
ZU064-05-FPR jfp 16 May 2022 9:53

Migrating Gradual Types 1

Abstract

Gradual typing allows programs to enjoy the benefits of both static typing and dynamic typing. While1

it is often desirable to migrate a program from more dynamically-typed to more statically-typed or2

vice versa, gradual typing itself does not provide a way to facilitate this migration. This places the3

burden on programmers who have to manually add or remove type annotations. Besides the general4

challenge of adding type annotations to dynamically typed code, there are subtle interactions between5

these annotations in gradually typed code that exacerbate the situation. For example, to migrate a6

program to be as static as possible, in general, all possible combinations of adding or removing type7

annotations from parameters must be tried out and compared.8

In this paper, we address this problem by developing migrational typing, which efficiently types all9

possible ways of replacing dynamic types with fully static types for a gradually typed program. The10

typing result supports automatically migrating a program to be as static as possible, or introducing11

the least number of dynamic types necessary to remove a type error. The approach can be extended to12

support user-defined criteria about which annotations to modify. We have implemented migrational13

typing and evaluated it on large programs. The results show that migrational typing scales linearly14

with the size of the program and takes only 2–4 times longer than plain gradual typing.15

ZU064-05-FPR jfp 16 May 2022 9:53

Under consideration for publication in J. Functional Programming 2

Migrating Gradual Types16

John Peter Campora III and Sheng Chen17

University of Louisiana at Lafayette18

Martin Erwig and Eric Walkingshaw19

Oregon State University20

1 Introduction21

Gradual typing promises to combine the benefits of static and dynamic typing in a single22

language. In the original formulation by Siek & Taha (2006), the goal is to bring the23

documentation and safety of static typing to a dynamically typed language. In their24

formalization, function parameters have dynamic types by default but can be explicitly25

annotated with static types. The resulting type system provides the same safety guarantees26

as static typing for expressions using type-annotated variables, yet allows the flexibility of27

dynamic typing for expressions with unannotated variables.28

In gradual typing research, it is quite common to start with simply typed lambda calculus29

and extend it with annotations for dynamic types (Siek & Vachharajani, 2008; Rastogi30

et al., 2012; Garcia & Cimini, 2015). A function parameter can be annotated with ?31

(the type of dynamic code) when dynamically typed behavior is needed or when the32

programmer is unsure whether all definitions are type-correct but wants to test the runtime33

behavior.34

1.1 Challenges Applying Gradual Typing35

By integrating static and dynamic typing, gradual typing not only enjoys the benefits of36

both typing disciplines, but also suffers from their respective shortcomings. For example,37

statically typed parts of the code have more restricted expressiveness and may contain38

static type errors that yield cryptic error messages (Tobin-Hochstadt et al., 2017), while39

dynamically typed parts of the code may contain dynamic type errors that are not40

captured until after the software is deployed. More interestingly, combining statically41

and dynamically typed code together can raise new challenges, for example, Takikawa42

et al. (2016) address the challenge of performance degradation in sound gradual typing43

at the boundaries between statically typed and dynamically typed code. This work,44

extending Campora et al. (2018a), investigates the problem of migrating gradual programs45

to be as static as possible without introducing type errors.46

To fully realize the benefits of gradual typing, we need the ability to navigate along a47

program’s dynamic-static typing spectrum, in order to make it more static or more dynamic48

ZU064-05-FPR jfp 16 May 2022 9:53

Migrating Gradual Types 3

when and where the respective strengths of each are desired. Answering the following three49

questions will help harness the full power of gradual typing.150

Q1. Can we make a gradually typed program as static as possible while maintaining its51

well-typedness to keep it executable?52

Q2. Can we introduce as few dynamic types as possible to migrate an ill typed program53

to a type correct one while still enjoying the benefits of static typing for the well54

typed parts?55

Q3. Can we address the previous questions while keeping some user-indicated parts static56

or dynamic? Such parts may be indicated, for example, to reduce the granularity of57

boundaries between static and dynamic code during execution, in order to maintain58

performance.59

The answers to these questions are not obvious. Furthermore, if the answers are yes, it is60

not clear whether we can implement the operations suggested by the questions efficiently.61

In the first part (up until Section 7), we develop machinery for addressing the question Q1.62

We develop solutions for Questions Q2 and Q3 in Sections 8 and 9.3, respectively.63

We illustrate the challenges regarding Q1 by considering the following program written64

in the calculus by Garcia & Cimini (2015) extended with Haskell functions and notations,65

where parameters annotated with ? have dynamic types and those without annotations are66

inferred to have static types. In the rest of the paper, we say these parameters are dynamic67

and static, respectively. This program is adapted from van Keeken (2006) for formatting68

rows of a table according to a given width by trimming long rows and padding short rows69

with empty spaces.70

rowAtI headOrFoot (fixed::?) (widthFunc::?) (table::?) (border::?) (i::?) =

let widest = maximum (map length table)

row = table !! i

width = if fixed then widthFunc fixed else widthFunc widest

in if headOrFoot

then replicate (width + 2) border

else border ++ take width (row ++ replicate (width-length row) ' ')

++ border

The local variable width represents the width of the table and is computed by the argument71

widthFunc, either by applying it to fixed if fixed is true, or to widest, the size of largest72

row in the table. The argument border is added to the beginning and end of each row and73

is also used to generate the header or footer row when the Boolean argument headOrFoot is74

true. If we bind the variable tbl to a list of strings, we can then call rowAtI in many ways,75

such as rowAtI False True (const 3) tbl "_" 0, rowAtI False False id tbl "_" 1,76

and rowAtI True False id tbl '_' 0.77

After some testing, suppose we want to migrate rowAtI to a version that is as static as78

possible by removing ? annotations. Removing ? annotations turns out to be much trickier79

than we may expect. First, if we remove all ? annotations, then type inference fails for80

1 This paper focuses on the problem that only type annotations are changed while program text
remains the same as programs are migrated. Recent work on program migration by Migeed &
Palsberg (2019) took a similar approach.

ZU064-05-FPR jfp 16 May 2022 9:53

4 John Peter Campora III, Sheng Chen, Martin Erwig, and Eric Walkingshaw

rowAtI, since it contains multiple static type errors, for example, the then branch requires81

border to have type Char while the else branch requires it to have type [Char]. Second,82

if we remove ? annotations in a left-to-right order, we will encounter a type error as soon83

as the annotation for widthFunc is removed. (In this paper, we follow the spirit of Garcia84

& Cimini (2015) to infer static types only.) However, this does not necessarily indicate85

that the error was solely caused by widthFunc being statically typed. In fact, the type error86

involving widthFunc is due to the interaction with fixed when computing the value of87

width. At this point, we can restore the well-typedness of rowAtI by either re-annotating88

fixed or widthFunc with ?. Unfortunately, we cannot easily gauge which annotation is89

better for typing the rest of the function. If we choose to re-annotate fixed, we will90

encounter another type error when the ? annotation for border is removed. Does this type91

error go away if we instead mark fixed as static and widthFunc as dynamic? The easiest92

way to tell is by trying it out.93

The example illustrates that parameters give rise to complicated typing interactions. The94

type error caused by making one parameter static may be avoided by making another95

parameter dynamic, or the type error caused by making two parameters static can be96

fixed by making another dynamic, and so on. In general, we must examine all possible97

combinations of static vs. dynamic parameters to identify a program that is both well typed98

and as static as possible. We refer to all of the potential programs produced by adding99

or removing ? annotations as a migration space. The act of moving from one potential100

program to another by changing types is known as a migration. We say a program in the101

migration space has a most static type if removing any ? from the program will make it102

ill typed. We call a migration that yields a program with a most static type a most static103

migration. Due to the nature of type interactions, the most static type, and thus the most104

static migration, is not unique. Since every parameter can be either static or dynamic, the105

size of the migration space is exponential in the number of parameters for all functions106

in the program. For the program consisting of only rowAtI, which has six parameters, we107

would need to try out all 26 = 64 combinations to identify the most static migrations.108

The challenges posed by migration between more and less static programs may prevent109

programmers from fully realizing the potential of gradual type systems. As evidence110

for this, the CircleCI project recently abandoned Typed Clojure mainly because the cost111

of adding type annotations to Clojure programs was perceived to exceed the benefits.2112

Similarly, Tobin-Hochstadt et al. (2017) reported that migration of Racket modules to113

Typed Racked requires too much effort.114

1.2 Migrating Gradual Types115

In this paper, we address Q1 by: (1) developing a type system that efficiently types the116

entire migration space and (2) designing a method to traverse the result of typing the117

migration space, calculating which ? annotations can be removed. In this paper, we mainly118

consider the removal of ? annotations to support migrating to a more statically typed119

program; that is, we make types more precise (Siek & Taha, 2006). However, in Section 8,120

2 https://circleci.com/blog/why-were-no-longer-using-core-typed/

https://circleci.com/blog/why-were-no-longer-using-core-typed/

ZU064-05-FPR jfp 16 May 2022 9:53

Migrating Gradual Types 5

Program ? annotations Type for rowAtI

1 + + + + + Bool → ? → ? → ? → ? → ? → [Char]
2 − + + + + Bool → Bool → ? → ? → ? → ? → [Char]
3 − + − + − Bool → Bool → ? → [[Char]] → ? → Int → [Char]
4 + − + + + Bool → ? → (Int→Int) → ? → ? → ? → [Char]
5 + − − + − Bool → ? → (Int→Int) → [[Char]] → ? → Int → [Char]
6 − − + + + 7

7 + + + − + 7

8 + + − − − 7

Fig. 1: Types for a sample of the migration space for the rowAtI function. The second
column contains a sequence of + and − symbols, indicating whether the ? annotation is
kept or removed, respectively, for each of the five parameters annotated with ? in rowAtI.
For example, for program 2, all parameters except fixed keep their ? annotations. The 7

entries denote that the corresponding program is ill typed.

we describe how a dual approach can be developed to support the addition of ? annotations121

(addressing Q2). Also, in Section 9, we describe how the approach can be extended to122

support further migration scenarios (addressing Q3). In this work, our development focuses123

on the ITGL calculus. We leave the migration problem in presence of other dynamic and124

static language features to future work.125

As demonstrated in Section 1.1, in general, finding the most static migration requires126

exploring the entire migration space, which is exponential in size. This rules out a simple127

brute-force approach that type checks each possibility and compares the results to find the128

best one.129

To illustrate how we can improve on a brute-force search, let us focus on a single130

parameter, say i in the rowAtI function from Section 1.1. To decide whether we can remove131

the ? annotation, we need to type two programs: one where i is static and one where i is132

dynamic. Observe that the two typing processes differ only slightly. Of the three let-bound133

variables, only the typing of the second (row) is affected by whether i is static or dynamic.134

The typing of the other two let-bound variables is identical in both cases. Moreover, since135

the type of row is determined to be the same regardless of whether i is static or dynamic,136

the typing of the body of the let-expression is also identical.137

This observation suggests that we should reuse typing results while exploring the138

migration space to determine which ? annotations can be removed. A systematic way to139

support this reuse is provided by variational typing (Chen et al., 2012, 2014). In this paper,140

we develop a type system that integrates gradual types (Siek & Taha, 2006) and variational141

types (Chen et al., 2014) to support reuse when typing the migration space. This type142

system supports efficiently typing the entire migration space, in roughly linear time, even143

in the presence of type errors.144

After typing the migration space, we want to find the point in that space that is most145

static. Although the number of results to be considered is large, this step can be made146

efficient by exploiting several relationships between the resulting types. To illustrate these147

relationships, we list a subset of the migration space for the rowAtI example and their148

corresponding types in Figure 1.149

ZU064-05-FPR jfp 16 May 2022 9:53

6 John Peter Campora III, Sheng Chen, Martin Erwig, and Eric Walkingshaw

The first observation is that some parameters, whether they are static or dynamic, do150

not affect the type correctness of the program. In the example, the 3rd and 5th parameters151

(table and i, respectively) are examples of such parameters. Given this knowledge and the152

fact that program 2 is well typed, we can deduce that program 3 is also well typed since153

they differ only in the ? annotations of the 3rd and 5th parameters. Similarly, given that154

program 8 is type incorrect, we can deduce that program 7 is also type incorrect for the155

same reason.156

The second observation is that if a program is well typed after removing ? annotations157

from a set of parameters P, then (1) removing ? annotations from a subset of P will also158

yield a well typed program (this corresponds to the static gradual guarantees of Siek et al.159

(2015)), and (2) the program with all ? annotations removed from P is the most statically160

typed of these programs. For example, program 3 has a more static type than program 2,161

which in turn has a more static type than program 1. Similarly, this relation holds for the162

sequence of programs 5, 4, and 1. Note that the number of removed ? annotations does163

not provide the same ordering. For example, program 3 removes more ? annotations than164

program 4, but program 4 has a more static type.165

The third observation is that, if removing all ? annotations for a set of parameters causes166

a type error, then removing the ? annotations for any superset of those parameters must167

also cause a type error. For example, given that making the 4th parameter (border) static168

in program 7 causes a type error, we can deduce that additionally making the 3rd (table)169

and 5th (i) parameters static in program 8 will also cause a type error.170

These three observations enable an efficient method for finding the most static program.171

For rowAtI, we immediately discover that programs 3 and 5 are most static (neither one172

is more static than the other). In this case, we can either pick one of the results or have173

a programmer specify the preferable program. In Section 5, we show that these three174

observations hold for arbitrary programs, which allows us to develop an efficient method175

for finding desired programs in general.176

1.3 Relations with Other Work in Program Migration177

The work by Migeed & Palsberg (2019) also studied the problem of program migration.178

However, there are many significant difference between our work and theirs.179

Differences in techniques There is a fundamental difference in finding the migrations in180

these two approaches. For a given program, their approach finds migrations in the following181

steps. First, it generates a set of programs where each program replaces a ? in the current182

program with a Int, Bool, or ?→?. Second, it uses the type checking algorithm from Garcia183

& Cimini (2015) to type check the each program from the set. If a program does not type184

check, then it is not a migration of the original program. Otherwise, it is a migration, and185

the whole migration process is continued from the current program. The two-step process186

stops when no more programs type check. After this process finishes, all programs that187

type check are considered as possible migrations of the original program.188

Figure 2 left illustrates the migration process of Migeed & Palsberg (2019) for the189

expression λx : ? .x x. In the first step, three programs are generated, each replacing the190

? with a more precise type. The programs λx :Int.x x and λx :Bool.x x do not type191

check. Therefore, they are not migrations of λx :? .x x. In contrast, the program λx :? .x x192

ZU064-05-FPR jfp 16 May 2022 9:53

Migrating Gradual Types 7

Fig. 2: Programs explored for searching possible migrations in Migeed & Palsberg (2019)
(left) and this work (right). Programs in blue type check and those in red do not type
check. The dashed lines in the left subfigure denote that an infinite number of programs
were omitted from it.

Fig. 3: Programs explored for finding migrations for rowAtI in our approach. These
programs (configurations) constitute the full migration lattice (Takikawa et al., 2016) for
the program rowAtI. Each configuration is identified by a sequence of “+/-” signs, with “+”
(“-”) indicates that the corresponding ? is kept (removed). A configuration with strictly
more “-”s is more precise. We present several lines relating program precision and omit
most of them for clarity.

type checks and is a migration. Moreover, program migrations are searched starting from193

λx :?→?.x x.194

Putting aside variational typing, our approach can be viewed as generating all the195

programs that are obtained by removing all combinations of the ?s in the program. After196

that, we use the type inference algorithm from Garcia & Cimini (2015) to check the197

type correctness and infer the type of each program. All programs that are type correct198

are migrations of the original programs. Figure 2 right shows all programs generated in199

our approach. Since there is only one ? in the expression, there are only two possible200

expressions that we need to investigate for migrations: the original expression and the one201

that removes the ?.202

To give a more straight view about what the whole search space looks like, we present203

in Figure 3 all the programs that are generated for finding migrations for rowAtI. Since204

rowAtI contains five ?s, the total number of programs we need to investigate is 32. The205

figure uses a sequence of five + or − characters to denote each generated program. If the206

ith character is a +, then the ith ? is kept. Otherwise, it is removed.207

ZU064-05-FPR jfp 16 May 2022 9:53

8 John Peter Campora III, Sheng Chen, Martin Erwig, and Eric Walkingshaw

As argued in Section 1.1, in general it is necessary to explore all the generated programs208

to find the programs that remove as many ?s as possible. Our main goal in this paper is to209

use variational typing to make the exploration process efficient.210

In summary, the main technical difference is that while Migeed & Palsberg (2019)211

intertwine program generation and type checking to find migrations, our approach can be212

viewed as an efficient way of first generating all programs and then using type inference213

to find all migrations.214

Differences in behaviors The differences in techniques lead to several significant215

behavioral differences in these two approaches, discussed below.216

First, the migration space could be infinite in Migeed & Palsberg (2019) but it is always217

finite in our approach. The main reason is that in their approach if a program in the218

migration space type checks, then programs with more precise type annotations will be219

generated, which may be well typed, yielding more programs being generated. One such220

example is in Figure 2. Replacing the original ? with ?→? makes the expressions type221

checks, and replacing any ? with ?→? will also type check. This process may be repeated222

infinitely. In Figure 2, we use dashed lines to indicate such infiniteness.223

Instead, our approach generates exactly 2n programs, where n is the number of ?s in224

the expression. For example, for the expression λx : ? .x x, our approach generates two225

expressions (including the original one), as can be seen from Figure 2.226

Second, as Migeed & Palsberg (2019) use type checking from Garcia & Cimini (2015)227

while our approach uses type inference from Garcia & Cimini (2015) and it is well-known228

that type inference is often incomplete, their approach can lead to more precise program229

migrations than ours for certain programs. For example, for the expression λx :? .x x, their230

approach will generate a program λx :?→?.x x. As this program type checks, it is a valid231

migration. However, in our approach, we will check the expression λx.x x, obtained by232

removing the ? from the expression. For this expression, type inference generates two233

constraints: β = β1→β2 and β1 ∼ β , where β , β1, and β2 are three type variables. The234

unification algorithm in Garcia & Cimini (2015) fails to solve these two constraints due to235

occurs check. Consequently, type inference fails for this expression. As our type inference236

is a variational version of the one in Garcia & Cimini (2015), we also fail to infer a type for237

λx.x x. As a result, no improvement is possible in our approach for λx :?.x x. In Section 9.2,238

we present an extension to our approach that could infer more precise types, including239

finding a migration for the expression λx :? .x x.240

Their work uses the term “maximal migration” to denote a migration that can not be241

made more precise (any such effort leads to ill-typed programs). For certain programs, no242

maximal migrations exist. The expression λx : ? .x x is one such example. The reason is243

that a ? in any migration can be replaced by a ?→?, thus more precise, without making244

the program ill-typed. In our work, we use the term “most static migration” to refer to245

migrations where no more ?s could be removed and replaced with fully static types. For246

λx :? .x x, the most static migration is itself (our extension in Section 9.2 finds more static247

migrations). In our approach, most static migrations always exist because among a finite248

number of migrations we can always find migrations that remove most ?s. In case no ?s249

can be removed and replaced with fully static types, the original expression is considered250

as the most static migration. Maximal migrations and most static migrations may coincide.251

ZU064-05-FPR jfp 16 May 2022 9:53

Migrating Gradual Types 9

For example, the programs in Figure 3 that are in blue and in fourth column are maximal252

and most static migrations.253

Third, while Migeed & Palsberg (2019) find maximal migrations by generating more254

precise programs and type checking them individually, we use variational typing to255

increase the efficiency of finding most static migrations. We have done a simple evaluation256

and find out that their approach has an exponential complexity. In particular, adding257

a parameter with ? type essentially increases the running time by three times. For258

example, it takes about 4.7× 10−5 seconds to find the max migration for the expression259

λx :?.succ(succ x), 1.5×10−4 seconds for the expression λx :?.λy :?.x+y, 28.67 seconds260

for λx : ? .x1 : ?.x2 : ?.x3 : ?.x4 : ?.x5 : ?.y : ?.y+ succ (x5 (x4 (succ x3)(succ (x2 (x1+261

x + y))))) ,and 93.8 seconds for λx : ? .x1 : ?.x2 : ?.x3 : ?.x4 : ?.x5 : ?.x6 : ?.y : ?.y +262

succ (x5 (x6+ x4 (succ x3)(succ (x2 (x1+ x+ y))))). For these four expressions, our263

approach takes 4.1× 10−4, 5.9× 10−4, 1.7× 10−3, and 1.9× 10−3 seconds, respectively.264

The timing result indicates that the idea of variational typing indeed improves efficiency.265

We present more comprehensive performance evaluation in Section 10.266

1.4 Additions in the Journal Version and Contributions267

This paper extends Campora et al. (2018a) with the following additions.268

• In Section 1.3, we discuss in depth the relation between our work and the work269

by Migeed & Palsberg (2019).270

• In Section 8, we present a solution to fixing static type errors by introducing as few271

dynamic types as possible (question Q2), a dual problem to removing as many as272

dynamic types (question Q1) .273

• In Section 9.2, we present an extension to our constraint solving algorithm that274

enables us to find more precise migrations that the approach in Campora et al.275

(2018a) was not able to.276

• In addition to the migration questions Q1 and Q2, we consider many other277

migration scenarios, such as finding the migrations that migrate the greatest278

number of parameters. We present the approaches to support them in Section 9.3.279

These approaches reuse or slightly adapt the machinery for supporting Q1, which280

demonstrates the potential of our approach for developing more complex migration281

scenarios.282

• In Section 10, we expand our evaluation by converting programs in Grift Kuhlen-283

schmidt et al. (2019) to our language and measure their performances.284

• We updated related work to discuss the relation with the latest work on gradual285

typing, including Migeed & Palsberg (2019), Campora et al. (2018b), and Phipps-286

Costin et al. (2021).287

Overall, this paper makes the following contributions.288

1. In Section 1.1, we identify three questions, Q1 through Q3, for migrating gradual289

program to fully harness the benefits of gradual typing.290

2. In Section 4, we present a type system that integrates gradual types (Siek & Taha,291

2006), variational types (Chen et al., 2014), and error-tolerant typing (Chen et al.,292

ZU064-05-FPR jfp 16 May 2022 9:53

10 John Peter Campora III, Sheng Chen, Martin Erwig, and Eric Walkingshaw

2012). The type system is correct and efficiently types the whole migration space. We293

detail the proofs for important cases of the theorems and lemmas that are introduced.294

3. In Section 5, we investigate the relationship between different candidate migrations295

and develop a method for computing the most static migrations.296

4. In Sections 6 and 7, we generate and solve constraints to provide type inference for297

migrational typing and prove that the constraint solving algorithm is correct.298

5. In Section 8, we develop a dual to migrational typing to address the migration299

question Q2.300

6. In Section 9, we describe extensions to support additional common language301

features. We also discuss other migration scenarios and solutions supporting them.302

7. In Section 10, we study the performance of our implementation by applying it303

to synthesized programs. The result shows that our approach scales linearly with304

program size.305

To improve readability, the following table summarizes where important terms and306

operations are introduced. In the “F | P” column, F i and P i are shorthands for Figure i307

and Page i, respectively.308

Term Notation F | P Operation Notation F | P

static types T F 7 selection b·cd.1 P 13
gradual types G F 7 compatibility (M) ≈ F 8
variational types V F 7 constrained compatibility (M) ≈π F 9
migrational types M F 7 constrained operation (M) opπ F 9
statifier ω F 4 better ordering (G) � P 24
variational statifier Ω F 7 more static ordering (G) v P 24
choices d〈,〉 P 13 stricter ordering (δ) � P 26
decisions/eliminators δ P 13/P 26 less defined ordering (π) ≤ F 10
valid eliminators δ v P 26 pattern meet (π) u P 35
typing pattern π , >, ⊥ F 9
unification variables κ F 7

309

2 Background and Preparation310

In this section, we briefly introduce two areas of previous work that our type system311

for migrating gradual types builds on. In Section 2.1, we present a simple gradually312

typed language that represents the starting point for our work. This language is adapted313

from Garcia & Cimini (2015), but includes some minor differences to set up the314

presentation in Section 4. In Section 2.2, we introduce the concept of variational315

typing (Chen et al., 2014), which is the key technique that allows us to efficiently type316

the entire migration space.317

2.1 Gradual Typing318

Gradual typing allows the interoperability of statically typed and dynamically typed code.319

The original formalization by Siek & Taha (2006) defined gradual typing for a simply typed320

ZU064-05-FPR jfp 16 May 2022 9:53

Migrating Gradual Types 11

Syntax:

Expressions e ::= c | x | λx.e | λx : ?.e | e e | if e then e else e
Static types T ::= γ | α | T→T
Gradual types G ::= γ | α | G→G | ?
Statifier ω ::= ∅ | ω,x 7→ T

Type system: ω;Γ `GC e : G

CON
c is of type γ

ω;Γ `GC c : γ
VAR

x : G ∈ Γ

ω;Γ `GC x : G
ABS

ω;Γ,x 7→ T `GC e : G

ω;Γ `GC λx.e : T→G

ABSDYN
ω;Γ,x 7→ or(ω(x),?) `GC e : G′

ω;Γ `GC (λx : ?.e) : or(ω(x),?)→G′

APP
ω1;Γ `GC e1 : G ω2;Γ `GC e2 : G′ dom(G)∼ G′

ω1∪ω2;Γ `GC e1 e2 : cod(G)

IF
(ωi;Γ `GC ei : Gi)

i:1..3 Bool∼ G1

ω1∪ω2∪ω3;Γ `GC if e1 then e2 else e3 : G2uG3

Gradual type consistency:

C1
G∼ G

C2
G∼ ?

C3
?∼ G

C4
G11 ∼ G21 G12 ∼ G22

G11→G12 ∼ G21→G22

Auxiliary definitions:

dom(G1→G2) = G1
dom(?) = ?

cod(G1→G2) = G2
cod(?) = ?

