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ABSTRACT Attacks launched over the Internet often degrade or disrupt the quality of online services.
Various Intrusion Detection Systems (IDSs), with or without prevention capabilities, have been proposed to
defend networks or hosts against such attacks. While most of these IDSs extract features from the packet
headers to detect any irregularities in the network traffic, some others use payloads alongside the headers.
In this study, we propose a payload-based intrusion detection scheme, PayloadEmbeddings, using byte
embeddings of the payloads of network packets. We employ a shallow neural network to generate vector
representations for bytes and their corresponding payloads. Our feature extraction technique is coupled with
the k-Nearest Neighbours (kNN) algorithm for the classification of packets as intrusive or non-intrusive.
In our experiments, we evaluated 34 publicly available datasets, and used ten distinct payload-based,
labeled intrusion detection datasets to train and evaluate our approach. Our empirical results show that
PayloadEmbeddings reaches between 75% and 99% accuracy across all datasets. Finally, we compare
our approach to other state-of-the-art and traditional intrusion detection techniques. Our findings suggest
that PayloadEmbeddings demonstrates significant advantages over the other techniques on most of the
datasets.

INDEX TERMS Intrusion Detection, Payload Embeddings, Byte Embeddings.

I. INTRODUCTION
Intrusion Detection Systems (IDSs) are used as parts of

comprehensive defense mechanisms to protect systems from
network-based attacks. Depending on the deployment type,
IDSs are categorized into two types: Network-based and
Host-based IDSs [1]. The Network-based Intrusion Detection
Systems (NIDSs) are deployed at the network level and they
inspect the incoming or outgoing traffic for any suspicious,
abnormal, or malicious activity. The Host-based Intrusion
Detection Systems (HIDSs) are deployed at each machine in
the network to prevent malicious attacks targeting the hosts.
HIDSs also help to prevent attacks coming from the machines
within the network. Based on the detection method, IDSs are
categorized into two types: Signature-based and Anomaly-
based IDSs [2]. The Signature-based Intrusion Detection
Systems (SIDSs) protect the network from malicious activ-
ities by inspecting packets in a network and comparing them
against a known database of attack packet features. SIDSs fail
to identify zero-day attacks. The Anomaly-based Intrusion
Detection Systems (AIDSs) monitor the network traffic and
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compare it with the expected behavior of the network to
generate an alert or not. AIDSs provide better protection
against zero-day attacks, though they are not immediately
tolerant to new behaviors.

Most of the IDSs use packet headers to extract features
and apply machine learning methods for feature engineering
and classification tasks. Such IDSs can successfully detect
header-based attacks, e.g., scanning attacks or probing at-
tacks. Moreover, the attacks that generate high volumes of
packets are easily detected by header-based IDSs. However,
these IDSs do not inspect the payloads of network packets.
Hence, they fail to detect payload-based attacks such as SQL
injection, shell-code, and cross-site scripting [3]. Unlike the
header-based attacks, attackers send the payload-based attack
packets at lower rates, as they try to exploit a vulnerability
instead of overwhelming the network.

Prior research has been done using different techniques
to detect anomalies in a network payload. Many use n-
grams based approaches, e.g., PAYL [4] and ANAGRAM [5],
which measure the occurrence frequencies of 256 possible
byte values. The frequency distributions of bytes are used
to develop a normal payload profile to compare against
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the incoming payloads for detecting attacks in a network.
McPAD [6] uses a 2v-gram technique to extract features from
payloads. OCPAD [7], RANGEGRAM [8], HMMPayl [9]
also use n-grams to extract features. Williams et al. [10]
extracted 22 traffic-related statistical features from payloads.
The authors use correlation and consistency-based feature
selection techniques to reduce the feature space. However,
payload features in these approaches either do not reflect
any contextual information for bytes or reflect limited byte
relationships.

Recently, researchers are using deep learning-based ap-
proaches to classify network payloads. Multiple studies have
employed Convolutional Neural Network (CNN), and Recur-
rent Neural Networks (RNN) or Long Short-Term Memory
(LSTM) [11]–[13]. Deep neural networks provide automatic
feature extraction without manual feature engineering. How-
ever, they require a substantial amount of data and time to
build an effective model against network attacks [14]. Addi-
tionally, these proposed models must take a fixed size input
which requires truncating or padding payloads to a certain
length. As a result, any contextual or semantic information is
lost.

