 4 8
3 Flip Flops,
3 AND Gates

6 Flip Flops,
6 AND Gates

4 2 3 6
4 Flip Flops,
4 AND Gates

8 Flip Flops,
8 AND Gates

16-bit

0
(Exact)

14 15 30 0

1 13 14 28
1 Flip Flop,
1 AND Gate

2 Flip Flops,
2 AND Gates

2 12 13 26
2 Flip Flops,
2 AND Gates

4 Flip Flops,
4 AND Gates

3 11 12 24
3 Flip Flops,
3 AND Gates

6 Flip Flops,
6 AND Gates

4 10 11 22
4 Flip Flops,
4 AND Gates

8 Flip Flops,
8 AND Gates

5 9 10 20
5 Flip Flops,
5 AND Gates

10 Flip Flops,
10 AND Gates

6 8 9 18
6 Flip Flops,
6 AND Gates

12 Flip Flops,
12 AND Gates

conventional architecture.

We synthesized the conventional BSC unit (shown in Figure 2.2) and the

proposed bit-stream generator (shown in Figure 3.5) using the Synopsis Design

Compiler v2018.06 with the 45nm FreePDK gate library. For the conventional BSC

unit, regular binary counter is used as the number generator. Table 3.2 compares the

hardware area cost and the critical path latency (CP) for three different data

25

Table 3.2. Hardware Cost Comparison of the BSC unit

Input
Precision

Conventional Design Proposed Design
CP
(ns)

Area
(µm2)

CP
(ns)

Area
(µm2)

% of Area
Overhead

4-bit 0.29 123 0.29 158 27
8-bit 0.35 284 0.35 358 25
16-bit 0.41 599 0.41 744 24

precisions. As shown, the proposed bit-stream generator costs up to 27 percent area

overhead with the same CP latency. A significant decrease in the number of processing

cycles compared to the conventional BSC leads to a considerable reduction in the total

latency (CP × number of processing cycles) and hence in the energy consumption.

3.2.2 Performance Comparison

Table 3.3 reports the performance improvements with the proposed designs. For each

case (different number of inputs and different data precision), we report the number of

processing cycles required for the conventional design and also the percentage of the

reduced number of cycles with the proposed design when exhaustively processing all

possible input cases (e.g., 256×256 combinations for the case of processing two 8-bit

precision input data). As shown, by increasing the number of inputs and the precision

of data, a higher reduction in the number of processing cycles is achieved. Figure 3.13

shows the histogram distribution of the resulting bit-stream lengths for the case of

processing two 8-bit precision data using the proposed context-aware designs.

Tables 3.4 and 3.5 demonstrate the performance of the proposed architectures

for error-tolerant applications. All three proposed designs achieve significant reductions

in the processing time when accepting small rates of error in the computation. For

26

Table 3.3. Performance improvements with the proposed designs.

of Inputs Input Precision
Conventional

Design
of cycles

Proposed Design
Percentage of
reduced cycles

2 Inputs
4-bit 28 54
8-bit 216 55
16-bit 232 55

3 Inputs
4-bit 212 69
8-bit 224 70
16-bit 248 70

4 Inputs
4-bit 216 79
8-bit 232 80
16-bit 264 80

5 Inputs
4-bit 220 86
8-bit 240 86
16-bit 280 86

Table 3.4. Performance improvement with the proposed Clk Div and Rotation designs
for error tolerant applications. *The error rates are the maximum error for the multipli-
cation operation.

of
Inputs

Input
Precision

Conv. Design
of Cycles

of ignored
LSB bits

Proposed Design
Latency Reduction

Error Rate*
(%)

2 Inputs

4-bit 28 1 8× 11.0

8-bit 216

1 9× 0.7
2 35× 2.0
3 142× 5.0
4 555× 11.0

16-bit 232

1 9× 3E-03
2 23× 9E-03
3 75× 2E-02
4 277× 4E-02
5 1000× 9E-02
6 3333× 0.2

3 Inputs

4-bit 212 1 24× 15.0

8-bit 224

1 27× 1.0
2 100× 3.0
3 625× 7.0
4 3333× 16.0

16-bit 248

1 27× 4E-03
2 110× 1E-02
3 625× 3E-02
4 3333× 6E-02
5 34482× 0.1
6 250000× 0.2

27

Figure 3.13. Histogram distribution of the resulting bit-stream lengths for the case of
processing two 8-bit precision data using the proposed context-aware designs.

1

4

16

64

256

1024

4096

16384

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

F
re

q
u

e
n

cy

Log2(Stream Length)

Histogram of stream length

example, for the case of multiplying two 16-bit precision inputs in an application with

an error tolerance of 0.20 percent, the proposed clock division and rotation designs

achieve 3.3×104 times reduction in the number of processing cycles, and the proposed

Sobol-based design is capable of decreasing the number of processing cycles by 6.6×104

times on average compared to the conventional design with a processing time of 232

clock cycles.

3.2.3 Application Case Study: Gamma Correction

To further evaluate the performance of the proposed designs we implemented the

Gamma Correction circuit proposed in [33]. Figure 3.14 shows the implemented

architecture.This circuit approximates the gamma correction function (F (x) = X0.45)

by mapping the function into a degree-6 Bernstein polynomial. Six independent

bit-streams, all representing the same input value of X, must be generated and summed

to select one of the inputs of the multiplexer (MUX) in each cycle. The inputs of the

MUX are seven correlated bit-streams corresponding to the Bernstein Coefficients of

28

Table 3.5. Performance improvement with the proposed Sobol design for error tolerant
applications.

Input Precision
Conv. Design
of cycles

Proposed Design
Latency Reduction

Error Rate
(%)

4-bit 28 5.5× 3
15× 9

8-bit 216

5.7× 0.2
19× 0.5
70× 1.13
264× 2.93
1000× 6

16-bit 232

5.7× 7E-04
19× 2E-03
70× 5E-03
264× 1E-02
1000× 2E-02
3333× 4E-02
16393× 9E-02
66666× 0.2

2500000× 0.3

the Gamma Correction function, i.e., b0 = 0.0955, b1 = 0.7207, b2 = 0.3476,,

b3 = 0.9988, b4 = 0.7017, b5 = 0.9695, and b6 = 0.9939. Correlated bit-streams can be

generated by sharing the same number source between the bit-stream generators.

Energy consumption of the Gamma Correction circuit with the proposed and with the

conventional bit-stream generator are reported in Table 3.6. We report the energy for

processing four different 512× 512 input test images. Each pixel of the input test image

is converted to six independent bit-streams (i.e., X1-X6) using the bit-stream generator

and processed by the Gamma Correction stochastic circuit. As shown, the proposed

design reduces the energy consumption more than 2×.

29

Figure 3.14. Gamma Correction Stochastic Circuit [33]

…0100000101

…00100001010
…0001001001

…1000010101
MUX

Z1=0.0955

. . .

+

…0000001000

…0010101010

…0000001000

. . .

Z2=0.7207

Z7=0.9939

X6 = 5/16

X2 = 5/16

X1 = 5/16

. . .

X0.45

Table 3.6. Energy Consumption of the Gamma Correction Stochastic Circuit

Image Name
Conventional Design Proposed Design

of Required
Cycles

Total Energy
(KJ)

Total Energy
(KJ)

Percentage of
Reduction

Lena

248×512× 512 23,415

12,399 53
Cameraman 12,355 53
Livingroom 12,460 53

Mandrill 12,358 53

3.3 Conclusion

In this dissertation, we proposed three context-aware architectures to accelerate the

three state-of-the-art deterministic methods of SC. The proposed designs employ a

control unit to extract the minimum bit-width required to precisely represent each

input data. The lengths of bit-streams are reduced to the minimum required lengths to

precisely represent each data. The noise-tolerance property of the system is preserved

as each bit-flip can only introduce a least significant bit error. We showed that the

proposed designs achieve a considerable improvement in the processing time at a

reasonable hardware cost overhead. The proposed designs make the deterministic

30

methods of SC more appealing for applications that expect accurate computation and

also for error-tolerant applications.

31

Chapter 4: A Low-Cost FSM-based Bit-Stream Generator for
Low-Discrepancy Stochastic Computing[7][8]

4.1 Proposed LD Bit-Stream Generator

An LD bit-stream generator converts an n-bit precision binary data into a 2n-bit

bit-stream with uniformly spaced 1’s and 0’s. xi or the ith bit of binary input X

appears in the LD bit-stream exactly 2i times. We connect the binary input data to the

main inputs of an (n+ 1)-to-1 multiplexer (MUX). A 2n-state FSM is connected to the

select input of the MUX to select one of the input bits at any cycle. The FSM controls

the order of bit selection and the number of times each input bit is selected. Different

LD bit-selection orders are needed to generate independent LD bit-streams. Figure 4.1

depicts the structure of the proposed bit-stream generator for n=3. In what follows, we

discuss how the bit selection orders are determined for the proposed bit-stream

generator. This chapter’s material has been published in [8] and [7].

Prior work [24][28] showed that, among different types of stochastic bit-streams,

the Sobol sequence-based bit-streams provide the fastest convergence to the target

value. Independence between different Sobol-based LD bit-streams is provided by using

Figure 4.1. Proposed FSM-based LD bit-stream generator for n=3. The FSM selects
the input bits based on one of the patterns produced by Algorithm 1.

MUX

MSB

LSB

Output bit-stream depends on the states of FSM

𝟎

2120212 3

2212012 3

1322012 2

𝒙𝟐
𝒙𝟏
𝒙𝟎

𝑿 8-state FSM from Algorithm 1

32

Table 4.1. MAE (%) Comparison of the proposed and the prior stochastic designs when
multiplying two 8-bit precision data

Design \Number of Cycles 216 215 214 213 212 211 210 29 28 27 26 25

Comparator-based non-LD [14] 0.05 0.15 0.26 0.39 0.58 0.79 1.20 1.67 2.32 3.32 4.72 6.62

Comparator-based LD [24][30] 0.00 0.0003 0.0013 0.0035 0.009 0.019 0.04 0.09 0.19 0.45 0.92 1.85

Sim’s FSM-based LD [37] 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 12.60 18.85 21.99

Proposed FSM-based LD 0.00 0.0003 0.0013 0.0034 0.007 0.017 0.03 0.07 0.16 0.35 0.79 1.36

Algorithm 1: Constructing an FSM based on a Sobol sequence

Input: Sobol seq (Sobol-num [0 : 2n − 1]), data-width (n)
Output: A 2n-state FSM
for k = 0, 1, . . . , 2n − 1 do

if 0 ≤ Sobol-num(k) < 1/2
FSM output = n− 1

else if 1/2 ≤ Sobol-num(k) < 3/4
FSM output = n− 2

.

.
else if (2n−1 − 1)/2n−1 ≤Sobol-num(k)< (2n − 1)/2n

FSM output = 0
else

FSM output= n

different Sobol sequences in converting input data into bit-stream representation [30].

Here, we propose an algorithm to determine the order of bit selection by the FSM of

our bit-stream generator based on the distribution of numbers in the Sobol sequences.

An independent LD bit-stream is generated by setting up the FSM using a different

Sobol sequence. Note that this step is performed offline, and the structure of the FSM

will not change after implementation.

Algorithm 1 demonstrates the procedure. Each Sobol number from a Sobol

sequence determines one state of the FSM. Assume Sk is the kth number of the Sobol

sequence. If (2m−1 − 1)/2m−1 ≤ Sk < (2m − 1)/2m (where m = 1, 2, .., n), xn−m or the

33

Figure 4.2. First 16 numbers of two Sobol sequences and their corresponding selected
bits in a 4-bit data based on Algorithm 1.

Sobol Seq. 1 0 1/2 1/4 3/4 1/8 5/8 3/8 7/8 1/16 9/16 5/16 13/16 3/16 11/16 7/16 15/16

1/2 3/4
0𝒙𝟐 𝒙𝟏 𝒙𝟎

7/8
𝒙𝟑

0 15/16

𝟎

Sobol Seq. 2 0 1/2 3/4 1/4 5/8 1/8 3/8 7/8 15/16 7/16 3/16 11/16 5/16 13/16 9/16 1/16

Selected bit 𝒙𝟑 𝒙𝟐 𝒙𝟏 𝒙𝟑 𝒙𝟐 𝒙𝟑 𝒙𝟑 𝒙𝟎 𝒙𝟑 𝒙𝟑 𝒙𝟐 𝒙𝟑 𝒙𝟏 𝒙𝟐 𝒙𝟑𝟎

Selected bit 𝒙𝟑 𝒙𝟐 𝒙𝟑 𝒙𝟏 𝒙𝟑 𝒙𝟐 𝒙𝟑 𝒙𝟎 𝒙𝟑 𝒙𝟐 𝒙𝟑 𝒙𝟏 𝒙𝟑 𝒙𝟐 𝒙𝟑

(n−m)th bit of binary input X should be selected by the FSM. For example, if

1/2 ≤ Sk < 3/4, m is 2, and the (n− 2)th bit of the input data should be selected by

the FSM. Assume a 4-bit binary data is to be converted to a 16-bit LD bit-stream.