?uG = G
Gu? = G
GuG = G

G11→G12uG21→G22 = (G11uG21)→(G12uG22)

Fig. 4: Syntax and type system of ITGL, an implicitly typed gradual language. The
operations dom, cod, and u are undefined for cases that are not listed here.

lambda calculus extended with dynamic types. Siek & Vachharajani (2008) and Garcia &321

Cimini (2015) further investigated gradual typing in the presence of type inference.322

In this paper, we consider the migration of programs in implicitly typed gradual323

languages. In Figure 4, we present the syntax and type system of one such language, ITGL,324

which is adapted from Garcia & Cimini (2015) and forms the basis for this work. In the325

syntax, c ranges over constant values, x over variables, γ over constant types, and α over326

type variables. There are two cases for abstraction expressions, one where the parameter is327

annotated by ? and one where it is not. The rest of the cases are standard. The type system328

will be explained below.329

The presentation of ITGL in Figure 4 differs from the original in Garcia & Cimini (2015)330

in two ways. First, our syntax is more restrictive: we omit a case for explicit type ascription331

of expressions, and we do not allow arbitrary type annotations on abstraction parameters.332

We also do not consider let-polymorphism here. These restrictions are made to simplify our333

ZU064-05-FPR jfp 16 May 2022 9:53

12 John Peter Campora III, Sheng Chen, Martin Erwig, and Eric Walkingshaw

formalization later, but we show in Section 9 how they can be lifted. Second, the typing334

rules are parameterized by a statifier, ω , which is used in the full migrational type system335

later (Section 4). A statifier is a mapping that maps parameter names that have ?s to static336

types, making an expression to have a more static type. The statifier specifies what static337

types to assign to parameters whose ? annotations will be removed. For simplicity, we338

assume parameters have unique names. In the type system as defined in Figure 4, ω is339

always empty, corresponding to the type system in Garcia & Cimini (2015).340

In the type system for ITGL in Figure 4, the typing rules for constants and variables are341

standard. There are two rules for abstractions, ABS for unannotated parameters which must342

have static types, and ABSDYN for annotated parameters which may have dynamic types.343

In ABSDYN, we use or(ω(x),?) to return ω(x) if x ∈ dom(ω) or ? otherwise. Therefore, if344

ω is empty, then or(ω(x),?) will always be ?.345

Note that a statifier maps parameters to fully static types only, as can be seen from the346

definition of ω in Figure 4. As such, mappings such as x 7→ ?→Int or y 7→ ?→? do not347

belong to ω . This follows the spirit of Garcia & Cimini (2015) that inferred types should348

be fully static. Consequently, we can not find an ω to make the expression λx :? .x x well349

typed, even though the expression λx :?→?.x x is.350

Typing applications is tricky, since dynamically typed arguments can be passed to351

functions with statically typed parameters and vice versa. For example, assuming the352

function, succ, has static type Int→Int, both of the following programs in our Haskell-353

like notation should be accepted by gradual typing.354

inc (num::?) = succ num

foo (f::?) = f True

The APP rule accommodates this with the help of a consistency relation, ∼, that dictates355

when two unequal types are compatible with each other. An application is well typed if356

the domain of the LHS (i.e. the parameter type) is consistent with the RHS, and the type357

of the application is the codomain of LHS. The auxiliary functions dom and cod return the358

domain and codomain of a function type, respectively, or ? for a dynamic type (reflecting359

the fact that ? is equivalent to ?→?).360

The gradual type consistency relation is defined in Figure 4 by four rules: C1 defines361

that consistency is reflexive, C2 and C3 define that a dynamic type is consistent with any362

type, and C4 defines that two functions types are consistent if their respective argument and363

return types are consistent. As a result, Int→Int∼ Int→? but not Int→Int∼ Bool→?,364

since the argument types are not consistent in the latter case. Note that the consistency365

relation is not transitive. Due to C2 and C3, transitivity would lead every static type to be366

consistent with every other static type, which is clearly undesirable.367

Typing conditional expressions relies on the meet operation, u, on gradual types.368

Intuitively, meet chooses the more static of two base types when one is ?. For two equal369

static types, meet is idempotent. For two function types, meet is applied recursively to their370

respective argument and return types. The meet operation helps assign types to conditionals371

when the two branches might not have an identical type but still have consistent types.372

Intuitively, meet favors the type of the more static branch of the conditional expression.373

ZU064-05-FPR jfp 16 May 2022 9:53

Migrating Gradual Types 13

2.2 Variational Typing374

Variational typing (Chen et al., 2012, 2014) enables efficiently inferring types for375

variational programs. A variational program represents many different variant programs376

that share some parts amongst each other and which can each be generated through a static377

process of selection.378

The theoretical foundation for variational typing is the choice calculus (Erwig &379

Walkingshaw, 2011), a formal language for representing variational programs. The essence380

of the choice calculus is that static variability in programs can be locally captured in381

variation points called choices, as demonstrated by the following example.382

vfun = A〈succ,even〉 1

This program contains a choice named A with two alternatives, succ and even. We write383

becd.i to indicate the selection of the ith alternative of each choice named d in e. So,384

bvfuncA.1 yields the program succ 1 and bvfuncA.2 yields even 1. We call d.i a selector385

and use s to range over selectors. We call d.1 and d.2 the left and right selectors of d,386

respectively.387

A decision is a set of selectors; we use δ to range over decisions. For each choice d, a388

decision contains only one or neither of d.1 and d.2. The elimination of choices extends389

naturally to decisions by selecting with each selector in the decision. An expression e is390

called plain if it does not contain any choices and is called variational if it does contain391

choices. A plain expression obtained by eliminating all choices in a variational expression392

is called a variant. For example, succ 1 is a plain expression and a variant of the variational393

expression vfun.394

A variational expression may contain several choices. Choices with the same name395

are synchronized and independent otherwise. For example, the variational expression396

A〈succ,even〉 A〈2,3〉 has two variants, succ 2 and even 3, obtained by the decisions397

{A.1} and {A.2}, respectively. The program succ 3 cannot be obtained through selection398

and so is not a variant of this expression. On the other hand, the variational expression399

A〈succ,even〉 B〈2,3〉 has four variants, and we can obtain the variant succ 3 with the400

decision {A.1,B.2}.401

In general, an expression with n distinct choice names can be configured in 2n
402

different ways. Since variational programs can easily contain hundreds or thousands of403

independent choice names (Apel et al., 2016), checking the type correctness of all variants404

is intractable by a brute-force strategy of generating all of the variants and typing each405

one individually (Thüm et al., 2014). Variational typing solves this problem by sharing406

the typing process across all variants, which is achieved by defining and reasoning about407

variational types.408

Variational types are types extended with choices. We define variational types in409

Figure 5. They include constant types (γ), such as Int and Bool, type variables (α), function410

types, and choices over two alternatives.411

All concepts and operations on variational expressions carry over to variational types.412

For example, Figure 5 defines selections on types. Selecting constant types (and type413

variables) with any selector yield themselves. For a function type, selection is recursively414

applied on the parameter type and return type. Selecting a choice type (d〈V1,V2〉) with a415

ZU064-05-FPR jfp 16 May 2022 9:53

14 John Peter Campora III, Sheng Chen, Martin Erwig, and Eric Walkingshaw

V ::= γ | α | V→V | d〈V,V 〉

bγcs = γ bαcs = α bV1→V2cs = bV1cs→bV2cs bd〈V1,V2〉cd.1 = bV1cd.1

bd〈V1,V2〉cd.2 = bV2cd.2 bd〈V1,V2〉cd1.i = d〈bV1cd1.i,bV2cd1.i〉 bVc(s:δ) = bbVcscδ

VT-REF

V ≡V
VT-SYM

V1 ≡V2

V2 ≡V1
VT-TRANS

V1 ≡V2 V2 ≡V3

V1 ≡V3

VT-IDEMP d〈V,M〉 ≡V VT-DEADELIM d〈V1,V2〉 ≡ d〈bV1cd.1,bV2cd.2〉

VT-CHOICE
V1 ≡V ′1 V2 ≡V ′2
d〈V1,V2〉 ≡ d〈V ′1,V ′2〉

VT-FUN
V1 ≡V ′1 V2 ≡V ′2
V1→V2 ≡V ′1→V ′2

Fig. 5: Variational types, selection, and type equivalence

selector that has the same choice name (d.i) will yield the ith alternative. The selection416

is recursively applied to the alternative to eliminate all choices with the same name. For417

example, if we do not recursively select, bA〈A〈Int,Bool〉,Bool〉cA.1 yields A〈Int,Bool〉418

while Int is the expected result, which could be achieved by recursively selecting419

A〈Int,Bool〉 with A.1. Selecting a choice type (d〈V1,V2〉) with a selector (d1.i) that has420

a different choice name will apply the selection to both alternatives. Finally, selecting a421

type with a decision (s : δ) is recursively defined as first selecting the type with s and then422

selecting the resulting type with the decision δ .423

It is natural to assign variational types to variational expressions. For example,424

A〈succ,even〉 has type A〈Int→Int,Int→Bool〉. Similar to gradual typing, typing425

applications in the presence of variation is complicated by the fact that “compatible” types426

may not be syntactically equal. In particular, 1. the LHS is traditionally expected to be427

a function type but in variational typing may be a (nested) choice of function types, and428

2. when checking whether the type of the argument matches the type of the parameter,429

we must take into account that either or both may be variational. For example, the type of430

the function on the LHS of vfun is A〈Int→Int,Int→Bool〉, which is not a function type431

directly, but both variants of vfun, succ 1 and even 1, are well typed.432

Typing applications is supported in variational typing through the definition of433

a type equivalence relation (Chen et al., 2014), which is presented in Figure 5.434

Essentially, type equivalence specifies when a type can be transformed into another435

without affecting its semantics. The semantics of a variational type maps decisions to436

the variant plain types obtained by selecting from the type using the decision. For437

example, A〈Int→Int,Int→Bool〉, A〈Int,Int〉→A〈Int,Bool〉, and Int→A〈Int,Bool〉438

are all equivalent because selecting from each of them with {A.1} yields the same type439

Int→Int and selecting from each of them with {A.2} yields the same type Int→Bool.440

As a result, we can say that vfun has the type Int→A〈Int,Bool〉, which is a function441

type with the argument type Int matching the type of 1. We can thus assign the type442

Vvfun = A〈Int,Bool〉 to vfun.443

ZU064-05-FPR jfp 16 May 2022 9:53

Migrating Gradual Types 15

C1 C3

Thm 1

Thm 2
Thm 3 Thm 4

Thm 6

Thm 5 Thm 4

C4
Find best
migrations

Thm 7-10

C5

Thm 11 and 12 Thm 14 and 15

Fig. 6: Relations between theorems and challenges. The notations in the figure are
discussed in Section 3.

An important result of variational typing is that choice elimination preserves typing.444

More specifically, if e has the type V , then becδ has the type bVcδ for any decision δ .445

For example, bvfuncA.1 yields succ 1, which has the type Int, the same as bVvfuncA.1. An446

implication of this result is that the type of any variant can be easily obtained by making447

an appropriate selection into the result type of the variational program. Another important448

result of variational typing is that it is significantly faster than the brute-force approach.449

3 Road Map to Migrating Gradual Types450

In Section 1.1, we argued that the complexity of the tasks implied by the questions Q1–451

Q3, involving the migration of gradual programs, is exponential. In Section 2.2, we have452

shown that variational typing can efficiently type a set of similar programs. A main idea453

of this paper is to reduce the problem of typing the migration space to variational typing.454

Specifically, we assign each parameter with a ? annotation a choice type whose the first455

alternative is a ? and whose second alternative is a static type (In Section 9.1, we deal456

with parameter types that are partially static, such as Int→?). Consider, for example, the457

following function widthV that represents the variationally typed version of the function458

width (also shown below) for computing the table width in rowAtI.459

width (fixed::?) (widthFunc::?) = if fixed then widthFunc fixed else widthFunc 5

widthV (fixed::A〈?,Bool〉) (widthFunc::B〈?,Int→Int〉) =

if fixed then widthFunc fixed else widthFunc 5

The function widthV encodes all four possible migrations of width. If VwidthV is the type460

of widthV, then bVwidthVc{A.1,B.1} is the type for width with no ? annotations removed,461

bVwidthVc{A.2,B.1} is the type that replaces ? with Bool for fixed and keeps ? for widthFunc,462

bVwidthVc{A.1,B.2} is the type that keeps ? for fixed but replaces ? with Int→Int for463

widthFunc, and bVwidthVc{A.2,B.2} is the type that removes both ? annotations.464

In order to successfully employ variational typing to improve the performance of465

migrational typing, several technical challenges must be addressed. Figure 6 presents466

challenges and relevant theorems. The challenge C2 (error tolerance) does not have any467

theorems associated with it so we omit it from the figure.468

C1. We refer to this challenge type compatibility. In the presence of dynamic and469

variational types, we need to combine the type equivalence relation between470

variational types (marked as V≡ in Figure 6) and the consistency relation between471

gradual types(marked as G∼ in the figure), which we refer to as the compatibility472

ZU064-05-FPR jfp 16 May 2022 9:53

16 John Peter Campora III, Sheng Chen, Martin Erwig, and Eric Walkingshaw

relation (marked as M≈ in the figure). After introducing the syntax of the migrational473

type system in Section 4.1, we address this problem in Section 4.2. Theorems 1474

through 3 prove that the combination is correct.475

C2. We refer to this challenge error tolerance. In general, some variants of the476

variational program that encodes the migration space may contain type errors.477

We need the typing process to continue even in the presence of type errors to478

determine the types of all variants. In Section 4.3, we address this problem and give479

a declarative specification of our type system.480

C3. We refer to this challenge best typing. In the brute force approach, we need to481

generate all expressions (e1,e2, . . . in Figure 6) from the given expression (e in the482

figure) by removing all combinations of ?s. These expressions will need to be typed483

using the type system `GC introduced in Figure 4. Our type system (presented in484

Section 4.4) types the expression e directly once without generating other programs485

(the judgment π;Γ ` e : M |Ω in Figure 6). We thus need to show that our type486

system, by typing only one expression, essentially types all possible expressions that487

could be generated. Theorems 4 and 5 prove that this is indeed the case.488

In widthV, we explicitly assigned static types to each parameter. One may wonder489

whether these are the best types to assign. Maybe other static types could improve490

the typing result and produce more general types or fewer type errors. Theorem 6 in491

Section 4.5 proves that in our type system, there exists a best typing derivation that492

contains the fewest errors and yields most static and general result types.493

C4. We refer to this challenge migration extraction. In brute force approach, we need494

to compare typing results for all generated expressions to determine the most static495

migrations. While we could type just the original expression once with the best496

migrational typing, we need to find out the most static migrations from the typing497

result. This may also require the comparison of an exponential number of result types498

for the migration space. Fortunately, Theorems 7 through 10 prove that an efficient499

algorithm exists for finding most static migrations. In Section 5.2, we develop such500

an algorithm.501

C5. We refer to this challenge type inference. In challenge C3 (best typing) we claimed502

that a best migrational typing exists, but how do we find it? We answer this question503

by solving the type inference problem in Sections 6 (constraint generation `C in504

Figure 6) and 7 (constraint solving U in Figure 6). Theorems 11 through 15 prove505

desired properties of type inference.506

4 Migrational Type System507

This section addresses the challenges C1 (type compatibility)–C3 (best typing) from508

Section 3 to support efficient migrational typing. After introducing the syntax of types509

and expressions in Section 4.1, the compatibility relation is defined in Section 4.2,510

addressing C1 (type compatibility). A pattern-constrained typing relation is introduced511

in Section 4.3 and defined via typing rules in Section 4.4, addressing C2 (error tolerance).512

Finally, the properties of this type system are discussed in Section 4.5, addressing C3 (best513

typing).514

ZU064-05-FPR jfp 16 May 2022 9:53

Migrating Gradual Types 17

Term variables x, y, z Value constants c Choice names A, B, d
Type variables α , β , κ Type constants γ Program locations l

Expressions e ::= c | x | λx.e | λx : ?.e | e e | if e then e else e

Static types T ::= γ | α | T→T
Gradual types G ::= γ | α | G→G | ?
Variational types V ::= γ | α | V→V | d〈V,V 〉
Migrational types M ::= γ | α | M→M | ? | d〈M,M〉
Type context M[] ::= [] | M[]→M | M→M[] | d〈M[],M〉 | d〈M,M[]〉
Type environment Γ ::= ∅ | Γ,x 7→M
Substitution θ ::= ∅ | θ ,α 7→V
Variational statifier Ω ::= ∅ | Ω,x 7→V

Fig. 7: Syntax of expressions, types, and environments.

4.1 Syntax515

The syntax of expressions, types, and environments is given in Figure 7. The metavariables516

we use to range over the relevant symbol domains are listed at the top of the figure. For517

type variables, we typically use β to denote the result type of a function application during518

constraint generation and κ to denote fresh type variables generated during constraint519

generation and solving (see Sections 6 and 7). For choice names, we typically use A and B520

to denote arbitrary specific choices in examples and d as a generic metavariable to range521

over choices names in definitions.522

The syntax of expressions, static types, and gradual types are repeated from Section 2.1.523

To this, we add variational types, which are static types extended with choices, and524

migrational types, which are gradual types extended with choices. Note that each top-level525

parameter is assigned a restricted form of migrational type, which is either a fully static526

type, a ?, or a choice of restricted migrational types; however, the more general syntax527

defined in Figure 7 is needed during the typing process. In Section 9.1, we extend our528

framework to allow an arbitrary mix of ? and static types for top-level parameters. We also529

define type context to facilitate our presentations of both the type system and proofs.530

The type system relies on three kinds of environments: a type environment maps531

variables to migrational types, a substitution maps type variables to variational types, and532

a variational statifier maps variables to variational types. As described in Section 2.1, a533

statifier ω records one way of making a program more static (by removing some subset534

of ? annotations). A variational statifier Ω instead compactly encodes all possible statifiers535

for an expression. Since we want migration in our formalization to assign static types to536

parameters whose ? annotations are removed, Ω maps parameters to variational types, but537

not migrational types.538

Substitutions map type variables to variational types rather than migrational539

types since substituting dynamic types is unsound. For example, suppose we have540

f 7→ α→α→α→α and x 7→ ? in Γ. Now, when typing the application f x, we will541

substitute {α 7→ ?}, yielding ?→?→? as the type of f x. However, this implies that542

f x 2 True is well typed, even though this violates the initial static type of f. The idea of543

substituting type variables with variational types but not migrational types is reminiscent544

ZU064-05-FPR jfp 16 May 2022 9:53

18 John Peter Campora III, Sheng Chen, Martin Erwig, and Eric Walkingshaw

MT-REFL

M ≈M
MT-SYM

M1 ≈M2

M2 ≈M1
MT-VTTRANS

V1 ≈V2 V2 ≈V3

V1 ≈V3

MT-IDEMP d〈M,M〉 ≈M MT-DEADELIM d〈M1,M2〉 ≈ d〈bM1cd.1,bM2cd.2〉

MT-CONG
M1 ≈M2

M[M1]≈M[M2]
MT-DYNINTRO

M1 ≈M2[M]

M1 ≈M2[?]

Fig. 8: Rules defining type compatibility

of Guha et al. (2007), where only certain contracts could be used to instantiate parametric545

contract variables. Type substitution, written as θ(M), is defined in the conventional way.546

4.2 Type Compatibility547

In the rest of this section, we use the widthV example from Section 3 to motivate the548

technical development of the migration type system and investigate the properties of549

the type system. The motivating goal is to type the condition fixed and the application550

widthFunc 5 in widthV.551

According to the annotation of widthV, the parameter fixed has type A〈?,Bool〉. Since552

fixed is used as a condition, it should have type Bool. Since both alternatives of the choice553

are consistent with Bool, this use should be considered well typed. The variable widthFunc554

has type B〈?,Int→Int〉, which can be considered equivalent to B〈?,Int〉→B〈?,Int〉. (In555

Section 4.4, we show how to achieve this formally with dom and cod.) The constant 5 has556

type Int. Since both alternatives of B〈?,Int〉 are consistent with Int, widthFunc 5 should557

also be considered well typed.558

These two examples demonstrate that we need a notion of compatibility between559

two migrational types to express that all of their variants are consistent. Intuitively, the560

compatibility relation incorporates both type equivalence for variational types (Chen et al.,561

2014) and type consistency for gradual types (Siek & Taha, 2006). The definition of562

compatibility (M1 ≈ M2) is given in Figure 8. The relation is reflexive (MT-REFL) and563

symmetric (MT-SYM). The relation is transitive (MT-VTTRANS) in the case that no ?s are564

present, which we indicate by using the metavariable for variational types (V).565

The rules MT-IDEMP and MT-DEADELIM specify compatibility under choice type566

simplification. Rule MT-IDEMP states that a choice with identical alternatives is compatible567

with its alternatives. Rule MT-DEADELIM says that two types are compatible under568

elimination of dead alternatives. Note that the operation bM1cd.1 in the first alternative569

of d replaces each occurrence of a d choice in M1 with its first alternative and thus removes570

the second alternative, which is unreachable due to choice synchronization. For example,571

A〈A〈Int,Bool〉,Int〉 ≈ A〈Int,Int〉, since Bool is unreachable in A〈A〈Int,Bool〉,Int〉572

because selection with either A.1 or A.2 yields Int. A corresponding relationship holds573

for bM2cd.2.574

The rule MT-CONG defines that compatibility is a congruence relation. This rule allows575

us to replace a type M1 in a context M[] with a compatible type M2. For example, since576

Bool≈ B〈Bool,Bool〉, we have A〈Int,Bool〉 ≈ A〈Int,B〈Bool,Bool〉〉 if we view A〈Int, []〉577

ZU064-05-FPR jfp 16 May 2022 9:53

Migrating Gradual Types 19

as the context. Finally, the rule MT-DYNINTRO states that if two types are compatible,578

replacing part of one type with ? preserves compatibility. This rule is correct because ? is579

compatible with anything. By choosing M to be an empty context, this rule encodes M ≈ ?580

and thus ?≈M through MT-SYM.581

To illustrate compatibility, we show A〈Int,?〉 ≈ B〈?,Int〉. This should hold, since both582

choice types only produce Int or ?, which are consistent with each other and themselves.583

We can start by A〈Int,Int〉 ≈ Int via MT-IDEMP and Int≈ B〈Int,Int〉 via MT-IDEMP and584

MT-SYM. We can then use MT-VTTRANS to derive A〈Int,Int〉 ≈ B〈Int,Int〉. After that,585

we can apply MT-DYNINTRO to replace the first Int in B with a ?, apply MT-SYM, and586

apply another MT-DYNINTRO to replace the second Int in the choice A with a ?, yielding587

B〈?,Int〉 ≈ A〈Int,?〉. By applying MT-SYM one more time, we can derive the original588

goal.589

With ≈, we can formalize the application rule as follows.590

Γ ` e1 : M1 Γ ` e2 : M2 dom(M1)≈M2

Γ ` e1 e2 : cod(M1)

Based on this rule and ≈, we can calculate the type B〈?,Int〉 for widthFunc 5.591

We demonstrate the correctness of ≈ by establishing its connection with type592

equivalence (≡) from Chen et al. (2014) and type consistency (∼) from Siek & Taha593

(2006) through the following theorems. In the theorems we write bMcδ ∈V and bMcδ ∈G594

to denote that bMcδ yields a variational type (no ?) and a gradual type (no variations),595

respectively. The first two theorems state the soundness of ≈; the third theorem states its596

completeness.597

Theorem 1 (Compatibility encodes equivalence)598

If M1 ≈M2, then ∀δ .bM1cδ ∈V ∧bM2cδ ∈V ⇒ bM1cδ ≡ bM2cδ599

Theorem 2 (Compatibility encodes consistency)600

If M1 ≈M2, then ∀δ .bM1cδ ∈ G∧bM2cδ ∈ G⇒ bM1cδ ∼ bM2cδ .601

Theorem 3 (Equivalence and consistency imply compatibility)602

∀δ .bM1cδ ≡ bM2cδ ∨bM1cδ ∼ bM2cδ ⇒M1 ≈M2603

4.3 Pattern-Constrained Judgments604

The goal in this subsection is to type the application widthFunc fixed in widthV, thus605

solving challenge C2 (error tolerance) for migrational typing. According to the type606

annotation of widthV, widthFunc has type B〈?,Int→Int〉, and fixed has type A〈?,Bool〉.607

Since it is impossible to derive B〈?,Int〉 ≈ A〈?,Bool〉 (where the former is the domain608

of the function type and the latter is the type of the argument), the application rule from609

Section 4.2 fails to assign a type to widthFunc fixed. If we terminate the typing process,610

we will not be able to compute any type for widthV, failing to provide support for program611

migration.612

While the compatibility check between A〈?,Int〉 and B〈?,Bool〉 fails, we observe that613

?, the first alternative of A, is compatible with B〈?,Bool〉 and Int, the second alternative614

of A, is compatible with ?, the first alternative of B. This suggests that we should615

ZU064-05-FPR jfp 16 May 2022 9:53

20 John Peter Campora III, Sheng Chen, Martin Erwig, and Eric Walkingshaw

π ::=⊥ | > | d〈π,π〉

b>cδ => b⊥cδ =⊥ bd〈π1,π2〉cd.1 = bπ1cd.1 bd〈π1,π2〉cd.2 = bπ2cd.2

bd〈π1,π2〉cd1.i = d〈bπ1cd1.i,bπ2cd1.i〉 bπc(s:δ) = bbπcscδ

PATCOMP
∀δ .bπcδ =>⇒ bM1cδ ≈ bM2cδ

M1 ≈π M2

PATTYPING
∀δ .bπcδ =>⇒ bΓcδ ` becδ : bMcδ

π;Γ ` e : M

PATUNARY
∀δ .bπcδ =>⇒ op(bM1cδ) is defined

opπ (M1) is defined

PATBINARY
∀δ .bπcδ =>⇒ bM1cδ op bM2cδ is defined

M1 opπ M2 is defined

Fig. 9: Patterns and pattern-constrained relations and operations. . op can be any unary
or binary operation on types. The is defined stipulations in the premise mean that the
operations are defined on their input types, as specified in Figure 4. The is defined in the
conclusion indicates that the operation can be safely carried out on the migrational type
when constricted by π .

describe compatibility at a more fine-grained level than simply saying whether or not616

two migrational types are compatible. We employ the idea of typing patterns (π) (Chen617

et al., 2012) to formalize this idea (see Figure 9). The patterns > and ⊥ denote that618

the compatibility check succeeds and fails, respectively, and the choice pattern d〈π1,π2〉619

describes the success or failure of compatibility checking within the context of choice d.620

In Figure 9, we also define selection on patterns, which is similar to selection on types621

(bVcδ) in Figure 5. On page 13, we gave a detailed explanation on selection on types, and622

we skip the explanation of selection on patterns here.623

We can now express the partial compatibility between A〈?,Int〉 and B〈?,Bool〉 by the624

typing pattern A〈>,B〈>,⊥〉〉. It is also possible to give some pattern that has an identical625

effect, such as the pattern B〈>,A〈>,⊥〉〉.626

In Figure 9 we define M1 ≈π M2 such that M1 and M2 are compatible for all variants of627

π that are >. In contrast, there is no requirement between M1 and M2 at other places. For628

example, Int ≈A〈⊥,>〉 A〈Bool,Int〉, since Int ≈ Int at A.2 (and since we do not care that629

Int and Bool are incompatible at A.1).630

The idea of constraining compatibility with patterns is quite powerful. We can even631

generalize it to typing judgments. Specifically, the typing relation π;Γ ` e : M holds if632

bΓcδ ` becδ : bMcδ for all δ such that bπcδ = >. The advantage is that we do not need633

to worry about the typing in variants where π has ⊥s. That also means that we should634

not use (or trust) the typing result at variants where π has ⊥s. We formally define this635

relation in Figure 9. For example, since Γ ` 1 : Int we have A〈>,⊥〉;Γ ` A〈1,True〉 : Int,636

even though True does not have the type Int. We can also generalize this idea to other637

operations, such as dom and cod, again defined in Figure 9.638

As shown in the rule PATUNARY, we can also use patterns to constrain unary functions639

so that they need to be defined for where only the pattern have >. In the rule, op could be640

instantiated to any unary functions, such as dom and cod. We use the following function641

ZU064-05-FPR jfp 16 May 2022 9:53

Migrating Gradual Types 21

dom to illustrate this idea.642

dom(M1→M2) = M1 dom(?) = ? dom(d〈M1,M2〉) = d〈dom(M1),dom(M2)〉

The function dom is defined for three cases and is undefined for all other inputs.643

For example dom(Int→Bool) = Int but dom(Int) is undefined. How about644

dom(A〈Int→Bool,Int〉)? We can observe that it is defined for the first alternative645

but not the second alternative. In such case, we can constrain dom with a pattern to646

indicate that the function does not need to be defined for all alternatives of variations.647

For our example, we can use the pattern A〈>,⊥〉 to convey that we only need the first648

alternative of A to be defined (because the pattern there is a >) while ignore whether649

the second alternative is defined or not (because the pattern there is a ⊥). With this idea,650

domA〈>,⊥〉(A〈Int→Bool,Int〉) is defined in both alternatives of A. Moreover, for the651

second alternative, we can say the result dom is any type because ⊥ in that alternative652

indicates that the typing result will be discarded. Only typing results in variants where653

typing pattern has > are valid and considered.654

Similarly, we can define codπ if we have a function cod, which we define in Figure 10.655

The rule PATBINARY allows us to constrain binary operations or functions in the same way.656

Based on the idea of pattern-constrained judgments, we can define the following rule657

for typing function applications (where dom is defined above and cod will be defined in658

Figure 10):659

π;Γ ` e1 : M1 π;Γ ` e2 : M2 domπ(M1)≈π M2

π;Γ ` e1 e2 : codπ(M1)

With this new rule, which accounts for migrational types with type errors, we660

can revisit the problem of typing widthFunc fixed. Let π = A〈>,B〈>,⊥〉〉. Since661

widthFunc 7→ A〈?,Int→Int〉 belongs to Γ, we have π;Γ ` widthFunc : M, where M =662

A〈?,Int→Int〉. Similarly, we have π;Γ ` fixed : B〈?,Bool〉. Next, domπ(M)=A〈?,Int〉.663

As we have seen earlier, A〈?,Int〉 ≈π B〈?,Bool〉. Thus, all the premises of the application664

rule are satisfied, and we can derive π;Γ ` widthFunc fixed : A〈?,Int〉. Based on the665

result pattern, we should not trust the typing information at the variant {A.2,B.2} since666

bπc{A.2,B.2} =⊥.667

While pattern-constrained judgments simplify the presentation, we still face the668

challenge of finding appropriate patterns, which are inputs to the typing relation. However,669

the pattern is determined by the typing constraints among the subexpressions. For example,670

the type of the argument must match the argument type of the function. The reason we use671

A〈>,B〈>,⊥〉〉 in typing widthFunc fixed is that the application is ill typed at {A.2,B.2}.672

Therefore, in a language with type inference, the pattern will be computed during the673

inference process (Sections 6 and 7).674

4.4 Typing Rules675

The typing rules are shown in Figure 10. They are based on the compatibility relation676

(Section 4.2) and pattern-constrained judgments (Section 4.3). The typing judgment has677

the form π;Γ ` e : M |Ω and expresses that e has type M under environment Γ constrained678

by the pattern π . The mapping Ω collects the types that will be assigned to parameters679

ZU064-05-FPR jfp 16 May 2022 9:53

22 John Peter Campora III, Sheng Chen, Martin Erwig, and Eric Walkingshaw

π;Γ ` e : M |Ω

CON
c is of type γ

π;Γ ` c : γ |∅
VAR

x 7→M ∈ Γ

π;Γ ` x : M |∅

ABS
π;Γ,x 7→V ` e : M |Ω
π;Γ ` λx.e : V→M |Ω

ABSDYN
π;Γ,x 7→ d〈?,V 〉 ` e : M |Ω d fresh

π;Γ ` λx : ?.e : d〈?,V 〉→M |Ω∪{x 7→V}

APP
π;Γ ` e1 : M1 |Ω1 π;Γ ` e2 : M2 |Ω2 domπ (M1)≈π M2 M3 = codπ (M1)

π;Γ ` e1 e2 : M3 |Ω1∪Ω2

IF
(π;Γ ` e j : M j |Ω j)

j:1..3 Bool≈π M1 M2 ≈π M3

π;Γ ` if e1 then e2 else e3 : M2uπ M3 |Ω1∪Ω2∪Ω3

WEAKEN
π;Γ ` e : M |Ω π1 ≤ π M =π1 M1

π1;Γ ` e : M1 |Ω

dom(M1→M2) = M1 cod(M1→M2) = M2
dom(?) = ? cod(?) = ?

dom(d〈M1,M2〉) = d〈dom(M1),dom(M2)〉 cod(d〈M1,M2〉) = d〈cod(M1),cod(M2)〉

MuM = M M11→M12uM21→M22 = (M11uM21)→(M12uM22)
?uM = M d〈M1,M2〉uM = d〈M1uM,M2uM〉
Mu? = M Gud〈M1,M2〉 = d〈GuM1,GuM2〉

PAT-OK

π ≤>
PAT-ERR

⊥≤ π

PAT-TRANS
π1 ≤ π2 π2 ≤ π3

π1 ≤ π3

PAT-SINCHC
π1 ≤ π2 π1 ≤ π3

π1 ≤ d〈π2,π3〉

PAT-CHCSIN
π1 ≤ π3 π2 ≤ π3

d〈π1,π2〉 ≤ π3

PAT-CHCCHC
π1 ≤ π3 π2 ≤ π4

d〈π1,π2〉 ≤ d〈π3,π4〉

Fig. 10: Typing rules. The operations dom, cod, and u are undefined for cases that are
not listed here. The process for obtaining domπ from dom is detailed in Section 4.3. The
operations codπ and uπ can be obtained similarly through Figure 9.

if their ?s are removed. We assume that parameter names from different functions are680

uniquely identified in the domain of Ω. The goal of Ω is to connect the typing rules here681

with those from Figure 4. We discuss this aspect in more detail in Section 4.5 where we682

investigate the properties of the type system.683

The rules for constants (CON) and variables (VAR) are straightforward. They hold684

for arbitrary patterns π because constants and bound variables are always well typed.685