Our main goal is to develop an IDS that can identify known
anomalies using payloads in network packets. To that end,
we propose, PayloadEmbeddings, a high-level feature
extraction technique employing contextual byte information
for intrusion detection. Our model uses the payloads of
network packets to map bytes to dense vector representations
or embeddings. The model learns byte embeddings from their
surrounding (context) bytes. Two bytes having similar con-
texts will have closer vector representations, which leads to
natural groupings among the bytes that have similar contexts.
Moreover, one can effectively aggregate the byte embeddings
to obtain dense vector representations for their payloads. Our
model can be deployed at both network-level, and host-level.

Word2vec, which has many successful applications in
Natural Language Processing (NLP), generates continuous
vector representations of words in high-dimensional space
[15], [16]. We exploit the same idea to generate vector repre-
sentations of bytes in packet payloads. We employ a shallow
neural network to generate dense vector representations of
bytes. The objective of the neural network is to maximize the
log-probability of the neighboring bytes of each byte in pay-
loads. Next, we aggregate the vector representations of bytes
to build vectors representing their corresponding payloads,
i.e., payload embeddings. Lastly, we use the vector represen-
tations of the payloads as features feeding a k-Nearest Neigh-
bours (kNN) classifier that labels target packets as intrusive
(anomalous) or non-intrusive (normal). kNN classifiers are
able to generate convoluted boundaries, especially when the
data instances are dispersed and not easily separable.

What is more, a suitable benchmark dataset is required to
train and evaluate intrusion detection systems [17]. Publicly
available, labeled datasets with raw payloads are essential
for payload-based intrusion detection systems, such as our
model. The datasets with real network activities containing

both attack and normal traffic are quite difficult and expensive
to obtain [6]. In the last few decades, a large number of IDS
studies have been done on DARPA 1998/99 [18], [19], and
KDD-Cup 99 datasets. The DARPA 1998/99 datasets have
been widely used in various payload-based intrusion detec-
tion systems [4]–[6], [9], [13]. However, these datasets have
often been criticized for outdated DDoS attacks, artificial at-
tack injections, and redundancy [20], [21]. Finding a suitable
dataset with modern real-world attacks and normal traffic is
a challenge in the arena of payload-based intrusion detection
systems research. We performed an exhaustive search for
datasets to evaluate our approach. We found ten labeled
datasets with payloads that are suitable for this study, out of
34 datasets in total. Specifically, we evaluate our model on
Botnet, CIC DoS, CICIDS-2017, CSIC HTTP 2010, CTU-
13, ECML/PKDD 2007, ISCX-2012, ISOT, NDSec-1, and
UNSW-NB15 datasets. The detailed descriptions of these
datasets are given in Section IV.

Our empirical results indicate that PayloadEmbeddings
reaches 92%-99% accuracy, precision, recall, and F1-score
on ISOT, UNSW-NB15, CICIDS-2017, and CIC DoS
datasets, and 75%-82% accuracy, precision, recall, and F1-
score on the other datasets, using kNN. We compare our
approach to ten other traditional and state-of-the-art tech-
niques, including PAYL [4], McPAD [6], HMMPayl [9],
AEIDS [12], HAST [11], OCPAD [7], EsPADA [22],
CBID [23], PL-RNN [13], and Packet2Vec [24] over the
same datasets and show that our approach performs better
over most of the datasets.

Our main contributions in this study are listed as follows:

• We propose to employ a shallow neural net-
work, Word2Vec, to generate vector representations
of bytes, i.e., byte embeddings, from the payload of
network packets. Next, we utilize the byte embed-
dings corpus model to generate payload vectors, i.e.,
PayloadEmbeddings that can be used as features
for the classification task.

• We evaluated PayloadEmbeddings, and ten other
state-of-the-art and traditional feature extraction tech-
niques on ten appropriate datasets out of 34 publicly
available datasets. Additionally, we share the imple-
mentation of our proposed technique and the other ten
methods online1.

The rest of the paper is organized as follows. Section II
presents the related work. Section III describes the pro-
posed model, PayloadEmbeddings. Section IV presents
an overview of the intrusion detection datasets used in
this study. Section V presents experimental settings of
PayloadEmbeddings. Section VI describes the analyses
of the experimental results. Section VII discusses the limita-
tions of PayloadEmbeddings. Finally, we conclude our
work in Section VIII.