Figure 4.2 shows the first 16 numbers of two different Sobol sequences and their

corresponding selected bits (i.e., FSM states) based on Algorithm 1.

4.2 Evaluation

4.2.1 Accuracy

We evaluate the accuracy of the proposed bit-stream generator compared to the

state-of-the-art LD bit-stream generators (Sim’s design and comparator-based design)

and also to the conventional comparator-based non-LD (pseudo-random) generator by

exhaustively testing the multiplication of two 8-bit precision data. For the non-LD

generator, two different 16-bit LFSRs are used as the number sources. For Sim’s design,

a 256-state design of the FSM-based LD generator of [37] and a unary bit-stream

generator (built from a pair of 8-bit counter and comparator) are used as elaborated

in [37] to convert the two inputs. The comparator-based LD [24, 30] and the proposed

FSM-based generator use the first and the second Sobol sequences from the MATLAB

built-in Sobol sequence generator as their LD number sources. Table 4.1 compares the

34

mean absolute errors (MAEs) of these designs for different bit-stream lengths. We

multiply the measured MAE of each design by 100 and report it as a percentage.

Due to random fluctuations in pseudo-random bit-streams and correlation

between bit-streams, the non-LD design cannot provide comparable accuracy to LD

designs. The output bit-streams produced by the Sim’s design has a period of 28 cycles

and so their accuracy never improves after 28 cycles. Sim’s design achieves a higher

accuracy (i.e., a lower error rate) than the non-LD only when processing bit-streams of

28 (or multiples of 28) bits. Unary bit-streams suffer from truncation error [28]. Hence,

Sim’s design converts the second input to a unary bit-stream shows poor results when

truncating the bit-streams and processing bit-streams shorter than 28 bits (e.g., 27

bits). For small bit-stream lengths, both of the non-LD and the LD comparator-based

designs show a better performance than Sim’s design.

The authors in [30] proved that converting two n-bit precision numbers to two

22n-bit independent LD bit-streams leads to completely accurate multiplication results

when logical-ANDing the generated bit-streams. The comparator-based and the

proposed FSM-based LD designs implemented here both convert the input data into

independent LD bit-streams. Consequently, as reported in Table 4.1, both of these

designs are able to produce completely accurate results (zero error rate) when

processing for 216(=22×8) cycles. They also show low error rates when processing

shorter bit-streams. However, as we show in Section 4.2.2 , the proposed design has

significantly lower hardware cost for computation precisions not exceeding 12 bits. We

discuss that for more precise computations the proposed FSM-based design can be

35

integrated with the rotation technique of [17] for hardware efficiency.

4.2.2 Hardware Cost

4.2.2.1 Single Bit-stream Generator

The hardware cost of the comparator-based LD generator depends on the required

precision (bit-stream length) and is independent of the selected Sobol sequence. To

generate an LD bit-stream of 2n bit length, one n-bit Sobol sequence generator and one

n-bit binary comparator are needed. Different Sobol sequences are generated by

changing the values of direction vectors in the sequence generator [24]. The hardware

cost of the FSM-based generator, however, not only depends on the precision but also

depends on the selected LD pattern (i.e., selected Sobol sequence in Algorithm 1) [8].

This is because the structure of the FSM changes with a different bit-selection order.

Figure 4.3 compares the hardware area cost of the proposed FSM-based LD generator

for different precisions (n=4,8,12) and LD patterns (based on ten different Sobol

sequences). We synthesize the designs using the Synopsys Design Compiler v2018.06

with the 45nm FreePDK gate library [1]. As it can be seen, the proposed generator

provides on average 56, 55, and 51 percent hardware area saving for 4-, 8-, and 12-bit

precision bit-stream generation, respectively, compared to the comparator-based LD

generator.

36

Figure 4.3. Hardware area cost of the proposed LD bit-stream generator for different
precisions (4, 8, and 12 bits) and LD patterns (Sobol 1-10).

0
200
400
600
800
1000
1200
1400
1600
1800
2000

A
re
a

4-bit 8-bit 12-bit

(𝜇
𝑚
2
)

Table 4.2. Hardware area cost (µm2) of the bit-stream generators for processing different
numbers of inputs (i) and data precisions (n).

Design
n=4

i=2

n=4

i=3

n=4

i=4

n=8

i=2

n=8

i=3

n=8

i=4

Comparator-based LD (Limited) 366 627 888 1087 1944 2801

This work - FSM-based LD (Limited) 188 280 337 451 781 1026

Comparator-based LD (Full) [24, 30] 1005 3740 9127 3361 13193 32406

This work - FSM-based LD (Full) 300 746 Large Large Large Large

Comp-based LD + Rotation (Full) [30] 456 806 1156 1277 2324 3371

This work FSM LD + Rotation (Full) 353 609 864 751 1495 2149

4.2.2.2 Multiple Bit-stream Generators

The hardware area cost of the proposed bit-stream generator and the state-of-the-art

comparator-based LD generator [24, 30] are compared in Table 4.2 for implementing

stochastic multipliers with different number of inputs (i=2, 3, 4) and data precisions

(n=4, 8). We implemented three different designs for each case: one limited-precision

design that produces n-bit precision output (2n-bit output bit-stream) and two

full-precision designs that produce (i× n)-bit precision output (2i×n-bit output

37

bit-stream). The proposed bit-stream generator provides significantly lower hardware

cost for all limited-precision designs and also for the full-precision designs with at most

12-bit output precision. A weakness of the proposed generator is its high hardware cost

for output precisions exceeding 12 bits. This is because producing an (i× n)-bit

precision output requires implementing a separate 2i×n-state FSM for each input.

Although such high output precision (i.e., ≥ 12 bits) is rarely needed in today’s

common applications such as neural networks and image processing, we integrate our

design with the rotation method of [17] for high-precision bit-streams.

Figure 4.4 shows the structure of our generator integrated with the rotation

method. This integration allows to generate i 2i×n-bit bit-streams by using i 2n-state

FSMs (instead of i 2i×n-state FSMs). This significantly reduces the hardware cost at no

accuracy loss while producing full-precision output [28]. The rotation technique

guarantees a full-precision output by rotating the bit-streams by inhibiting or stalling

on powers of the stream lengths. The output of the first FSM repeats every 2n cycles

and does not rotate. Other FSMs (FSM #k=2,3,..,i) have a period of 2n but rotate

every 2(k−1)·n cycles by inhibiting. As reported in Table 4.2, compared to the

rotation-based design of the compared-based generator [30], our rotation-based design

provides a lower hardware cost in all cases.

According to Table 4.2, the proposed bit-stream generator provides up to 80%

saving in the hardware area cost. Considering the fact that for the same number of

processing cycles the proposed generator provides a better or the same level accuracy as

the comparator-based one (see Table 4.1), the proposed design achieves more than 80%

38

Figure 4.4. Integrating the FSM-based LD bit-stream generator and the rotation
method of [17] to generate i independent 2i×n-bit bit-streams.

MUX

GND

Bit-stream #1

MSBLSB

…

𝟐𝒏-state FSM
(based on Sobol #1)

𝒏-bit Counter
Full

CLK

Input

X
…

𝒙𝒏−𝟏𝒙𝟎

AND𝒏

MUX

GND

Bit-stream #2

MSBLSB

…

𝟐𝒏-state FSM
(based on Sobol #2)

…

Input

Y 𝒚𝒏−𝟏𝒚𝟎

Inhibit

CLK

𝒏𝒏

MUX

GND

Bit-stream #𝒊

MSBLSB

…

𝟐𝒏-state FSM
(based on Sobol #𝒊)

…

Input

Z 𝒛𝒏−𝟏𝒛𝟎

Inhibit

CLK

𝒏………..

𝒏-bit Counter
Full

AND𝒏

savings in the area-delay product.

4.2.2.3 Parallel Bit-stream Generator

Parallelization has been used to mitigate the long latency of SC at the cost of higher

hardware area and power consumption. Liu and Han [25] developed a hardware efficient

parallel Sobol sequence generator that can generate multiple Sobol numbers in each

clock cycle at the cost of some additional XOR gates. For an M× parallel

comparator-based LD bit-stream generator, an M× parallel Sobol generator and M

comparators are needed. This design reduces the number of processing cycles by a

factor of M by generating M LD bit-streams of length 2N/M in parallel [25]. A

reasonable increase in the hardware cost but M× reduction in the latency makes the

parallel design of the comparator-based LD generator an attractive alternative to the

non-parallel implementation.

We also develop a parallel design for the proposed bit-stream generator. In

39

Figure 4.5. An example of the FSMs for converting a 3-bit precision data to 8-bit LD
bit-stream: a) non-parallel with 8 states b) 2× parallel with 4 states c) 4× parallel with
2 states. Each state is processed in one clock cycle.

𝑺𝟎 𝑺𝟏

𝒙𝟐

𝑺𝟐 𝑺𝟑 𝑺𝟒 𝑺𝟓 𝑺𝟔 𝑺𝟕

𝒙𝟏 𝒙𝟎 𝒙𝟏 𝒙𝟐𝒙𝟐 𝒙𝟐 𝟎

(a)

𝑺𝟎 𝑺𝟏

𝒙𝟐

𝑺𝟐 𝑺𝟑

𝒙𝟏
𝒙𝟎
𝒙𝟐

𝒙𝟏 𝒙𝟐
𝒙𝟐 𝟎

(b)

Out 1:

Out 2:

𝑺𝟎 𝑺𝟏

𝒙𝟐
𝒙𝟏
𝒙𝟎
𝒙𝟐

𝒙𝟏

𝒙𝟐
𝒙𝟐

𝟎

(c)

Out 1:
Out 2:
Out 3:
Out 4:

contrast to the non-parallel design which has 2N states, the M× parallel design has

2N/M states. Each FSM state in the non-parallel design selects one bit of the input

data. Each state in the M× parallel design, however, selects at most M bits of the

binary input to generate M output bits in parallel. Figure 4.5 exemplifies the case of

converting a 3-bit data into an 8-bit LD bit-stream. Figure 4.5.a shows the FSM of the

non-parallel design. In this design, one input/output bit is selected/generated at any

cycle. Conversion with this design takes eight cycles. The FSM of the 2× parallel

design is shown in Figure 4.5.b. At each cycle, two output bits are generated, which

reduces the number of processing cycles from eight to four. Finally, the FSM of the 4×

design, shown in Figure 4.5.c, produces four output bits at any cycle, which reduces the

processing time to only two clock cycles.

Table 4.3 compares the hardware cost of the 2×, 4×, and 8× parallel

FSM-based LD generator (implemented based on the first five Sobol sequences from the

MATLAB Sobol sequence generator) and the state-of-the-art parallel comparator-based

LD generator [25] for the case of converting 8-bit data to 28-bit bit-stream. As it can be

seen, both the non-parallel (1×) and the parallel designs of the FSM-based generator

40

Table 4.3. Hardware Area (µm2) and Critical Path Latency (CP) (nS) of the
Comparator-based and the FSM-based LD Generator for the case of converting 8-bit
precision data

Parallel Design
1× 2× 4× 8×

Area CP Area CP Area CP Area CP

Comparator-based [25] 1013 0.45 1245 0.47 1658 0.47 2484 0.47

FSM-based (Sob.1) 246 0.37 266 0.35 267 0.34 250 0.30

FSM-based (Sob.2) 366 0.39 375 0.42 422 0.41 455 0.39

FSM-based (Sob.3) 526 0.42 504 0.43 512 0.40 485 0.39

FSM-based (Sob.4) 471 0.40 483 0.43 513 0.39 485 0.37

FSM-based (Sob.5) 526 0.42 479 0.41 483 0.41 487 0.39

provide significantly lower hardware cost than their corresponding comparator-based

design. The hardware cost saving provided by the FSM-based design increases when

increasing the level of parallelism. On average, the 2×, 4×, and 8× design of the

FSM-based generator achieves 66, 73, and 82 percent saving, respectively, compared to

the corresponding comparator-based generator.