Moreover, since the types remain unchanged, Ω is always ∅. The rule ABS for an686

abstraction whose parameter is not annotated with ? is conventional. In rule ABSDYN for687

an abstraction whose parameter is annotated with ?, we assign the parameter a choice type688

where the first alternative is ? implying that the ? is kept and the second alternative can be689

any type for the body to be well typed. As a result, when variations are first introduced, their690

first alternatives are ?s. This change information is recorded by extending the Ω returned691

from typing the body of the abstraction.692

ZU064-05-FPR jfp 16 May 2022 9:53

Migrating Gradual Types 23

The APP rule for applications is similar to the one in Section 4.3 except that we must693

combine the variational statifiers from typing the two subexpressions. The operations694

domπ and codπ can be obtained from dom and cod respectively using the idea of pattern-695

constrained operations discussed in Section 4.3.696

The rule IF types conditionals; it relies on an extended version of the meet operation (u)697

from Figure 4 that also handles choices. The definitionuπ can be obtained from Figure 9 by698

instantiating the op in rule PATBINARY with u. In Section 4.3, we gave a detailed example699

of deriving domπ from dom and uπ can be derived from u similarly.700

The WEAKEN rule states that if a typing pattern can be used to derive a typing, then701

we can use a less-defined pattern to derive the same typing. The operation =π1 in the702

premise specifies that its arguments must be the same for places where π1 has>s. A typing703

pattern π1 is less defined than π2 if it contains ⊥ values at least everywhere π2 does. The704

purpose of WEAKEN is to make the typing process compositional. Without this rule, the705

whole typing derivation must use the same π . With this rule, we can use different patterns706

for typing the children of a construct but adjust them to use the same pattern when typing707

the construct itself. To illustrate, consider typing an application e1 e2. It is likely that e1708

and e2 will contain errors at different variants, and thus the typing patterns for typing them709

will be different. Without WEAKEN, we should use a single pattern for typing these two710

subexpressions. With WEAKEN, we can use different patterns for typing subexpressions,711

and before typing the application itself we can apply WEAKEN to the typing derivation for712

either or both e1 and e2 to make their patterns the same. After that, we can apply the APP713

rule.714

The less-defined relation on patterns, written as π1≤ π2, is formally defined in Figure 10.715

The rules PAT-OK and PAT-ERR define that any pattern is less defined than > and more716

defined than ⊥. The rule PAT-TRANS defines that the relation is transitive. The last three717

rules handle variational patterns. The rule PAT-SINCHC states that a pattern is less-defined718

than a variational pattern if it is less-defined than both alternatives of the variational pattern.719

The rule PAT-CHCSIN states that a variational pattern is less-defined than a pattern if both720

alternatives are. Finally, the rule PAT-CHCCHC says that two variational patterns satisfy the721

less-defined relation if their corresponding alternatives do.722

4.5 Properties723

This subsection investigates the properties of the type system. Since the goal of migrational724

typing in Figure 10 is to type all possible programs that remove ?s for a given program725

at once, we want to investigate whether migrational typing does it currently for individual726

programs and whether it indeed types all programs that remove ?s. To this end, we consider727

the relationship of the rules for migrational typing in Figure 10 and the original rules728

for gradual typing in Figure 4. We also consider the relation between different typing729

derivations π;Γ ` e : M |Ω when different πs and Ms are used for the same Γ and e, which730

addresses challenge C3 (best typing) from Section 3.731

We start by introducing some notation. We say a decision δ is complete for an expression732

e if it contains d.1 or d.2 for each d created while typing e. For π , a decision δ is complete733

if bπcδ yields > or ⊥. Note that a complete decision for π may not be complete for734

the expression since patterns compactly represent where typing succeeds and where it735

ZU064-05-FPR jfp 16 May 2022 9:53

24 John Peter Campora III, Sheng Chen, Martin Erwig, and Eric Walkingshaw

fails. For instance, while typing rowAtI, we created five choices A, B, D, E, and F for736

the dynamic parameters from left to right, respectively. Thus, each complete decision for737

rowAtI contains five selectors. One typing pattern for rowAtI is:738

πa = A〈E〈>,⊥〉,B〈E〈>,⊥〉,⊥〉〉

Both {A.1,E.1} and {A.2,B.2} are complete decisions for πa but not for rowAtI. In the739

case that the whole migration space for an expression is well typed, then the pattern is740

simply > and the complete decision is {}. We use the notation δ |2 to collect all of choice741

names d such that d.2 ∈ δ .742

The notions of decisions (δ), variational statifier (Ω), and statifier (ω) are closely related.743

Specifically, during typing, for each dynamic parameter x, Ω includes a mapping x 7→V ,744

where V is the type that will be assigned to the parameter once its ? annotation is removed.745

Therefore, given Ω and δ , we can generate a statifier as follows, where chc(x) returns the746

name of the choice created for x.747

statifierForDesc(Ω,δ) = {x 7→ bVcδ | x 7→V ∈Ω∧ chc(x) ∈ δ |2}

For example, let748

Ωa = {fixed 7→ Bool,widthFunc 7→ Int→Int} δa = {A.2,B.1}

then statifierForDesc(Ωa,δa) = {fixed 7→ Bool}.749

The notation G1 v G2 means that G2 is more static than G1; it is defined as follows.

T1 v T2 ?v ? ?v G

G1 v G3 G2 v G4

G1→G2 v G3→G4

We further say that G2 is better than G1, written as G1 �G2, if G1 vG2 or G1 = θ2(G2)750

for some θ2. Intuitively, G1 �G2 if G2 is equally or more static than G1 or they are equally751

static and for any static part in G1, G2 has the same static type or a type variable. For752

example, we have ?→α � Int→Int and Int→Int� Int→α .753

We next demonstrate the correctness of our type system by showing that, at the places754

where the typing pattern is valid, it assigns the same types to all the programs in the755

migration space as the brute-force approach does.756

Theorem 4 (? removal soundess)757

If π;Γ ` e : M |Ω, then ∀δ .bπcδ =>⇒ statifierForDesc(Ω,δ);bΓcδ `GC e : bMcδ .758

This theorem states that, for any removal of ? annotations, the typing result759

encoded in migrational typing is the same as by typing the program with ITGL.760

For example, for π ′a = A〈>,B〈>,⊥〉〉 we get π ′a;Γ ` width : Ma |Ωa, where Ma =761

A〈?,Bool〉→B〈?,Int→Int〉→B〈?,Int〉 and Ωa is as defined earlier. We can verify762

statifierForDesc(Ωa,δa);Γ `GC width : Bool→?→? and bMacδa = Bool→?→?, where763

δa is as defined earlier.764

Conversely, any removal of ? that yields a well typed program is encoded in some typing765

derivation in migrational typing, as expressed in the following theorem.766

Theorem 5 (? removal completeness)767

If ω;Γ `GC e : G, then there exists some typing π;Γ ` e : M |Ω such that bπcδ = >,768

bMcδ = G, and statifierForDesc(Ω,δ) = ω for some δ .769

ZU064-05-FPR jfp 16 May 2022 9:53

Migrating Gradual Types 25

We can observe that for a given expression, there may be multiple typing derivations770

based on the typing rules in Figure 10. The reason is that, for example, the variational types771

used for typing the same ABSDYN in different typings could be different. Particularly, we772

want to know if there exists a best typing derivation that is more static and more defined773

(the corresponding typing pattern contains ⊥ in fewest variants) than all other derivations.774

Fortunately, this is indeed the case (Lemma 2). We next investigate the relation between775

different typings. In Lemma 1, we will show that different typings can be combined to776

make the result as correct as possible (that is, to minimize ⊥s in the result pattern). In777

Lemma 2, we show different typing can be combined to be made as good as possible (that778

is, to make types more static and more general). Note that the typing process records all779

dynamic parameters and corresponding variational types in Ω. As a result, the domain780

of Ωs in different typings are the same. However, the ranges could be different because781

different typings may use different V s in ABSDYN.782

Lemma 1783

If π1;Γ ` e : M |Ω and π2;Γ ` e : M |Ω, then there is some typing π;Γ ` e : M |Ω such that784

π1 ≤ π and π2 ≤ π .785

The following lemma states that we can always find a better (in the sense of the better786

relation defined at the beginning of this section, in Page 24) variational statifier and typing787

for any expression.788

Lemma 2789

If π;Γ ` e : M1 |Ω1 and π;Γ ` e : M2 |Ω2, then there is some typing π;Γ ` e : M |Ω790

such that ∀δ .bπcδ = >⇒ bM1cδ � bMcδ ∧bM2cδ � bMcδ ∧ statifierForDesc(Ω1,δ) �791

statifierForDesc(Ω,δ)∧ statifierForDesc(Ω2,δ)� statifierForDesc(Ω,δ).792

The properties captured by the previous two lemmas can be combined to show that for793

any expression there exists a typing that has the most defined pattern and the most static794

and general result type. We refer to this typing as the most general static migrational typing,795

abbreviated as the MGSM typing.796

Theorem 6 (MGSM Typing)797

For any e and Γ, there is a MGSM typing π;Γ ` e : M |Ω such that for any798

π1;Γ ` e : M1 |Ω1, ∀δ .bπ1cδ =>⇒ bπcδ =>∧bM1cδ � bMcδ .799

Proof of Theorem 6800

The proof of the best typing is a direct consequence of Lemma 1 and Lemma 2, meaning801

that we can produce a most precise and general typing and then give a most defined pattern802

to it.803

To illustrate the use of Theorem 6, the MGSM typing for width is
πb;Γ ` width : Mb |Ωb, where

Ωb = {fixed 7→ Bool,widthFunc 7→ Int→β} πb = A〈>,B〈>,⊥〉〉
Mb = A〈?,Bool〉→B〈?,Int→β 〉→B〈?,β 〉.

Theorem 6 implies that while an infinite number of typings may be derived (due to the ⊥804

pattern), we need only care about the MGSM typing since it encodes all the typings for the805

whole migration space. Sections 6 and 7 investigate the problem of computing the MGSM806

typing.807

ZU064-05-FPR jfp 16 May 2022 9:53

26 John Peter Campora III, Sheng Chen, Martin Erwig, and Eric Walkingshaw

5 Finding the Best Migration808

This section addresses challenge C4 (migration extraction) from Section 3, that is, given the809

MGSM typing, how can we find the most static migrations? We address it by investigating810

the relationship between different migrations in Section 5.1 and developing an algorithm811

for extracting the most static migration from the typing pattern of an MGSM typing in812

Section 5.2.813

We use the term eliminator to refer to complete decisions. We say that an eliminator δ2814

is stricter than an eliminator δ1, written δ1 � δ2, if δ2 does not select the left alternative815

(corresponding to ?) in more choices than δ1. Formally,816

δ1� δ2 :⇔∀d.d.1 ∈ δ2⇒ d.1 ∈ δ1

We say an eliminator δ is valid if bπcδ = > where π should be clear from the context.817

We will use δ v to denote valid eliminators. For example, let818

δ
v
a = {A.1,B.1} δ

v
b = {A.1,B.2} δ

v
c = {A.2,B.1} δd = {A.2,B.2}

then δ v
a � δ v

b and δ v
b � δd , but δ v

b 6� δ v
c . The eliminators δ v

a , δ v
b , and δ v

c are valid, while819

δd is not, with respect to πb from Section 4.5.820

5.1 Relationships Between Migrations821

Since every migration can be identified by an eliminator for the MGSM typing, and822

since stricter eliminators correspond to more static migrations, the problem of computing823

the most static migrations can be reduced to the problem of finding the strictest valid824

eliminators.825

Instead of considering all valid eliminators for an expression (which is exponential in826

the number of dynamic parameters), we instead consider the valid eliminators of the typing827

pattern for the MGSM typing of the expression. The reason is that typing patterns are828

usually small, yielding fewer eliminators that we have to consider (in fact, later results will829

show that we do not have to consider even all of these). For example, the pattern πa from830

Section 4.5 for rowAtI has only 5 eliminators while the expression itself has 32. As another831

example, from the pattern πb, defined at the end of Section 4.5 (page 25), we can see that832

δ v
ab = {A.1} compactly represents δ v

a and δ v
b for width.833

Our first question is whether any eliminator that is stricter than an invalid eliminator834

could be valid. This question seems irrelevant for this example because the invalid835

eliminator δd is already the strictest for πb. However, this is not the case in general, and836

knowing the answer to this question helps us to prune the search space. For example,837

the eliminator {A.1,B.1,E.2} is invalid for πa, and we want to know whether any of the838

stricter eliminators—{A.1,B.2,E.2}, {A.2,B.1,E.2}, and {A.2,B.2,E.2}—are valid. The839

following theorem answers this question.840

Theorem 7 (Error Irrecoverability)841

Let π;Γ ` e : M |Ω be an MGSM typing for e and Γ. If bπcδ = ⊥, then ∀δ1.δ � δ1 ⇒842

bπcδ1 =⊥.843

This theorem implies that we can simply ignore invalid eliminators, and focus on valid844

ones, since all invalid eliminators lead to ill typed expressions.845

ZU064-05-FPR jfp 16 May 2022 9:53

Migrating Gradual Types 27

Proof846

Proof by contradiction. Assume there is some δ1 such that δ � δ1 but bπcδ1847

= >. According to Theorem 4, we have statifierForDesc(Ω,δ1);bΓcδ `GC e : bMcδ1 ,848

which means that e is well typed under the statifier statifierForDesc(Ω,δ1).849

Based on the definition of statifier generation (Section 4.5), we know that δ �850

δ1 implies that statifierForDesc(Ω,δ) ⊆ statifierForDesc(Ω,δ1). Therefore, applying851

statifierForDesc(Ω,δ) to e yields a less static expression than statifierForDesc(Ω,δ1)852

does. Based on the static gradual guarantee for ITGL (Miyazaki et al., 2019), the typing853

relation statifierForDesc(Ω,δ);bΓcδ `GC e : bMcδ is satisfied. According to Theorem 6,854

this implies that bπcδ = >, which contradicts our condition that bπcδ = ⊥. Therefore,855

there is no δ1 such that δ � δ1 but bπcδ1 = > exists, completing the proof.856

A valid eliminator for the typing pattern corresponds to potentially many valid857

eliminators for the expression. We say that a valid pattern eliminator δ1 covers a valid858

expression eliminator δ2 if δ1 ⊆ δ2. Among all the expression eliminators covered by a859

pattern eliminator, one is the strictest. For example, the eliminator δ v
ab for pattern πb covers860

the eliminators δ v
a and δ v

b for typing width, and δ v
b is the strictest. As another example, the861

valid eliminator δ v
ae = {A.1,E.1} for pattern πa covers eight valid eliminators (two options862

for each of the three choice names that do not appear in the pattern) for typing rowAtI, and863

{A.1,E.1,B.2,D.2,F.2} is the strictest among them.864

Among all expression eliminators covered by a pattern eliminator, stricter ones yield865

better result types. This is expressed by the following theorem.866

Theorem 8 (Strict eliminators select better result types)867

If π;Γ ` e : M |Ω is the MGSM typing for e and Γ, then δ v
1 � δ v

2 ∧bπcδ v
1
= >∧bπcδ v

2
=868

>⇒ bMcδ v
1
� bMcδ v

2
.869

Proof870

Based on Theorem 4, we have statifierForDesc(Ω,δ v
1);bΓcδ `GC e : bMcδ v

1
871

and statifierForDesc(Ω,δ v
2);bΓcδ `GC e : bMcδ v

2
. Since δ v

1 � δ v
2 , we have872

statifierForDesc(Ω,δ v
1) ⊆ statifierForDesc(Ω,δ v

2) based on the definition of statifier873

generation (Section 4.5). As a result, more precise types are given to variables in a well874

typed manner and the gradual guarantee (Siek et al., 2015) gives us bMcδ v
1
� bMcδ v

2
.875

As an example illustrating Theorem 8, consider δ v
a , δ v

b , and Mb, introduced in876

Section 4.5. We can verify that both δ v
a � δ v

b and bMbcδ v
a
� bMbcδ v

b
, where bMbcδ v

a
=877

?→?→?, and bMbcδ v
b
= Bool→?→?.878

Theorem 8 provides a way to order the eliminators covered by a single pattern eliminator,879

but how about ordering different valid eliminators of the typing pattern? Considering880

pattern πb, neither of the valid eliminators δ v
b or δ v

c is stricter than the other. Similarly, for881

pattern πa, neither of the valid eliminators is stricter than the other. In fact, this property882

holds not only for these two examples, but also for a class of typing patterns that are in883

pattern normal form. We say a pattern is in normal form if it does not contain idempotent884

choices (choices with identical alternatives) and does not nest a choice in another choice885

with the same name (no dead alternatives). We capture this property in the following886

theorem.887

Theorem 9 (Eliminator Incomparability)888

ZU064-05-FPR jfp 16 May 2022 9:53

28 John Peter Campora III, Sheng Chen, Martin Erwig, and Eric Walkingshaw

Let π;Γ ` e : M |Ω be MGSM typing for e and Γ and π is in normal form, then @δ v.δ v
1 �889

δ v∧δ v
2 � δ v if δ v

1 and δ v
2 are distinct.890

Proof of Theorem 9891

Proof by contradiction. Assume there exists such a δ v. First, δ v
1 contains at least one892

selector of the form d.1 for some d. Otherwise, the program can be fully migrated to893

be static, and the typing pattern will be >, making δ v
1 and δ v

2 be the same. Similarly, this894

holds for δ v
2 . Without loss of generality, we assume δ v

1 contains d1.1 and δ v
2 contains d2.1.895

We consider several cases.896

• δ v
1 = {d1.1,d2.1} and δ v

2 = {d1.1,d2.2} or {d1.2,d2.1} or {d1.2,d2.2}. Based on897

δ v
2 , δ v

3 = {d1.1,d2.2} is a valid eliminator based on the inverse of the implication in898

Theorem 7. From δ v
1 and δ v

3 , we can infer that both alternatives of d2 are>, meaning899

that it is an idempotent variation and π is not in normal form.900

• δ v
1 = {d1.1,d2.2}, {d1.2,d2.1}, or {d1.2,d2.2}. The reasoning is similar to the901

previous case by showing that the variation d2 is idempotent.902

• δ v
1 = {d1.1} and δ v

2 = {d1.2,d2.1}. The decision δ = {d1.2,d2.2} satisfies δ v
1 �903

δ ∧δ v
2 � δ . If δ is a valid eliminator, then we can again show that d2 is idempotent,904

a contradiction that π is in normal form.905

We could swap the assignments to δ v
1 and δ v

2 , but this will yield the same proof result.906

It follows from the theorem that for any two valid eliminators δ v
1 and δ v

2 for π1, δ v
1 6� δ v

2907

and δ v
2 6� δ v

1 . Two eliminators that are incomparable with respect to � will remove ?s908

for different parameters for the same expression, leading to types that are incomparable by909

v (defined in Section 4), and thus incomparable by �. For example, since δ v
b 6� δ v

c and910

δ v
c 6� δ v

b , we have Gb 6� Gc and Gc 6� Gb, where Gb = bMbcδ v
b
= ?→(Int→β)→β and911

Gc = bMbcδ v
c
= Bool→?→?.912

Combining Theorems 8 and 9, yields the following result about finding most static913

migrations. We develop an algorithm for extracting such migrations in Section 5.2.914

Theorem 10 (Uniqueness of most static migrations)915

Let π;Γ ` e : M |Ω be the MGSM typing for e and Γ, and π is in normal form. Then the916

number of most static migrations for e equals the number of valid eliminators for π .917

Proof of Theorem 10918

The proof follows directly from Theorem 9 and Theorem 8. Theorem 9 implies that919

complete decisions are not comparable and no other complete decisions are better than920

them. Theorem 8 implies that tighter selectors yields more precise types. By definition,921

each complete decision yields a most static migration, since no types better than those922

produced by complete decisions can be assigned to the expression.923

It follows from the theorem that e has a unique most static migration if π1 has only one924

valid eliminator.925

5.2 Extracting Most Static Migrations926

The most static migrations for a program are identified by valid eliminators that describe927

whether to pick the ? annotation or the inferred type for each parameter. We compute this928

ZU064-05-FPR jfp 16 May 2022 9:53

Migrating Gradual Types 29

set of eliminators from an MGSM typing in three steps: 1. simplify the typing pattern to its929

normal form, 2. collect the valid eliminators for the normal form, and 3. expand each valid930

eliminator into a strictest eliminator for the corresponding expression.931

Simplifying a typing pattern to its normal form has two advantages. First, the valid
eliminators are fewer and smaller. Second, we can use the result of Theorem 10 to find
most static migrations. We use the following rules to simplify patterns to normal forms.

d〈π,π〉 π d〈π1,π2〉 d〈bπ1cd.1,bπ2cd.2〉
π1 π2

π[π1] π[π2]

The first two rules remove idempotent choices and dead alternatives. The third rule enables932

simplifying parts of a larger pattern. For example, we can use the third and the first rule to933

simplify the pattern πc = A〈E〈B〈>,>〉,⊥〉,B〈E〈>,⊥〉,⊥〉〉 to pattern πa from Section 4.5.934

We use the function ve(π) to build the set of valid eliminators for a pattern π in normal935

form.936

ve(>)= {∅} ve(⊥)=∅ ve(d〈π1,π2〉)= {{d.1}∪l | l ∈ ve(π1)}∪{{d.2}∪r | r∈ ve(π2)}

To illustrate the definition of ve, we consider the calculation process for the pattern937

A〈>,⊥〉. ve(A〈>,⊥〉) = {{A.1}∪ l | l ∈ ve(>)}∪{{A.2}∪r | r∈ ve(⊥)} = {{A.1}∪ l | l ∈938

{∅}} ∪ {{A.2} ∪ r | r ∈ ∅} = {{A.1}} ∪∅ = {{A.1}}. This means that the set of939

valid eliminators for A〈>,⊥〉 contains only one element: {A.1}. Similarly, ve(A〈⊥,>〉)940

= {{A.2}}. As another example, ve(πa) yields {δ v
o ,δ

v
p}, where δ v

o = {A.1,E.1} and941

δ v
p = {A.2,B.1,E.1}.942

Finally, we use the following function expand(δ ,D) to compute the strictest expression943

eliminator from the given pattern eliminator δ and the set D of all choice names in the944

expression.945

expand(δ ,D) = δ ∪{d.2 | d ∈D ∧d.1 /∈ δ}

For example, the set of choice names D for typing rowAtI is {A,B,D,E,F},946

and expand(δ v
o ,D) yields {A.1,E.1,B.2,D.2,F.2} and expand(δ v

p,D) yields947

{A.2,B.1,E.1,D.2,F.2}.948

Each expanded valid eliminator is a best eliminator that specifies how to migrate the949

program. For example, the first best eliminator for rowAtI above removes the ? annotation950

for widthFunc, table, and i, while the other best eliminator removes the ? annotation for951

fixed, table, and i.952

Formally, given an expression e and its MGSM typing π;Γ ` e : M |Ω, then for953

any expanded valid eliminator δ v, we can generate the most static migration using954

statifierForDesc(Ω,δ v), defined in Page 24.955

Overall, these three steps provide a simple way to extract the most static migration956

from an MGSM typing. In Section 10, we show that these steps lead to an efficient957

implementation. Usually, the normal form of a typing pattern is small and has only a958

few valid eliminators. For example, if the program is still well typed after removing all959

? annotations, then the pattern will be >, which has only one valid eliminator (the empty960

set). Similarly, if the program is ill typed if any ? annotation is removed, then there is again961

just one valid eliminator.962

ZU064-05-FPR jfp 16 May 2022 9:53

30 John Peter Campora III, Sheng Chen, Martin Erwig, and Eric Walkingshaw

Γ `C e : M |C

CONC
c is of type γ

Γ `C c : γ | ε
VARC

x : M ∈ Γ

Γ `C x : M | ε
ABSC

Γ,x 7→ α `C e : M |C α fresh

Γ `C λx.e : α→M |C

ABSDYNC
Γ,x 7→ d〈?,α〉 `C e : M |C α fresh d fresh

Γ `C λx : ?.e : d〈?,α〉→M |C

APPC

Γ `C e1 : M1 |C1 Γ `C e2 : M2 |C2
codCst(M1) ↪→ (M3,C3) domCst(M1,M2) ↪→C4 C =C1∧C2∧C3∧C4

Γ `C e1 e2 : M3 |C

IFC

Γ `C e1 : M1 |C1 Γ `C e2 : M2 |C2
Γ `C e3 : M3 |C3 M2uM3 ↪→ (M4,C4) C =C1∧C2∧C3∧C4∧M1 ≈? Bool

Γ `C if e1 then e2 else e3 : M4 |C

Fig. 11: Constraint generation rules

domCst(?,M) ↪→ ε domCst(α,M) ↪→ α ≈? M→κ2
domCst(M11→M12,M) ↪→ M11 ≈? M domCst(d〈M1,M2〉,M) ↪→ d〈domCst(M1,M),domCst(M2,M)〉

domCst(_,_) ↪→ Fail

codCst(?) ↪→ (?,ε) codCst(α) ↪→ (κ2,α ≈? κ1→κ2)
codCst(M1→M2) ↪→ (M2,ε) codCst(d〈M1,M2〉) ↪→ d〈codCst(M1),codCst(M2)〉

codCst(_) ↪→ (κ,Fail)

α uM ↪→ (α ,α ≈? M) d〈M1,M2〉uM ↪→ d〈M1uM,M2uM〉
Muα ↪→ (α ,α ≈? M) Mud〈M1,M2〉 ↪→ d〈M1,M2〉uM
?uM ↪→ (M,ε) M11→M12uM21→M22 ↪→ (M1→M2,C1∧C2)
Mu? ↪→ (M,ε) where M11uM21 ↪→ (M1,C1)
u ↪→ (κ,Fail) M12uM22 ↪→ (M2,C2)

Fig. 12: Auxiliary constraint generation functions.

Since normal forms are ideal, we will show in Section 7 how we can efficiently maintain963

patterns to be in normal form throughout the type inference process.964

6 Constraint Generation965

The constraint generation rules are presented in Figure 11. The judgment Γ `C e : M966

| C states that under Γ, the expression e has type M when the constraint C is solved.967

Accordingly, e and Γ are inputs, while M and C are outputs. Note that we now omit968

the statifier Ω in constraint judgments since it is not needed for type inference. We also969

omit π since π is an input in the declarative typing but will be computed through solving970

constraints generated here. Constraint solving will be discussed in Section 7. The syntax971

of constraints are as follows:972

C ::= M1 ≈? M2 | C∧C | d〈C,C〉 | ε | Fail

ZU064-05-FPR jfp 16 May 2022 9:53

Migrating Gradual Types 31

The first form represents type compatibility constraints. Often it is the case that two types973

are only partially compatible. Note, when M1 ≈? M2 is solved, it is not necessary that M1974

and M2 are compatible everywhere. As a result, constraint solving result includes a typing975

pattern, which indicates where M1 and M2 are indeed compatible. The constraint C1 ∧C2976

defines the conjunction of two constraints C1 and C2, while the constraint d〈C1,C2〉 defines977

a choice between two constraints. The constraint ε represents an empty constraint. This is978

needed to represent a judgment where no constraints are generated.979

Finally, the constraint Fail represents a constraint that, when solved, always leads to a980

failure. Such a constraint is needed when, for example, dom(Int) is calculated during the981

constraint generation process. As Int is not a function type, dom(Int) will always fail. We982

generate a Fail to communicate this failure to the constraint solver. The constraint Fail983

was absent from the original paper (Campora et al., 2018a). Without it, that work outputs984

a typing pattern and returns a ⊥ as the typing pattern to denote that certain constraint will985

definitely fail to solve.986

A drawback of that approach is that both constraint generation and constraint solving987

output typing patterns, and these patterns have to be combined into a single pattern, which988

is one part of type inference result. That work used the notion of “pattern placeholders”,989

which are introduced during constraint generation and will be plugged in with concrete990

patterns during constraint solving. The introduction of Fail simplifies the handling of991

patterns. Specifically, only constraint solving outputs a pattern, and we do not need the992

notion of “pattern placeholders”. Also, the typing pattern has no longer to be part of the993

constraint generation judgment. Moreover, with Fail we have simplified the judgments994

and definitions of several auxiliary functions (Figures 11 and 12) in this version.995

We now walk through each constraint generation rule. The rule CONC, generating996

constraints for constants, has a very similar form to CON in Figure 10. The rule VARC997

for variable references is similar to VAR and, like CONC, generates the empty constraint.998

The rule ABSDYNC generates constraints for abstractions with dynamic parameters. It999

helps facilitate migration by creating a fresh choice type with a left alternative containing1000

? and a right alternative containing a fresh type variable. The type variable is used to1001

infer a new static type for the parameter, if possible. The rules APPC and IFC are more1002

involved because constraints from premises have to be combined. The rules APPC and IFC1003

use many auxiliary functions to generate constraints. The functions, defined in Figure 12,1004

take the form: domCst(M1,M2) ↪→ C, codCst(M1) ↪→ (M2,C), and M1 uM2 ↪→ (M3,C),1005

where the objects to the left of ↪→ are inputs and those to the right are outputs. Essentially,1006

they implement the dom, cod, and u operations defined for the declarative type system1007

in Figure 10. Note, in these functions κ denote fresh type variables. We will use such1008

variables in this and next sections.1009

We illustrate domCst by considering the example domCst(A〈?,α〉,Int). Since the first1010

argument is a choice type, domCst proceeds to recursively call on each alternative of A,1011

leading to two subproblems domCst(?,Int) and domCst(α,Int). The first subproblem is1012

handled by the case for ?, which immediately returns ε , meaning that no further constraints1013

need to be solved. The second subproblem is handled by the case of domCst for type1014

variables. Since dom always expects a function type, the constraint α ≈? Int→κ2 is1015

generated. The constraints for subproblems are combined together with the choice A,1016

yielding the final constraint A〈ε,α ≈? Int→κ2〉.1017

ZU064-05-FPR jfp 16 May 2022 9:53

32 John Peter Campora III, Sheng Chen, Martin Erwig, and Eric Walkingshaw

The following soundness (Theorem 11) and completeness (Theorem 12) theorems state1018

that the constraint generation rules correspond to the declarative typing rules presented in1019

Figure 10. In particular, Theorem 12 implies that constraint generation finds the MGSM1020

typing. Following the spirit of Vytiniotis et al. (2011), we use the idea of sound and most-1021

general solutions (θ) for constraints (C) in the following theorems (Vytiniotis et al. (2011)1022

used the term guess-free). (θ ,π) is sound for a constraint of the form M1≈? M2 if θ(M1)≈π1023

θ(M2), is sound for a constraint C1 ∧C2 or d〈C1,C2〉 if it is sound for both C1 and C2, is1024

sound for Fail if π is ⊥, and is always sound for ε . In Section 7, we provide a unification1025

algorithm that generates solutions with these desired properties.1026

Theorem 11 (Soundness of Constraint Generation)1027

If Γ `C e : M | C, then π;θ(Γ) ` e : θ(M) |Ω for some Ω, where (θ ,π) is a sound solution1028

for C.1029

Theorem 12 (Completeness of Constraint Generation)1030

If π;θ(Γ) ` e : M |Ω then Γ `C e : M1 | C such that π ≤ π1, ∀δ .bπcδ = > ⇒ bπ1cδ =1031

>∧bMcδ � bθ1(M1)cδ ∧bθcδ = bθ ′cδ ◦bθ1cδ for some θ ′, where (θ1,π1) is a sound and1032

most-general solution for C.1033

In the theorem, we define bθcδ as {α 7→ bVcδ | α 7→V ∈ θ}.1034

Two constraint generation examples The following table lists the constraint generation1035

process for the expression λx : ? .succ (x True). In each row, we list the subexpression1036

visited, the type of that subexpression, and the constraint generated. Assume the fresh1037

choice and variable generated for the parameter are A and α , respectively.1038

Subexpression M (Type) C (Constraint)

x A〈?,α〉 ε

True Bool ε

x True A〈?,κ2〉 A〈ε,C1∧C2〉
succ Int→Int ε

succ (x True) Int A〈ε,C1∧C2∧C4〉
λx :? .succ (x True) A〈?,α〉→Int A〈ε,C1∧C2∧C4〉

1039

C1 = α ≈?
κ1→κ2 C2 = α ≈? Bool→κ4 C4 = Int≈?