1BitBucket: Payload Embeddings
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II. RELATED WORK
In this section, we categorize the previous studies based on
their feature extraction techniques.

A. TRADITIONAL FEATURE EXTRACTION TECHNIQUES
N-gram and Frequency. Many payload-based intrusion de-
tection systems employ n-gram based feature extraction
techniques. PAYL [4] uses the byte frequency distributions
of normal packets to develop a centroid model. Relative
frequency is used as a feature vector applying the n-gram
(n=1) approach. PAYL adopts the Mahalanobis Distance
(MD) map to compute the consistency of incoming payloads.
If the new payload exceeds a threshold, it is classified as
anomalous. Wang et al. proposed ANAGRAM [5] to deal
with polymorphic blending attacks. ANAGRAM develops a
bloom filter from n-grams in normal payloads. N -grams are
extracted from incoming payloads to identify the occurrence
of new n-grams in the bloom filter. If the occurrence of
such n-grams exceeds a certain percentage, the payload is
labeled as anomalous. Vidal et al. proposed EsPADA [22]
to protect networks against adversarial threats. The proposed
approach employs the n-gram technique to extract features
from the payloads. The authors utilized Counting Bloom
Filters (CBF) to store the extracted features. OCPAD [7]
also uses n-gram technique to extract sequences from pay-
loads. The authors propose a knowledge-based data structure
named Probability Tree to store the occurrence probability
range of n-grams from normal payloads. RANGEGRAM [8]
considers the maximum and minimum occurrence frequency
of n-grams to detect zero-day attacks against web traffic. A
database is generated from the n-grams of normal traces.
If an incoming packet has a deviation from the database,
it generates an alert. McPAD [6] uses a modified n-gram
technique to extract the features from payloads. The authors
have adopted the nv-gram technique during the training
phase where the occurrence frequency of each n number of
bytes separated by length v, is calculated. McPAD generates
different feature spaces by varying the value of v. In the
testing phase, multiple one-class Support Vector Machine
(SVM) is used to detect anomalous packets by majority
voting. These approaches exploit character frequency distri-
butions in payloads as features, which often do not reflect the
context-level information.
N-gram and Neural Network. Packet2Vec [24] utilizes n-
grams (n = 2) to extract sequences of bytes from packets.
The authors also employ Word2Vec to create vector represen-
tations for each of the most-frequent n-grams. The vectors
of n-grams for each packet are divided by the number of
n-grams found in that packet to create a fixed-size packet
vector.

Packet2Vec also exploits Word2Vec similar to the
PayloadEmbeddings. However, there are some major
differences. The vocabulary size of Packet2Vec is 216 =
65, 536 and the vector length is 128. On the other hand, the
vocabulary size and the vector length are only 28 = 256, and
10 in PayloadEmbeddings, respectively. As a result, the

time-complexity and memory consumption for Packet2Vec
are way higher than PayloadEmbeddings.

B. DEEP NEURAL NETWORK BASED TECHNIQUES
HAST-IDS [11] uses CNN and LSTM to capture low-level
spatial and high-level temporal features from packets, respec-
tively. AEIDS [12] employs an Autoencoder to detect outliers
in network traffic. A reconstruction error on normal traffic,
and a modified z-score are used to classify the incoming
traffic. Liu et al. [13] proposed two models for payload-
based intrusion detection, i.e., PL-CNN and PL-RNN. The
authors utilized deep learning models to learn features from
payload without manual feature engineering. However, the
proposed approach is evaluated using the outdated DARPA
1998/99 dataset which has become obsolete in time. As these
methods rely heavily on the deep learning models for feature
extraction and classification tasks, the time complexity is
higher than the other IDS techniques [13]. Compared to deep
learning models, our proposed method employs a shallow
neural network (with one hidden layer) only for byte em-
beddings generation. Hence, our method is computationally
faster.