An interesting property of the proposed FSM-based design is that a higher level

of parallelism can be achieved with no considerable increase in the hardware cost. In

some cases, the area is even reduced with more parallelism. For instance, the

non-parallel design of the FSM-based generator implemented based on Sobol sequence 1

takes an area footprint of 246 µm2 while its 2×, 4×, and 8× parallel designs cost 266

µm2, 267 µm2, and 250 µm2 area, respectively. This happens because by increasing the

level of parallelism 1) the number of states decreases and 2) the same input bit is

selected for more than one output bit (e.g., x2 in the FSM of Figure 4.5.c).

41

4.2.3 Fault-Tolerance

Fault tolerance is one of the attractive properties of SC designs [4, 34]. The processing

elements of SC systems inherently tolerate high rates of soft errors (i.e., bit flips) as

they process data in the stochastic domain. However, the bit-stream generators that

convert binary data to stochastic bit-streams are vulnerable to bit flips as they operate

in the binary domain. Here, we compare the fault tolerance of the proposed FSM-based

and the comparator-based generator of [24] when converting input data with different

precisions (n = 4, 8, and 12 bits) to LD bit-streams with corresponding lengths (24, 28,

and 212 bits). Soft errors are injected by flipping bits in the input and output bits of

different components of the bit-stream generator, including the storage array of the

Sobol generator for the comparator-based and the states of the FSM for the FSM-based

generator. Table 4.4 shows the results. Evidently, increasing the precision reduces the

error rate (improves fault tolerance) in both the proposed and the comparator-based

generators. This is because longer bit-streams are generated for higher precisions, and

longer bit-streams have a higher tolerance to bit flips [33, 22].

The proposed FSM-based generator shows a slightly lower tolerance to soft

errors compared to the comparator-based design. This is due to the high sensitivity of

FSMs to changing their state caused by bit-flips. As it can be seen in the reported

numbers of Table 4.4, the difference between the MAEs of the two LD generators

increases when increasing the fault injection rate. However, the hardware cost saving

provided by the proposed generator can be exploited to improve its tolerance to soft

error by using additional techniques of improving fault tolerance such as the N -modular

42

Table 4.4. MAE (%) Comparison of Different LD Bit-stream Generators when Injecting
Different Rates of Soft Error.

Injected Soft Error

LD Bit-Stream

Generator

Area

(µm2)

Input

Width
1% 2% 5% 10% 20% 30%

337 4 3.8 5.4 7.5 9.4 13.3 17.5

1013 8 1.1 1.6 3.0 5.3 10.2 15.1Comparator-based

2054 12 0.56 1.04 2.5 5.0 10.0 15.0

1179 4 0.18 0.68 3.0 6.0 9.6 14.0

3349 8 0.24 0.53 1.02 2.1 5.5 11.3
Comparator-based

+ 3-MR
6624 12 0.06 0.12 0.38 1.4 5.3 10.6

165 4 3.9 4.8 7.3 11.0 17.2 21.5

366 8 1.4 2.6 6.0 10.8 17.7 21.8Proposed FSM-based

742 12 1.3 2.5 6.0 10.8 17.7 21.7

587 4 0.11 0.42 2.1 4.9 9.9 16.0

1266 8 0.14 0.34 1.00 2.9 9.3 16.5
Proposed FSM-based

+ 3-MR
2377 12 0.05 0.18 0.95 3.5 11.3 18.2

1051 4 0.006 0.04 0.46 2.3 7.1 13.2

2252 8 0.005 0.04 0.33 1.1 5.6 13.4
Proposed FSM-based

+ 5-MR
4090 12 0.004 0.02 0.19 1.1 6.6 15.5

redundancy (N -MR) [18].

For the comparator-based design we evaluate a 3-MR design by implementing

three identical copies of the main components of the generator and using majority gates

to vote between them. For the FSM-based design we implement a 3-MR and a 5-MR

design. Table 4.4 compares the hardware area cost and the MAE of the implemented

generators for different noise injection rates. Clearly, implementing the N -MR

technique has improved the fault tolerance of the generators. For example, for the case

of injecting 1% soft error, the MAEs of the 5-MR implementations of the FSM-based

43

generator are all below 0.01%, which shows over three orders of magnitude reduction in

the error rate compared to the non-redundant implementation. The reported area

numbers show that the 5-MR design of the FSM-based generator has a lower hardware

cost than the 3-MR design of the comparator-based generator while achieving

significantly lower error rates for noise injection rates below 10%. For higher injection

rates, the comparator-based generator shows higher tolerance to noise.

The high hardware cost of the Sobol sequence generator in the comparator-based

design makes it difficult for the designer to exploit techniques such as N -MR to improve

soft error tolerance. However, supported by the area and MAE numbers reported in

Table 4.4, the low-cost advantage of the proposed LD generator allows us to use

additional techniques to improve the soft error tolerance of the bit-stream generator in

the SC system.

4.3 Case Study: Convolution Design

LD bit-streams has been recently used for accurate and energy-efficient design of

SC-based convolutional neural networks (CNNs) [13, 37, 19, 21, 36]. To further evaluate

the effectiveness of using the proposed bit-stream generator, we compare the cost of LD

bit-stream generation in SC design of convolution functions with different sizes of k × k

(k =3, 5, 7, 9, and 11). 8-bit precision data is converted from binary radix to LD

bit-streams and fed to the convolution design. In convolution, pairs of input data are

first multiplied, and then the results are accumulated. For a higher output accuracy,

the state-of-the-art SC convolution designs implement the multiplication operations in

the stochastic domain (using AND gates) but perform the accumulation in the binary

44

domain using binary adders [13, 21]. Since the accumulation is performed in the binary

domain, the outputs of the multiplication operations do not need to be independent.

This permits to reuse of two LD patterns to convert all input data to bit-stream

representation. We evaluate three LD bit-stream generation approaches:

A1. Comparator-based: Each input data is compared with a Sobol number

using a separate binary comparator. Two different Sobol sequences are needed to

provide the two required LD patterns. To minimize the cost of generating the two

Sobol sequences, the first sequence is generated by simply reversing the output bits of a

binary counter [30]. The second Sobol sequence is generated by implementing the Sobol

number generator described in [24]. So, the comparator-based approach consists of one

8-bit binary counter, one 8-bit Sobol generator, and k × k 8-bit comparators to convert

the input data.

A2. Proposed FSM-based: Each input data is connected to the main inputs

of a separate 9-to-1 MUX unit. Two 256-state FSMs, each implemented based on a

different Sobol sequence, are connected to the select input of the MUX units. The two

input data of each multiplication operation are connected to two separate MUX units,

while the select input of each MUX is fed with one of the two FSMs. So, the

FSM-based design consists of two 256-state FSMs and k × k 9-to-1 MUX units.

A3. Proposed FSM + One-Hot Encoder: We also implement a third

design to further reduce the cost of generating LD bit-streams for applications such as

the targeted convolution that a few FSMs (in our case, two) is reused in converting a

large number of inputs. In this approach, we need a separate pair of FSM and one-hot

45

Figure 4.6. The Probability Conversion Circuit (PCC).

Proposed FSM

AND

CLK

Bit-stream

MSBLSB

…

Input

X

…

AND

One-Hot
Encoder

OR

…

…

n

Log2(n)+1

PCC

𝒙𝒏-1𝒙𝟎

Figure 4.7. Converting a large number of inputs from binary to LD bit-stream repre-
sentation by sharing one one-hot encoder and one FSM.

Proposed FSM
CLK

Bit-stream #1One-Hot
Encoder

…

Input
#1

Log2(n)+1

…

Input
#2

Input
#n

Bit-stream #2

Bit-stream #n

…

…

…

…

PCC #2

PCC #1

PCC #n

encoder for each LD pattern. Converting each input also requires a Probability

Conversion Circuit (PCC) made of standard AND and OR gates. Figure 4.6 shows the

design of the PCC unit. PCC has a lower hardware cost than MUX. Hence, when

converting a large number of inputs, using PCCs instead of MUXs results in a

considerable hardware cost saving. Figure 4.7 shows the conversion circuit for

converting n input data by sharing one FSM and one one-hot encoder. For the targeted

convolution design, two 256-state FSMs (each implemented based on a different Sobol

sequence), two one-hot encoders, and k × k PCCs are needed.

46

Table 4.5. Synthesis Results of the Bit-stream Generators for the Implemented Convo-
lution designs

LD Bit-stream

Generator Method

Conv.

Size

Area

(µm2)

Critical Path

Latency (nS)

Power@Max

Freq. (mW)

Energy per

Cycle (pJ)

3×3 2060 0.47 2.91 1.37

5×5 4154 0.49 4.70 2.31

7×7 7405 0.5 7.27 3.63

9×9 9938 0.52 10.82 5.63

Comparator-based

11×11 14326 0.53 14.69 7.79

3×3 1455 0.42 1.73 0.73

5×5 2943 0.44 2.79 1.23

7×7 5175 0.46 4.22 1.94

9×9 8151 0.47 6.09 2.86

Proposed

FSM-based

11×11 11871 0.47 8.57 4.02

3×3 1183 0.42 1.69 0.71

5×5 2054 0.44 2.25 0.99

7×7 3400 0.46 3.22 1.48

9×9 5133 0.47 4.30 2.02

Proposed FSM +

One-Hot Encoder

11×11 7333 0.47 5.44 2.56

Note that we do not compare with Sim’s bit-stream generation approach of [37]

as it generates one LD and one unary bit-stream while here we need two independent

LD bit-streams. The described bit-stream generation approaches are implemented for

different convolution sizes of 3× 3, 5× 5, 7× 7, 9× 9, and 11× 11 using Verilog HDL

and synthesized using the Synopsys Design Compiler v2018.06-SP2 with the 45nm

FreePDK library [1]. The synthesis results are reported in Table 4.5. As can be seen,

the proposed FSM + one-hot encoder design provides the minimum bit-stream

generation cost by reducing the hardware area cost up to 54% compared to the

comparator-based design. Critical path latency and power consumption are also

47

reduced with this approach. Energy consumption is further decreased up to 67%

compared to the comparator-based design. This reduction in hardware cost is expected

to have a significant impact on the hardware efficiency of the SC-based CNNs such as

the ones developed in [21], [37], [19], and [13].

4.4 Conclusion

LD bit-streams have shown the best performance among all types of stochastic

bit-streams. The state-of-the-art LD bit-stream generators are costly and not efficient

for all SC designs. In this dissertation, we proposed a low-cost FSM-based LD

bit-stream generator for SC designs that need multiple independent bit-streams. The

proposed generator reduces the hardware cost up to 80% while generating accurate

bit-streams. The parallel design of our bit-stream generator provides on average 66

percent area saving for the 2× and 82 percent area saving for the 8× parallel

implementation compared to the state-of-the-art parallel LD bit-stream generator. We

showed that the area saving provided by the proposed generator can be exploited to

improve the fault-tolerance of the bit-stream generator, a vulnerable component in the

SC systems. For noise injection rates below 10 percent, the 5-MR design of the

proposed generator provides orders of magnitude reduction in the error rate at a lower

hardware cost than the 3-MR. By evaluating the overhead cost of bit-stream generation

for SC convolution design, significant area and energy consumption savings were

achieved by using the proposed bit-stream generator. A new design for further cost

reduction of the FSM-based LD bit-stream generator was also developed for the case of

generating a large number of bit-streams.

48

Chapter 5: In-Stream Correlation Manipulation for Low-Discrepancy
Stochastic Computing[9]

SC treats data as probabilities presented by streams of random bits. The value of an

SC bit-stream is determined by the ratio of 1’s in the bit-stream, i.e., a bit-stream with

P ones and length L represents P/L value. For example, 10011000 with P=3 and L=8

represents 3/8 in the stochastic domain. This unconventional method of representing

data leads to extremely simple computation circuits for complex arithmetic operations.

For example, multiplication operation can be realized by bit-wise ANDing stochastic

bit-streams [33]. But this simple method of multiplying data is accurate only if the

input bit-streams are statistically independent or uncorrelated. Bit-wise ANDing two

correlated bit-streams with high overlap between the position of 1’s in the bit-streams

gives the minimum of the two bit-streams and not their product. Correlation, hence,

plays an important role in correct functionality of SC circuits [20, 2, 32].