κ2

The constraints C1 and C2 are generated from the third and fourth premises of APPC for1040

typing x True, respectively. The constraint C4 is generated from the fourth premise of APPC1041

for handling the application succ (x True).1042

Continuing from the fifth row of the table above, the following tale lists additional1043

constraints that will be generated from the expression λx :? .x(succ (x True)).1044

Subexpression M (Type) C (Constraint)

x A〈?,α〉 ε

x (succ (x True)) A〈?,κ6〉 A〈ε,C1∧C2∧C4∧C5∧C6〉
λx :? .x (succ (x True)) A〈?,α〉→A〈?,κ6〉 A〈ε,C1∧C2∧C4∧C5∧C6〉

1045

C5 = α ≈?
κ5→κ6 C6 = α ≈? Int→κ8

ZU064-05-FPR jfp 16 May 2022 9:53

Migrating Gradual Types 33

7 Unification1046

This section presents a unification algorithm for solving the constraints generated in1047

Section 6, thus completing the road map presented in Section 3.1048

7.1 Solving Compatibility Constraints1049

We first motivate the structure and design of the algorithm with the following examples.1050

(i) α ≈? ?→Int1051

(ii) A〈?,Bool〉 ≈? Int1052

Our solver must adhere to certain rules to ensure the correctness of type inference,1053

including:1054

(I) ? is compatible with any type (Section 2.1).1055

(II) Type variables are only substituted by static types (Section 4).1056

(III) The typing pattern produced must be as defined as possible (Section 4).1057

Problem (i) helps illustrate rule (II). Intuitively, α should be substituted by a function type1058

whose codomain is Int, but what should the domain be? Essentially, the domain should be1059

an unconstrained type variable so that it can unify with a static type later, if necessary. As1060

a result, we generate the substitutions {κ2 7→ Int} ◦ {α 7→ κ1→κ2}. Since κ1 is a fresh1061

type variable that is not mapped to anything, it is unconstrained. In contrast, κ2 is mapped1062

to Int. This substitution satisfies both rules (I) and (II).1063

Problem (ii) demonstrates the need for error tolerance in solving constraints. The natural1064

way to solve a choice constraint is to decompose it into two constraints. Doing this on1065

constraint (ii) yields two subconstraints, ?≈? Int and Bool≈? Int, where π = A〈π1,π2〉.1066

According to rule (I), the first constraint is solved successfully and π1 is updated to >.1067

The second constraint, however, fails to solve, since Bool cannot be made compatible with1068

Int, so we update π2 to ⊥. Consequently, we update π to A〈>,⊥〉 to reflect that constraint1069

solving fails in A.2. Choosing instead ⊥ for π would yield a consistent result but would1070

violate rule (III).1071

7.2 A Unification Algorithm1072

Figure 13 presents a unification algorithm U , which takes a constraint and produces a1073

substitution θ and a pattern π . The algorithm can be understood as extending Robinson’s1074

unification algorithm (Robinson, 1965a) to handle variational types and dynamic types1075

and to support error tolerance. To support error tolerance, the unification not only returns1076

a substitution but also a typing pattern. The unification is successful at variants where the1077

pattern has > and is failed at variants where the pattern has ⊥. In the algorithm, cases (a)1078

and (a∗) deal with dynamic types, cases (c), (d), and (d∗) deal with variations. Cases (g)1079

through (j) deal with non-compatibility constraints. Other cases of the algorithm resemble1080

their counterparts in Robinson’s algorithm but still need to account for occurrences of ?s1081

and variations.1082

In the figure, we use the following conventions and helper functions. We use κs to
denote fresh type variables. The function choices(M) returns the set of choice names in
M; vars(M) returns the set of type variables in V . The predicate hasDyn(M) determines

ZU064-05-FPR jfp 16 May 2022 9:53

34 John Peter Campora III, Sheng Chen, Martin Erwig, and Eric Walkingshaw

U : C→θ ×π

(a) U (?≈? M) = (/0,>)
(a∗) U (M ≈? ?) = U (?≈? M)
(b) U (α ≈? M)

| α /∈ vars(M)∧¬hasDyn(M) = ({α 7→M},>)
| d ∈ choices(M) = U (d〈α,α〉 ≈? M)
| α /∈ vars(M)∧M is of form M1→M2 =

let (θ1,π1) = U (α ≈? κ1→κ2); (θ2,π2) = U (κ1→κ2 ≈? M1→M2) in (θ2 ◦θ1,π2uπ1)
| otherwise = (/0,⊥)

(b∗) U (M ≈? α) = U (α ≈? M)
(c) U (d〈M1,M2〉 ≈? d〈M3,M4〉) =

let (θ1,π1) = U (M1 ≈? M3); (θ2,π2) = U (M2 ≈? M4); θ ′ = merge(d,θ1,θ2)
in (θ ′,d〈π1,π2〉)

(d) U (d〈M1,M2〉 ≈? M) =
let (θ1,π1) = U (M1 ≈? bMcd.1); (θ2,π2) = U (M2 ≈? bMcd.2); θ ′ = merge(d,θ1,θ2)
in (θ ′,d〈π1,π2〉)

(d∗) U (M ≈? d〈M1,M2〉) = U (d〈M1,M2〉 ≈? M)
(e) U (T1 ≈? T2) = if robinson(T1,T2) = θ ′ then (θ ′,>) else (/0,⊥)
(f) U (M11→M12 ≈? M21→M22) =

let (θ1,π1) = U (M11 ≈? M21); (θ2,π2) = U (θ1(M12)≈? θ1(M22)) in (θ2 ◦θ1,π1uπ2)
(g) U (ε) = (/0,>)
(h) U (d〈C1,C2〉) =

let (θ1,π1) = U (C1); (θ2,π2) = U (C2); θ ′ = merge(d,θ1,θ2)
in (θ ′,d〈π1,π2〉)

(i) U (C1∧C2) = let (θ1,π1) = U (C1); (θ2,π2) = U (θ1(C2)) in (θ2 ◦θ1,π2uπ1)
(j) U (Fail) = (∅,⊥)

Fig. 13: A unification algorithm.

whether ? occurs anywhere in M. The function merge combines the substitutions from
solving the subproblems of a choice constraint. For example, given d, θ1 = {α 7→ Int},
and θ2 = {α 7→ Bool}, we have merge(d,θ1,θ2)(α) = {α 7→ d〈Int,Bool〉}. Formally, the
definition of merge (for each α in θ1∪θ2) is:

merge(d,θ1,θ2)(α) = d〈get(α,θ1),get(α,θ2)〉 where α ∈ dom(θ1)∪dom(θ2)

get(α,θ) =

{
M α 7→M ∈ θ

κ otherwise

Intuitively, if α ∈ dom(θ), then get(α,θ) returns the image of α in θ . Otherwise, get(α,θ)1083

returns a fresh type variable. Recall that κ denotes a fresh type variable.1084

We now briefly walk through each case of U . Some cases of U have dual cases, and1085

names of such cases differ by a ?. Essentially, the starred version delegates the real solving1086

task to the case without a ?. Case (a) handles the trivial constraints involving ?. Such1087

constraints are simply discarded without generating any mapping. We return > as the1088

pattern, since ? is compatible with any type. More importantly for α ≈? ?, case (a) takes1089

priority over (b), ensuring that the substitution {α 7→ ?} is not generated.1090

Case (b) unifies a type variable α with a migrational type M. This case includes many1091

subcases. First, if M does not contain ? and α does not occur in M, then α is directly1092

mapped to M. For example, given α ≈? A〈Int,Bool〉, the substitution {α 7→ A〈Int,Bool〉}1093

is returned, and π is updated to >. Second, if M contains variation, the result is computed1094

ZU064-05-FPR jfp 16 May 2022 9:53

Migrating Gradual Types 35

via case (d). For example, the problem α ≈? A〈?,Int〉 is transformed into A〈α,α〉 ≈?
1095

A〈?,Int〉.1096

Next, if M is a function type that contains ? and α does not occur in M, then we transform
α into a function type by using fresh type variables and delegate the solving to case (f). The
problem (i) in Section 7.1 falls in this case. This case essentially solves two constraints, and
we will have two typing patterns (π1 and π2 in the algorithm). We need to combine them
into one. The resulting pattern must be restricted enough to create a valid solving result but
well defined enough to give useful information about where constraint solving succeeds.
The operation u, reproduced from above Lemma 17 for readability, can be viewed as a
meet operation over the less defined partial order on typing patterns in Figure 10. It creates
the greatest lower bound of two patterns, ensuring that the most defined pattern is used for
solving the constraint.

>uπ = π d〈π1,π2〉ud〈π3,π4〉= d〈π1uπ3,π2uπ4〉
⊥uπ =⊥ d〈π1,π2〉uπ = d〈π1uπ,π2uπ〉

Back to case (b), if all previous subcases fail,⊥ is returned, indicating that the constraint1097

failed to solve.1098

Case (c) handles constraints involving two choice types that share an outer choice name.1099

It decomposes the constraint into two smaller problems and solves them individually.1100

For instance, consider the constraint A〈?,α〉 ≈? A〈Int,Bool〉. This constraint will be1101

decomposed into ?≈? Int and α ≈? Bool, which will be solved by (a) and (b), respectively.1102

Case (d) unifies a choice type with another type not handled by case (c). This case employs1103

a similar implementation idea as case (c) does. For example, for A〈?,Int〉 ≈? Int, the two1104

smaller constraints to be solved are ? ≈? Int and Int ≈? Int. Case (e) unifies two static1105

types and is delegated to Robinson’s unification algorithm (Robinson, 1965b). Case (f)1106

unifies two function types by unifying their respective argument and return types. Cases1107

(g), (h), (i), and (j) deal with non-compatibility constraints.1108

To keep patterns in normal form, we also perform the following optimizations to prevent1109

idempotent choices patterns from being created. In cases (c) and (f), when creating the1110

choice pattern d〈π1,π2〉, we check if π1 and π2 are the same; if so, the choice pattern is1111

replaced by π1. In the last two cases of u in Section 6, we perform the same optimization.1112

After this, the algorithm maintains patterns in normal forms, since the generated constraints1113

do not contain dead alternatives and since the case (d) of U prevents dead alternatives from1114

being introduced.1115

Unification examples In Section 6 we generated two constraints for the expressions λx :?1116

.succ (x True) and λx : ? .x(succ (x True)). We use these two constraints to illustrate the1117

unification process.1118

The first constraint is A〈ε,C1∧C2∧C4〉. For this constraint, case (h) applies, which1119

breaks the variational constraint into two smaller constraints in each alternative and then1120

combine the results from alternatives. The left alternative has the constraint ε , which will1121

be solved by case (g) with the solution (θl ,>), where θl = ∅. The right alternative has1122

the constraint C1 ∧C2 ∧C4. We will repeatedly use case (i) to handle each subconstraint1123

C1 through C4. Since there are no ?s and variations in these constraints, they degenerate1124

to conventional type equality constraints. We can use robinson’s unification algorithm to1125

ZU064-05-FPR jfp 16 May 2022 9:53

36 John Peter Campora III, Sheng Chen, Martin Erwig, and Eric Walkingshaw

solve them. The unifier is1126

θr = {α 7→ Bool→Int,κ1 7→ Bool,κ2 7→ Int,κ4 7→ Int}

The typing pattern for solving them is > as the solving for each constraint returns >.1127

After we have the solutions for both alternatives, we will now combine them together.
First, the combined typing pattern is A〈>,>〉, which simplifies to >, meaning that the
type inference succeeds everywhere. Next, we combine unifiers with the function merge
defined earlier in this subsection. Note, since θl is ∅, the second case of merge will handle
each mapping in θr. For example, as α 7→ Bool→Int ∈ θr, then the merged substitution
includes α 7→A〈κ8,Bool→Int〉, where κ8 is s fresh type variable. Here we use a fresh type
variable in the first alternative to denote that the first alternative for α is not constrained yet,
allowing future unification with any type, if necessary. Overall, let θm be the substitution
after merging θl and θr, then

θm = {α 7→ A〈κ8,Bool→Int〉,κ1 7→ A〈κ9,Bool〉,κ2 7→ A〈κ10,Int〉,κ4 7→ A〈κ12,Int〉}

Substituting the result type A〈?,κ2〉→Int with θm yields the type1128

A〈?,A〈κ8,Bool→Int〉〉→Int, which simplifies to the type A〈?,Bool→Int〉→Int1129

after we eliminate the unreachable alternative κ8. Since the combined typing pattern is1130

> and selecting > with {A.2} yields >, it means that we can migrate x, the parameter1131

associated with the choice A. Moreover, based on the result type of A〈?,Bool→Int〉→Int,1132

we know the migrated expression has the type (Bool→Int)→Int.1133

Now we solve the constraint A〈ε,C1∧C2∧C4∧C5∧C6〉 generated for the expression1134

λx : ? .x(succ (x True)). We proceed similarly as before. In particular, constraint solving1135

C1 through C4 yields the unifier θr mentioned above. We then need to solve C5 and C6 from1136

θr. When solving C6, we need to unify Bool→Int with Int→κ8, which fails. The pattern1137

returned is thus⊥. Therefore, the pattern for solving the whole constraint is A〈>,⊥〉. Based1138

on the pattern we know that we can not migrate x.1139

Note, even though our approach can not migrate x, types more precise than ? could1140

actually be assigned to x, such as ?→Int. The reason we cannot find this migration is that1141

λx.x(succ (x True)) is not well-typed under type inference by Garcia & Cimini (2015),1142

and our type inference can be considered as the variational version of theirs. We provide1143

an extension to the unification algorithm U to infer more precise types in Section 9.2.1144

7.3 Properties1145

We now investigate the properties of U . First, U is terminating.1146

Theorem 13 (Termination)1147

Given C, U (C) terminates.1148

Next, we show that U is correct by showing that it is both sound and complete. For1149

simplicity, we state the result for constraints of the form M1 ≈? M2 only. In fact, we1150

can transform other forms into this form. For example, d〈M11 ≈? M12,M21 ≈? M22〉 can1151

be transformed into d〈M11,M21〉 ≈? d〈M12,M22〉. Note that π in the constraint is just a1152

placeholder and will be updated when the constraint solving finishes.1153

Theorem 14 (Soundness)1154

ZU064-05-FPR jfp 16 May 2022 9:53

Migrating Gradual Types 37

If U (M1 ≈? M2) = (θ ,π ′), then θ(M1)≈π ′ θ(M2).1155

Theorem 15 (Completeness)1156

Given M1 ≈? M2, if θ1(M1)≈π1 θ1(M2), then U (M1 ≈? M2) = (θ2,π2) such that π1 ≤ π21157

and θ1 = θ ◦θ2 for some θ .1158

The idea of the proof is to go through all possible constructs of the type M and show1159

that U covers all possibilities. To establish that most general unifiers exist, we get the1160

results directly from the induction hypothesis (and compose the mgus of the subterms) or1161

use proof by contradiction. As the proof is standard and lengthy, we omit it here.1162

8 Introducing Dynamism for Fixing Static Type Errors1163

Fixing static type errors by introducing ?s could be useful under several scenarios. First,1164

when migrating a program, the user may have added static types that cause type errors.1165

To pass static type checking of gradual typing, some added type annotations should be1166

removed. Second, the addition of dynamic types can be used to silence type errors and1167

defer the reporting of type errors to runtime (Bayne et al., 2011; Vytiniotis et al., 2012).1168

This idea is particularly intriguing for fixing static type errors as type error messages1169

generated by compilers are often opaque and difficult to understand (Loncaric et al., 2016;1170

Serrano & Hage, 2016; Munson & Schilling, 2016; Pavlinovic et al., 2014; Marceau et al.,1171

2011a,b). For example, the work by Bayne et al. (2011) shows that obtaining even partial1172

result of ill typed programs helps programmers to understand type errors and accelerate1173

program development. Our recent work indicates that gradual typing leads to more concrete1174

feedback than deferred type errors for ill typed programs (Chen & Campora III, 2019).1175

In particular, in some situations while deferred type errors dump compile-time error1176

messages, gradual typing returns values to the programmer.1177

A simple approach for removing type errors is adding ? annotations to all parameters,1178

which are static by default. However, this approach is undesirable for several reasons.1179

First, adding a ? annotation to every single parameter is laborious to programmers. Second,1180

adding all ?s hurts the efforts of migrating programs to be static. Third, the program is1181

likely to lose useful type information in many locations.1182

For this reason, our goal here is to develop a solution to question Q2. Specifically, for a1183

statically ill typed program, we aim to find a minimum set of parameters such that replacing1184

them with ?s removes the type error. It turns out that introducing as few dynamic types as1185

possible for answering Q2 is equally tricky as removing as many dynamic types as possible.1186

To illustrate, consider the following program rowAtISt, which shares the body with rowAtI1187

but removes ?s from all its parameters.1188

rowAtISt headOrFoot fixed widthFunc table border i =

let widest = maximum (map length table)

row = table !! i

width = if fixed then widthFunc fixed else widthFunc widest

in if headOrFoot

then replicate (width + 2) border

else border ++ take width (row ++ replicate (width-length row) ' ')

++ border

ZU064-05-FPR jfp 16 May 2022 9:53

38 John Peter Campora III, Sheng Chen, Martin Erwig, and Eric Walkingshaw

This function is ill typed since, for example, the then-branch for computing width requires1189

widthFunc to have the type Bool → Int and the else-branch requires it to have the type1190

Int → Int.1191

The difficulties in adding ?s are similar to the ones espoused for removing ?s in1192

Section 1.1. There is an exponential number of ways ?s can be added to the program;1193

adding ?s to all parameters introduces more dynamism than desired. Some dynamism can1194

be avoided by adding ? annotations in a left to right manner, but this is inefficient and can1195

still add unnecessary dynamism. For example, following this process on rowAtISt leads1196

to a migration that add ?s from headOrFoot to border, since only then rowAtISt becomes1197

well typed. In fact, however, the dynamism on, for example, table is unnecessary. If the1198

programmer wants to remove such unnecessary dynamism, they encounter the exact same1199

difficulties detailed in Section 1.1. The similarity in difficulties inspires our solution to1200

introducing dynamism, which is detailed in the next subsection.1201

8.1 Duality to Removing Dynamism1202

The program rowAtISt can be thought of as one of the programs in the migration space of1203

rowAtI in Figure 1. In fact, it is the bottom-most program in the figure had we listed out the1204

full migration space there. Recall that programs 3 and 5 were the most static migrations for1205

program 1. While introducing ?s for rowAtISt, programs 3 and 5 are likewise the programs1206

we desire since they keep as many static types as possible and are still well typed.1207

We can envision organizing the whole migration space into a lattice where more dynamic1208

programs are in the upper portions of the lattice (Takikawa et al., 2016). The process of1209

removing dynamism to make the program static keeps going down the lattice before a type1210

error appears. The process of introducing dynamism to fix type errors keeps going up the1211

lattice until type errors disappear. Overall, these two processes are dual. This fact inspires1212

our formal development to realize the process of introducing dynamism, which we shall1213

see next.1214

Typing rules In removing dynamism, we introduce variations for parameters whose type1215

annotations are ?s and not to others. Based on the duality, we should now introduce1216

variations to parameters without ? annotations and not to others. Specifically, we define1217

a new type system using the judgment form π;Γ `D e : M |Ω. This judgment has the same1218

meaning as the one in Figure 10 and shares the same rules as that one except for ABS and1219

ABSDYN, for which typing rules are as follows.1220

ABS
π;Γ,x 7→ d〈?,V 〉 `D e : M |Ω d fresh

π;Γ `D λx.e : d〈?,V 〉→M |Ω∪{x 7→ d〈?,V 〉}

ABSDYN
π;Γ,x 7→ ? `D e : M |Ω

π;Γ `D λx : ?.e : ?→M |Ω
These two rules are dual to the corresponding ones in Figure 10. For an abstraction with1221

a static type, the type error may be removed by changing its parameter to have the dynamic1222

type. We express this by creating a fresh variation with its first alternative being ?, as can1223

ZU064-05-FPR jfp 16 May 2022 9:53

Migrating Gradual Types 39

be seen in the ABS rule. The rule then records the changes in the variational statifier. For1224

ABSDYN, no changes will be made for the parameter type, and thus no variations are created1225

in the rule, since our goal is to fix static type errors and not to migrate programs towards1226

using more static typing.1227

Using the given typing rules, we can derive the following type for rowAtISt, assuming1228

the variation names for parameters from left to right are A, B, D, E, F , G.1229

A〈?,Bool〉→B〈?,Bool〉→D〈?,(Int→Int)〉→E〈?, [[Char]]〉→F〈?,α〉→G〈?,Int〉→[Char]

The typing pattern for it is:1230

πd = B〈F〈>,⊥〉,D〈F〈>,⊥〉,⊥〉〉

Connection to ITGL Each variational statifier (in this context perhaps it should be1231

renamed to dynamifier) generated by the `D type system now collects parameters for which1232

? annotations are added (instead of removed as was done previously). From the variational1233

statifier, we can generate a statifier for each given decision as follows.1234

Ω[δ] = {x 7→ bMcδ | x 7→M ∈Ω}

The generated statifier coerces certain parameters to have type ?s and leaves others to
their original types. We can define a type system similar to the type system in Figure 4 that
types gradual expressions under updates from statifiers. The new type system is the same
as the one in Figure 4 except for the rules ABS and ABSDYN, which are presented below.

ABS
ω;Γ,x 7→ ω(x) `GCD e : G

ω;Γ `GCD λx.e : ω(x)→G
ABSDYN

ω;Γ,x 7→ ? `GCD e : G

ω;Γ `GCD λx : ?.e : ?→G

In ABS, a parameter with a static type is maybe assigned a ? if the ω specifies so. For1235

functions with ? parameters, handled by ABSDYN, the typing rule does not update their1236

types.1237

Finding error fixes The `D typing relation indeed finds correct and complete fixes to type1238

errors, as captured in the following theorems, which serve a similar goal as Theorems 41239

through 6 served in the type system of removing dynamism. The proofs of these theorems1240

thus follow those closely and are omitted here.1241

Theorem 16 (Error Fixing Soundness)1242

Given e, and Γ assume e cannot be typed in ITGL under Γ. Let π;Γ `D e : M |Ω. If1243

bπcδ =>, then Ω[δ];Γ `GCD e : G for some type G.1244

Theorem 17 (Error Fixing Completeness)1245

If ω;Γ `GCD e : G, then there exists some typing π;Γ `D e : M |Ω where bMcδ =G and Ω[δ]1246

for some decision δ .1247

The previous theorem indicates that we can use migrational typing to fix errors but does1248

not state that the fixes are minimal. The following theorem states that we can find a most1249

general, least dynamic fix for a program. We call this the MGDM typing.1250

Theorem 18 (Existence of the MGDM typing)1251

ZU064-05-FPR jfp 16 May 2022 9:53

40 John Peter Campora III, Sheng Chen, Martin Erwig, and Eric Walkingshaw

Given any e and Γ, there is a MGDM typing π;Γ `D e : M |Ω such that for any1252

π;Γ `D e : M1 |Ω1 we have ∀δ .bπ1cδ =>⇒ bπcδ =>∧bM1cδ � bMcδ .1253

From the typing pattern π in MGDM, we can reuse the machinery to find the best1254

migration in Section 5.2 for finding migrations that fix type errors by introducing fewest1255

?s to parameters. For example, the π for the MGDM of rowAtISt is πd given earlier. This1256

pattern indicates that either fixed and border should have ?s to remove the type error, or1257

widthFunc and border should have ?s.1258

8.2 Discussion1259

This section demonstrates that migrational typing is flexible and can be easily adapted1260

to solve another interesting program migration problem. The fundamental reason is that1261

migrational typing provides an efficient method to explore the typing of the full migration1262

space and extract the desired migrations from that space, which naturally lends itself to1263

solving other migration problems.1264

It is interesting to see if we can fix type errors and migrate programs to utilizing more1265

static typing simultaneously. Essentially, such a process first adds ? annotations to remove1266

the type error and then inspects to see if other ? annotations can be safely removed after1267

the error is fixed. Note that typing rules in Figure 10 introduce variations for parameters1268

with ?s and those in this section introduce variations for parameters that have no ?s. This1269

suggests that the type system that simultaneously fixes type errors and migrates programs1270

should create variations for all parameters. Specifically, the ABSDYN rule should be the1271

same as the one in Figure 10 while ABS be the same to the one in `D. After that, we can1272

use the method descried in Section 5.2 to extract the migration that removes type errors as1273

well as migrate the program to be as static as possible.1274

The simplicity of the type system for this purpose echoes our early observation about1275

the flexibility and adaptability of migrational typing.1276

9 Extensions1277

In this section, we consider how to support additional language features in our migrational1278

type system. First, we show that our migrational type system is flexible and can support1279

extensions that make the source language more expressive for programmers. Then, we1280

cover other uses of migrational typing, for example allowing programmers to indicate1281

which regions they want to remain dynamic or static.1282

9.1 Other Language Features1283

Our version of ITGL, given in Figure 10, restricts parameters to be either unannotated1284

or annotated by ?. The formulation of gradual typing by Garcia & Cimini (2015) allows1285

arbitrary gradual type annotations on parameters, and also supports type ascription, that is,1286

asserting by e ::G that expression e has type G.1287

We can extend our type system to support arbitrary gradual type annotations as follows.1288

Given an abstraction λx : G.e, if G = ? or G is fully static, type the abstraction as usual; if1289

ZU064-05-FPR jfp 16 May 2022 9:53

Migrating Gradual Types 41

G is a complex type containing ? types, replace G by a choice whose first alternative is G1290

and whose second alternative replaces all dynamic parts by arbitrary types. For example, if1291

G = Int→?→?, then the type of the parameter is d〈Int→?→?,Int→V1→V2〉, where1292

d is fresh. To generate the corresponding constraint (Section 6), we replace V1 and V2 by1293

fresh type variables. Note that this extension still tries to assigns full static types for ?s. As1294

such, this extension will not be find a migration for λx : ? .x(succ (x True)), as shown in1295

Section 1.3. The extension in Section 9.2 is able to infer partial static types.1296

We can extend our type system to support type ascription with the following typing rule.1297

π;Γ ` e : M |Ω G≈π V M ≈π d〈G,V 〉
π;Γ ` (e ::G) : d〈G,V 〉 |Ω∪{e 7→V}

The second premise ensures that the static parts of the ascribed type G are copied to the1298

second alternative of the choice. The third premise ensures that the type of the expression1299

M is compatible with the ascribed type and also a corresponding type V with all ? types1300

removed. We can update the the structure of Ω to accommodate this rule by defining its1301

domain to be program locations rather than parameter names. We use e here as shorthand1302

for the location of e.1303

Finally, we can also add support for let-polymorphism. The approach is straightforward,1304

but the notations become heavier. We use α to denote a list of type variables and {α 7→V}1305

to denote a set that includes α1 7→V1, . . . , αn 7→Vn. The function vars(·) returns the free1306

type variables in its argument. The typing rules are standard except that when typing1307

variable references (VAR) we can only instantiate type schemas with variational types (V)1308

and not migrational types (M).1309

LET

π;Γ ` e1 : M1 |Ω1 α = vars(M1)− vars(Γ)
π;Γ,x 7→ ∀α.M ` e2 : M2 |Ω2

π;Γ ` let x = e1 in e2 : M2 |Ω1∪Ω2
VAR

x 7→ ∀α.M ∈ Γ

π;Γ ` x : {α 7→V}(M) |∅

In support of all of these extensions, the other machinery of our approach, including1310

constraint generation, unification, and extracting the most static migration, can be reused.1311

9.2 Inferring More Precise Types1312

The example in Section 7.1 shows that our approach fails to find a migration for the1313

expression λx : ? .x(succ (x True)), even though λx : ?→Int.x(succ (x True)) can be1314

a more precise migration. Recall from Section 6 that during constraint generation we1315

assigned the variational type A〈?,α〉 to the parameter type x and the generated constraint1316

is A〈ε,C1∧C2∧C4∧C5∧C6〉.1317

To investigate why our approach can not find a migration and how we can potentially1318

improve this situation, we list the constraint solving process for the constraint C1 ∧C2 ∧1319

C4 ∧C5 ∧C6 below. The first column lists the constraint being solved and the latter two1320

columns list the unifier and pattern from solving the constraint.1321

ZU064-05-FPR jfp 16 May 2022 9:53

42 John Peter Campora III, Sheng Chen, Martin Erwig, and Eric Walkingshaw

Constraint Solution Pattern
α ≈? κ1→κ2 {α 7→ κ1→κ2} >

α ≈? Bool→κ4 {α 7→ Bool→κ4,κ1 7→ Bool,κ2 7→ κ4} >
Int≈? κ2 {α 7→ Bool→Int,κ1 7→ Bool,κ2 7→ Int} >

α ≈? κ5→κ6 Ignored, does not affect result
α ≈? Int→κ8 {α 7→ Bool→Int,κ1 7→ Bool,κ2 7→ Int} ⊥

1322

The constraint solving fails when we need to solve the constraint α ≈? Int→κ8, since1323

our solution before that point contains α 7→ Bool→Int. When constraint solving fails, the1324

returned pattern is ⊥, and the content of the unifier will no longer be used. As a result, we1325

leave the content of the unifier as the same after solving α ≈? Int→κ8.1326

The main reason our approach fails to find a migration is that, as we were solving the1327

first constraint α ≈? κ1→κ2, we made three requirements: 1) the type that α maps to1328

is constructed by the → type constructor, 2) the parameter type of → be a static type,1329

and 3) the return type of → be a static type. However, in x(succ (x True)), the body1330

of the function, x is used as functions and applied to both Bool and Int values. As a1331

result, no static type could be assigned to x. We can address this problem by relaxing the1332

three requirements for α . To address this problem, we observe that α denotes the type1333

for x when the ? for x is removed, and we are finding a more precise migration than1334

?. Thus, instead of constraining α with all the three requirements at once, we can relax1335

the latter two requirements and require α be unified with a type whose type constructor1336

is → only. From now on, we call type variables that are introduced to replace ?s for1337

dynamic parameters migration type variables. Migration type variables appear in the right1338

alternatives of choices when choices are first created. We will use α to range over migration1339

type variables.1340

Overall, the idea of our solution is that when a migration variable is unified against a1341

function type, we require only that the migration variable be mapped to a function type1342

but allow the parameter type and return type to remain a ?. The typing that happens later1343

decides whether the parameter type and/or return type could be made precise than a ?. As a1344

result, a parameter can now be migrated to a function type whose parameter or return type1345

remains a ?.1346

One technical challenge is that for the parameter type and return type, we need to1347

explore two possibilities: the ? and a more precise type. Our machinery with variational1348

typing provides a nice solution. Specifically, when a migration variable α is unified with1349

a function type M1→M2, we refine α to a function type A1〈?,α1〉→A2〈?,α2〉 (We refer1350

to this process as refinement) and unify this function type against M1→M2. Here, A1,1351

α1, A2, and α2 are fresh and α1 and α2 are migration variables, which could be further1352

refined to function types whose parameter and return types are ?s. The function type1353

A1〈?,α1〉→A2〈?,α2〉 encodes four possibilities: both the parameter type and the return1354

type could be ? or a more precise type.1355

Following this idea, the constraint solving process for the constraints C1 through C71356

is updated to the following. In the “Solution” column below, we omitted the mappings1357

α1 7→ κ1 and α2 7→ κ2 to save space.1358

ZU064-05-FPR jfp 16 May 2022 9:53

Migrating Gradual Types 43

(bR) U (β ≈? M)
| β /∈ vars(M)∧¬hasDyn(M) = ({β 7→M},>)
| d ∈ choices(M) = U (d〈β ,β 〉 ≈? M)
| β /∈ vars(M)∧M is of form M1→M2 =

let (θ1,π1) = U (β ≈? κ1→κ2); (θ2,π2) = U (κ1→κ2 ≈? M1→M2) in (θ2 ◦θ1,π2uπ1)
| otherwise = (/0,⊥)

(bR∗) U (M ≈? β) = U (β ≈? M)
(b1) U (α ≈? α) = (∅,>)
(b2) U (α ≈? γ) = ({α 7→ γ},>)
(b3) U (α ≈? β) = ({α 7→ β},>)
(b4) U (α ≈? d〈M1,M2〉) = U (d〈α,α〉 ≈? d〈M1,M2〉)
(b5) U (α ≈? M1→M2)

| AllLvsDynMvs(M1→M2)∧α ∈ vars(M1→M2) = (∅,⊥)
| AllLvsDynMvs(M1→M2)∧¬hasDyn (M1→M2) = ({α 7→M1→M2},>)
| AllLvsDynMvs(M1→M2) =

let (θ1,π1) = U (β ≈? κ1→κ2); (θ2,π2) = U (κ1→κ2 ≈? M1→M2) in (θ2 ◦θ1,π2uπ1)
| otherwise =

let θ1 = {α 7→ A1〈?,α1〉→A2〈?,α2〉} A1, A2, α1, and α2 fresh
(θ2,π2) = U (A1〈?,α1〉→A2〈?,α2〉 ≈? θ1(M1→M2))

in (θ2 ◦θ1,π2)
(b6) U (M ≈? α) = U (α ≈? M)

Fig. 14: An extension to the unification algorithm in Figure 13.

Constraint Solution Pattern
α ≈? κ1→κ2 {α 7→ A1〈?,κ1〉→A2〈?,κ2〉} >

α ≈? Bool→κ4 {α 7→ A1〈?,Bool〉→A2〈?,κ4〉,κ1 7→ Bool,κ2 7→ κ4} >
Int≈? κ2 {α 7→ A1〈?,Bool〉→A2〈?,Int〉,κ1 7→ Bool,κ2 7→ Int} >

α ≈? κ5→κ6 {α 7→ A1〈?,Bool〉→A2〈?,Int〉, κ1 7→ Bool, κ2 7→ Int, >
κ5 7→ A1〈κ9,Bool〉, κ6 7→ A2〈κ10,Int〉 }

α ≈? Int→κ8 Extend above with { κ8 7→ A2〈κ12,Int〉 } A1〈>,⊥〉

1359

From Section 6 (page 32), we know that the type of λx : ? .x(succ (x True)) is1360

A〈?,α〉→A〈?,κ6〉. Plugging in the solution for α from the unifier above, the type1361

for λx : ? .x(succ (x True)) is Md p =A〈?,A1〈?,Bool〉→A2〈?,Int〉〉→A〈?,A2〈κ10,Int〉〉.1362

Moreover, the pattern for the whole function is A〈>,A1〈>,⊥〉〉. Note, A2 does not appear1363

in the result pattern because whether we choose ? or Int for the return type of the1364

function type for α , the well-typedness of the expression remains the same. Applying1365

the operations ve and expand, defined in Section 5.2, to the pattern A〈>,A1〈>,⊥〉〉,1366

we know that the best migration for this expression corresponds to the valid eliminator1367

{A.2,A1.1,A2.2}. Selecting Md p with {A.2,A1.1,A2.2} yields the type (?→Int)→Int,1368

the type of λx : ? .x(succ (x True)) after migrating the parameter x. This means that our1369

extension could indeed find a more precise migration for λx :? .x(succ (x True)).1370

An extension to the unification algorithm Figure 14 presents an extension to the1371

unification algorithm that implements our idea from above. We briefly go through the cases.1372

First, the cases (bR) and (bR∗) replace cases (b) and (b∗) in Figure 13, by renaming the1373

type variables α to β . Note that from now on, we use α to denote migration variables and1374

β to denote all other variables. The cases (b1) through (b4) handle unification between1375

ZU064-05-FPR jfp 16 May 2022 9:53

44 John Peter Campora III, Sheng Chen, Martin Erwig, and Eric Walkingshaw

a migration variable and itself, a constant type, a non-migration type variable, and a1376

variational type.1377

Case (b5) handles the unification between a migration variable and a function1378

type. This case uses an auxiliary function AllLvsDynMvs to determine if the leaves1379

of a given input type are all ?s or migration type variables. For example, all1380

AllLvsDynMvs(α1→α), AllLvsDynMvs(α2), and AllLvsDynMvs((?→α)→α2) are true,1381

while AllLvsDynMvs(α1→Int) and AllLvsDynMvs((α1→Bool)→α2) are false. This1382

function helps avoid non-termination in our extension. To illustrate, consider the constraint1383

α ≈? α→β . Such a constraint arises when typing a self application, such as in the1384

expression λx : ? .x x. This constraint fails to solve using the constraint solving algorithm1385

in Figure 13 due to the occurs check.1386

With the extension in Figure 14, we will turn the constraint α ≈? α→β into1387

A1〈?,α1〉→A2〈?,α2〉 ≈? (A1〈?,α1〉→A2〈?,α2〉)→β . This constraint encodes four1388

constraints, and one of them is α1→α2 ≈? (α1→α2)→β (if we select the variational1389

constraint with the decision {A1.2,A2.2}). We observe that this problem is larger than1390

the original problem α ≈? α→β and the constraint between the parameter types (α1 ≈?
1391

α1→α2) resembles the original problem. We can envision that the unification will not1392

terminate if we keep on refining migration variables as we did above.1393

There are two potential ways to address this problem. The first is that we use a heuristic,1394

such as allowing a single migration variable be refined by up to a certain number of times1395

only. Any further refinement attempt on the same migration variable would be rejected1396

and treated as a unification failure. The second is to detect the unification that unifies a1397

migration variable (α) against a function type that contains the migration variable (α) and1398

all other leaves are other migration variables or ?s. Such a unification does not reflect1399

any program structure information but is resulted from refining a unification variable to a1400

function type, since constraint generation (Figure 11) does not generate such a constraint.1401

If such a unification problem is detected, we can terminate the unification with a failure.1402

Note, even though unification will fail for α1→α2 ≈? (α1→α2)→β , which means1403

the typing pattern returned for unifying it will be ⊥, the typing pattern for unifying1404

A1〈?,α1〉→A2〈?,α2〉 ≈? (A1〈?,α1〉→A2〈?,α2〉)→β will not be ⊥. It is A1〈>,⊥〉. This1405

means that the pattern for solving α ≈? α→β is not ⊥.1406

In this extension, we use the second way to address this problem. Concretely, we capture1407

it in the first subcase of case (b5). In the second subcase, α does not occur in the function1408

type and all leaves are migration variables, then we directly map α to the function type.1409

In the third subcase, the function type contains some ?s. We need to refine α to a function1410

type, but without creating new variations. The last subcase implements the idea of refining1411

a migration variable into a function type whose both parameter and return types are1412

variations.1413

With this extension, let’s now turn to finding migrations for the term λx :? .x x. First, we1414

generate the constraint A〈?,α〉 ≈? A〈?,α〉→β and the type for the term is A〈?,α〉→β .1415

This constraint will be solved using case (d) of Figure 13, which will solve two constraints1416

originated from the two alternatives of A. For the left alternative, the constraint is ? ≈?
1417

?→β , which will be solved by case (a) of Figure 13 with the solution (∅,>). For the right1418

alternative, the constraint is α ≈? α→β . This constraint will be handled by the fourth1419

ZU064-05-FPR jfp 16 May 2022 9:53

Migrating Gradual Types 45

subcase of case (b5) in Figure 14, and it will be transformed to A1〈?,α1〉→A2〈?,α2〉 ≈?
1420

(A1〈?,α1〉→A2〈?,α2〉)→β .1421

With a few steps, this problem can be solved and the solution is {α 7→1422

A1〈?,α1〉→A2〈?,β 〉,α2 7→ β} and the pattern is A1〈>,⊥〉. Substituting the type1423

of the term with this solution yields A〈?,A1〈?,α1〉→A2〈?,β 〉〉→β and the overall1424

pattern is A〈>,A1〈>,⊥〉〉. From this pattern, we can use ve and expand defined in1425

Section 5.2 to calculate the strictest valid eliminator {A.2,A1.1,A2.2}. Selecting the type1426

A〈?,A1〈?,α1〉→A2〈?,β 〉〉→β with this eliminator leads to the type (?→β)→β , which is1427

a most static migration for λx :? .x x. This shows that with the extended constraint solving1428

algorithm, we could find a more precise migration for λx : ? .x x that we could not find1429

earlier.1430

9.3 Further Migration Scenarios1431

Sections 4 and 5 provide a type system and a method for finding all best migrations. In1432

practice, there may be different migration requirements. In this subsection, we explore a1433

few of them and show how to support them with machinery developed in earlier sections.1434

Specifically, we consider the following migration scenarios.1435

(i) Can the programmer control which parameters must or must not be migrated?1436

(ii) If migrating a set of indicated parameters yields a type error, can we still migrate a1437

subset of these parameters?1438

(iii) Given a set of parameters, can we find which parameters cannot be migrated in1439

unison?1440

(iv) Can we find the migrations that migrate the greatest number of parameters?1441

We use the program rowAtI to illustrate these scenarios and the development of1442

corresponding machinery. Recall that the variations introduced for the parameters fixed,1443

widthFunc, table, border, and i are A, B, D, E, and F , respectively. The typing pattern for1444

this program was shown in Section 4.5 and is reproduced here for readability.1445

πa = A〈E〈>,⊥〉,B〈E〈>,⊥〉,⊥〉〉

We next go through each scenario.1446

Scenario (i): We begin with a concrete case. Assume that the programmer requires that1447

table must be migrated and widthFunc must not be migrated. We can build a decision1448

δr for refining the pattern πa based on this requirement. To express that table must be1449

migrated, we extend δr with D.2, as D is the variation introduced for table. For widthFunc1450

to be not migrated, we extend δr with B.1, making δr = {B.1,D.2}. After that, we refine1451

πa with δr, yielding the new pattern A〈E〈>,⊥〉,E〈>,⊥〉〉, which could be simplified to1452

E〈>,⊥〉. We can now apply the method developed in Section 5 to the pattern E〈>,⊥〉 to1453

find the best migrations for rowAtI while honoring the requirements. Based on the pattern1454

E〈>,⊥〉, the migration result is that border, the parameter corresponds to E, can not be1455

migrated, and all other parameters can be migrated. Overall, the migration is that we can1456

migrate fixed, i, and table.1457

In general, for a program and its typing pattern π generated from MGSM, we follow the1458

following steps to handle this scenario.1459

ZU064-05-FPR jfp 16 May 2022 9:53

46 John Peter Campora III, Sheng Chen, Martin Erwig, and Eric Walkingshaw

(1) For each parameter that must be migrated, we extend δr with d.2, where d is the1460

variation introduced for the parameter.1461

(2) For each parameter that must not be migrated, we extend δr with d.1, where d is the1462

variation introduced for the parameter.1463

(3) We refine the pattern π with δr.1464

(4) With the resulting pattern from the last step, we use the method for finding most1465

static migrations outlined in Section 5.2 to find desired migrations.1466

Scenario (ii): Assume that the programmer requires to migrate all fixed, widthFunc,1467

and table. According to the process of calculating δr given earlier, δr = {A.2,B.2,D.2}.1468

We observe that bπacδr =⊥, indicating that not all these parameters can be migrated at the1469

same time. However, the ⊥ does not indicate that none of the parameters can be migrated.1470

To figure out if a parameter within the specified set could be migrated, we could list1471

all decisions yielding best migrations and check if the parameter appears in any set.1472

For example, based on Section 5.2, the decisions corresponding to best migrations for1473

rowAtI are {A.2,B.1,D.2,E.1,F.2} and {A.1,B.2,D.2,E.1,F.2}. From the first set, we1474

could decide that fixed (since fixed corresponds to A and A.2 belongs to the set) and1475

table of the desired set could be migrated. From the second set, we could decide that1476

widthFunc and table could be migrated. In this case, we have two different such sets. In1477

other cases, we may have only one such set. For example, if the programmer indicated that1478

they wanted to migrate fixed and border, then the unique migration corresponds to the1479

decision is {A.2,B.1,D.2,E.1,F.2}, indicating that only fixed within the two parameters1480

could be migrated.1481

Scenario (iii): During program migration, it is quite common that migrating one1482

parameter may preclude the migration of others. For example, in rowAtI, we could not1483

migrate widthFunc if we have migrated fixed and vice versa. Therefore, presenting the1484

unison parameters that could no longer be migrated can be useful to programmers.1485

Assume that the programmer has migrated fixed and that we want to calculate the1486

impact it has on other parameters. We must now consider two cases. The first case migrates1487

fixed, and the decision is δr = {A.2}. The second case does not migrate fixed, and the1488

decision is δ¬r = {A.1}. Let πr and π¬r denote the typing patterns resulted from selecting1489

πa with δr and δ¬r, respectively, we have1490

πr = B〈E〈>,⊥〉,⊥〉 π¬r = E〈>,⊥〉

In the first case, from πr, we have two decisions that lead to ⊥: {B.1,E.2} and {B.2}.1491

In the second case, from π¬r, only one decision leads to ⊥: {E.2}. By comparing the1492

decisions in these two cases, we observe that both cases contain E.2. This implies that1493

migrating border, the parameter corresponding to E, always causes an error, meaning that1494

fixed being migrated was irrelevant to the reason border cannot be migrated. On the other1495

hand, only a decision in the first case contains B.2 while none in the second case contains it.1496

This implies that the reason widthFunc can not be migrated is because fixed was migrated.1497

Consequently, the parameter that can not be migrated in unison with fixed is widthFunc.1498

Given an expression e and π for its MGSM typing, and assume the parameter x is1499

migrated and the introduced variation for x is d, the following steps list the process of1500

finding parameters that can not be migrated due to the migration of x.1501

ZU064-05-FPR jfp 16 May 2022 9:53

Migrating Gradual Types 47

(1) Let πr = bπcd.1 and π¬r = bπcd.2.1502

(2) Collect the decisions that produce ⊥ when selecting π with πr.1503

(3) Collect the decisions that produce ⊥ when selecting π with π¬r.1504

(4) For any d′, if d′.2 appears in some decisions from step (3) but not from any of1505

decision in step (2), then the parameter that corresponds to d′ cannot be migrated in1506

unison with x.1507

Scenario (iv): This scenario aims to find out the migrations that migrate the greatest1508

number of parameters, which we refer to as maximal migrations. For example, if one most1509

static migration migrates two parameters while another migrates four, then the latter is1510

a maximal migration if no other migrations migrate more than four parameters. In some1511

situation, maximal migrations are not unique. For example, two most static migrations for1512

rowAtI migrate three parameters and both are maximal.1513

Given an expression and its typing pattern π for its MGSM, a simple process to find1514

maximal migrations is generate all best migrations from π and filter out the migrations1515

that migrate the greatest number of parameters.1516

This process is straightforward and necessitates no changes to our existing machinery,
but is computationally expensive. We can improve the efficiency by slightly adapting the
ve function for collecting best migrations from Section 5.2. Specifically, for each internal
node of the typing pattern, we compare the cardinality of the decisions from the left and
right subtrees and discard the decisions that have more left selectors, which are selectors
of the form d.1 for some d (see Section 2.2). We express this idea in the following function
mve.

mve(>) = {∅}
mve(⊥) =∅

mve(d〈π1,π2〉) =

lmve rmve =∅ or |D |− |lmve[0]|1|> |D |− |rmve[0]|1|
rmve |D |− |lmve[0]|1|< |D |− |rmve[0]|1|
lmve∪ rmve otherwise

where lmve = {{d.1}∪ l | l ∈ mve(π1)}
rmve = {{d.2}∪ r | r ∈ mve(π2)}

In the definition, δ |1 (introduced in Section 4.5) returns all left selectors in δ . The1517

notation lmve[0] returns any member from the set lmve. This is valid because all of the1518

members in lmve include the same number of left selectors, and so do those in rmve.1519

The set D (introduced in Section 5.2) contains all variations introduced in typing e. Note,1520

given a decision δ , if d.1 /∈ δ then the parameter corresponding to d can not be migrated.1521

Therefore, |D |−|lmve[0]|1| gives the number of parameters that can be migrated in lmve[0].1522

mve is always more efficient than ve since the former keeps the set of decisions that yield1523

maximal migrations only while the latter keeps all best migrations. In particular, if there is1524

a unique maximal migration, then mve returns only one decision.1525

Discussion Supporting these scenarios by reusing or slightly adapting existing machinery1526

demonstrates the generality of our approach. We can also support variations or1527

combinations of scenarios we looked at with ease. For example, a combination of1528

ZU064-05-FPR jfp 16 May 2022 9:53

48 John Peter Campora III, Sheng Chen, Martin Erwig, and Eric Walkingshaw

Name Size # Func. # Para. # Chg. # Best Gradual Brute Migrational

array 31 5 6 2 1 8.7e−3 0.45 1.9e−2

blackscholes 125 8 17 10 23 2.1e−2 – 6.7e−2

fft 93 5 19 2 2 1.9e−2 – 4.4e−2

matmult 29 3 8 2 1 3.5e−3 0.82 1.1e−2

nbody 187 21 44 20 31 6.4e−2 – 0.25
quicksort 44 3 9 2 2 7.8e−3 3.37 2.4e−2

raytrace 207 20 45 25 46 0.11 – 0.36

Fig. 15: Running time (in seconds) of migrational typing on programs converted from
Grift (Kuhlenschmidt et al., 2019). For each row, columns 2 through 4 give the metric of
the program, including the number of lines of non-blank code, the number of functions, the
number of dynamic parameters, and the number of changes we made to the program. Times
are measured on a ThinkPad with 2.4GHz i7-5500U 4-core processor and 8GB memory
running GHC 8.0.2 on Ubuntu 16.04. Each time is an average of 10 runs. The symbol –
indicates that typing timed out after 1,000 seconds.

scenarios (i) and (iv) could be supported by following the first three steps outlined in1529

Scenario (i) and then applying the mve function to the resulting pattern. As another1530

example, we may be interested in the scenario of finding the maximal migration within1531

a given set of parameters. To support this scenario, we first select the typing pattern of the1532

MGSM typing with selectors of the form d.1, where d corresponds to a parameter that does1533

not belong to the given set. The selection result is a pattern, to which we apply mve to find1534

the maximal migration within that parameter set.1535

Overall, the generality of our approach demonstrates that it could be a useful foundation1536

for developing more complex and significant migration supports in practice.1537

10 Evaluation1538

This section evaluates the performance of migrational typing. For this purpose, we have1539

implemented a prototype in Haskell. The prototype implements the techniques developed1540

in this paper. Besides the features presented in Sections 4.1 and 9.1, the prototype also1541

supports recursive functions, a built-in list type, a built-in Vector type, and a tuple type,1542

which are needed to encode the examples described below.1543

To evaluate the performance of our idea in practice, we have converted programs in Grift1544

to the language supported by our prototype. We used all the programs from Kuhlenschmidt1545

et al. (2019) except the program sieve, which uses recursive types that are not supported1546

in our prototype. Since these converted programs are all well typed, we seed errors in the1547

programs by randomly applying between 2 and 25 changes in each. Each change replaces1548

one leaf of the AST (a variable reference or constant) with another leaf. These programs1549

are summarized in columns 2–5 of Figure 15, showing size in lines of non-blank code,1550

number of functions, number of dynamic parameters, and the number of leaves that were1551

changed.1552

For each evaluated program, we compared the runtime of migrational typing with1553

standard gradual typing and with a brute-force strategy for most static migration for the1554

program, shown in columns seven through nine of the table. In standard gradual typing, we1555

ZU064-05-FPR jfp 16 May 2022 9:53

Migrating Gradual Types 49

0 20 40 60 80
Static parameter type ratio (%)

0.075

0.100

0.125

0.150

0.175

0.200

0.225

0.250

M
ig

ra
tio

na
l t

yp
in

g
tim

e
(s

ec
on

ds
)

nbody

Fig. 16: Relations between ratios of typed parameters and migrational typing times for the
nbody benchmark.

run our implementation without creating any variations. We also report the number of most1556

static migrations in column “# Best”, computed using the method in Section 5.2. The time1557

for gradual typing can be considered a baseline—this is the time to simply type the given1558

program. The time for the brute-force strategy represents a naive approach to migrational1559

typing, generating 2n variants of a program with n dynamic parameters, and gradually1560

typing all of them. In Section 1.1 we discussed that an exploration of all programs are1561

needed to find best migrations. We omit the time for computing the most static migrations1562

from the figure because the time is always within 0.04 seconds.1563

We observe that the brute-force approach, as expected, is exponentially slower than1564

gradual typing, and it successfully types only the programs that have fewer than 101565

parameters. On the other hand, migrational typing scales linearly with the size of the1566

program and exhibits only a 2–3.5 times overhead over gradual typing.1567

We have also investigated the impact of the ratio of typed parameters on migrational1568

typing time, and we presented the results in Figure 16. Note that the x-axis cuts off at 93%1569

because, as we made random changes to the program, not all parameters can be given static1570

types. In general, a higher ratio of typed parameters leads to fewer variations being created,1571

and thus takes shorter time for migrational typing to finish.1572

11 Related Work1573

11.1 Annotation Upgrading and Migratory Typing1574

Tansey & Tilevich (2008) studied the problem of automatically upgrading annotations1575

(such as types and access modifiers in Java) in legacy applications in response to the1576

upgrading of, for example, testing frameworks and libraries. This is similar to our work1577

in that it tackles the problem of migrating programs to a new version by changing1578

annotations in the program. Their methodology is quite different however, in that it needs1579

two example programs illustrating how annotations change between framework versions,1580

so that their inference rules can learn the changes made in the examples. In contrast,1581

ZU064-05-FPR jfp 16 May 2022 9:53

50 John Peter Campora III, Sheng Chen, Martin Erwig, and Eric Walkingshaw

our approach only needs to reason about how type annotations affect the typing of the1582

program, so migrating annotations requires only information attainable through the type1583

system. Moreover, the kind of migrations are orthogonal. Their goal is to upgrade an entire1584

codebase automatically to use a new framework, which means that they have one endpoint.1585

Migrational typing presents all of the ways a programmer might want to change the types1586

of their program by adjusting ? annotations, meaning that there are multiple endpoints.1587

Migratory typing (Tobin-Hochstadt et al., 2017) provides another approach to migrating1588

dynamically typed code to statically typed code by creating a statically-typed sister1589

language that interfaces seamlessly with the dynamically-typed language. In general the1590

focus of this work is about designing such a sister language such that types can be1591

assigned to existing programs in the dynamic language with minimal refactoring. While1592

programmers have to manually add type annotations to make programs more static in1593

migratory typing, migrational typing supports systematically typing the whole migration1594

space and automatically finding the best migrations.1595

This means that a large focus of migratory typing is orthogonal to our work in that we1596

assume we are working within a given gradual language, and that we do not have to design1597

a static sister language to a dynamic language. On the other hand, if we were given a static1598

language and gradualized it via the idea of Garcia et al. (2016); Cimini & Siek (2016, 2017)1599

we conjecture we could design a migration tool for gradualized languages that supported1600

unification based type inference.1601

11.2 Gradual Typing Migration1602

As discussed in Section 1.3, this work is closely related to the work by Migeed & Palsberg1603

(2019) on finding maximal migrations for gradual programs. There are several similarities1604

in their work and ours. For example, they consider a set of possible migrations for a1605

gradually typed programs and try to find all of the maximal migrations. These maximal1606

migrations are migrations that cannot add any more type information to the program1607

without causing a static type error, which are similar to our most static migrations. They1608

show that the process of finding maximal migrations is NP hard.1609

Their work has some notable differences with our work, however. Mainly, the language1610

they consider is a version of GTLC (Siek et al., 2015) with the ability to add Bool and1611

Int annotations. In contrast, we start with ITGL, a gradualized version of the Hindley-1612

Milner language, which has a principal type inference that works on unannotated terms.1613

Essentially, while both work aims to find maximal migrations, they use different techniques1614

and criteria. In their work, they continuously generate more precise programs by replacing1615

a ? with a more precise type and tests the well-typedness of the generated program. They1616

find a maximal migration if no more ?s exist of no more ? could be replaced with any more1617

precise type. A migration in our work is maximal if no further ? can be eliminated with1618

respect to ITGL Garcia & Cimini (2015) constraint solving. As a result, their approach1619

may find types that are rejected by the ITGL inference that we adapt. For example, for1620

λx : ?.x (succ (x True)), their approach infers that x can be given the type ?→Int, whereas1621

our approach respects ITGL, which considers the use of x to be ill typed (Our extension in1622

Section 9.2 does infer that x may be migrated to the type ?→Int).1623

ZU064-05-FPR jfp 16 May 2022 9:53

Migrating Gradual Types 51

Finally, we have evaluated the efficiency of our approach on large programs, and we1624

observed that finding all best migrations in our approach is usually within a factor of 21625

of typing each possible migration. The efficiency in their approach is unclear. It would1626

be interesting as future work to see if our machinery could be exploited to improve the1627

efficiency of their work.1628

Phipps-Costin et al. (2021) developed a framework named TypeWhich for migrating1629

gradual types. While both our work and the work by Migeed & Palsberg (2019) aim at1630

maximizing type precision during migration, TypeWhich allows users to consider not only1631

type precision, but also type safety (such that migration does not introduce runtime errors)1632

and type compatibility (such that migration does not break the interoperability between1633

migrated and un-migrated code). As such, some migrations in our work and that by Migeed1634

& Palsberg (2019) may introduce dynamic runtime errors, but not in the safety mode of1635

TypeWhich. The latter two modes are particularly useful because migrations are often not1636

done for the whole project and the migration process should not break code interactions.1637

In addition, our work and TypeWhich differ in many aspects. First, our work can find1638

all best migrations for a given program whereas TypeWhich finds just one best migration.1639

Consider, for example, the following expression.1640

width fixed widthFunc = 2 + (if fixed then widthFunc fixed else widthFunc 33)

TypeWhich displays the following migration for this function when prioritizing type1641

precision.1642

width (fixed:Int) (widthFunc:Int -> Int)

= 2 + (if (fixed:?) then widthFunc fixed else widthFunc 33)

Our work finds two best migrations for the function width, and neither is more precise1643

than the other. In the first migration, the type for fixed remains to be ? whereas the type1644

for widthFunc is Int-> Int, as shown below.1645

width (fixed:?) (widthFunc:Int -> Int)

= 2 + (if fixed then widthFunc fixed else widthFunc 33)

In the second migration, the type for fixed is migrated to Bool and the type for widthFunc1646

is migrated to ?-> Int (without the extension in Section 9.2 the type for widthFunc will1647

remain ?). The migrated program is shown below.1648

width (fixed:Bool) (widthFunc:? -> Int)

= 2 + (if fixed then widthFunc fixed else widthFunc 33)

For programs that can not be fully, statically typed, it is likely that hundreds of best1649

migrations exist. Our approach finds all of them in time linear to the size of the program.1650

Since our approach may find a large number of best migrations, it is helpful to allow users1651

to specify preferences about where migrations are preferred. We support them through1652

extensions in Section 9.3. Since TypeWhich finds only one best migration, such supports1653

are not necessary.1654

Second, by design, TypeWhich may ascribe a ? type to a subexpression even though1655

the subexpression has a static type during static type checking. This design allows more1656

parameters to be migrated when precision is maximized. For example, in the migration for1657

width above, TypeWhich ascribed ? to fixed that has the type Int so that fixed can be used1658