Stochastic operations such as minimum using bit-wise AND, maximum using

bit-wise OR, absolute difference using bit-wise XOR, and division [10] are examples of

operations that need positively correlated inputs. When there is no or minimum

overlap between the bit positions of 1’s in the bit-streams, the bit-streams are called

negatively correlated. For example, 101100 and 010011 are two negatively correlated

bit-streams. Saturating addition using bit-wise OR is an example of a stochastic

operation that needs negatively correlated inputs [20]. Operations such as

multiplication using bit-wise AND and scaled addition using multiplexer need

uncorrelated inputs. For example, 1010 and 1001 are two uncorrelated bit-streams both

49

Figure 5.1. Example of generating correlated and uncorrelated bit-streams. X and Y
bit-streams are correlated, and both uncorrelated with bit-stream Z due to using the
same and different RNGs in generating them.

Y = 0.5

RNG 1
CLK

Comp.
… 0 1 0 1 0 1 0 1

X = 0.5

Comp. … 0 1 0 1 0 1 0 1

RNG 2
CLK Comp. … 1 0 1 0 1 0 1 0

Z = 0.5

X bit-stream

Y bit-stream

Z bit-stream

representing 0.5 value. Bit-wise ANDing these two bit-streams gives 1000, the expected

value (0.25), from multiplying the two inputs.

The common approach for implementing a converter unit is by using a binary

comparator and a RNG. In each clock cycle, the input data in binary format is

compared with a random number from the RNG. A 1 is produced at the output of the

comparator if the random number is smaller than the input data. Correlation between

input bit-streams can be controlled at this stage when the bit-streams are generated.

Sharing the same RNG between different data conversion units results in generating

correlated bit-streams. Using different RNG, on the other hand, leads to generating

uncorrelated bit-streams. Figure 5.1 shows this using an example circuit.

Lee et al. [20] developed a novel synchronizer and desynchronizer circuit for

increasing positive and negative correlation, respectively, between two bit-streams.

Figure 5.2 depicts the synchronizer (correlator) circuit of [20] with depth size = 1.

50

Figure 5.2. Synchronizer circuit of [20] with depth = 1.

𝑺𝟏

X=0, Y=1

Out:

In:

X’=1, Y’=1

X=1, Y=0

Out:

In:

X’=0, Y’=0

X=1, Y=0

Out:

In:

X’=1, Y’=1

X=0, Y=1

Out:

In:

X’=0, Y’=0

𝑺𝟎

X==Y

Out:

In:

X’=X, Y’=Y

X=1, Y=0

Out:

In:

X’=1, Y’=0

𝑺𝟐

X==Y

Out:

In:

X’=X, Y’=Y

X=0, Y=1

Out:

In:

X’=0, Y’=1

Initial State

Pair Saved X Bit Pair Saved Y Bit

Save Unpaired X Bit Save Unpaired Y Bit

Figure 5.3. Decorrelator circuit of [20] with depth = 4.

Shuffle
Buffer

Shuffle
Buffer

X RNG0 Y RNG1

X’ Y’

D
FF

D
FF

D
FF

Input Output

= = =
RNG

0 1 2
en en en

M
U

X

0

1

2

3

Given two stochastic bit-streams X and Y , the synchronizer produces two bit-streams

that are more positively correlated. They also developed a novel decorrelator circuit

(Figure 5.3) to reduce correlation between two SC bit-streams. At each cycle, the

decorrelator circuit either passes the current input bit or stores it in a shuffle buffer and

emits a previously stored bit by scrambling the stored bits using an RNG. They use

these circuits to propose improved SC maximum, minimum, and saturating adder

designs. Wu and Miguel [39] also developed an in-stream correlation-based division and

square root circuit by introducing a skewed synchronizer.

This work proposes an improved correlator that can increase positive correlation

51

between stochastic bit-streams. We focus on positive correlation and leave negative

correlation for our future work, as positive correlation is more common and needed by

more SC operations. We further develop a decorrelator circuit that can make input

bit-streams uncorrelated with negligible impact on their value. An important advantage

of our proposed circuits is that the output bit-streams have LD distribution [8]. With

LD distribution, 1’s and 0’s are uniformly spaced. Random fluctuations are removed

from bit-streams, and the bit-streams converge to target values significantly faster than

the true- or pseudo-random bit-streams [24, 3]. This significantly improves the accuracy

and reduce the processing time of SC operations. In summary, the main contributions

of this work are as follows:

• A novel correlator and decorrelator circuit for in-stream correlation manipulation

of stochastic bit-streams with no significant impact on the data values.

• The proposed circuit’s output high-quality LD bit-streams irrespective of the

distribution of the input bit-streams.

• The proposed circuits can manipulate the correlation of any number of inputs.

• The accuracy, performance, and hardware cost are all improved compared to

those of the SoA correlation manipulation techniques.

• A FSM-based correlator circuit for SC division.

• Significant improvement in the accuracy and hardware cost of SC sorting and

median filtering circuits.

52

This chapter’s material has been published in [9]. The rest of the chapter is

organized as follows: Section 5.1 demonstrates the proposed LD correlator. Section 5.2

introduces our LD decorrelator. Section 5.3 discusses our correlator circuit for SC

division. Section 6.1 evaluates the accuracy and the hardware cost of the proposed

techniques. Section 5.5 evaluates the proposed techniques in two application case

studies. Finally, Section 6.2 concludes the work.

5.1 Proposed Low-Discrepancy Correlator

As we discussed, the common approach for generating correlated bit-streams is to use

the same RNG in the data conversion units when generating bit-streams. When

correlated bit-streams with LD distribution are desired the same Sobol [24] or

Halton [3] number generator can be shared between the data conversion units to

generate LD bit-streams that have maximum overlap between the bit positions of 1’s,

i.e., LD bit-streams with maximum positive correlation. But this approach is only

applicable to the input stage of the SC system where the input data are converted from

binary to bit-stream representation.

Consider a simple SC circuit, consisting of seven AND gates, that finds the

minimum value between eight input numbers (Figure 5.4).

The data are split into four pairs of two numbers, each pair connected to one

AND gate. Each AND gate finds the minimum of its two inputs. An advantage of the

common approach of generating correlated bit-streams is that because correlated input

bit-streams are directly generated, the output bit-streams from operations such as

minimum using AND or maximum using OR are also correlated and so can directly be fed

53

Figure 5.4. 8-input SC Minimum Circuit

AND

AND

AND

AND

AND

AND

AND

X1
X2

X3
X4

X5
X6

X7
X8

Minimum

to the next stages (if correlated bit-streams are needed) with no need for any

correlation manipulation. So, with this approach, the minimum of the four produced

output bit-streams are found by connecting them to three AND gates in two more stages

as shown in Figure 5.4. But the conventional approach can be used in this design

example when the inputs are in the binary format and we have control over bit-stream

generation.

The question is, what if the inputs to the SC system are already in the

bit-stream form and they are uncorrelated, or the correlation level is unknown. A

solution is to convert the bit-streams back to binary format and then re-generate them

by sharing the same RNG. But this approach costs a significant latency, area, and

power overhead. The in-stream synchronizer proposed in [20] can be used in such

designs to increase the positive correlation between input bit-streams with no need for

re-generating them. While the synchronizer can manipulate correlation at a lower cost

compared to the bit-stream re-generation method, it has two weaknesses: 1) it lacks the

advantage of the conventional approach; the output bit-streams from operations such as

minimum and maximum operation are not necessarily correlated. An additional

54

synchronizer is needed to make any two output bit-streams correlated. This will lead to

a significant correlation manipulation cost for SC systems with multiple stages of

computation. 2) the bit-streams produced by the synchronizer are random and so suffer

from random fluctuations [4]. Even in cases where the inputs to the synthesizer have

LD distribution, there is no guarantee that the synchronizer provides the same uniform

distribution in its output bit-streams.

Here we propose an in-stream correlator called CORLD-C that addresses the

weaknesses of the SoA synchronizer technique. Figure 5.5 shows our proposed

correlator with a FS of 2. The proposed correlator processes the input bit-stream in

segments of 2FS bits and converts the value of each segment into an LD bit-stream.

CORLD-C consists of two counters (an input-controlled counter and an independent

counter), a register, and a binary comparator. In the correlator of Figure 5.5, FS is 2,

indicating that the number of bits that can be taken in each segment is 4. The circuit

counts the number of 1’s in each 4-bit segment of the bit-stream, stores the value in a

register, and then restarts. While the top counter processes the next segment,

concurrently, the bottom part converts the counted segment to bit-stream using of the

bottom counter and comparator. A counter is a Sobol sequence generator if reversing

its output bits [24]. So the output bits of the bottom counter are connected to the

comparator in reverse order to compare the value stored in the register with a new

Sobol number in each cycle. The comparator produces one bit of the final bit-stream in

each cycle. Since there are at most 4 ones in each 4-bit segment, the proposed circuit

should be able to count from 0 to 4 and then restart. Therefore, when the bottom

55

Figure 5.5. Proposed Correlator (CORLD-C) with FS=2

MSB

Enable

0110
0 1 0

(N+1=3-bit)
Counter

1010

0 1 0

CLK

(N=2-bit)
Counter

(N+1=3-bit) Register

MSB
LSB

LSB

0CN=0

. . .

. . .

. . .

Reset

counter reaches its first state (CN=0), an Enable signal is set to copy the value of the

top counter into the register, and then the top counter restarts. It should be noted that

both Enable and Reset signals are clock edge sensitive; Enable is sensitive to the

positive edge, and Reset changes with the negative edge of the clock signal. The output

bit-streams produced by the proposed correlator are all LD and correlated as they are

all manipulated based on the same Sobol sequence.

5.2 Proposed Low-Discrepancy Decorrelator

Conventionally, different RNG are used in the data conversion units to generate

uncorrelated (independent) stochastic bit-streams. By comparing the input data with

Sobol numbers from different Sobol sequences, the data can be converted to

independent LD bit-streams [24, 7]. But similar to the discussion on correlation, this

method can only be used and is efficient if we have control over the data conversion

units. If the input bit-streams are already generated, e.g., they are the outputs from

other stochastic circuits, and our SC system requires uncorrelated input bit-streams,

in-stream decorrelator circuits are needed to minimize correlation between input

56

Figure 5.6. Proposed Decorrelator (CORLD-D) with FS=2

MSB

Enable

0110
0 1 0

(N+1=3-bit) Counter

1010

0 1 0

CLK

(N=2-bit)
Counter

(N+1=3-bit) Register

MSB
LSB

LSB

0CN=0

. . .

. . .

. . .

Reset

MSB

Enable

1011
0 1 1

(N+1=3-bit) Counter

1110

0 1 1

CLK

(N=2-bit)
Counter

(N+1=3-bit) Register

MSB
LSB

LSB

0

. . .

. . .
. . .

Reset

Stall

bit-streams and guarantee correct functionality of the system.

Figure 5.6 shows our proposed in-stream decorrelator, CORLD-D, with FS = 2.

The proposed circuit consists of binary counters, registers, and comparators, and is

capable of converting two bit-streams, whether they are correlated or not, into two

independent LD bit-streams. The input bit-streams are segmented into sub-parts of 2FS

bits and processed by the decorrelator circuit to produce independent bit-streams. The

first bit-stream is manipulated using the same approach utilized in CORLD-C. The

second bit-stream is manipulated using a similar approach, but with this difference that

the bottom counter, which is connected to the comparator, is halted for one clock cycle

after each round of counting the bits. This is inspired by the rotation technique of [28].

57

Figure 5.7. CORDIV SC Division Circuit [10]

MUX

DFF

. . .

. . .

1010

1011

X

Y

Output
Bit-Stream

0

1

5.3 Correlation and SC Division

Before evaluating the proposed correlator and decorrelator, we discuss the SoA

correlation-based SC division circuits, CORDIV [10] and ISCBDIV [39], and propose a

correlator circuit to improve the performance of the CORDIV design.

Chen and Hayes developed a novel SC division circuit, called CORDIV [10], that

exploits the correlation between input bit-streams to realize division operation. The

architecture of CORDIV is shown in Figure 5.7. The result of X/Y falls outside [0,1] –

the accepted range of numbers in SC – if X > Y . So for the SC division circuit, it is

assumed that the divisor Y is greater than the dividend X. CORDIV requires that the

X and Y bit-streams are positively correlated. Our simulations show that the MAE

rate of the division operation when connecting two 28-bit correlated LD bit-streams

(generated by sharing the simplest Sobol sequence as the source of the random number

in the data conversion unit) to CORDIV is no less than 2.79% (see the last column of

Table 5.1).