ZU064-05-FPR jfp 16 May 2022 9:53

52 John Peter Campora III, Sheng Chen, Martin Erwig, and Eric Walkingshaw

where a Bool is needed. Without the ascription, the migrated program is statically ill-typed.1659

In fact, the migration by TypeWhich will always yield a runtime type error. The migrated1660

width function accepts only Int values, which will lead to a runtime error since fixed is1661

used as a Bool value in the function definition. Our approach does not use ascription for1662

maximizing migrations.1663

Third, our approach supports polymorphism through let (Section 9.1) while TypeWhich1664

does not. Also, our approach allows programmers to specify type annotations for some1665

parameters and migrations will respect these annotations. In TypeWhich, static type1666

annotations are erased, so that all parameters have the ? types before migration.1667

Henglein & Rehof (1995) developed an approach for embedding Scheme programs in1668

ML by inserting coercions into subexpressions whose type correctness can not be statically1669

verified. Their approach uses type inference to reduce coercions that will be inserted. Their1670

approach is similar to TypeWhich that prioritizes type safety.1671

11.3 Relation to Gradual Typing1672

Work on gradual typing can be broadly defined along three dimensions. The first1673

investigates the integration of gradual typing with advanced typing features, such as1674

objects (Siek & Taha, 2007), ownership types (Sergey & Clarke, 2012), refinement1675

types (Lehmann & Tanter, 2017; Jafery & Dunfield, 2017; Wadler & Findler, 2009;1676

Williams et al., 2018), session types (Igarashi et al., 2017), and union and intersection1677

types (Castagna & Lanvin, 2017; Castagna et al., 2019; Toro & Tanter, 2017; Siek &1678

Tobin-Hochstadt, 2016). From this perspective, our type system studies the combination1679

of variational types with gradual types. Gradual languages with type inference (Siek &1680

Vachharajani, 2008; Garcia & Cimini, 2015; Rastogi et al., 2012) were a large influence on1681

migrational typing. While ITGL was used as the basis for formalizing our type system, we1682

expect that our approach can be extended to handle other features in this line of work. The1683

reason is that the idea and manipulation of variations is orthogonal to other type system1684

features. In particular, the idea of type compatibility in Section 4.2 and the handling of type1685

errors in Section 4.3 can be easily extended.1686

The second dimension studies runtime error localization and performance issues with1687

sound gradual typing. The blame calculus (Wadler & Findler, 2009, 2007; Tobin-Hochstadt1688

& Felleisen, 2006) adapts the contract system notion of blame so that less precise parts of1689

a program are blamed when cast errors occur. Ahmed et al. (2011, 2017) extended that1690

work to further handle polymorphic types. Since those works, there has been a number of1691

papers involving parametricity in the gradually typed setting (Toro et al., 2019; New et al.,1692

2019). Takikawa et al. (2016) showed that sound gradually typed languages suffer from1693

performance issues as more interactions between static code and dynamic code leads to1694

frequent value casts. Confined Gradual Typing (Allende et al., 2014) provides constructs1695

to control the flow of values between static and dynamic code, mitigating performance1696

issues and making gradual typing more predictable.1697

The final dimension studies the production of gradual type systems from specifications1698

of static type systems. For example, Garcia et al. (2016) presented a way to create1699

gradual type systems from static ones using techniques from abstract interpretation. The1700

Gradualizer (Cimini & Siek, 2016, 2017) can produce a gradual type system and dynamic1701

ZU064-05-FPR jfp 16 May 2022 9:53

Migrating Gradual Types 53

semantics for a statically-typed language given its formal semantics. It is thus interesting1702

to investigate how these approaches interact with variations in the future. Siek et al. (2015)1703

discussed the criteria for gradual typing. We employed the criteria of the underlying ITGL1704

to prove Theorem 7.1705

11.4 Type inference1706

The goal of gradual typing is to find out what parameters can be given static types. As1707

such, gradual typing is closely related to the idea of type inference.1708

Gradual type inference with flow-based typing (Rastogi et al., 2012) has been explored1709

to make programs in dynamic object-oriented languages more performant. Since our work1710

is formalized on ITGL, our work inherits the relations between ITGL and flow-based1711

inference (Garcia & Cimini, 2015). Additionally, while flow-based inference ensures that1712

inferred type annotations do not cause runtime errors, our current formalization does not1713

have this property as our approach is not flow-directed.1714

The inference in Flow (Chaudhuri et al., 2017) is also flow-based and was specifically1715

designed to not produce false positives for idioms that are commonly used in JavaScript.1716

It is possible that migrational typing can help the inference process for languages like1717

JavaScript by using variations to reason about idioms in messy scenarios. A flow-based1718

inference was also employed over Reticulated Python’s cast inserted transient translation.1719

The inference was used to optimize program performance, removing unnecessary casts1720

where the inference indicated that it was safe.1721

A few type systems, such as Guha et al. (2011); Chugh et al. (2012); Pearce (2013),1722

support flow-based reasoning but do not perform type inference.1723

SimTyper, developed by Kazerounian et al. (2021), aims to infer usable types for1724

Ruby. Unlike most type inference algorithms, the goal of SimTyper is not to infer most1725

general (precise) types, which could be verbose and hard to use in presence of subtyping,1726

structural types, overloading, and other dynamic language features. Instead. the goal of1727

SimTyper is to infer usable types that programmers often write. SimTyper is built on1728

InferDL Kazerounian et al. (2020), a heuristics-based type inference algorithm, and a1729

type equality prediction method based on machine learning. Essentially, when SimTyper1730

discovers an overly general, complicated type, it uses the type equality predictor to find1731

a type that is more concise and is equal. SimTyper than uses that more concise type to1732

replace the complicated one and check if that replacement violates any typing constraint. It1733

accepts the concise type if no violations detected and rejects the type and look for another1734

concise type otherwise.1735

Wei et al. (2020) developed LambdaNet for inferring types for TypeScript. Given a1736

program, LambdaNet first transforms it to a type dependency graph, where nodes are1737

type variables for subexpressions in the programs and hyperedges express constraints1738

(such as the subtyping relation or type equality). Hyperedges may also provide hints to1739

type inference, such as variables giving rise to the connected type variables have similar1740

names. All type variables are then converted to vectors of numbers (known as embedding in1741

machine learning) and, LambdaNet uses a set of rules to propagate type information across1742

the dependency graphs. These rules manipulate the embedding in each node. As with deep1743

ZU064-05-FPR jfp 16 May 2022 9:53

54 John Peter Campora III, Sheng Chen, Martin Erwig, and Eric Walkingshaw

learning (Neocleous & Schizas, 2002), the intuitions behind such rules are unclear. Finally,1744

after propagation completes, inferred types are readout from embeddings.1745

11.5 Variational Typing and Others1746

This work reuses much machinery from variational typing (Chen et al., 2012, 2014) to1747

support reuse when typing the whole migration space. Thus, migrational typing can be1748

viewed as an application of variational typing. Variational typing has been employed1749

to improve type inference of generalized algebraic data types (Chen & Erwig, 2016),1750

which uses variation types to represent potentially many types for a single expression.1751

Variational typing has also been used to improve error locating in functional programs1752

using counter-factual typing (CFT) (Chen & Erwig, 2014a,b). Both migrational typing and1753

CFT use variational types to efficiently explore a large number of hypothetical situations.1754

A technical difference between CFT and migrational typing is that CFT tries to find a1755

minimal change that would make an ill typed program type correct. In contrast, migrational1756

typing tries to remove ? annotations from as many parameters as possible. The process of1757

extracting the maximum change for migrational typing (as described in Section 5.2) is1758

well defined while finding the minimum change in CFT has to rely on heuristics due to1759

the nature of type error debugging. Another difference is that migrational typing considers1760

the interaction between variational types and gradual types. The idea of using pattern-1761

constrained judgments in Section 4.3 yields a declarative specification for handling type1762

errors, while previous applications of variational typing have had to explicitly track the1763

introduction and propagation of type errors.1764

The variational cost analysis by Campora et al. (2018b) provided an approach that1765

harmonizes type safety and gradual typing performance. The motivation of that work was1766

that migrating programs will likely slowdown program performance. The solution in that1767

work was constructing a “cost lattice” that estimates the runtime overhead induced by type1768

annotations and comparing costs of different migrations. The solution supports different1769

migration scenarios while adding type annotations, for example finding the migrations that1770

yield the best performance. Technically, that work adapted cost analysis for functional1771

programs (Danner et al., 2015) to a gradually typed language. That work also used the1772

machinery of variational typing to reusing typing and cost analysis to efficiently build the1773

cost lattice.1774

It is possible that type annotations added by programmers during migrations may cause1775

runtime type errors. Campora & Chen (2020) presented a static type system for detecting1776

runtime type errors, finding out the ?s that prevent the runtime type errors from being1777

detected by the static type system, and suggesting fixes to remove dynamic runtime type1778

errors.1779

Variational typing is defined in terms of the choice calculus (Erwig & Walkingshaw,1780

2011). Other applications of the choice calculus include the development of variational1781

data structures (Walkingshaw et al., 2014; Meng et al., 2017; Smeltzer & Erwig, 2017) to1782

support variational program execution (Chen et al., 2016; Erwig & Walkingshaw, 2013;1783

Nguyen et al., 2014), and view-based editing of variational programs (Walkingshaw &1784

Ostermann, 2014; Stănciulescu et al., 2016).1785

ZU064-05-FPR jfp 16 May 2022 9:53

Migrating Gradual Types 55

Typing patterns in our work have a close resemblance to BDD (Binary Decision1786

Diagrams) of Boolean formulas (Akers, 1978; Bryant, 1992). For example, choices in1787

patterns correspond to internal nodes in BDD, ⊥ and > correspond to leaves 0 and 1 in1788

BDDs, respectively, and selecting the right alternative of a choice corresponds to following1789

the high edge of an internal node. Moreover, the idea of pattern normal forms, introduced1790

before Theorem 9, are similar to reduced BDDs. Variable ordering has a significant impact1791

on the size of a BDD. The number of nodes of a BDD may be linear to the number of1792

variables under one ordering but it could be exponential under another. Similarly, the1793

ordering of choice names impact the size of a typing pattern. For example, the pattern1794

A〈⊥,B〈>,C〈⊥,>〉〉〉 has three internal nodes and four leaves, while an equivalent pattern1795

C〈A〈⊥,B〈>,⊥〉〉,A〈⊥,>〉〉 has four internal nodes and five leaves.1796

Due to the reasons below, we conjecture that the ordering problem in our work is not1797

as critical as in BDDs. First, the ordering problem becomes more conspicuous when1798

the leaves mix ⊥s and >s. Instead, due to the fact that left alternatives of choices have1799

?s when they are created and ?s unify with any types, left subtrees of patterns tend1800

to have >s. Section 5.1 gives a formal account of this. For such patterns, the impact1801

of ordering on sizes decreases. For example, A〈>,B〈>,C〈>,⊥〉〉〉 has seven nodes, and1802

C〈>,A〈>,B〈>,⊥〉〉〉, an equivalent pattern but with different ordering, also has seven1803

nodes. Second, as explained in Section 5.2 (the last second paragraph), typing patterns1804

are usually small, this makes the ordering less important, as even a suboptimal ordering1805

will not cause the pattern to have too many nodes.1806

12 Conclusion1807

We have presented migrational typing, a type system that allows programs in an implicitly1808

typed gradual language to be assigned a new type based on the possible removals of1809

dynamic type annotations in the original program. Migrational typing solves an important1810

unaddressed problem in gradual typing, namely having a safe and efficient way to move1811

around in the possible dynamic-static typing space for a program. It achieves this by1812

conceptually typing the whole migration space, marking where type errors occur so that it1813

can safely present the possible migrations for the program. We have shown that the system1814

can infer the most static possible types that can be assigned to a program and that this1815

process can be constrained according to user-defined criteria. Moreover, the migrational1816

type system is sound and complete with respect to removing dynamic annotations in ITGL,1817

and its constraint generation and unification algorithms are sound and complete.1818

We have also shown that this approach is scalable, performing nearly exponentially1819

better than the brute-force approach of generating and typing the migration space1820

separately. Later, we showed that migrational typing can be adapted to statically reason1821

about the number of dynamic casts that will be generated by different points in the1822

migration space so that we can support migration scenarios that consider programmers’1823

typing goals and performance goals (Campora et al., 2018b). In future work, we plan to see1824

if we can adapt migrational typing to work with a non-unification based inference. This will1825

allow it to analyze gradual languages with object oriented features like Reticulated Python1826

or TypeScript with greater ease. We also plan to explore whether migrational typing can be1827

adapted to provided an analysis of the runtime safety of casts in gradual programs.1828

ZU064-05-FPR jfp 16 May 2022 9:53

56 John Peter Campora III, Sheng Chen, Martin Erwig, and Eric Walkingshaw

Acknowledgments1829

We thank the anonymous POPL and JFP reviewers and Jens Palsberg for their constructive1830

feedback, which have significantly improved both the content and presentations of this1831

paper. This work was partially supported by the National Science Foundation under the1832

grant CCF-1750886.1833

References1834

Ahmed, Amal, Findler, Robert Bruce, Siek, Jeremy G., & Wadler, Philip. (2011). Blame1835

for all. Sigplan not., 46(1), 201–214.1836

Ahmed, Amal, Jamner, Dustin, Siek, Jeremy G., & Wadler, Philip. (2017). Theorems for1837

free for free: Parametricity, with and without types. Proc. acm program. lang., 1(ICFP),1838

39:1–39:28.1839

Akers, S. B. (1978). Binary decision diagrams. Ieee transactions on computers, C-27(6),1840

509–516.1841

Allende, Esteban, Fabry, Johan, Garcia, Ronald, & Tanter, Éric. (2014). Confined gradual1842

typing. Sigplan not., 49(10), 251–270.1843

Apel, Sven, Batory, Don, Kästner, Christian, & Saake, Gunter. (2016). Feature-oriented1844

software product lines. Springer.1845

Bayne, Michael, Cook, Richard, & Ernst, Michael D. (2011). Always-available static and1846

dynamic feedback. Pages 521–530 of: Proceedings of the 33rd International Conference1847

on Software Engineering. ICSE ’11. New York, NY, USA: ACM.1848

Bryant, Randal E. (1992). Symbolic boolean manipulation with ordered binary-decision1849

diagrams. Acm comput. surv., 24(3), 293–318.1850

Campora, John, Chen, Sheng, Erwig, Martin, & Walkingshaw, Eric. (2018a). Migrating1851

gradual types. Proceedings of the 45th ACM SIGPLAN Symposium on Principles of1852

Programming Languages. POPL ’18. New York, NY, USA: ACM.1853

Campora, John, Chen, Sheng, Erwig, Martin, & Walkingshaw, Eric. (2022).1854

Migrating gradual types. Tech. rept. University of Louisiana at Lafayette.1855

https://people.cmix.louisiana.edu/schen/ws/techreport/MGT-With-Proofs.pdf.1856

Campora, John Peter, & Chen, Sheng. (2020). Taming type annotations in gradual typing.1857

Proc. acm program. lang., 4(OOPSLA).1858

Campora, John Peter, Chen, Sheng, & Walkingshaw, Eric. (2018b). Casts and costs:1859

Harmonizing safety and performance in gradual typing. Proc. acm program. lang.,1860

2(ICFP), 98:1–98:30.1861

Castagna, Giuseppe, & Lanvin, Victor. (2017). Gradual typing with union and intersection1862

types. Proc. acm program. lang., 1(ICFP), 41:1–41:28.1863

Castagna, Giuseppe, Lanvin, Victor, Petrucciani, Tommaso, & Siek, Jeremy G. (2019).1864

Gradual typing: A new perspective. Proc. acm program. lang., 3(POPL).1865

Chaudhuri, Avik, Vekris, Panagiotis, Goldman, Sam, Roch, Marshall, & Levi, Gabriel.1866

(2017). Fast and precise type checking for javascript. Proc. acm program. lang.,1867

1(OOPSLA), 48:1–48:30.1868

Chen, Sheng, & Campora III, John Peter. (2019). Blame Tracking and Type Error1869

Debugging. Pages 2:1–2:14 of: Lerner, Benjamin S., Bodík, Rastislav, & Krishnamurthi,1870

Shriram (eds), 3rd Summit on Advances in Programming Languages (SNAPL 2019).1871

ZU064-05-FPR jfp 16 May 2022 9:53

* 57

Leibniz International Proceedings in Informatics (LIPIcs), vol. 136. Dagstuhl, Germany:1872

Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.1873

Chen, Sheng, & Erwig, Martin. (2014a). Counter-factual typing for debugging type errors.1874

Pages 583–594 of: Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on1875

Principles of Programming Languages. POPL ’14. New York, NY, USA: ACM.1876

Chen, Sheng, & Erwig, Martin. (2014b). Guided type debugging. Pages 35–51 of: Int.1877

Symp. on Functional and Logic Programming. LNCS 8475.1878

Chen, Sheng, & Erwig, Martin. (2016). Principal type inference for gadts. Pages 416–4281879

of: Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles1880

of Programming Languages. POPL ’16. New York, NY, USA: ACM.1881

Chen, Sheng, Erwig, Martin, & Walkingshaw, Eric. (2012). An error-tolerant type system1882

for variational lambda calculus. Pages 29–40 of: Proceedings of the 17th ACM SIGPLAN1883

International Conference on Functional Programming. ICFP ’12. New York, NY, USA:1884

ACM.1885

Chen, Sheng, Erwig, Martin, & Walkingshaw, Eric. (2014). Extending type inference to1886

variational programs. Acm trans. program. lang. syst., 36(1), 1:1–1:54.1887

Chen, Sheng, Erwig, Martin, & Walkingshaw, Eric. (2016). A Calculus for Variational1888

Programming. Pages 6:1–6:26 of: European Conf. on Object-Oriented Programming1889

(ECOOP).1890

Chugh, Ravi, Rondon, Patrick M., & Jhala, Ranjit. (2012). Nested refinements: A logic1891

for duck typing. Page 231–244 of: Proceedings of the 39th Annual ACM SIGPLAN-1892

SIGACT Symposium on Principles of Programming Languages. POPL ’12. New York,1893

NY, USA: Association for Computing Machinery.1894

Cimini, Matteo, & Siek, Jeremy G. (2016). The gradualizer: A methodology and algorithm1895

for generating gradual type systems. Pages 443–455 of: Proceedings of the 43rd Annual1896

ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages. POPL1897

’16. New York, NY, USA: ACM.1898

Cimini, Matteo, & Siek, Jeremy G. (2017). Automatically generating the dynamic1899

semantics of gradually typed languages. Pages 789–803 of: Proceedings of the 44th1900

ACM SIGPLAN Symposium on Principles of Programming Languages. POPL 2017.1901

New York, NY, USA: ACM.1902

Danner, Norman, Licata, Daniel R., & Ramyaa, Ramyaa. (2015). Denotational cost1903

semantics for functional languages with inductive types. Pages 140–151 of: Proceedings1904

of the 20th ACM SIGPLAN International Conference on Functional Programming. ICFP1905

2015. New York, NY, USA: ACM.1906

Erwig, Martin, & Walkingshaw, Eric. (2011). The choice calculus: A representation for1907

software variation. Acm trans. softw. eng. methodol., 21(1), 6:1–6:27.1908

Erwig, Martin, & Walkingshaw, Eric. (2013). Variation Programming with the Choice1909

Calculus. Pages 55–99 of: Generative and Transformational Techniques in Software1910

Engineering. LNCS 7680.1911

Garcia, Ronald, & Cimini, Matteo. (2015). Principal type schemes for gradual1912

programs. Pages 303–315 of: Proceedings of the 42Nd Annual ACM SIGPLAN-SIGACT1913

Symposium on Principles of Programming Languages. POPL ’15. New York, NY, USA:1914

ACM.1915

ZU064-05-FPR jfp 16 May 2022 9:53

58 John Peter Campora III, Sheng Chen, Martin Erwig, and Eric Walkingshaw

Garcia, Ronald, Clark, Alison M., & Tanter, Éric. (2016). Abstracting gradual typing.1916

Pages 429–442 of: Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium1917

on Principles of Programming Languages. POPL ’16. New York, NY, USA: ACM.1918

Guha, Arjun, Matthews, Jacob, Findler, Robert Bruce, & Krishnamurthi, Shriram. (2007).1919

Relationally-parametric polymorphic contracts. Page 29–40 of: Proceedings of the 20071920

Symposium on Dynamic Languages. DLS ’07. New York, NY, USA: Association for1921

Computing Machinery.1922

Guha, Arjun, Saftoiu, Claudiu, & Krishnamurthi, Shriram. (2011). Typing local control1923

and state using flow analysis. Pages 256–275 of: Barthe, Gilles (ed), Programming1924

Languages and Systems. Berlin, Heidelberg: Springer Berlin Heidelberg.1925

Henglein, Fritz, & Rehof, Jakob. (1995). Safe polymorphic type inference for a1926

dynamically typed language: Translating scheme to ml. Page 192–203 of: Proceedings1927

of the Seventh International Conference on Functional Programming Languages and1928

Computer Architecture. FPCA ’95. New York, NY, USA: Association for Computing1929

Machinery.1930

Igarashi, Atsushi, Thiemann, Peter, Vasconcelos, Vasco T., & Wadler, Philip. (2017).1931

Gradual session types. Proc. acm program. lang., 1(ICFP), 38:1–38:28.1932

Jafery, Khurram A., & Dunfield, Jana. (2017). Sums of uncertainty: Refinements go1933

gradual. Pages 804–817 of: Proceedings of the 44th ACM SIGPLAN Symposium on1934

Principles of Programming Languages. POPL 2017. New York, NY, USA: ACM.1935

Kazerounian, Milod, Ren, Brianna M., & Foster, Jeffrey S. (2020). Sound, heuristic1936

type annotation inference for ruby. New York, NY, USA: Association for Computing1937

Machinery. Page 112–125.1938

Kazerounian, Milod, Foster, Jeffrey S., & Min, Bonan. (2021). Simtyper: Sound1939

type inference for ruby using type equality prediction. Proc. acm program. lang.,1940

5(OOPSLA).1941

Kuhlenschmidt, Andre, Almahallawi, Deyaaeldeen, & Siek, Jeremy G. (2019). Toward1942

efficient gradual typing for structural types via coercions. Page 517–532 of: Proceedings1943

of the 40th ACM SIGPLAN Conference on Programming Language Design and1944

Implementation. PLDI 2019. New York, NY, USA: Association for Computing1945

Machinery.1946

Lehmann, Nico, & Tanter, Éric. (2017). Gradual refinement types. Pages 775–788 of:1947

Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming1948

Languages. POPL 2017. New York, NY, USA: ACM.1949

Loncaric, Calvin, Chandra, Satish, Schlesinger, Cole, & Sridharan, Manu. (2016). A1950

practical framework for type inference error explanation. Pages 781–799 of: OOPSLA.1951

Marceau, Guillaume, Fisler, Kathi, & Krishnamurthi, Shriram. (2011a). Measuring the1952

effectiveness of error messages designed for novice programmers. Pages 499–504 of:1953

Proceedings of the 42nd ACM technical symposium on Computer science education.1954

ACM.1955

Marceau, Guillaume, Fisler, Kathi, & Krishnamurthi, Shriram. (2011b). Mind your1956

language: on novices’ interactions with error messages. Pages 3–18 of: Proceedings1957

of the 10th SIGPLAN symposium on New ideas, new paradigms, and reflections on1958

programming and software. ACM.1959

ZU064-05-FPR jfp 16 May 2022 9:53

* 59

Meng, Meng, Meinicke, Jens, Wong, Chu-Pan, Walkingshaw, Eric, & Kästner, Christian.1960

(2017). A Choice of Variational Stacks: Exploring Variational Data Structures. Pages1961

28–35 of: Int. Work. on Variability Modelling of Software-Intensive Systems (VaMoS).1962

ACM.1963

Migeed, Zeina, & Palsberg, Jens. (2019). What is decidable about gradual types? Proc.1964

acm program. lang., 4(POPL).1965

Miyazaki, Yusuke, Sekiyama, Taro, & Igarashi, Atsushi. (2019). Dynamic type inference1966

for gradual hindley–milner typing. Proc. acm program. lang., 3(POPL).1967

Munson, Jonathan P, & Schilling, Elizabeth A. (2016). Analyzing novice programmers’1968

response to compiler error messages. Journal of computing sciences in colleges, 31(3),1969

53–61.1970

Neocleous, Costas, & Schizas, Christos. (2002). Artificial neural network learning: A1971

comparative review. Pages 300–313 of: Hellenic Conference on Artificial Intelligence.1972

Springer.1973

New, Max S., Jamner, Dustin, & Ahmed, Amal. (2019). Graduality and parametricity:1974

Together again for the first time. Proc. acm program. lang., 4(POPL).1975

Nguyen, Hung Viet, Kästner, Christian, & Nguyen, Tien N. (2014). Exploring Variability-1976

Aware Execution for Testing Plugin-Based Web Applications. Pages 907–918 of: Int.1977

Conf. on Software Engineering. ACM.1978

Pavlinovic, Zvonimir, King, Tim, & Wies, Thomas. (2014). Finding minimum type error1979

sources. Pages 525–542 of: OOPSLA.1980

Pearce, David J. (2013). A calculus for constraint-based flow typing. Proceedings of the1981

15th Workshop on Formal Techniques for Java-like Programs. FTfJP ’13. New York,1982

NY, USA: Association for Computing Machinery.1983

Phipps-Costin, Luna, Anderson, Carolyn Jane, Greenberg, Michael, & Guha, Arjun.1984

(2021). Solver-based gradual type migration. Proc. acm program. lang., 5(OOPSLA).1985

Rastogi, Aseem, Chaudhuri, Avik, & Hosmer, Basil. (2012). The ins and outs of gradual1986

type inference. Page 481–494 of: Proceedings of the 39th Annual ACM SIGPLAN-1987

SIGACT Symposium on Principles of Programming Languages. POPL ’12. New York,1988

NY, USA: Association for Computing Machinery.1989

Robinson, J. A. (1965a). A machine-oriented logic based on the resolution principle.1990

Journal of the acm, 12(1), 23–41.1991

Robinson, J. A. (1965b). A machine-oriented logic based on the resolution principle. J.1992

acm, 12(1), 23–41.1993

Sergey, Ilya, & Clarke, Dave. (2012). Gradual ownership types. Pages 579–599 of:1994

Proceedings of the 21st European Conference on Programming Languages and Systems.1995

ESOP’12. Berlin, Heidelberg: Springer-Verlag.1996

Serrano, Alejandro, & Hage, Jurriaan. (2016). Type error diagnosis for embedded dsls by1997

two-stage specialized type rules. Berlin, Heidelberg: Springer Berlin Heidelberg. Pages1998

672–698.1999

Siek, Jeremy, & Taha, Walid. (2007). Gradual typing for objects. Pages 2–27 of:2000

Proceedings of the 21st European Conference on ECOOP 2007: Object-Oriented2001

Programming. ECOOP ’07. Berlin, Heidelberg: Springer-Verlag.2002

Siek, Jeremy G., & Taha, Walid. (2006). Gradual typing for functional languages. Pages2003

81–92 of: Workshop on Scheme and Functional Programming.2004

ZU064-05-FPR jfp 16 May 2022 9:53

60 John Peter Campora III, Sheng Chen, Martin Erwig, and Eric Walkingshaw

Siek, Jeremy G., & Tobin-Hochstadt, Sam. (2016). The recursive union of some gradual2005

types. Cham: Springer International Publishing. Pages 388–410.2006

Siek, Jeremy G., & Vachharajani, Manish. (2008). Gradual typing with unification-2007

based inference. Pages 7:1–7:12 of: Proceedings of the 2008 Symposium on Dynamic2008

Languages. DLS ’08. New York, NY, USA: ACM.2009

Siek, Jeremy G, Vitousek, Michael M, Cimini, Matteo, & Boyland, John Tang. (2015).2010

Refined criteria for gradual typing. LIPIcs-Leibniz International Proceedings in2011

Informatics, vol. 32. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.2012

Smeltzer, Karl, & Erwig, Martin. (2017). Variational Lists: Comparisons and Design2013

Guidelines. Pages 31–40 of: Int. Work. on Feature-Oriented Software Development2014

(FOSD). ACM.2015

Stănciulescu, Ştefan, Berger, Thorsten, Walkingshaw, Eric, & Wąsowski, Andrzej. (2016).2016

Concepts, Operations, and Feasibility of a Projection-Based Variation Control System.2017

Pages 323–333 of: IEEE Int. Conf. on Software Maintenance and Evolution (ICSME).2018

IEEE.2019

Takikawa, Asumu, Feltey, Daniel, Greenman, Ben, New, Max S., Vitek, Jan, & Felleisen,2020

Matthias. (2016). Is sound gradual typing dead? Pages 456–468 of: Proceedings of2021

the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming2022

Languages. POPL ’16. New York, NY, USA: ACM.2023

Tansey, Wesley, & Tilevich, Eli. (2008). Annotation refactoring: Inferring upgrade2024

transformations for legacy applications. Pages 295–312 of: Proceedings of the 23rd2025

ACM SIGPLAN Conference on Object-oriented Programming Systems Languages and2026

Applications. OOPSLA ’08. New York, NY, USA: ACM.2027

Thüm, Thomas, Apel, Sven, Kästner, Christian, Schaefer, Ina, & Saake, Gunter. (2014). A2028

classification and survey of analysis strategies for software product lines. 47(1), 6:1–2029

6:45.2030

Tobin-Hochstadt, Sam, & Felleisen, Matthias. (2006). Interlanguage migration: From2031

scripts to programs. Page 964–974 of: Companion to the 21st ACM SIGPLAN2032

Symposium on Object-Oriented Programming Systems, Languages, and Applications.2033

OOPSLA ’06. New York, NY, USA: Association for Computing Machinery.2034

Tobin-Hochstadt, Sam, Felleisen, Matthias, Findler, Robert, Flatt, Matthew, Greenman,2035

Ben, Kent, Andrew M., St-Amour, Vincent, Strickland, T. Stephen, & Takikawa,2036

Asumu. (2017). Migratory Typing: Ten Years Later. Pages 17:1–17:17 of: Lerner,2037

Benjamin S., Bodík, Rastislav, & Krishnamurthi, Shriram (eds), 2nd Summit on2038

Advances in Programming Languages (SNAPL 2017). Leibniz International Proceedings2039

in Informatics (LIPIcs), vol. 71. Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-2040

Zentrum fuer Informatik.2041

Toro, Matías, & Tanter, Éric. (2017). A gradual interpretation of union types. SAS.2042

Toro, Matías, Labrada, Elizabeth, & Tanter, Éric. (2019). Gradual parametricity, revisited.2043

Proc. acm program. lang., 3(POPL).2044

van Keeken, Peter. 2006 (October). Analyzing helium programs obtained through2045

logging–the process of mining novice haskell programs. M.Phil. thesis, Department2046

of Information and Computing Sciences, Utrecht University.2047

Vytiniotis, Dimitrios, Peyton jones, Simon, Schrijvers, Tom, & Sulzmann, Martin. (2011).2048

Outsidein(x) modular type inference with local assumptions. J. funct. program., 21(4-5),2049

333–412.2050

ZU064-05-FPR jfp 16 May 2022 9:53

* 61

Vytiniotis, Dimitrios, Peyton Jones, Simon, & Magalhães, José Pedro. (2012). Equality2051

proofs and deferred type errors: a compiler pearl. Pages 341–352 of: Proceedings of the2052

17th ACM SIGPLAN international conference on Functional programming. ICFP ’12.2053

Wadler, Philip, & Findler, Robert Bruce. (2007). Well-typed programs can’t be blamed.2054

Pages 1–13 of: Proceedings of the 2007 Workshop on Scheme and Functional2055

Programming.2056

Wadler, Philip, & Findler, Robert Bruce. (2009). Well-typed programs can’t be blamed.2057

Pages 1–16 of: Proceedings of the 18th European Symposium on Programming2058

Languages and Systems: Held As Part of the Joint European Conferences on Theory2059

and Practice of Software, ETAPS 2009. ESOP ’09. Berlin, Heidelberg: Springer-Verlag.2060

Walkingshaw, Eric, & Ostermann, Klaus. (2014). Projectional Editing of Variational2061

Software. Pages 29–38 of: ACM SIGPLAN Int. Conf. on Generative Programming:2062

Concepts and Experiences (GPCE). ACM.2063

Walkingshaw, Eric, Kästner, Christian, Erwig, Martin, Apel, Sven, & Bodden, Eric. (2014).2064

Variational data structures: Exploring tradeoffs in computing with variability. Pages2065

213–226 of: Proceedings of the 2014 ACM International Symposium on New Ideas,2066

New Paradigms, and Reflections on Programming & Software. Onward! 2014. New2067

York, NY, USA: ACM.2068

Wei, Jiayi, Goyal, Maruth, Durrett, Greg, & Dillig, Isil. (2020). Lambdanet: Probabilistic2069

type inference using graph neural networks. International Conference on Learning2070

Representations.2071

Williams, Jack, Morris, J. Garrett, & Wadler, Philip. (2018). The root cause of blame:2072

Contracts for intersection and union types. Proc. acm program. lang., 2(OOPSLA).2073

ZU064-05-FPR jfp 16 May 2022 9:53

62 John Peter Campora III, Sheng Chen, Martin Erwig, and Eric Walkingshaw

A Proofs2074

This appendix provides proofs to most theorems whose proofs are not given in the paper.2075

A.1 Proofs of Theorems 1 Through 32076

In proving these theorems below, we will make use of two properties about selection on2077

types, expressed in the following lemmas.2078

Lemma 3 (Selection is idempotent)2079

For any d, bMcd.i = bbMcd.icd.i.2080

Lemma 4 (Selector ordering is irrelevant)2081

For any two variations A and B: bbMcB. jcA.i = bbMcA.icB. j2082

Chen et al. (2014) proved these lemmas for variational types. We can easily adapt2083

those proofs for migrational types by observing that migrational types essentially extend2084

variational types with ?s and b?cs = ?. We omit the detailed proof here.2085

In the proof of Thoerem 1, we will use the following lemma.2086

Lemma 5 (Context filling preserves equivalence)2087

bM1cδ ≡ bM2cδ ∧bM[M1]cδ ∈V ∧bM[M2]cδ ∈V ⇒ bM[M1]cδ ≡ bM[M2]cδ2088

Proof2089

By structural induction of the syntax of type contexts M[].2090

Case []: From the implication in the lemma, we are given the following.2091

bM1cδ ≡ bM2cδ bM1cδ ∈V bM2cδ ∈V2092

Since filling the context [] with any type yields that type itself, the proof for this case is2093

immediate.2094

Case M′[]→M: We are given the following relations2095

bM1cδ ≡ bM2cδ bM′[M1]cδ ∈V bM′[M2]cδ ∈V

Based on induction hypothesis, we have bM′[M1]cδ ≡ bM′[M2]cδ . Our goal is to prove2096

the following,2097

bM′[M1]→Mcδ = bM′[M2]→Mcδ
which can be transformed to the following based on the definition of selection.2098

bM′[M1]cδ→bMcδ = bM′[M2]cδ→bMcδ

This equation holds since the domains of both function types are equal based on the2099

induction hypothesis and their codomains are the same. This completes the proof for2100

this case.2101

Case M→M′[]: Similar to the previous case, except that the induction hypothesis and2102

construction deal with the codomain.2103

Case d〈M′[],M〉: We have the following implicants and the final equivalence by the2104

induction hypothesis:2105

bM1cδ ≡ bM2cδ bM′[M1]cδ ∈V bM′[M2]cδ ∈V bM′[M1]cδ ≡ bM′[M2]cδ

ZU064-05-FPR jfp 16 May 2022 9:53

* 63

We need to show the following,2106

bd〈M′[M1],M〉cδ = bd〈M′[M2],M〉cδ
We need to consider two subcases. In the first subcase, d.1 ∈ δ . Based on Lemmas 32107

and 4, the above equation is reduced to the following,2108

bM′[M1]cδ = bM′[M2]cδ
This follows immediately from the induction hypothesis.2109

In the second subcase, d.2∈ δ . Based on Lemmas 3 and 4, the above equation is reduced2110

to the following,2111

bMcδ = bMcδ
Thus, the lemma holds for this case.2112

Case d〈M,M′[]〉: Similar to the previous case and omitted here.2113

2114

Proof of Theorem 12115

Cases MT-REFL-MT-DEADELIM are straightforward with the definition of the type2116

equivalence relation in Figure 5. Cases MT-CONG and MT-DYNINTRO need more care.2117

Case MT-CONG: We have the following implicants and the final equivalence by the2118

induction hypothesis,2119

M1 ≈M2 M[M1]≈M[M2] bM[M1]cδ ∈V bM[M2]cδ ∈V bM1cδ ≡ bM2cδ
and we need to prove the following.2120

bM[M1]cδ ≡ bM[M2]cδ
The proof is immediate by applying Lemma 5.2121

Case MT-DYNINTRO: This case is similar to MT-CONG except that we examine whether δ2122

touches the type being inserted into the context. Specifically, if bM1cδ or bM2cδ yields a2123

type that contains ?s, then the implicants of the theorem fail (because implicants require2124

bM1cδ and bM2cδ to be variational type that do not contain ?s) and the implication holds2125

vacuously. Otherwise, if neither bM1cδ or bM2cδ contains ?s, then bM1cδ = bM2cδ2126

(because M1 and M2 differ by that only M2 replaced some static types with ?). This case2127

holds due to the reflexivity (VT-REF) of type equivalence.2128

2129

To prove Theorem 2, we need a lemma similar to Lemma 5 that states that filling type2130

contexts preserves consistency.2131

Lemma 6 (Context filling preserves consistency)2132

bM1cδ ∼ bM2cδ ∧bM[M1]cδ ∈ G∧bM[M2]cδ ∈ G⇒ bM[M1]cδ ∼ bM[M2]cδ2133

The proof of this lemma is very similar to that of Lemma 5 and is omitted here.2134

We also need a lemma that captures the type consistency relation among three types. We2135

say a type G2 is more precise than G3 if G2 contains fewer ?s than G3 and they agree on2136

the static parts (Garcia & Cimini, 2015). For example, Int is more precise than ? and Int2137

but not Bool. As another example, Int→Bool is more precise than ?→Bool and Int→?2138

but not ?→Int.2139

ZU064-05-FPR jfp 16 May 2022 9:53

64 John Peter Campora III, Sheng Chen, Martin Erwig, and Eric Walkingshaw

Lemma 72140

If G1 ∼ G2, G2 ∼ G3, and G2 is more precise than G3, then G1 ∼ G3.2141

Proof2142

By induction on the structures of the involved types.2143

(1) G2 is γ or α . Based on the definition of ∼, rule C1 in Figure 4 applies in this case.2144

G1 must be the same as G2, and G1 ∼ G3 holds.2145

(2) G2 is a ?. G3 must also be a ?, making G1 ∼ G3.2146

(3) G2 has the structure G21→G22. If either G1 or G3 is a ?, then G1 ∼ G3 holds.2147

Otherwise, based on rules C1 or C4 of∼, G1 has the structure G11→G12 and G3 has2148

the structure G31→G32. Moreover, since arrows are covariant on both consistency2149

and precision, we have G11 ∼ G21, G21 ∼ G31, and G21 more precise than G31. We2150

thus have G11 ∼G31. Similarly, we have G12 ∼G32. Based on rule C4 of∼, we have2151

G1 ∼ G3.2152

2153

We can now prove Theorem 2 that says if two types are compatible then their2154

corresponding variants are consistent if they do not contain variations. For example, from2155

the definition of ≈, we have A〈Int,Bool〉 ≈ A〈Int,?〉. Based on that relation, we have2156

Int∼ Int at A.1 and Bool∼ ? at A.2.2157

Proof of Theorem 22158

The proof follows by induction over the rules in Figure 8. Cases MT-REFL and MT-SYM2159

are straightforward via the induction hypotheses and because consistency is reflexive and2160

symmetric. Case MT-VTTRANS is also simple since the rule deals with variational types2161

(without ?s) only. As a result, eliminating all variations in types will yield static types,2162

where the compatibility relation degrades to the equality relation, which is transitive.2163

Case MT-IDEMP: We are given with the following2164

bMcδ ∈ G bd〈M,M〉cδ ∈ G

and need to show the following implicand.2165

bMcδ ∼ bd〈M,M〉cδ

From bd〈M,M〉cδ ∈ G, we know that d.1 ∈ δ or d.2 ∈ δ . Either way, we have2166

bd〈M,M〉cδ = bMcδ based on the definition of b·cδ . This case thus holds due to rule2167

C1.2168

Case MT-DEADELIM: We know the following2169

bd〈M1,M2〉cδ ∈ G bd〈bM1cd.1,bM2cd.2〉cδ ∈ G d〈M1,M2〉 ≈ d〈bM1cδ ,bM2cδ 〉

and we need to prove the following relation.2170

bd〈M1,M2〉cδ ∼ bd〈bM1cd.1,bM2cd.2〉cδ

Both bd〈M1,M2〉cδ ∈G and bd〈bM1cδ ,bM2cδ 〉cδ ∈G imply that either d.1∈ δ or d.2∈
δ . We assume d.1 ∈ δ , and we have δ = {d.1}∪ δ ′ for some δ ′. The proof for when

ZU064-05-FPR jfp 16 May 2022 9:53

* 65

d.2 ∈ δ is similar. With Lemma 4, we can move d.1 to be the first selector used on the
types. We then have:

bd〈M1,M2〉cδ = bbd〈M1,M2〉cd.1cδ ′ δ = {d.1}∪δ
′

= bbM1cd.1cδ ′ Definition of b·cδ

bd〈bM1cd.1,bM2cd.2〉cδ = bbd〈bM1cd.1,bM2cd.2〉cd.1cδ ′ δ = {d.i}∪δ
′

= bbbM1cd.1cd.1cδ ′ Definition of b·cδ
= bbM1cd.1cδ ′ lemma 3

This case thus holds due to rule C1.2171

Case MT-CONG: This case follows similarly to the case for MT-CONG in the proof for2172

theorem 1.2173

Case MT-DYNINTRO: We have the following implicands and induction hypothesis,2174

M1 ≈M2[M] bM1cδ ∈ G bM2[M]cδ ∈ G bM1cδ ∼ bM2[M]cδ

and we need to show that2175

bM1cδ ∼ bM2[?]cδ
First, as bM1cδ ∈ G and bM1cδ ∼ bM2[M]cδ , we have bM2[M]cδ ∈ G, implying that2176

bMcδ ∈G. Next, it is obvious that b?cδ ∈G and bMcδ ∼ b?cδ . Based on Lemma 6, we2177

have bM2[M]cδ ∼ bM2[?]cδ . Moreover, it is obvious that bM2[M]cδ is more precise than2178

bM2[?]cδ . Based on Lemma 7, we have bM1cδ ∼ bM2[?]cδ .2179

2180

Before proving Theorem 3, we need two auxiliary lemmas stating that consistent and2181

equivalent types are also compatible. The proof of the first lemma itself makes use of the2182

following lemma.2183

Lemma 8 (u makes types more precise)2184

Let G3= G1uG2, then G3 is equally or more precise than G1 and G2.2185

The proof of this lemma is a simple induction over the definition of u in Figure 4 and is2186

omitted here.2187

Lemma 9 (Consistent types are compatible)2188

G1 ∼ G2⇒ G1 ≈ G22189

Proof2190

The proof proceeds by induction over the definition of consistency in Figure 4.2191

Case C1: The proof is immediate by applying the rule MT-REFL to the type G.2192

Case C2: We are given G ∼ ? and need to derive G ≈ ?. First, we have G ≈ G from the2193

previous case. We can view G as being obtained by plugging G into an empty context,2194

thus G≈ [G]. By MT-DYNINTRO, we have G≈ [?], which is the same as G≈ ?.2195

Case C3: The proof is the same as the last case followed by applying the rule MT-SYM.2196

Case C4: We are given:2197

G11 ∼ G21 G12 ∼ G22 G11→G12 ∼ G21→G22

ZU064-05-FPR jfp 16 May 2022 9:53

66 John Peter Campora III, Sheng Chen, Martin Erwig, and Eric Walkingshaw

and we need to show:2198

G11→G12 ≈ G21→G22

First, let G31 = G11 uG21 and G32 = G12 uG22. Through the rule MT-REFL, we have2199

G31→G32 ≈ G31→G32. Based on Lemma 8, the type G31 is more static than G11 and2200

G21. Thus, we could repeatedly replace a static component in G31 with a ? to reach2201

G11. Based on this observation, we could repeatedly apply the rule MT-DYNINTRO to2202

G31→G32 ≈ G31→G32 to get G31→G32 ≈ G11→G12. After that, with MT-SYM, we2203

have G11→G12 ≈ G31→G32. We can then repeatedly apply MT-DYNINTRO again to2204

prove G11→G12 ≈ G21→G22.2205

2206

Lemma 102207

V1 ≡V2⇒V1 ≈V22208

Proof2209

The proof proceeds by induction over the definition of type equivalence in Figure 5. Cases2210

VT-REF, VT-SYM, VT-IDEMP, VT-TRANS, and VT-DEADELIM are straightforward, since2211

they are similar in form to MT-REFL-MT-VTTRANS in the definition of compatibility. For2212

this reason, we show the proof for cases VT-CHOICE and VT-FUN only.2213

Case VT-FUN: We are given:2214

V11 ≡V21 V12 ≡V22 V11→V21 ≡V12→V22

and we have the following by the induction hypotheses2215

V11 ≈V21 V12 ≈V22

Next, by using the rule MT-CONG and the first induction hypothesis and setting the2216

context to be []→V21, we can derive V11→V21 ≈V12→V21. Similarly, by using the rule2217

MT-CONG and the second induction hypothesis and setting the context to be V12→[],2218

we can derive V12→V21 ≈ V12→V22. Finally, we can use MT-VTTRANS to derive2219

V11→V21 ≈V12→V22 .2220

Case VT-CHOICE: We are given2221

V11 ≡V21 V12 ≡V22 d〈V11,V21〉 ≡ d〈V12,V22〉

and have the following by the induction hypotheses:2222

V11 ≈V21 V12 ≈V22

Following the similar proof idea for the last case, we first use the context d〈[],V21〉2223

and the first induction hypothesis to arrive at d〈V11,V21〉 ≈ d〈V12,V21〉. Next, we use2224

the context d〈V12, []〉 and the second induction hypothesis to derive d〈V12,V21〉 ≈2225

d〈V12,V22〉. Finally, through MT-VTTRANS we have d〈V11,V21〉 ≈ d〈V12,V22〉.2226

2227

Before proving the theorem, we present a lemma relating types and the types they2228

produce through selection.2229

ZU064-05-FPR jfp 16 May 2022 9:53

* 67

Lemma 112230

∀δ .bM1cδ ≈ bM2cδ ⇒M1 ≈M22231

Proof2232

This proof follows by induction on compatibility. Each case is immediate, since applying2233

the induction hypothesis to the premises yields compatible types that can be used to2234

generate the conclusion.2235

Proof of Theorem 32236

We directly use Lemmas 9 and 10 to show that all selections producing equivalent or2237

consistent types produce compatible types. We then use Lemma 11 to derive that the types2238

are compatible.2239

Proof of Theorem 4:2240

The proof follows by induction over the rules in Figure 10.2241

Case CON: This case is straightforward because a constant c always has the plain type γ2242

and ∀δ .bγcδ = γ .2243

Case VAR: The proof is direct from the fact that bΓcδ changes x 7→M in2244

the environment to x 7→ bMcδ . So we can directly use VAR to conclude2245

statifierForDesc(Ω,δ);bΓcδ `GC x : bMcδ .2246

Case ABS: Given the initial typing: π;Γ ` λx.e : V→M |Ω we want to verify that for any2247

δ and some Ω where bπcδ =>, there is a typing:2248

statifierForDesc(Ω,δ);bΓcδ `GC λx.e : bV→Mcδ

In the construction of the initial typing, we had the following premise:2249

π;Γ,x 7→V ` e : M |Ω

For this premise, we have the following by the induction hypothesis:2250

statifierForDesc(Ω,δ);bΓcδ ,x 7→ bVcδ `GC e : bMcδ

We then conclude from the result of applying the induction hypothesis and ABS:2251

statifierForDesc(Ω,δ);bΓcδ `GC λx.e : bVcδ→bMcδ

where bVcδ→bMcδ = bV→Mcδ .2252

Case ABSDYN: Given the initial typing:2253

π;Γ ` λx : ?.e : d〈?,V 〉→M |Ω∪{x 7→V}

we want to show that for any δ and some ω where bπcδ => we have the following:2254

ω;bΓcδ `GC λx : ?.e : ω(x)→bMcδ

When constructing the inital typing we had the following premise:2255

π;Γ,x 7→ d〈?,V 〉 ` e : M |Ω

For this premise we have the following from the induction hypothesis:2256

statifierForDesc(Ω,δ);bΓcδ ,x 7→ bd〈?,V 〉cδ `GC e : bMcδ

ZU064-05-FPR jfp 16 May 2022 9:53

68 John Peter Campora III, Sheng Chen, Martin Erwig, and Eric Walkingshaw

Since we do not know whether Ω has a type for x, we must consider whether we can2257

still type e when using Ω′ = Ω∪ {x 7→ V}. We know that bd〈?,V 〉cδ must produce2258

either ? (if d.1 in δ) or some static type, T , where bVcδ =T . Consequently, we can infer2259

that statifierForDesc(Ω′,δ)(x) either produces ? when d.1 ∈ δ or T when d.2 ∈ δ . Let2260

ω=statifierForDesc(Ω′,δ). We can now derive:2261

ω;bΓcδ ,x 7→ ω(x) `GC e : bMcδ

Now we can use ABSDYN to conclude:2262

ω;bΓcδ `GC λx : ?.e : ω(x)→bMcδ

where ω(x)=bd〈?,V 〉cδ .2263

Case APP: We are given the initial typing:2264

π;Γ ` e1 e2 : codπ(M1) |Ω

where Ω = Ω1∪Ω2. We need to prove:2265

statifierForDesc(Ω,δ);bΓcδ `GC e1 e2 : cod(bM1cδ)

for any δ and some Ω such that bπcδ =>. In constructing the initial typing we had the2266

following premises:2267

π;Γ ` e1 : M1 |Ω1 π;Γ ` e2 : M2 |Ω2 domπ(M1)≈π M2

We have the following by the induction hypothesis and the premises:2268

statifierForDesc(Ω1,δ);bΓcδ `GC e1 : bM1cδ statifierForDesc(Ω2,δ);bΓcδ `GC e2 : bM2cδ

Let ω = statifierForDesc(Ω1,δ) ∪ statifierForDesc(Ω2,δ), the following two2269

typing relations are satisfied because we can rename parameter names so that2270

statifierForDesc(Ω1,δ) (statifierForDesc(Ω2,δ)) be a subset of ωand enlarge2271

statifierForDesc(Ω1,δ) (statifierForDesc(Ω2,δ)) does not change the typing result of2272

the first (second) typing relation above.2273

ω;bΓcδ `GC e1 : bM1cδ ω;bΓcδ `GC e2 : bM2cδ

Given that π;Γ ` e1 e2 : codπ(M1) |Ω, we have the following result

domπ(M1)≈π M2⇒ dom>(bM1cδ)≈> bM2cδ bπcδ =>
⇒ dom(bM1cδ)∼ bM2cδ Theorem 2

We can now use APP to conclude:2274

ω;bΓcδ `GC e1 e2 : cod(bM1cδ)

Case IF: The proof for this case is similar to that for the APP case and is omitted here.2275

Case WEAKEN: This rule can only modify selections on M where a decision δ ′ yields2276

bπcδ ′=⊥. Since the theorem requires bπcδ =>, the proof for this case is vacuous.2277

2278

ZU064-05-FPR jfp 16 May 2022 9:53

* 69

A.2 Proofs of Theorems 5 and 62279

Proof of Theorem 5:2280

This proof follows by induction over the rules in Figure 4. The proofs for CON, VAR,2281

and ABS are straightforward since they do not introduce variations and have at most one2282

subexpression.2283

Case ABSDYN: We have the initial typing:2284

ω;Γ `GC e : ω(x)→G

and we need to derive the following:2285

π;Γ ` λx.e : M′ |Ω

where bM′cδ =ω(x)→G and there is some Ω such that statifierForDesc(Ω,δ)=ω .2286

We have the following premise when constructing the inital typing:2287

ω;Γ,x 7→ ω(x) `GC e : G

There are two possibilities for x: either it remains ? or is updated to a static type.2288

Since the proof for the first possibility is direct, we focus on the second, where we2289

assume x is updated to T . By the induction hypothesis and the premise, we have the2290

following:2291

π;Γ,x 7→ T ` e : M |Ω bMcδ = G statifierForDesc(Ω,δ) = ω

Based on the first result from applying the induction hypothesis and by the static2292

gradual guarantee, we have:2293

π;Γ,x 7→ ? ` e : M′ |Ω

Putting the above typing relation and the first induction hypothesis together, we have2294

π;Γ,x 7→ d〈?,T 〉 ` e : d〈M′,M〉 |Ω

Since the function was well typed in ITGL, we can use>when typing the variational2295

version. Then we can use ABSDYN to derive:2296

>;Γ ` λx.e : d〈?,T 〉→d〈M′,M〉 |Ω∪{x 7→ T}

Let Ω′ = Ω ∪ {x 7→ T}. We next show that statifierForDesc(Ω′,δ) and
bd〈?,T 〉→d〈M′,M〉cδ = T→G. Since we were considering the case when the
parameter was updated to a static type, we have d.2 ∈ δ . From the induction
hypothesis we have statifierForDesc(Ω,δ)=ω , and thus x 7→ V ∈ Ω, where
statifierForDesc(Ω,δ)(x) = bVcδ = T . Consequently, statifierForDesc(Ω,δ) =

statifierForDesc(Ω′,δ) = ω . Moreover, we know that:

bd〈?,T 〉→d〈M′,M〉cδ = bd〈?,T 〉cδ→bd〈M′,M〉cδ
= T→bMcδ d.2 ∈ δ

= T→G I.H

Case APP: We have the initial typing:2297

ω1∪ω2;Γ `GC e1 e2 : cod(G1)

ZU064-05-FPR jfp 16 May 2022 9:53

70 John Peter Campora III, Sheng Chen, Martin Erwig, and Eric Walkingshaw

We need to derive:2298

π;Γ ` e1 e2 : codπ(M1) |Ω
with bcodπ(M1)cδ = cod(G1) and there is some Ω such that2299

statifierForDesc(Ω,δ) = ω . From the derivation of the initial typing we have2300

the following premises:2301

ω1;Γ `GC e1 : G1 ω2;Γ `GC e2 : G2 dom(G1)∼ G2

By the induction hypothesis and these premises, we have:2302

π1;Γ ` e1 : M1 |Ω1 bπ1cδ1 = > bM1cδ1 = G1 statifierForDesc(Ω1,δ1)=ω1

π2;Γ ` e2 : M2 |Ω2 bπ1cδ1 = > bM2cδ2 = G2 statifierForDesc(Ω2,δ2)=ω2
2303

Let δ ′ = δ1 ∪ δ2, π ′ = π1 u π2, and π be a pattern such that bπcδ ′ = bπ ′cδ ′ and2304

∀δ .δ 6= δ ′⇒bπcδ =⊥. As a result, bπcδ ′ = bπ ′cδ ′ = bπ1uπ2cδ1∪δ2 = bπ1cδ1∪δ2 u2305

bπ2cδ1∪δ2 = b>cδ2 ub>cδ1 =>u>=>.2306

Based on the construction of π , π ≤ π ′ ≤ π1. Thus, we have π;Γ ` e1 : M1 |Ω1 based2307

on WEAKEN. Similarly, we have π;Γ ` e2 : M2 |Ω2. Moreover, based on bM1cδ1 =2308

G1, we have bM1cδ = G1 since δ1 ⊆ δ . Similarly, we have bM2cδ = G2. From2309

dom(G1) ∼ G2 and the construction of π , we have domπ(M1) ≈π M2 based on2310

Theorem 3. Therefore, we have π;Γ ` e1 e2 : codπ(M1) |Ω, where Ω = Ω1∪Ω2.2311

As Ω1 and Ω2 are used to type different subexpressions, their domains2312

are disjoint, and so do ω1 and ω2. As a result statifierForDesc(Ω,δ ′) =2313

statifierForDesc(Ω1,δ1) ∪ statifierForDesc(Ω2,δ2) = ω . Since bM1cδ1 = G1, we2314

have bcodπ(M1)cδ = cod(G1). This completes the proof for this case.2315

The case for IF can be proved similarly to the APP case and is omitted here.2316

Before we continue to present type system properties, we define an operation (t) on2317

typing patterns. The operation t creates the least upper bound of two patterns of the less-2318

defined partial ordering, defined in Figure 10.2319

We also state some of its properties and its connection to other relations–which will be
used in proofs where more defined typing patterns need to be constructed.