A weakness of CORDIV is that it needs an expensive organization to regenerate

58

bit-streams to guarantee correlation between them [10]. Inspired by CORDIV, Wu and

Miguel developed an in-stream correlation-based division technique called

ISCBDIV [39]. Figure 5.8 shows the architecture of ISCBDIV. ISCBDIV uses a skewed

synchronizer (SS) to correlate the input bit-streams for the CORDIV kernel. Two

bit-streams are fed into the SS unit regardless of their correlation. The SS unit

leverages the assumption that the divisor is larger than the dividend, and reorders the

dividend bit-stream based on the divisor. The 1’s in the dividend bit-stream are

recorded when the divisor bit is 0, and then the saved 1’s are paired with the upcoming

1’s in the divisor bit-stream. The D-Flip Flop of CORDIV is replaced with a 2-bit shift

register (SR). Some extra logic gates are also used to generate a single-bit random

number (RN) which is connected to the select input of the multiplexer (MUX). The

MAE rates of ISCBDIV are reported in Table 5.1.

In this section, we propose an FSM-based correlator that improves the accuracy

of the SC division when the bit-streams are connected to the CORDIV circuit. The

proposed correlator receives data in binary format and generates correlated bit-streams.

At the cost of a down-counter and an AND gate, and by using the SoA FSM-based LD

bit-stream generator [8], an LD bit-stream (divisor) correlated with another LD

bit-stream (dividend) is generated. The proposed correlator is shown in Figure 5.9. A

similar assumption here is that X < Y . The MAE rates of the proposed FSM-based

correlator when connected to CORDIV are reported in Table 5.1. As can be seen, the

proposed correlator achieves the minimum MAE rate among the SoA SC division

techniques.

59

Figure 5.8. ISCBDIV SC Division Circuit[39]

MUX

SR

Dividend

Divisor

Quotient

0

1

SS

RN

M
U
X

𝑺𝟏𝑺𝟎

X=0, Y=1
Out:

In:
X’=1, Y’=1

X=1, Y=0
Out:

In:
X’=0, Y’=0

X==Y
Out:

In:
X’=X, Y’=Y

X=1, Y=0
Out:

In:
X’=1, Y’=0

Initial State

Pair Saved Bit X

Save Unpaired Bit X

X=0, Y=1
Out:

In:
X’=0, Y’=1

X==Y
Out:

In:
X’=X, Y’=Y

X

Y

X’

Y’

Figure 5.9. (left) Proposed FSM-based correlator for SC division (right) An example
for n=3.

Input

X (𝒏-bit) Down
Counter Zero

Bit-stream
#2

AND

Input

Y
MUX

GND

Bit-stream
#1

MSB

LSB𝒙𝟎

… …

CLK

𝒏-state
FSM CLK

LD Bit-stream
Generator

10100000

X=0.25

(3-bit) Down
Counter

Zero

Y=0.5

CLK

8-bit FSM-based
Bit-stream
Generator CLK

10101010

3-bit

3-bit

AND

𝒙𝒏-1

60

5.4 Evaluation

In this section, we evaluate the accuracy and the hardware cost of the proposed

correlator and decorrelator circuit compared to the SoA correlation manipulation

techniques.

5.4.1 Accuracy Comparison

5.4.1.1 Correlator

The proposed correlator is evaluated and compared with the SoA synchronizer

technique [20] for minimum (bit-wise AND), maximum (bit-wise OR), and absolute

difference (bit-wise XOR) function. All these functions require correlated input

bit-streams for correct functionality. As the input, we first use two uncorrelated LD

bit-streams with different lengths of 2N bits where N is the input bit-width = 6, 7, and

8. MAE rates between the expected and the produced results are provided in Table 5.1

for different FS ranging from 2 to 5 for the proposed correlator, and different depths

ranging from 1 to 5 for the synchronizer technique.

The correlation between two bit-streams X and Y is quantified using the SC

Correlation (SCC) as defined in [2]:

SCC(X, Y) =

ad− bc

N ×min(a+ b, a+ c)− (a+ b)(a+ c))
ad > bc

ad− bc
(a+ b)(a+ c)−N ×max(a− d, 0)

else

In this formula, a is the number of bit positions where both bit-streams (X and Y) are

61

Table 5.1. Accuracy Evaluation of the Proposed Correlator with LD Input Bit-streams
of 2N bits (N=Input Width).

Input

Width

Input

SCC
Method

Depth

/FS

Output

SCC

Minimum

Function

MAE (%)

Maximum

Function

MAE (%)

ABS-Diff

Function

MAE (%)

Division

Function

MAE (%)

Division

Method

MAE

(%)

CORDIV MAE (%)

Correlated Sobol 1

Based Inputs

6 1.58

Synchronizer [20]

1 99.48 0.1 1.37 1.47 7.13
Proposed

FSM-based

Correlator

+ CORDIV

0.95

2.82

2 99.97 0 2.83 2.83 9.25

3 99.97 0 4.31 4.31 11.36

4 99.97 0 5.74 5.74 13.43

5 99.97 0 7.11 7.11 15.41

CORLD-C

2 93.59 0.51 0.51 1.03 3.39

ISCBDIV

(SS Depth=FS)

3.15

3 98.29 0.12 0.12 0.24 2.84 3.1

4 99.65 0.02 0.02 0.04 2.82 2.98

5 100 0 0 0 2.82 2.96

7 1.73

Synchronizer [20]

1 99.63 0.08 0.62 0.72 5.93
Proposed

FSM-based

Correlator

+ CORDIV

0.52

2.8

2 99.99 ∼0 1.35 1.35 7.06

3 99.99 0 2.12 2.12 8.18

4 99.99 0 2.87 2.87 9.31

5 99.99 0 3.6 3.6 10.42

CORLD-C

2 93.71 0.52 0.52 1.04 3.47

ISCBDIV

(SS Depth=FS)

2.46

3 98.30 0.13 0.13 0.26 2.84 2.28

4 99.56 0.03 0.03 0.06 2.77 2.23

5 99.90 ∼0 ∼0 0.01 2.77 2.2

8 0.5

Synchronizer [20]

1 99.58 0.08 0.31 0.41 5.68
Proposed

FSM-based

Correlator

+ CORDIV

0.25

2.79

2 99.997 ∼0 0.64 0.64 6.25

3 100 0 1.02 1.02 6.83

4 100 0 1.41 1.41 7.42

5 100 0 1.79 1.79 8.01

CORLD-C

2 93.42 0.51 0.51 1.04 3.56

ISCBDIV

(SS Depth=FS)

1.97

3 98.31 0.12 0.12 0.26 2.87 1.67

4 99.63 0.03 0.03 0.06 2.76 1.64

5 99.92 ∼0 ∼0 0.01 2.76 1.63

62

1, b is the number of bit positions where X is 1 and Y is 0, c is the number of bit

positions where X is 0 and Y is 1, and d is the number of bit positions where both

bit-streams are 0. A SCC equal to 0 means the bit-streams are completely uncorrelated.

SCC values close to +1 or -1 show high positive or negative correlation, respectively. A

positive correlation of +1 means that there is a maximal correlation between the two

bit-streams. Notice that because the SCC values are small numbers, the numbers we

report in the tables are SCCs multiplied by 100.

The MAE of the minimum, maximum, and absolute difference functions is zero

when their input bit-streams are positively correlated, i.e. SCC = 1.0 (100.0 when

multiplying SCC by 100). As the results presented in Table 5.1 suggest, the SCC value

could be deceptive where some number of 1’s are removed from the input bit-stream by

the correlation manipulation technique. This is especially the case with the maximum

value function. When depth increases in the synchronizer technique, the MAE of the

maximum function increases due to the number of 1’s stuck in the FSM states in the

final cycles. This similarly affects the absolute difference function since the bias

(defined as the deviation from the original value [20]) of the larger bit-stream increases

as depth increases. With our proposed correlator, although in some cases the output

SCC is less than that of the synchronizer, the bias of both input bit-streams is zero,

resulting in accurate minimum, maximum, and absolute difference functions.

We further evaluate the performance of the proposed correlator when inputs are

pseudo-random bit-streams. Maximal period LFSR are used to generate

pseudo-random bit-streams corresponding to each input bit-width. The SCC values and

63

Table 5.2. Accuracy Evaluation of the Proposed Correlator and Decorrelator when
Inputs are 28-bit Outputs from SC Multiplication

Synchronizer [20] CORLD-C Decorrelator [20] CORLD-D

Input Type
Input

SCC

Multiplication.

Function

MAE (%)

Depth/

FS

Output

SCC

Min.

Func.

MAE (%)

Max.

Func.

MAE (%)

Output

SCC

Min. or Max.

Func.s

MAE (%)

Output

SCC

Multiplication.

Function

MAE (%)

Output

SCC

Multiplication.

Function

MAE (%)

Sobol based

1&2 and 1&2
80.29 18.96

1 99.82 0.04 0.38 N/A N/A N/A N/A N/A N/A

2 100 0.003 0.74 96 0.63 24.17 2.63 4.87 1.48

3 100 ∼0 1.11 98.74 0.23 14.28 1.7 2.3 0.84

4 100 0 1.51 99.58 0.07 9.29 2.15 1.23 0.61

5 100 0 1.88 99.86 0.02 10.55 1.47 0.78 0.35

Sobol based

1&2 and 3&4
1.27 20.08

1 98.2 0.37 0.54 N/A N/A N/A N/A N/A N/A

2 99.92 0.025 0.64 90.7 1.4 0.51 0.87 1.46 1.05

3 99.99 0.005 1.03 97.48 0.44 3.95 1 0.78 0.69

4 100 ∼0 1.4 99.27 0.13 2.72 0.87 0.51 0.53

5 100 0 1.78 99.67 0.05 5.21 1.02 0.38 0.43

the MAE rates for the minimum and maximum functions are reported in Table 5.3. As

it can be seen, similar to the case with LD bit-streams, the synchronizer faces an

increase in the MAE rates when the maximum function is applied on pseudo-random

bit-streams and depth increases. The performance of CORLD-C, on the other hand,

improves (MAE decreases) as FS increases.

Multiplication (using AND) is another common SC operation. As a different type

of input, we evaluate the performance of CORLD-C in a common case that the inputs

to the correlator are the outputs from some SC multiplication operations. The SoA

work uses LD Sobol-based input bit-streams for accurate multiplication [4, 28]. The

output bit-streams however are random and do not follow LD distribution. Table 5.2

reports the input and output SCC, and the MAE rates of the minimum and maximum

functions for the case that the inputs to the correlator are the outputs of bit-wise

64

Table 5.3. Accuracy Evaluation of the Proposed Correlator (CORLD-C) with Pseudo-
random Input Bit-streams.

Input

Width

Input

SCC
Method

Depth

/FS

Output

SCC

Minimum

Function

MAE (%)

Maximum

Function

MAE (%)

6 2.35

Synchronizer [20]

1 88.35 1.73 1.77

2 98.74 0.28 2.54

3 99.65 0.07 3.91

4 99.92 0.02 5.34

5 99.97 0.005 6.77

CORLD-C

2 43.81 4.67 4.67

3 79.37 2.39 2.39

4 96.68 0.55 0.55

5 99.68 0.05 0.05

7 1.81

Synchronizer [20]

1 77.04 2.70 2.47

2 92.27 1.10 1.53

3 97.26 0.48 2.03

4 98.88 0.25 2.72

5 99.56 0.14 3.48

CORLD-C

2 46.65 4.90 4.90

3 58.41 3.97 3.97

4 81.02 2.05 2.05

5 91.35 1.09 1.09

8 1.63

Synchronizer [20]

1 79.18 2.52 2.32

2 94.27 0.95 1.08

3 98.11 0.4 1.02

4 99.33 0.2 1.28

5 99.73 0.11 1.63

CORLD-C

2 46.39 4.74 4.74

3 69.77 3.14 3.14

4 85.20 1.64 1.64

5 95.57 0.5 0.5

65

ANDing two pairs of 256-bit LD bit-streams generated by using MATLAB built-in Sobol

1 and Sobol 2 sequences. We also evaluate a case that one pair of the inputs is

generated using Sobol 3 and Sobol 4 sequences. As reported in Table 5.2, CORLD-C

provides accurate outputs for both minimum and maximum functions and its MAE

rates decrease by increasing FS.

5.4.1.2 Decorrelator

We evaluate the accuracy of the proposed decorrelator (CORLD-D) compared to the

decorrelator design of [20] when connecting correlated pseudo-random and LD

bit-streams of 2N -bit length (N=6, 7, 8) to the inputs of the decorrelator circuit. The

accuracy evaluation results are shown in Table 5.4. An Input SCC of 100 means that

the input bit-streams are completely correlated. A lower Output SCC (closer to 0)

means a better independence between output bit-streams. We evaluate the quality of

the output bit-streams by measuring the MAE rate of performing SC multiplication

(bit-wise AND) on the produced bit-streams. The reported MAE is the mean of the

measured error rates when multiplying all possible pairs of input values (e.g., 256 × 256

combinations for 8-bit input width).

Note that using different random number sequences (e.g., different Sobol

sequences) in generating the input bit-streams can result in different MAEs. Hence, in

our evaluation, we selected different pairs of Sobol sequences from a large set of more

than 1,100 Sobol sequences to generate LD bit-streams. The reported MAEs in

Table 5.4 are the averages of the measured values. The last column of Table 5.4 reports

66

the MAE rate of multiplying two numbers represented by two independent Sobol-based

bit-streams as a standard for our comparison. Notice that for 0 percent error,

bit-streams of 22N -bit length must be processed [28][6] but here we process 2N -bit

bit-streams to have the same precision for both input and output.

As can be seen in Table 5.4, CORLD-D achieves comparable accuracy compared

to the independent LD Sobol-based bit-streams for different input widths. In most

cases, our decorrelator performs better than the decorrelator design of [20] for both LD

and pseudo-random bit-streams.

We further evaluated CORLD-D for the case that the inputs are outputs

bit-streams from multiplication operation. The output SCC and the MAE rates of the

multiplication function are reported in Table 5.2. We can see that in most cases

CORLD-D provides a lower output SCC and MAE compared to the SoA

decorrelator [20].

5.4.2 Cost Comparison

The hardware cost of the proposed correlator and decorrelator is compared with the

SoA designs in Table 5.5 and Table 5.6. We synthesized the designs using the Synopsys

Design Compiler v2018.06 with the 45nm FreePDK gate library [1]. The proposed

designs consist of two parts: a static part which is independent of the number of input

bit-streams, and so its area is fixed, and a part that its area depends on and increases

with the number of inputs. The synchronizer and decorrelator design of [20] have

different structures. The minimum depth for the decorrelator is 2 while it is 1 for the

67

Table 5.4. Accuracy Evaluation of the Proposed Decorrelator (CORLD-D) for Pseudo-
random and LD Bit-streams of 2Nbit.

Pseudo-random Bit-streams LD Bit-streams

Input

Width

Input

SCC
Method

Depth/

Fixer

Size

Output

SCC
MAE (%)

Output

SCC
MAE (%)

MAE (%)

Independent

Sobol-based

Bit-streams

6 100

Decorrelator [20]

2 64.54 3.83 42.43 2.59

0.65

3 59.46 4.19 30.75 2.31

4 63.98 4.30 25.08 2.68

5 57.19 4.86 33.04 2.67

CORLD-D

2 52.28 3.90 9.92 1.24

3 22.39 2.77 1.79 0.90

4 8.84 2.33 -2.19 0.79

5 25.96 3.09 -11.94 1.84

7 100

Decorrelator [20]

2 67.13 4.35 39.25 2.36

0.36

3 56.12 3.48 29.33 1.85

4 56.81 3.32 24.87 2.64

5 46.23 2.52 23.39 1.66

CORLD-D

2 59.55 4.07 12.66 0.87

3 49.85 3.12 2.89 0.64

4 29.8 2 -0.25 0.47

5 32.63 1.7 -2.21 0.57

8 100

Decorrelator [20]

2 67.67 4.54 39.32 2.49

0.19

3 54.70 3.46 22.76 1.48

4 52.18 3.17 24.36 2.52

5 42.49 2.51 21.21 1.25

CORLD-D

2 49.14 3.53 13.98 0.69

3 35.1 2.25 3.86 0.4

4 32.62 1.81 0.45 0.3

5 5.44 0.98 -0.49 0.25

68

synchronizer. The hardware area of the decorrelator varies by the input width as the

size of the RNG depends on the number of bits in the input bit-streams. Although the

hardware cost of the synchronizer is less than that of CORLD-C, the total cost of using

the synchronizer technique depends on the number of input bit-streams. At each stage,

new synchronizers are needed as the synchronizer circuit only makes two bit-streams

correlated with respect to each other.

Therefore, correlating a large number of bit-streams in an SC system with

multiple stages of computations needs many synchronizers. We will show this in

Section 5.5 with two applications of correlated bit-streams, SC design of sorting, and

median filtering. Our correlator, on the other hand, is able to correlate all bit-streams

by manipulating each one only once. This leads to a significant hardware cost saving

compared to the synchronizer technique. The proposed decorrelator is also

advantageous from the hardware cost point of view. The hardware cost of the

decorrelator design of [20] depends on the area of the SSG which is more than that of

other types of RNG. However, selecting SSG as the RNG significantly improves the

accuracy.

5.5 Case Studies

In this section, we evaluate the performance and the hardware cost of the proposed

correlator in the SC design of the sorting and median filtering circuits which include

both minimum and maximum operations. These circuits consist of multiple stages of

computations requiring correlated bit-streams for correct functionality.

69

Table 5.5. Hardware area (µm2) of the proposed CORLD-C and CORLD-D for different
FSs

Static

Area

of Input

Dependent Area

Total Area

For 1 Input

Total Area

For 2 Inputs

FS -C -D -C -D -C -D -C -D

2 45 83 170 215 253 386 424

3 67 129 238 306 367 544 605

4 90 175 298 389 474 687 772

5 112 220 354 467 574 822 929

Table 5.6. Hardware area (µm2) of the synchronizer and decorrelator circuit of [20] for
different depths

Depth Decorrelator [20] Synchronizer [20]

1 N/A N/A N/A 107

2 1225 1589 1969 166

3 1288 1652 2033 168

4 1357 1721 2101 237

5 1393 1757 2137 241

SSG Area 569 751 941

Input Width 6-bit 7-bit 8-bit

Figure 5.10. Schematic representation of a CAS block (a) Ascending order, (b) De-
scending order

X

Y

Max(X,Y)

Min(X,Y)

X

Y

Min(X,Y)

Max(X,Y)

(a) (b)

Figure 5.11. 4-input Sorting Network

3

3

5

3

8

1
X1

X2

X3

X4

S1

S2
S3

S4

5 1

8

1

8

5

1

3

5

8

70

5.5.1 Sorting

A sorting network is a combination of some compare-and-swap (CAS) blocks that sorts

a set of input data [32]. A CAS block comprises a minimum and a maximum operation

in ascending or descending order, as shown in Figure 5.10. A 4-input sorting network

made of 6 CAS blocks is shown in Figure 5.11. A low-cost SC design for hardware

implementation of sorting networks is proposed in [32]. In this design, each CAS block

is implemented using one AND (for minimum operation) and one OR (for maximum

operation) gate. For correct and accurate functionality, the input bit-streams to the

CAS blocks must be correlated. Connecting uncorrelated bit-streams to the SC sorting

circuit and so CAS blocks, results in inaccurate and wrong output data. Correlator

circuits are therefore needed to manipulate and guarantee correlation between

bit-streams.

The overhead cost of using the synchronizer technique [20] depends on, and

significantly increases with, the number of CAS blocks. This is because the output

bit-streams from different CAS blocks are not necessarily correlated when using this

technique. Therefore, each pair of inputs to a CAS block in each stage of computations

needs a separate synchronizer. On the other hand, our proposed CORLD-C needs to

correlate the input bit-streams only once, in the first stage of computations, where the

input bit-streams arrive.

Table 5.7 shows the MAE rates of an 8-input and a 16-input SC sorting

system [32] processing data received in the form of independent LD bit-streams. The

MAEs are reported for two different approaches for manipulating correlation: 1) using

71

Table 5.7. Accuracy Evaluation of the Stochastic Sorting System with the Proposed
and SoA Correlator Technique when Sorting 256-bit independent LD input bit-streams

Synchronizer [20] CORLD-C

Depth/

FS

8 inputs

MAE (%)

16 Inputs

MAE (%)

8 Inputs

MAE (%)

16 Inputs

MAE (%)

1 1.05 2.19 N/A N/A

2 2.06 3.74 2.25 3.11

3 3.18 5.41 0.69 1.10

4 4.29 7.09 0.16 0.32

5 5.38 8.75 0.03 0.07

the SoA synchronizer with different depths 2) using the proposed CORLD-C with

different FS. As can be seen in the reported numbers, the proposed technique

outperforms the SoA technique, particularly when FS increases. Increasing depth in the

synchronizer technique increases the MAE rates mainly due to the weak performance of

the synchronizer technique in performing the maximum operation. Table 5.8 compares

the number of needed correlator units and the hardware cost of the implemented

designs. As it can be seen, the hardware area saving provided by CORLD-C increases

significantly when the number of inputs increases. For example, for the 256-input SC

sorting system, CORLD-C with FS=2 reduces the hardware area cost by more than

17× compared to the synchronizer technique with Depth=2.

5.5.2 Median Filtering

A median filter is a nonlinear filter which removes impulse noises from images and

videos by replacing each pixel value by the median of all pixel values in the local

neighborhood. Figure 5.12 shows the structure of a 3×3 median filter circuit made of

72

Table 5.8. Hardware Cost (µm2) Comparison of the SC Sorting and Median Filtering
System with different number of inputs utilizing proposed CORLD-C and SoA synchro-
nizer (# of Cor.: # of correlator needed for the design.)

Synchronizer [20] CORLD-C

of

Inputs

of

CAS

of

Cor.

Area

Depth=1

Area

Depth=2

of

Cor.

Area

FS=2

Area

FS=3

8 24 24 2,580 3,998 8 1,408 1,974

Sorting

16 80 80 8,600 13,328 16 2,771 4,850

32 240 240 25,800 39,984 32 5,498 7,696

64 672 672 72,240 111,955 64 10,951 15,325

128 1,792 1,792 192,640 298,547 128 21,856 30,582

256 4,608 4,608 495,360 767,693 256 43,667 61,098

9 (3× 3) 19 19 2,043 3,165 9 1,579 2,213 Median

Filter25 (5× 5) 246 246 26,445 40,984 25 4,305 6,027

Figure 5.12. 3× 3 median filter using 19 CAS blocks [32]

X1

X2

X3

X4

X5

X6

X7

X8

X9

Median

73

Table 5.9. Accuracy Evaluation of SC Median Filtering System with 256-bit indepen-
dent LD input bit-streams

Synchronizer [20] CORLD-C

Depth/

FS

9 (3× 3) inputs

MAE (%)

25 (5× 5) Inputs

MAE (%)

9 inputs

MAE (%)

25 Inputs

MAE (%)

1 1.09 4.07 N/A N/A

2 2.05 8.92 2.52 3.61

3 3.25 13.68 0.8 1.36

4 4.43 18.38 0.2 0.44

5 5.59 22.9 0.04 0.11

19 CAS blocks. The design of a 5×5 median filtering circuit can be found in [32]. For

correct functionality, similar to the SC sorting system, the CAS blocks need correlated

inputs. Correlation manipulation units are therefore needed to guarantee correlation

between the inputs of the CAS blocks. The hardware cost and the accuracy of the SC

median filtering circuit implemented with different correlation manipulation approaches

are reported in Table 5.8 and Table 5.9. As shown, CORLD-C achieves significantly

lower MAE rates with considerable savings in the hardware area cost.

5.6 Conclusion

In this dissertation, we proposed two in-stream correlator (CORLD-C) and decorrelator

(CORLD-D) techniques to increase and decrease the correlation between SC

bit-streams. The proposed techniques produce high-quality LD bit-streams with no

impact on the data values. The accuracy, performance, and hardware cost are all

improved compared to the SoA correlation manipulation techniques. We further

proposed an FSM-based correlator that improves the accuracy of the SoA SC division

circuit. Evaluating the proposed techniques in the SC design of the sorting and median

filtering circuits showed a significant reduction in the MAE rates and hardware area

74

cost. The synthesizable Verilog HDL codes of this work, including the proposed

correlator and decorrelator circuits, are made publicly available at

https://github.com/asadisina/CORLD.

75

Chapter 6: ECO: Enhanced In-Stream Correlation Manipulation for
Low-Discrepancy Stochastic Computing

An important part of a stochastic system is the data conversion unit that converts the

input data from positional binary to bit-stream representation. The common approach

for implementing this unit is by using a binary comparator and a RNG. In each clock

cycle, the input data in binary format is compared with a random number from the

RNG. If the random number is smaller than the input data, a 1 is yielded at the output

of the comparator. Correlation between input bit-streams can be controlled at this

stage when the bit-streams are generated. Sharing the same RNG between different

data conversion units results in generating correlated bit-streams. Using different RNG,

on the other hand, leads to generating uncorrelated bit-streams. Fig. 5.1 shows this

using an example circuit.