>tπ => d〈π1,π2〉td〈π3,π4〉= d〈π1tπ3,π2tπ4〉
⊥tπ = π d〈π1,π2〉tπ = d〈π1tπ,π2tπ〉

Lemma 12 (Properties of t)2320

1. π1 ≤ π ∧π2 ≤ π ⇒ π1tπ2 ≤ π2321

2. M ≈π1 M1∧M ≈π2 M1⇒M ≈π1tπ2 M12322

3. M opπ1
M1∧M opπ2

M1⇒M opπ1tπ2
M12323

4. opπ1
(M)∧opπ2

(M)⇒ opπ1tπ2
(M)2324

The proofs of these properties follow directly from induction over π , the definition2325

of t, the rules for ≤ in Figure 10, and the rules for pattern-constrained operations and2326

compatibility in Figure 9. We omit presenting detailed proofs of these properties for2327

brevity.2328

Proof of Lemma 12329

ZU064-05-FPR jfp 16 May 2022 9:53

* 71

The proof follows from induction over the rules in Figure 10. The cases for CON and VAR2330

are straightforward since they can always be typed with the pattern >; the cases for ABS2331

and ABSDYN are also simple because only one subexpression is involved and the proof can2332

be derived simply from the induction hypotheses. We thus omit the proof for these cases.2333

Case APP: We know the following:2334

π1;Γ ` e1 e2 : codπ1(M1) |Ω π2;Γ ` e1 e2 : codπ2(M1) |Ω

and need to prove the following relation2335

π3;Γ ` e1 e2 : codπ3(M1) |Ω

with π1≤ π3 and π2≤ π3. In the construction of the implicants, we derived the following
premises:

π1;Γ ` e1 : M1 |Ω π1;Γ ` e2 : M2 |Ω
π2;Γ ` e1 : M1 |Ω π2;Γ ` e2 : M2 |Ω

By the induction hypothesis and these premises, we have:2336

π ′3;Γ ` e1 : M1 |Ω π ′3;Γ ` e2 : M2 |Ω
π1 ≤ π ′3 π2 ≤ π ′3

2337

We take π3 = π1 tπ2 and we must now show that π3 can be used in the typing of the2338

implicand. To type the implicants with π3 we know that domπ1(M1) and domπ2(M1)2339

must be defined. Based on Lemma 12 property 3 and the definition of π3, we have:2340

domπ1(M1)∧domπ2(M1)⇒ domπ3(M1)

Similarly, we can see that that domπ3(M1) ≈π3 M2 via property 2. Moreover, π1 ≤ π ′32341

and π2 ≤ π ′3 imply that π3 ≤ π ′3, from property 1 in Lemma 12. Consequently, we can2342

use WEAKEN with π3 to derive π3;Γ ` e1 : M1 |Ω and π3;Γ ` e2 : M2 |Ω. Pairing those2343

typings with domπ3(M1)≈π3 M2, we can use APP to conclude:2344

π3;Γ ` e1 e2 : codπ3(M1) |Ω

The proof for the IF and WEAKEN cases follows a similar structure to the APP case and is2345

omitted here.2346

The proof of Lemma 2 relies on Lemmas 13 and 14, which we present first.2347

Lemma 132348

If M1 �M2 then codπ(M1)� codπ(M2).2349

This lemma states that the better relation is preserved when taking the codomain of two2350

types. The proof is straightforward and is omitted here.2351

The next lemma states that if we can type an abstraction with different static types for2352

the parameter, then we can also type the abstraction with a type that is more general than2353

both of these static types. We first capture the idea of generating a more general static type2354

from two static types with the operation uα . We define uα by extending the definition of u2355

(Figure 10) with a case γ1uα γ2 =α , where γ1 and γ2 represent two different static constant2356

types. From uα , we derive uα
π as we did for deriving uπ from u and as for deriving domπ2357

from dom (Section 4.3).2358

ZU064-05-FPR jfp 16 May 2022 9:53

72 John Peter Campora III, Sheng Chen, Martin Erwig, and Eric Walkingshaw

Lemma 14 (Typing under different assumptions)2359

For any e and Γ, if π;Γ,x 7→ d〈?,V1〉 ` e : M1 |Ω1 and π;Γ,x 7→ d〈?,V2〉 ` e : M2 |Ω2, then2360

π;Γ,x 7→ d〈?,V1uα
π V2〉 ` e : M3 |Ω3, M1 �M3, M2 �M3, Ω1 �Ω3, and Ω2 �Ω3.2361

In the Lemma, we write ω1 � ω2 if ω1 and ω2 share the same domain and if for any x in2362

the domain ω1(x)� ω2(x).2363

The proof is an induction over the typing rules in Figure 10. The case CON is immediate.2364

For the case VAR, we need to consider two subcases. The first subcase is that the variable2365

being referenced is not x, and the proof is immediate. The second subcase is that the2366

variable being referenced is x, then the proof proceeds by observing that V1 � V1 uα
π V22367

and V2 � V1uα
π V2. The proof for cases ABS and ABSDYN are based on simple inductions.2368

The proof for APP and IF is similar to the proof of these cases for Lemma 2 and is omitted2369

here. The proof for WEAKEN is based on a simple induction.2370

Proof of Lemma 22371

The proof follows by induction over the rules in Figure 10. Cases CON and VAR are2372

straightforward and omitted for brevity. Case ABS is also omitted since it is similar to2373

ABSDYN, covered below.2374

Case ABSDYN: We are given with the following:2375

π;Γ` λx : ?.e : d〈?,V1〉→M1 |Ω1∪{x 7→V1} π;Γ` λx : ?.e : d〈?,V2〉→M2 |Ω2∪{x 7→V2}

We want to show that we can derive the following relation:2376

π;Γ ` λx : ?.e : M |Ω

where d〈?,V1〉→M1 �M and d〈?,V2〉→M2 �M for some M and Ω1∪{x 7→V1} �2377

Ω and Ω2∪{x 7→V2} �Ω for some Ω.2378

From the construction of the implicants, we know the following premises:2379

π;Γ,x 7→ d〈?,V1〉 ` e : M1 |Ω1 π;Γ,x 7→ d〈?,V2〉 ` e : M2 |Ω2

Based on Lemma 14, let V3 =V1uα
π V2, we can construct the typing:2380

π;Γ,x 7→ d〈?,V3〉 ` e : M3 |Ω3

with d〈?,V1〉 � d〈?,V3〉, d〈?,V2〉 � d〈?,V3〉, M1 � M3, M2 � M3, Ω1 � Ω3, and2381

Ω2 �Ω3. With ABSDYN, we can derive the following typing relation:2382

π;Γ ` λx.e : d〈?,V3〉→M3 |Ω3∪{x 7→V3}

Moreover, d〈?,V1〉→M1 � d〈?,V3〉→M3 and d〈?,V2〉→M2 � d〈?,V3〉→M3, Let2383

Ω′1 =Ω1∪{x 7→V1}, Ω′2 =Ω2∪{x 7→V2}, and Ω′3 =Ω3∪{x 7→V3}, we immediately2384

have statifierForDesc(Ω′1,δ) � statifierForDesc(Ω′3,δ) statifierForDesc(Ω′2,δ) �2385

statifierForDesc(Ω′3,δ).2386

Case APP: Given the following judgments:2387

π;Γ ` e1 e2 : codπ(M11) |Ω1 π;Γ ` e1 e2 : codπ(M21) |Ω2

we want to prove the following typing derivation:2388

π;Γ ` e1 e2 : codπ(M31) |Ω3

ZU064-05-FPR jfp 16 May 2022 9:53

* 73

where Ω3 and codπ(M31) are the best variational statifier and type in the2389

three derivations. In typing the implicants, we had the following premises:2390

π;Γ ` e1 : M11 |Ω11 π;Γ ` e2 : M12 |Ω12 domπ(M11)≈? M12

π;Γ ` e1 : M21 |Ω21 π;Γ ` e2 : M22 |Ω22 domπ(M21)≈? M22
2391

Also, note that Ω1 = Ω11 ∪Ω12 and Ω2 = Ω21 ∪Ω22. We have the following after2392

applying the induction hypothesis:2393

π;Γ ` e1 : M31 |Ω31 π;Γ ` e2 : M32 |Ω32 domπ(M31)≈? M32

bM11cδ � bM31cδ statifierForDesc(Ω11,δ)� statifierForDesc(Ω31,δ)

bM12cδ � bM32cδ statifierForDesc(Ω12,δ)� statifierForDesc(Ω32,δ)

bM21cδ � bM31cδ statifierForDesc(Ω21,δ)� statifierForDesc(Ω31,δ)

bM22cδ � bM32cδ statifierForDesc(Ω12,δ)� statifierForDesc(Ω32,δ)

2394

First we take Ω3 = Ω31 ∪ Ω32. From our induction hypotheses relating Ω312395

and Ω31 to the other statifiers for e1 and e3, it should be clear that we have2396

statifierForDesc(Ω1,δ) � statifierForDesc(Ω3,δ) and statifierForDesc(Ω2,δ) �2397

statifierForDesc(Ω3,δ).2398

Now note that bM11cδ � bM31cδ and bM12cδ � bM32cδ imply bcodπ(M11)cδ �2399

bcodπ(M31)cδ and bcodπ(M21)cδ � bcodπ(M31)cδ from Lemma 13. From here, we2400

use our induction hypotheses to derive a return type for the application that is better2401

than the other two.2402

π;Γ ` e1 e2 : codπ(M31) |Ω3

Case IF: This case proceeds similarly to APP where most results flow directly from2403

the induction hypotheses.2404

Case WEAKEN: Given the following implicant:2405

ω;Γ `GC e : M

We then want to produce the typing derivation:2406

π3;Γ ` e : M3 |Ω3

From deriving the implicant, we know the following from the premises:2407

π;Γ ` e : M1 |Ω1 π;Γ ` e : M2 |Ω2

π1 ≤ π π2 ≤ π

M1 =π1 M′1 M2 =π2 M′2
2408

By the induction hypothesis and the premises, we have:2409

π;Γ ` e : M3 |Ω32410

bM1cδ � bM3cδ statifierForDesc(Ω1,δ)� statifierForDesc(Ω3,δ)

bM2cδ � bM3cδ statifierForDesc(Ω2,δ)� statifierForDesc(Ω3,δ)
2411

Since we know that M3 is better than the other types, we can always take π3 = π1uπ2.2412

From there, we can use WEAKEN to derive:2413

π3;Γ ` e : M3 |Ω3

From here, applying our induction hypothesis to the premises tell us that2414

statifierForDesc(Ω1,δ) � statifierForDesc(Ω3,δ) and statifierForDesc(Ω2,δ) �2415

ZU064-05-FPR jfp 16 May 2022 9:53

74 John Peter Campora III, Sheng Chen, Martin Erwig, and Eric Walkingshaw

statifierForDesc(Ω3,δ), completing the part of the proof involving statifiers. From2416

here we just need to show bM′1cδ � bM3cδ and bM′2cδ � bM3cδ2417

We shall show the first case, and we will omit presenting the second case as it has a2418

similar derivation: We have the following since bπcδ =>:2419

bM1cδ = bM′1cδ

From this and by our induction hypothesis we can conclude:2420

bM′1cδ � bM3cδ

Essentially, any selection on M1 must equal the selection in M′1 because the π in2421

both stipulates that the valid selections must produce syntactically equal types. As a2422

result, M3 is better than the other two types.2423

2424

A.3 Proofs of Theorem 11 and 122425

In the following, before presenting each theorem, we present a corresponding lemma that2426

states the property for auxiliary constraint generation functions.2427

Lemma 15 (Soundness of Auxiliary Constraint Generation Functions)2428

• If domCst(Ma,Mb) ↪→C and (θ ,π) is sound for C, then domπ(θ(Ma))≈π θ(Mb).2429

• If codCst(Ma) ↪→ (Mb,C) and (θ ,π) is sound for C, then codπ(θ(Ma)) =π θ(Mb).2430

• If MauMb ↪→ (Mc,C) and (θ ,π) is sound for C, then θ(Ma)uπ θ(Mb)≈π θ(Mc).2431

Proof2432

We provide the proof for the first item. The proof for the latter two items is similar and is2433

omitted here. The idea of the proof is going through each case of the function domCst and2434

proving the lemma holds.2435

Case 1 In this case, we have Ma= ? and Mb= M. The generated constraint is ε . The sound2436

solution for this constraint is (/0,>). We know that domπ(θ(?)) is ?, which is2437

compatible with θ (M).2438

Case 2 In this case, Ma= α , Mb= M, and the generated constraint is α ≈? M→κ2. Since2439

(θ ,π) is sound for this constraint, we have θ(α)≈π θ(M→κ2) = θ(M)→θ(κ2). It2440

is immediate that domπ(θ(Ma)) = θ (Mb).2441

Case 3 In this case, Ma= M11→M12 and Mb= M. The constraint is M11 ≈? M. By definition,2442

(θ ,π) is sound for this constraint means that θ(M11)≈π θ(M). Since domπ(θ(Ma))2443

= domπ(θ(M11→M12)) = θ(M11), we have domπ(θ(Ma))≈π θ(Mb).2444

Case 4 In this case, Ma= d〈M1,M2〉, Mb= M, and the constraint is
d〈domCst(M1,M),domCst(M2,M)〉. Assume (θ ,π) is a sound solution for
the constraint d〈domCst(M1,M),domCst(M2,M)〉. It will also be sound for
domCst(M1,M) and domCst(M2,M). As a result, we have domπ(θ(M1)) ≈π θ(M)

ZU064-05-FPR jfp 16 May 2022 9:53

* 75

and domπ(θ(Mb))≈π θ(M). Now

domπ(θ(Ma)) = domπ(θ(d〈M1,M2〉))
= domπ(d〈θ(M1),θ(M2)〉) based on the definition of substitution

= d〈domπ(θ(M1)),domπ(θ(M2))〉 based on the definition of dom(Figure 10)

≈π d〈θ(M),θ(M2)〉 see above

= θ(M) due to choice idempotency

= θ(Mb)

Case 5 For any two other types, the constraint is Fail. The sound solution for this constraint2445

is (/0,⊥). Based on the definition of pattern-constrained relations in Figure 9, the2446

relation dom⊥(θ(Ma))≈⊥ θ(Mb) holds.2447

2448

Proof of Theorem 112449

The proof proceeds by induction over the constraint generation rules in Figure 11. Cases2450

VARC and CONC are omitted since they are straightforward.2451

Case ABSC: Given the following premise:2452

Γ,x 7→V `C e : M |C2453

we want to derive:2454

π;θ(Γ) ` λx.e : θ(V→M) |Ω
We have the following after applying the induction hypothesis to the premise:2455

π;θ(Γ,x 7→V) ` e : θ(M) |Ω

where θ(Γ,x 7→ V) = θ(Γ),x 7→ θ(V). Now applying the ABS typing rule to this2456

judgment, we have2457

π;θ(Γ) ` λx.e : θ(V)→θ(M) |Ω
Since θ(V)→θ(M) = θ (V→M), we have2458

π;θ(Γ) ` λx.e : θ(V→M) |Ω

Case ABSDYNC: Proceeds almost identically to ABS.2459

Case APPC: We are given the judgment Γ `C e1 e2 : M3 |C, and we have the following2460

premises.2461

2462

Γ `C e1 : M1 |C1 Γ `C e2 : M2 |C2

domCst(M1,M2) ↪→C4 codCst(M1) ↪→ (M3,C3) C =C1∧C2∧C3∧C4
2463

we want to produce the typing derivation:2464

π;θ(Γ) ` e1 e2 : θ(M3) |Ω

Since (θ ,π) is sound for C, it is sound for each C1 through C4. Thus, based on the2465

induction hypothesis for the first two premises above, we have2466

2467

π;θ(Γ) ` e1 : θ(M1) |Ω1 π;θ(Γ) ` e2 : θ(M2) |Ω22468

ZU064-05-FPR jfp 16 May 2022 9:53

76 John Peter Campora III, Sheng Chen, Martin Erwig, and Eric Walkingshaw

Based on the third premise and Lemma 15 we know that domπ(M1) ≈π M2. Now,2469

based on the APP rule in Figure 10, we have π;θ(Γ) ` e1 e2 : θ(codπ(M1)) |Ω. Based2470

on the fourth premise and Lemma 15 we know that domπ(M1)≈π M2. θ (codπ(M1))2471

= θ(M3), which means we have π;θ(Γ) ` e1 e2 : θ(M3) |Ω.2472

Case IFC: The proof is similar to APPC and is omitted here.2473

2474

Now we prove Theorem 12, which investigates the completeness of our constraint2475

generation rules. We arm ourselves with another lemma stating the completeness of the2476

auxiliary constraint generation rules with respect to the definitions of the functions in2477

Figure 10.2478

Lemma 16 (Completeness of Auxiliary Constraint Generation)2479

• If domπ(θ(Ma)) ≈π θ(Mb), domCst(Ma,Mb) ↪→ C, and (θ1,π1) is the sound and2480

most general solution for C, then π ≤ π1 and θ1 v θ .2481

• If codπ(θ(Ma)) =π θ(Mb), codCst(Ma) ↪→ (Mb,C), and (θ1,π1) be the sound and2482

most general solution for C, then π ≤ π1 and θ1 v θ .2483

• If θ(Ma)uπ θ(Mb) ≈π θ(Mc), Ma uMb ↪→ (Mc,C), and (θ ,π) is sound and most2484

general for C, then π ≤ π1 and θ1 v θ .2485

Proof2486

Again, we prove the first item only. The proof is a case analysis of the definition of dom in2487

Figure 10. Since dom has three cases, so is our proof.2488

Case 1 In this case θ (Ma) = M1→M2 and θ (Mb) = M1. We further need to consider two2489

subcases. In the first subcase, Ma= α . Based on the definition of domCst, the2490

generated constraint is α ≈? Mb→κ2. As (θ1,π1) is sound and most general for2491

this constraints, we have θ1(α) ≈π1 θ1(Mb→κ2). Since κ2 is a fresh unification2492

type variable, (θ1 ∪ {κ2 7→ M2},π1) is sound and most general for the problem2493

α ≈? Mb→M2. As (θ ,π) is also sound for this problem, (θ1 ∪ {κ2 7→ M2},π1) is2494

more general than (θ ,π). Consequently, (θ1,π1) is more general than (θ ,π).2495

In the second subcase, Ma = M′1→M′2. Based on the definition of domCst, the2496

generated constraint is M′1 ≈? Mb. Since (θ1,π1) is most sound and general, we2497

have θ1(M′1) ≈π1 θ1(Mb). Moreover, based on the condition of the lemma, we have2498

domπ(θ(Ma))≈π θ(Mb), meaning that θ(M′1)≈π θ(Mb). Overall, both (θ1,π1) and2499

(θ ,π) are solutions for the same constraint M′1 ≈? Mb and (θ1,π1) is most general.2500

(θ1,π1) is more general than (θ ,π).2501

Case 2 In this case θ (Ma) = ?. Since θ maps type variables to static types only, Ma= ?. Based2502

on the definition of domCst, the generated constraint is ε . The most general solution2503

for it is (/0,>), which is more general than (θ ,π).2504

Case 3 In this case θ (Ma) = d〈M1,M2〉. We again need to consider two subcases,
Ma= α and Ma= d〈M′1,M′2〉. The proof for the first subcase is similar
to the first subcase of Case 1 above and is omitted here. For the
second subcase domπ(θ(d〈M′1,M′2〉)) = domπ(d〈bθcd.1(M′1),bθcd.1(M′2)〉) =
d〈dombπcd.1(bθcd.1(M

′
1)),dombπcd.2(bθcd.2(M

′
2))〉 ≈π θ(Mb). By selecting the both

ZU064-05-FPR jfp 16 May 2022 9:53

* 77

sides of the compatibility relation with d.1 and d.2, we have the following two
compatibility results.

dombπcd.1(bθcd.1(M
′
1))≈bπcd.1 bθcd.1(Mb) (A 1)

dombπcd.2(bθcd.2(M
′
2))≈bπcd.2 bθcd.2(Mb) (A 2)

The constraint generated by domCst is d〈M′1,M′2〉 ≈? Mb, which equals2505

d〈M′1 ≈? Mb,M′2 ≈? Mb〉 based on the definition of domCst. Let (θ1l ,π1l) be the2506

sound and most general solution for M′1 ≈? Mb. Based on the equation (1) above and2507

the induction hypothesis, (θ1l ,π1l) is more general than (bθcd.1,bπcd.1). Similarly,2508

let (θ1r,π1r) be the sound and most general solution for M′2 ≈? Mb. Based on2509

equation (2) above and the induction hypothesis, (θ1r,π1r) is more general than2510

(bθcd.2,bπcd.2). As a result, (d〈θ1l ,θ1r〉,d〈π1l ,π1r〉) is sound and most general for2511

d〈M′1,M′2〉 ≈? Mb, which is more general than (d〈bθcd.1,bθcd.2〉,d〈bπcd.1,bπcd.2〉)2512

= (θ ,π).2513

2514

In proving Theorem 12 below, we need to combine several patterns into one.
Specifically, given two patterns π1 and π2, we calculate their meet π1uπ2 as follows (Note,
the definition of u is also given in Section 7.2, but we reproduced it here for readability).

>uπ = π d〈π1,π2〉ud〈π3,π4〉= d〈π1uπ3,π2uπ4〉
⊥uπ =⊥ d〈π1,π2〉uπ = d〈π1uπ,π2uπ〉

Intuitively, π1 uπ2 contains >s at where both π1 and π2 contain >s. If either π1 or π2 or2515

both contain ⊥ at a variant, then π1 u π2 also contains a ⊥ at that variant. For example,2516

>u> is>,>uA〈⊥,>〉 is A〈⊥,>〉, and A〈⊥,>〉uA〈>,⊥〉 is A〈⊥,⊥〉, which is the same2517

as ⊥.2518

The operation u preserves the less defined relation in the following sense.2519

Lemma 17 (u preserves the less-defined relation)2520

If π ≤ π1 and π ≤ π2, then π ≤ π1uπ2.2521

The proof is a simple structural induction over the definition of u and we omit the2522

detailed proof here.2523

Proof of Theorem 122524

This theorem is proven by structural induction over the rules in Figure 10, with help from2525

Lemma 16. Cases VAR and CON are straightforward, so their presentation is omitted.2526

Case ABS: We are given the following:2527

π;θ(Γ) ` λx.e : V→M |Ω, which has the premise: π;θ(Γ),x 7→V ` e : M |Ω

From the premise, we know that there is some type variable V ′ such that V � V ′2528

and θ (V ′) = V . We thus have π;θ(Γ,x 7→V ′) ` e : M |Ω. Based on the induction2529

hypothesis, we have2530

Γ,x 7→V ′ `C e : M1 |C ∀δbπcδ =>.bMcδ � bθ1(M1)cδ π ≤ π1 θ = θ
′ ◦θ1

ZU064-05-FPR jfp 16 May 2022 9:53

78 John Peter Campora III, Sheng Chen, Martin Erwig, and Eric Walkingshaw

where (θ1,π1) is sound and most general for C. With the rule ABSC, we have2531

Γ `C λx.e : V ′→M1 | C, where C is the same as that for e. Therefore, the solution2532

will be the same and the relation with (θ ,π) still hold. Moreover, since θ1 is more2533

general than θ , V = θ(V ′)� θ1(V ′). Therefore, bV→Mcδ � bθ1(V1→M1)cδ based2534

on the induction hypothesis above.2535

Case ABSDYN: This case proceeds similarly to ABS.2536

Case APP: We are given the following premises:2537

π;θ(Γ) ` e1 : M′1 |Ω1 π;θ(Γ) ` e2 : M′2 |Ω2 domπ(M′1)≈π M′2 M′3 = codπ(M′1)

We want to derive:2538

Γ `C e1 e2 : M3 |C
such that if (θ1,π1) is the solution for C, then π ≤ π1, θ1 v θ , and M′3 � θ1(M3).2539

We have the following induction hypotheses:2540

2541

Γ `C e1 : M1 |C1 M′1 � θ11(M1) π ′ ≤ π11 θ = θ ′11 ◦θ11

Γ `C e2 : M2 |C2 M′2 � θ12(M2) π ′ ≤ π12 θ = θ ′12 ◦θ12
2542

where (θ11,π11) solves C1 and (θ12,π12) solves C2. From domπ(M′1) ≈π M′2, we2543

have domπ(θ(M1)) ≈π θ(M2). Let domCst(M1,M2) ↪→ C3 and (θ13,π13) be the2544

solution for C3, then, based on Lemma 16, we have θ = θ ′13 ◦ θ13 and π ≤ π13 for2545

some θ ′13. Similarly, from M′3 ≈π codπ(M′1) we have θ(M3) ≈π θ(codπ(M1)). Let2546

codCst(M1) ↪→ C4 and (θ14,π14) be the solution for C4, then based on Lemma 16,2547

we have θ = θ ′14 ◦θ14 and π ≤ π14 for some θ ′14.2548

We can now use APPC to derive the following relation2549

Γ `C e1 e2 : M3 |C1∧C2∧C3∧C4

Moreover, for each Ci, we have (θ1i,π1i) that is more general than (θ ,π). We next2550

need to prove that we can combine all solutions into one that is still more general2551

than (θ ,π). Let π1 = π11uπ12uπ13uπ14, we have π ≤ π1 based on Lemma 17.2552

We also need to combine θ1is. We illustrate the idea by combining θ11 and θ12 into2553

θa. If α 7→ Va ∈ θ11 and α /∈ dom(θ12), then we add α 7→Va to θa. Dually, if α 7→2554

Vb ∈ θ12 and α /∈ dom(θ11), we add α 7→Vb to θa. If α 7→Va ∈ θ11 and α 7→Vb ∈ θ12,2555

then we unify Va and Vb and add the unified result to θa. Since both θ11 and θ12 are2556

more general than θ , θa is also more general than θ . Following this idea, let θ1 be2557

the union of all θ11, θ12, θ13, and θ14, then θ1 is more general than θ .2558

Since θ1 is more general than θ , we have M′1 � θ1(M1). Based on Lemma 13, we2559

have cod(M′1)� cod(θ1(M1)), which implies that M′3 � θ1(M3).2560

Case IF: Similar to APP.2561

2562

A.4 Proofs of Theorems 13 and 142563

Proof of Theorem 132564

We start by observing that the auxiliary functions merge and robinson (for unification) are2565

terminating. The main idea in our proof is that (1) we use a pair (Cv,C f) to measure the2566

ZU064-05-FPR jfp 16 May 2022 9:53

* 79

size of a constraint, where Cv is the number of unique variations and C f is the number of2567

arrows, (2) in each case either Cv decreases but increases C f to a factor of 2, keeps Cv but2568

decreases C f , or that case terminates immediately, and (3) when (Cv,C f) turns to (0,0),2569

U terminates or makes a call to robinson, which is terminating. We go through each case2570

below.2571

Case (a) This case immediately terminates as no further function calls are made.2572

Case (a∗) This case is directly delegated to case (a).2573

Case (b) We consider subcases top-down.2574

• This subcase immediately terminates as no further function calls are made.2575

• At first glance, this subcase seems to increase Cv by 1. However, a close look reveals2576

that this case will be followed by case (c) or (d), which decreases Cv by 1. This2577

subcase may increase C f to a factor of 2.2578

• The subcase first seems to increase C f by 1, but in fact this case will be followed by2579

case (f), which actually decreases C f by 1. It does not increase Cv.2580

• This subcase terminate immediately.2581

Case (b∗) This case is directly delegated to case (b).2582

Case (c) This case decrease Cv by 1 as d will disappear in the constraint and does not2583

increase C f .2584

Case (d) This case decreases Cv by 1 and increase C f by up to a factor of 2, since the type2585

M appears in one more subproblem.2586

Case (d∗) This case is directly delegated to case (d).2587

Case (e) This case will terminate because it calls to robinson, which is terminating.2588

Case (f) This case decreases C f by 1 without increasing Cv.2589

Case (g) This case immediately terminates.2590

Case (h) A simple application of induction hypothesis.2591

Case (i) A simple application of induction hypothesis.2592

Case (j) This case immediately terminates.2593

2594

Proof of Theorem 142595

By induction on U (M1 ≈? M2).2596

Case (a) and (a∗): Trivial.2597

Case (b) and (b∗): We consider subcases top-down.2598

• The substitution is θ = {x 7→M} with the pattern>. As θ(α) = M, θ(α)≈> θ(M)2599

is clearly satisfied.2600

• Assume (θ ,π) = U (d〈α,α〉 ≈? M). By the induction hypothesis, θ(d〈α,α〉) ≈π2601

θ(M). For any δ such that bθ(d〈α,α〉)cδ ∈G, we have bθ(d〈α,α〉)cδ = bθ(α)cδ .2602

Thus, based on Theorems 1 and 2, Lemmas 9 and 10, and the definition of2603

pattern-constrained relations in Figure 9, we have ∀δ .bπcδ = > ⇒ bθ(α)cδ =2604

bθ(d〈α,α〉)cδ ≈ bθ(M)cδ . Now, based on Lemma 11 and pattern-constrained2605

relations, we have θ(α)≈π θ(M), completing the proof for this subcase.2606

ZU064-05-FPR jfp 16 May 2022 9:53

80 John Peter Campora III, Sheng Chen, Martin Erwig, and Eric Walkingshaw

• As (θ1,π1) = U (α ≈? κ1→κ2) and (θ2,π2) = U (κ1→κ2 ≈? M1→M2), by the
induction hypothesis, we have

θ1(α)≈π1 θ1(κ1→κ2) (A 3)

θ2(κ1→κ2)≈π2 θ2(M1→M2) (A 4)

Moreover, π1 is> and θ1 does not contain mappings for κ1 and κ2 as they are fresh.
Similarly, θ2 does not contain a mapping for α since it does not appear in M1→M2.
We show that (θ2 ◦θ1)(α)≈π2 (θ2 ◦θ1)(M1→M2) as follows.

(θ2 ◦θ1)(α) = θ2(θ1(α)) = θ2(κ1→κ2)

(θ2 ◦θ1)(M1→M2) = θ2(θ1(M1→M2))

= θ2(M1→M2)

≈π2 θ2(κ1→κ2) by (4) above

• The proof is trivial since π is ⊥.2607

Case (c): By the induction hypothesis, we have:2608

θ1(M1)≈π1 θ1(M3) θ2(M2)≈π2 θ2(M4)

Let θ ′=merge(d,θ1,θ2). We need to show: θ ′(d〈M1,M2〉)≈d〈π1,π2〉 θ ′(d〈M3,M4〉). By2609

Lemma 11, two types are compatible, if any selection on the two types yields compatible2610

types. Consequently, let’s consider selecting d.1 on both types in the compatibility2611

relation. We aim to derive the following:2612

bθ ′(d〈M1,M2〉)cd.1 ≈bd〈π1,π2〉cd.1 bθ
′(d〈M3,M4〉)cd.1

Because substitution proceeds structurally over choice types, we must show:2613

bθ1(M1)cd.1 ≈bπ1cd.1 bθ1(M3)cd.1

To show this, we follow the idea in proving the second subcase of the case (b) above by2614

combining the first induction hypothesis above and Lemma 11. We can similarly prove2615

the case when selecting the target compatibility relation with d.2. As a result, we have2616

θ ′(d〈M1,M2〉)≈d〈π1,π2〉 θ ′(d〈M3,M4〉).2617

Case (d) and (d∗): Assume we have (θ ,π) = U (d〈M1,M2〉 ≈? d〈bMcd.1,bMcd.2〉). By2618

the induction hypothesis, we have: θ(d〈M1,M2〉) ≈π θ(d〈bMcd.1,bMcd.2〉). Our goal2619

is to show:2620

θ(d〈M1,M2〉)≈π θ(M)

First, for any δ such that bθ(d〈bMcd.1,bMcd.2〉)cδ ∈ G, we have2621

bθ(d〈bMcd.1,bMcd.2〉)cδ = bθ(M)cδ based on the definition of selection.2622

Next, based on the induction hypothesis, Theorems 1 and 2, Lemmas 92623

and 10, and the definition of pattern-constrained relations in Figure 9, we have2624

∀δ .bπcδ = > ⇒ bθ(d〈M1,M2〉)cδ ≈ bθ(d〈bMcd.1,bMcd.2〉)cδ = bθ(M)cδ . Now,2625

based on Lemma 11 and pattern-constrained relations, we have θ(d〈M1,M2〉)≈π θ(M),2626

completing the proof for this case.2627

Cases (e) through (i) are standard and their proof is omitted here.2628

	Introduction
	Challenges Applying Gradual Typing
	Migrating Gradual Types
	Relations with Other Work in Program Migration
	Additions in the Journal Version and Contributions
	Background and Preparation
	Gradual Typing
	Variational Typing

	Road Map to Migrating Gradual Types
	Migrational Type System
	Syntax
	Type Compatibility
	Pattern-Constrained Judgments
	Typing Rules
	Properties

	Finding the Best Migration
	Relationships Between Migrations
	Extracting Most Static Migrations

	Constraint Generation
	Unification
	Solving Compatibility Constraints
	A Unification Algorithm
	Properties

	Introducing Dynamism for Fixing Static Type Errors
	Duality to Removing Dynamism
	Discussion

	Extensions
	Other Language Features
	Inferring More Precise Types
	Further Migration Scenarios

	Evaluation
	Related Work
	Annotation Upgrading and Migratory Typing
	Gradual Typing Migration
	Relation to Gradual Typing
	Type inference
	Variational Typing and Others

	Conclusion
	Proofs
	Proofs of Theorems 1 Through 3
	Proofs of Theorems 5 and 6
	Proofs of Theorem 11 and 12
	Proofs of Theorems 13 and 14