While this method is common for controlling correlation between the inputs of

the stochastic system at the first stage of computations, it cannot be used in the next

stages of the system as the data are already in the bit-stream form. A naive method for

manipulating correlation in the intermediate stages is to convert the bit-streams back

to the positional binary format and then re-generate them with the desired correlation.

This is shown in the top branch of Fig. 6.1. But this approach incurs significant area

and power overheads. Meanwhile, developing low-cost correlation manipulation circuits

for in-stream (i.e., without re-generating bit-streams) managing of correlation between

bit-streams is in high demand.

The previous chapter covers the background studies of the proposed methods

76

Figure 6.1. Correlation manipulation of a stochastic bit-stream by 1) bit-stream regen-
eration (in top branch) and 2) in-stream manipulation with proposed method consisting
of ECO and CORLD techniques (in bottom branch).

Stochastic
to Binary
Converter

10…01

n
Binary to
Stochastic
Converter 1010. . .

CORLD

. . .

Stream of bits

2n Counter Full

En

Stream of bits
1100

2n 2n

ECO

and also the new approach, COLRD. The CORLD technique successfully manipulates

the correlation of different types of input bit-streams. Particularly, CORLD works very

well when stochastic system inputs are LD bit-streams. However, pseudo-random-based

bit-streams are still being used in SC. We observed that their correlation level

negatively affects the performance of the system when using CORLD. Due to the fact

that either CORLD design or correlation manipulation method [20] changes the bits

pattern, the prior CORLD approach needs to be improved. By assessing the behavior

of such bit-streams, we realized that the distribution of bits is not consistent in different

fixed-size segments. Fig. 6.2 shows parts of an arbitrary pseudo random-based

bit-stream with two 4-bit segment size. The number of 1s in the first segment is 3, and

in the next segment is 1. This deviation results in higher error rates either for positively

correlated input-based functions such as Minimum and Maximum functions or

decorrelated input-based operations such as multiplication.

The proposed ECORLD is a combination of the prior CORLD and the

77

enhancing technique to balance the probability of visiting 1 in each segment. The

proposed enhancer module stores the first segment and compares and swaps it with the

next one consecutively. In the case of the example in Fig. 6.2, the enhancer masks the

deviation in the probability of visiting 1 in two consecutive input segments and

produces two segments with exactly two 1s. Fig. 6.3 shows the proposed FSM for the

enhancer technique. The initial state is S1, and the state remains there when the saved

bit (S-X) equals to input bit (I-X) and the saved bit transfers to the output bit (O-X).

Otherwise, if the saved bit and input bits are different, either the input bit is greater

than the saved bit or vice versa, the state changes, but still, saved bits go to output and

will be succeeded by the input bit. The enhancer would stay in the new state until the

input bit and saved bit are different; hence, go back to the initial state. If the input bit

is greater than the saved bit, it will be directly transferred to the output bit, and the

saved bit will be untouched. The opposite scenario happens when the saved bit is

greater than the input bit. The latent idea behind this is to keep each segment as close

as possible to each other based on the definition of progressive precision [3], which is a

key property of low discrepancy bit-streams that makes them suitable for SC.

6.1 Evaluation

In this section, we evaluate the accuracy and the hardware cost of the proposed

ECORLD circuit compared to the SoA correlation manipulation techniques.

78

Figure 6.2. Proposed ECO Example with FS = 2.

. . . 11100100

ECO

. . .
11001100

2FS=2

Figure 6.3. Proposed ECO FSM. (S: Saved, I: Input, O: Output).

S-X=0(1), I-X=1(0)
S-X=1, O-X=0

𝑺𝟏𝑺𝟎 𝑺𝟐

Initial StateNext Seg.< Previous Seg.

S-X=1, I-X=0

S-X=0, O-X=1

In:

Out:

S-X=I-X

O-X=S-X

In:

Out:

In:

Out:

S-X=1(0), I-X=0(1)
S-X=0, O-X=1

In:
Out:

S-X=0, I-X=1

S-X=1, O-X=0

In:

Out:
S-X=I-X

O-X=S-X

In:

Out:

Next Seg.> Previous Seg.

S-X=I-X

O-X=S-X

In:

Out:

6.1.1 Accuracy Comparison

6.1.1.1 Correlator

ECO is an improved version of COLRD specifically designed for non-LD input

bit-streams. Table 6.1 shows the performance evaluation of the proposed correlator

when inputs are pseudo-random bit-streams. Maximal period LFSR are used to

generate pseudo-random bit-streams corresponding to each input bit-width. A similar

table is provided in the previous chapter, however, the proposed ECO method is added

79

to compare its efficiency with respect to Synchronizer and CORLD.

The SCC values and the MAE rates for the minimum and maximum functions

are reported in the table. The proposed ECO method distinctively improves the

correlation hence the accuracy of Pseudo random-based bit-streams by manipulating

bits of input bit-streams to maintain a steady probability pace at each segment of the

stream.

6.1.1.2 Decorrelator

Table 6.2 is the extension of table 5.4 while the ECO module is utilized to further

enhances the performance of the COLRD approach. As discussed, the proposed ECO

method is inefficient, while the input bit-streams are LD-based due to its progressive

precision property. In other words, the distribution of 1’s in each segment of the

LD-based bit-streams, is stable, while ECO is invented to manipulate the dispensation

of 1’s in continuous chunks if they are not in good order. By a quick glance at the

LD-based input, it can be observed that the ECO and CORLD output the same results.

On the other hand, when inputs are pseudo-random based, ECO design significantly

reduces the MAE rate of performing SC multiplication (bit-wise AND) on the produced

bit-streams. The reported MAE is the mean of the measured error rates when

multiplying all possible pairs of input values (e.g., 256 × 256 combinations for 8-bit

input width).

80

Table 6.1. Accuracy Evaluation of the Proposed Correlator (CORLD-C) and proposed
ECO with Pseudo-random Input Bit-streams.

Input

Width

Input

SCC
Method

Sync. [20]

Deep Size/

Fixer Size

(FS)

Output

SCC

Minimum

Function

MAE (%)

Maximum

Function

MAE (%)

6 2.35

Sync. [20]

1 88.35 1.73 1.77

2 98.74 0.28 2.54

3 99.65 0.07 3.91

4 99.92 0.02 5.34

5 99.97 0.005 6.77

CORLD

2 43.81 4.67 4.67

3 79.37 2.39 2.39

4 96.68 0.55 0.55

5 99.68 0.05 0.05

ECO

2 88.98 1.41 1.41

3 95.20 0.62 0.62

4 99.18 0.06 0.06

5 100 0 0

7 1.08

Sync. [20]

1 79.88 2.86 2.77

2 91.71 1.43 1.88

3 95.72 0.86 1.96

4 97.51 0.61 2.45

5 98.58 0.45 3.11

CORLD

2 44.78 5.57 5.57

3 67.2 3.62 3.62

4 85.6 1.64 1.64

5 90.31 1.08 1.08

ECO

2 77.6 2.32 2.32

3 89.28 1.24 1.24

4 93.68 0.84 0.84

5 97.83 0.3 0.3

8 1.63

Sync. [20]

1 79.18 2.52 2.32

2 94.27 0.95 1.08

3 98.11 0.4 1.02

4 99.33 0.2 1.28

5 99.73 0.11 1.63

CORLD

2 46.39 4.74 4.74

3 69.77 3.14 3.14

4 85.2 1.64 1.64

5 95.57 0.5 0.5

ECO

2 83.97 2.02 2.02

3 92.77 0.97 0.97

4 95.99 0.59 0.59

5 98.33 0.25 0.25

81

Table 6.2. Accuracy Evaluation of the Proposed Decorrelator (CORLD-D) and pro-
posed ECO for Pseudo-random and LD Bit-streams of 2Nbit.

LFSR-based Bit-streams LD Bit-streams

Input

Width

Input

SCC
Method

Deep

Size/

Fixer

Size

Output

SCC
MAE (%)

Output

SCC
MAE (%)

MAE (%)

Uncorrelated

Sobol based

bit-streams

6 100

Decorrelator [20]

2 54.38 2.56 19.78 0.84

0.65

3 33.15 1.95 10.67 1.31

4 35.07 1.92 13.21 1.28

5 33.36 2.02 12.93 1.68

CORLD

2 58.69 4.64 13.2 0.9

3 25.29 2.52 0.63 0.64

4 14.33 1.9 -1.18 0.85

5 10.54 2.84 -11.94 1.84

ECO

2 17.64 1.75 13.2 0.9

3 16.02 1.28 0.63 0.64

4 2.56 0.96 -1.18 0.85

5 18.19 2.03 -11.94 1.84

7 100

Decorrelator [20]

2 59.58 3.54 17.58 0.57

0.36

3 47.91 2.84 23.02 1

4 43.01 1.62 17.54 1.07

5 34.22 1.56 19.02 1.11

CORLD

2 59.55 4.07 14.79 0.84

3 49.85 3.12 4.81 0.52

4 29.8 2 1.58 0.63

5 32.63 1.7 6.31 0.56

ECO

2 27.6 2.02 14.79 0.84

3 18.56 1.12 4.81 0.52

4 8.23 0.83 1.58 0.63

5 3.32 0.76 6.31 0.56

8 100

Decorrelator [20]

2 55.98 3.4 27.55 0.98

0.19

3 43.56 2.53 14.97 0.68

4 40.67 1.73 17.7 0.76

5 30.5 1.47 8.18 0.69

CORLD

2 49.14 3.53 17.04 0.55

3 35.1 2.25 5.33 0.36

4 32.62 1.81 3.84 0.19

5 5.44 0.98 3.22 0.23

ECO

2 27.55 1.86 17.04 0.55

3 18.36 1.02 5.33 0.36

4 5.06 0.53 3.84 0.19

5 3.5 0.45 3.22 0.23

82

Table 6.3. Hardware cost of the proposed ECO for different FSs

Fixer

Size

Total Area

(µm2)

Critical Path

Latency (nS)

Power@Max

Freq. (mW)

Energy per

Cycle (pJ)

2 226.7 0.38 0.8094 0.30

3 341.7 0.45 0.9357 0.42

4 538 0.46 1.2271 0.56

5 858.8 0.53 1.6216 0.85

6.1.2 Cost Comparison

Table 6.3 represents the hardware cost and energy factors of the proposed ECO

architecture. We synthesized the designs using the Synopsys Design Compiler v2018.06

with the 45nm FreePDK gate library [1]. As the table suggests, by increasing the fixer

size, the area, power, and hence energy consumption increase. The selection of ECO size

totally depends on the accuracy requirement and energy constraint of the application.

6.2 Conclusion

In this chapter, a new method and the corresponding architecture are designed for

enhancing the COLRD-C and CORLD-D approach when non-LD-based input

bit-streams are being fed to the system. We proposed an enhancer module called ECO,

which masks the deviation of 1’s in two consecutive input segments. The goal is to

maintain the progressive precision property throughout an input bit-stream as much as

possible to become closer to LD bit-streams. ECO method increased the accuracy of

COLRD up to 3.6 times at the cost of some hardware unit that implements a specific

finite state machine to execute the method in an in-stream manner.

83

Chapter 7: Summary

SC is re-emerging as an unconventional model of computing representing numbers in

the form of bit-streams offering lightweight, power-efficient, and noise-tolerant

properties for different arithmetic operations. For example, a single AND gate can

perform accurate multiplication in stochastic domain while this is considered a complex

operation in the binary domain. Although SC enjoys some appealing advantages, it

suffers from disadvantages such as the need for costly bit-stream generators and long

processing time, which often translates to high energy consumption. In this

dissertation, we proposed some novel approaches to address the current challenges of

SC designs. In what follows, we summarize the main contributions of this dissertation:

1. Accelerating Deterministic Methods of SC with Context-Aware Bit-stream

Generation: In the very first steps of our work, we evaluated the representation of

an input probability in stochastic format. We realized that by doing a

simplification in probabilities, we could simplify many high-resolution numbers

with lower resolution values. Representing the numbers in these simplified forms

needs significantly shorter bit-streams and so lower number of clock cycles for

processing without affecting the represented value. We proposed a new method

and a corresponding architecture to manage this simplification. We further

proposed an approach for applications that can tolerate slight inaccuracy by

ignoring some LSBs. Our approach not only offers significant energy and

time-saving, it comes with area saving due to removing some unnecessary

components.

84

2. A Low-Cost FSM-based Bit-Stream Generator for Low-Discrepancy SC: the

conventional approach of generating stochastic bit-streams requires some

components such as random number generators and binary comparators.

Although a binary comparator is relatively light, the state-of-the-art random

number generators used in SC such as SOBOL sequence generators are costly to

implement. This became our motivation to propose a low-cost FSM-based

method for generating similar bit-streams but without the need for costly number

generators. The new method produces a bit of a bit-stream by extracting and

organizing the bits of the binary input at each clock cycle. The proposed

approach significantly decreases the hardware cost with no impact on accuracy.

3. In-Stream Correlation Manipulation for Low-Discrepancy SC: The correct and

accurate execution of SC operations depend on the correlation level between input

bit-streams. A naive method to control correlation between bit-streams is to

regenerate them by converting them to binary format and then convert back to

bit-streams with desired correlation. However, this approach is very expensive in

terms of time, area, and power. On the other hand, we are interested in

developing SC systems that eradicates the dependency on the binary format and

performs all operations in stochastic domain. These motivated us to propose an

in-stream method to manipulate the level of correlation between bit-streams on

the way without any delay just by splitting the bit-streams into multiple chunks

and re-organizing each chunk. This approach provides different correlation levels

based on the need of the next stage function while guaranteeing LD distribution

85

of the bit-streams. We further proposed a new method for producing positively

correlated bit-streams. We evaluated the proposed method for SC division with

significant accuracy improvement.

4. Enhanced In-Stream Correlation Manipulation: We noticed that although the

proposed correlation manipulation technique (CORLD) increased the accuracy of

different SC functions where input bit-streams are LD based, we enhanced our

proposed technique by adding a certain unit specifically designed for non-LD

based input bit-streams. Our evaluations showed higher accuracy for those

non-LD bit-streams

Table7.1 shows a brief overview of the techniques proposed in this dissertation

for a better understanding of their capabilities. Accuracy, time, power/energy

consumption, and area are the considered criteria to have a quick comparison of how

they impact the SC system.

Table 7.1. Quick Overview of the Proposed methods

Method \Parameter Accuracy Time efficiency Power/Energy Area

Context Aware (approach 1)
Accurate Same +++ + -

Error tolerant - +++++ ++ +

FSM-based generator (approach 2) + + +++ +++

FSM-based correlator generator(approach 3) +++++ + + +

COLRD+ECO (approach 3 and 4) ++ Same - -

86

Bibliography

[1] NCSU FreePDK 45nm Library.
https://research.ece.ncsu.edu/eda/freepdk/freepdk45/.

[2] A. Alaghi and J.P. Hayes. Exploiting correlation in stochastic circuit design. In
Computer Design (ICCD), 2013 IEEE 31st International Conference on, pages
39–46, Oct 2013.

[3] A. Alaghi and J.P. Hayes. Fast and accurate computation using stochastic circuits.
In DATE’14, pages 1–4, March 2014.

[4] A. Alaghi, W. Qian, and J. P. Hayes. The Promise and Challenge of Stochastic
Computing. IEEE Trans. on Computer-Aided Design of Integ. Circ. and Sys.,
37(8):1515–1531, Aug 2018.

[5] Sina Asadi and M Hassan Najafi. Context-aware number generator for
deterministic bit-stream computing. In 2019 IEEE 30th International Conference
on Application-specific Systems, Architectures and Processors (ASAP), volume
2160, pages 140–140. IEEE, 2019.

[6] Sina Asadi and M. Hassan Najafi. Accelerating deterministic stochastic computing
with context-aware bit-stream generator. In Proceedings of the 2020 on Great
Lakes Symposium on VLSI, page 157–162, New York, NY, USA, 2020.

[7] Sina Asadi and M. Hassan Najafi. LDFSM: A Low-Cost Bit-Stream Generator for
Low-Discrepancy Stochastic Computing: Late Breaking Results. In Proceedings of
the 57th ACM/EDAC/IEEE Design Automation Conference, DAC ’20. IEEE
Press, 2020.

[8] Sina Asadi, M. Hassan Najafi, and Mohsen Imani. A Low-Cost FSM-based
Bit-Stream Generator for Low-Discrepancy Stochastic Computing. In 2021 Design,
Automation Test in Europe Conference Exhibition (DATE), pages 908–913, 2021.

[9] Sina Asadi, M Hassan Najafi, and Mohsen Imani. Corld: In-stream correlation
manipulation for low-discrepancy stochastic computing. In 2021 IEEE/ACM
International Conference On Computer Aided Design (ICCAD), pages 1–9. IEEE,
2021.

[10] T. Chen and J. P. Hayes. Design of division circuits for stochastic computing. In
2016 IEEE Computer Society Annual Symposium on VLSI (ISVLSI), pages
116–121, 2016.

[11] Shao-I Chu. New divider design for stochastic computing. IEEE Transactions on
Circuits and Systems II: Express Briefs, 67(1):147–151, 2020.

87

https://research.ece.ncsu.edu/eda/ freepdk/freepdk45/

[12] Robert H Dennard, Fritz H Gaensslen, Hwa-Nien Yu, V Leo Rideout, Ernest
Bassous, and Andre R LeBlanc. Design of ion-implanted mosfet’s with very small
physical dimensions. IEEE Journal of Solid-State Circuits, 9(5):256–268, 1974.

[13] S. Rasoul Faraji, M. Hassan Najafi, Bingzhe Li, Kia Bazargan, and David J. Lilja.
Energy-Efficient Convolutional Neural Networks with Deterministic Bit-Stream
Processing. In DATE’19, March 2019.

[14] B.R. Gaines. Stochastic computing systems. In Advances in Information Systems
Science, pages 37–172. Springer US, 1969.

[15] Brian R Gaines. Stochastic computing. In Proceedings of the April 18-20, 1967,
spring joint computer conference, pages 149–156. ACM, 1967.

[16] S. Gupta, M. Imani, J. Sim, A. Huang, F. Wu, M. H. Najafi, and T. Rosing.
SCRIMP: A General Stochastic Computing Architecture using ReRAM in-Memory
Processing. In 2020 Design, Automation Test in Europe Conference Exhibition
(DATE), pages 1598–1601, 2020.

[17] Devon Jenson and Marc Riedel. A Deterministic Approach to Stochastic
Computation. In Proceedings of the 35th Intern. Conf. on Computer-Aided Design,
ICCAD ’16, 2016.

[18] Israel Koren and C. Mani Krishna. Fault-Tolerant Systems. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 1st edition, 2007.

[19] S. Lee, H. Sim, J. Choi, and J. Lee. Successive log quantization for cost-efficient
neural networks using stochastic computing. In the 56th Annual Design
Automation Conference 2019, DAC ’19, 2019.

[20] V. T. Lee, A. Alaghi, and L. Ceze. Correlation manipulating circuits for stochastic
computing. In DATE’18, pages 1417–1422, 2018.

[21] V. T. Lee, A. Alaghi, J. Hayes, V. Sathe, and L. Ceze. Energy-efficient hybrid
stochastic-binary neural networks for near-sensor computing. In DATE’17, March
2017.

[22] V. T. Lee, A. Alaghi, R. Pamula, V. S. Sathe, L. Ceze, and M. Oskin. Architecture
considerations for stochastic computing accelerators. IEEE Trans. on
Computer-Aided Design of Integ. Circ. and Sys., 37(11):2277–2289, 2018.

[23] Peng Li, D.J. Lilja, Weikang Qian, K. Bazargan, and M.D. Riedel. Computation
on stochastic bit streams digital image processing case studies. Very Large Scale
Integration (VLSI) Systems, IEEE Transactions on, 22(3):449–462, 2014.

[24] S. Liu and J. Han. Energy Efficient Stochastic Computing with Sobol Sequences.
In DATE’17, pages 650–653, March 2017.

88

[25] S. Liu and J. Han. Toward Energy-Efficient Stochastic Circuits Using Parallel
Sobol Sequences. IEEE Tran. on VLSI Systems, 26(7):1326–1339, July 2018.

[26] M. H. Najafi et al. Time-Encoded Values for Highly Efficient Stochastic Circuits.
IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
25(5):1644–1657, May 2017.

[27] Shyamali Mitra, Debojyoti Banerjee, and Mrinal K. Naskar. A low latency
stochastic square root circuit. In 2021 34th International Conference on VLSI
Design and 2021 20th International Conference on Embedded Systems (VLSID),
pages 7–12, 2021.

[28] M. H. Najafi, D. Jenson, D. J. Lilja, and M. D. Riedel. Performing Stochastic
Computation Deterministically. IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, 27(12):2925–2938, Dec 2019.

[29] M. H. Najafi and D. Lilja. High Quality Down-Sampling for Deterministic
Approaches to Stochastic Computing. IEEE Transactions on Emerging Topics in
Computing, 2018.

[30] M. H. Najafi, D. J. Lilja, and M. Riedel. Deterministic Methods for Stochastic
Computing Using Low-discrepancy Sequences. In ICCAD’18, pages 1–8, 2018.

[31] M. Hassan Najafi, Peng Li, David J. Lilja, Weikang Qian, Kia Bazargan, and Marc
Riedel. A Reconfigurable Architecture with Sequential Logic-Based Stochastic
Computing. J. Emerg. Technol. Comput. Syst., 13(4):57:1–57:28, June 2017.

[32] M. Hassan Najafi, D. J. Lilja, M. D. Riedel, and K. Bazargan. Low-Cost Sorting
Network Circuits Using Unary Processing. IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, 26(8):1471–1480, Aug 2018.

[33] W. Qian, X. Li, M. D. Riedel, K. Bazargan, and D. J. Lilja. An Architecture for
Fault-Tolerant Computation with Stochastic Logic. IEEE Trans. on Comp.,
60(1):93–105, Jan 2011.

[34] M. Riahi Alam, M. H. Najafi, and N. TaheriNejad. Exact In-Memory
Multiplication Based on Deterministic Stochastic Computing. In 2020 IEEE
Intern. Symp. on Circuits and Systems (ISCAS), pages 1–5, 2020.

[35] Robert R Schaller. Moore’s law: past, present and future. IEEE spectrum,
34(6):52–59, 1997.

[36] Hyeonuk Sim, Saken Kenzhegulov, and Jongeun Lee. DPS: Dynamic Precision
Scaling for Stochastic Computing-based Deep Neural Networks. In DAC’18, pages
13:1–13:6, 2018.

89

[37] Hyeonuk Sim and Jongeun Lee. A new stochastic computing multiplier with
application to deep convolutional neural networks. In the 54th DAC, 2017, pages
1–6, 2017.

[38] Bruno Tuffin. On the use of low discrepancy sequences in monte carlo methods.
1996.

[39] Di Wu and Joshua San Miguel. In-stream stochastic division and square root via
correlation. In 2019 56th ACM/IEEE Design Automation Conference (DAC),
pages 1–6. IEEE, 2019.

90

	Dedication
	Acknowledgments
	List of Tables
	List of Figures
	Introduction
	Introduction to Stochastic Computing
	Motivation
	Motivation for Context-Aware Bit-Stream Generation
	Motivation for Low-Cost FSM-based Bit-Stream Generation
	Motivation for Low-Discrepancy Correlation Manipulation Circuits

	Dissertation Summary

	Stochastic Computing Basics
	Stochastic Number format
	Stochastic Number Generator Components
	Progressive Precision property
	Stochastic Correlation

	Accelerating Deterministic Stochastic Computing with Context-Aware Bit-stream Generatorasadi2019contextAsadiGLSVLSI20
	Deterministic Bit-stream Generator
	Conventional Design
	Proposed Context-Aware Design

	Evaluation
	Hardware Cost Comparison
	Performance Comparison
	Application Case Study: Gamma Correction

	Conclusion

	A Low-Cost FSM-based Bit-Stream Generator for Low-Discrepancy Stochastic ComputingAsadiDAC20AsadiDATE21
	Proposed LD Bit-Stream Generator
	Evaluation
	Accuracy
	Hardware Cost
	Fault-Tolerance

	Case Study: Convolution Design
	Conclusion

	In-Stream Correlation Manipulation for Low-Discrepancy Stochastic Computingasadicorld
	Proposed Low-Discrepancy Correlator
	Proposed Low-Discrepancy Decorrelator
	Correlation and SC Division
	Evaluation
	Accuracy Comparison
	Cost Comparison

	Case Studies
	Sorting
	Median Filtering

	Conclusion

	ECO: Enhanced In-Stream Correlation Manipulation for Low-Discrepancy Stochastic Computing
	Evaluation
	Accuracy Comparison
	Cost Comparison

	Conclusion

	Summary
	Bibliography