C. OTHER TECHNIQUES
PCNAD [25] considers the specific content of a payload.
Content-based partitioning (CPP) is used to determine pay-
load profiles for different lengths of payloads. Applying
the CPP technique, PCNAD uses 62.64% of the full pay-
load length, on average. Hosseini et al. [23] proposed a
payload-based attribution scheme named CBID (Compressed
Bitmap Index and Traffic Downsampling). CBID extracts
features from down-sampled traffic using the combination of
bloom filters and compressed bitmap index table. Jamdagni
et al. [26] propose a 3-tier feature selection technique named
Iterative Feature Selection Engine (IFSEng). In the first tier,
Principal Component Analysis (PCA) is used to analyze raw
data. Tier 2 computes the number of dominant Principal
Components (PCs). Finally, a normal model is generated,
and trained in tier 3. The authors use Mahalanobis Distance
(MD) map to extract correlations between the packets and
between the features. Like PAYL [4], (MD) map is used to
classify payloads as anomalous or normal. Luo et al. [27]
developed a combined model with XGBoost and PU learning
for web anomaly detection. This method vectorizes HTTP
payloads at the byte-level by ASCII values to avoid infor-
mation loss. PU learning trains a binary classifier. Naive
Bayes (NB) and Logistic Regression (LR) have been used to
identify malicious behaviors. The combined model performs
best when the vector dimension is 7500. However, due to
multiple stages of payload analysis, the proposed approach
is computationally costly and do not preserve contextual
relationships between bytes in payloads.

Unlike the previous studies [4]–[8], [11]–[13], [22], [23],
[23]–[27], PayloadEmbeddings can extract contextual
information from payloads. Each byte in a payload is trans-
formed into a vector space by maximizing the log probability
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FIGURE 1: The shallow neural network architecture predict-
ing context bytes given an input byte.

of the neighborhood bytes with a window size of 5 to capture
the contextual relations among the adjacent bytes. Moreover,
the vocabulary size (=256) limits the time complexity, mak-
ing our approach computationally faster than others.

III. PAYLOAD EMBEDDINGS CORPUS MODEL
In this section, we first briefly present word2vec models
that inspired us to develop byte and payload embeddings
for intrusion detection. Then, we introduce our model,
PayloadEmbeddings, in detail.

Continuous bag of words (CBOW) and Skip-gram models
are together known as word2vec [15]. Word2vec is an effi-
cient natural language (NLP) model to learn vector represen-
tations for words or embeddings. The most practical aspect
of word embeddings is to create dense vector representations
of words that contain semantic meanings. The CBOW model
predicts a word given a context as input, while the Skip-
Gram model predicts the context given a word as input. It is
a self-supervised learning framework that learns distributed
representations of texts of any length. The Paragraph vector
model [28] is an extension of word2vec which is also known
as doc2vec. The doc2vec model creates embeddings or vector
representations for paragraphs. To obtain paragraph vectors,
word embeddings are typically aggregated by concatenation
or coordinate-wise averaging.

We extend the Skip-gram model to generate a corpus of
embeddings for the bytes in packet payloads. We build byte
embeddings corpus model from the output of the hidden
layer of the model. Then, for each payload in our dataset,
we generate a feature vector using the aggregated vectors
of individual bytes from the byte embeddings corpus. Note
that, we consider complete payloads instead of trimming or
padding the payloads to a fixed length during the training of
the corpus model.

...

Pre-computed
Byte	Embeddings

Payload Byte	Vectors

..

.

Coordinate-wise
Average

Payload	Vector

FIGURE 2: Average aggregation generating a payload em-
bedding from pre-computed byte embeddings.

A. BYTE EMBEDDINGS GENERATION
Figure 1 demonstrates the shallow neural network architec-
ture, similar to Skip-gram for NLP, to generate byte em-
beddings. The input layer takes a T -dimensional one-hot
encoded input byte bi where T=256 unique bytes in the
corpus. The hidden layer consists of k neurons to produce
k-dimensional vector representation of the input byte, bi.
The training objective of the model is to generate contextual
byte representations for an input byte bi with respect to
its neighboring bytes within a predefined window size, s.
Considering n training bytes b1, b2, . . . , bn, the objective is
to maximize the average log-likelihood denoted as follows:

1

n

n∑
i=1

∑
−s≤j≤s,j ̸=0

log p(bi+j |bi), (1)

where s is the window size of the input byte bi. For example,
if window size, s = 3, then for each byte bi we compute
the average of the log probability of bi−3 to bi+3, except the
input or center byte bi. Averaging the log-likelihood would
generate more stable byte representations. he probability of
p(bi+j |bi) in (1) is defined using the softmax function in (2):

p(bc|bi) =
exp

(
v′
bc

⊤
vbi

)
T∑

j=1

exp
(
v′
bj

⊤vbi

) , (2)

where bc, vb, and v′
b are the surrounding bytes, input and

output vector representations of byte bi, respectively, and T is
the total number of unique bytes in the payload corpus. Note
that, the computation of gradient ∇ log p(bi+j |bi) of the ob-
jective function of (1) is expensive in the original skip-gram
model. However, our payload dataset contains a maximum of
256 unique bytes which limits the computational complexity.
By taking the output of the hidden layer, we generated a
corpus model for bytes of all payloads in our dataset.

B. PAYLOAD EMBEDDINGS GENERATION
The low dimensional feature vector generation approach
for payloads is depicted in Figure 2. The figure illustrates
vector aggregation of a payload containing m bytes b1, b2,
.... , bm. For each byte bi, the corresponding vector vi of
length k is selected from the pre-computed byte embeddings
generated by the skip-gram model (Figure 1). The vectors
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are then averaged to get the final payload feature vector with
dimension k. We use the coordinate-wise vector aggregation
method [16] by using (3):

w[i] =
1

m

m∑
j=1

vbj [i], (3)

where, vbj [i] denotes the ith element of the byte embedding
of the jth byte. m is the number of bytes in the payload and
w[i] is the ith element of the final payload feature vector, w.
Note that, vector length k refers to the feature size.

Finally, the payload vectors are used as features and
fed into our classification algorithm, k-Nearest Neighbours
(kNN).

Time Complexity. The time complexity for training the
byte embeddings corpus model is O(s∗(N+N ∗T )), where
s is the context window size, T is the number of unique bytes,
and N is the total number of bytes in the training dataset [15],
[29]. The time complexity to generate a feature vector, i.e.,
payload embeddings is O(m), where m is the number of
bytes in a payload in the testing dataset. Note that the byte
embeddings are generated only once in the training stage
and the feature vectors of payloads are computed from the
pre-computed byte embeddings as packets arrive during the
testing stage.

Scalability. In the training stage, we learn byte embeddings
from the payloads of the packets in the training dataset. In
Section VI-A, we show that the byte embeddings generation
process takes 5,300 to 508,000 ms for different datasets.
The byte embeddings model generation is executed offline
and only once. Once we learn the byte embeddings, payload
embedding vectors are computed online using (3) as new
packets arrive. In Section VI-A, we show that the payload
generation takes between 1.09ms to 3.46ms on average
over different datasets. Unlike Intrusion Prevention Systems
(IPSs), Intrusion Detection Systems (IDSs) are typically not
deployed inline. They passively monitor the network traffic
flow and report the anomalies in the form of notifications
to the administrators. To handle ever-increasing network
throughput, modern IDSs take advantage of parallel com-
puting, multi-threading, and GPU-accelerated computing.
PayloadEmbeddings can also process large amounts of
payloads in short times as part of these modern IDSs. Hence,
the proposed approach is scalable.

IV. DATASETS
Most of the IDS datasets contain only the headers of network
packets. Many datasets using real traffic either do not have
payloads or payloads have been removed due to privacy
and security reasons [17]. Lack of labeled datasets with real
network traffic is a significant issue in the area of payload-
based anomaly detection research. As a result, anomaly de-
tection using payloads has been evaluated on private datasets
by most researchers. However, such datasets are difficult to
collect and sometimes unavailable due to privacy concerns.
Since PayloadEmbeddings is a self-supervised learning

method, we need well-labeled datasets with raw payloads.
In search of a suitable dataset, we came across several IDS
datasets. Our search criteria for appropriate datasets were set
to raw, anomalous, and labeled “payloads”. Table 1 summa-
rizes the features of the ten datasets that we use in this study.
These features include a subset of the 15 important features
to assess intrusion detection datasets introduced by Ring et
al. [17]. The features consist of the year of creation, avail-
ability (whether the dataset is publicly available, restricted,
or private), the format that the dataset is available in, the type
of network traffic trace (real, emulated, or synthetic), size of
the datasets, whether the dataset is labeled or not, whether
the dataset contains metadata or not, payload availability, if
the dataset is balanced or not, and the type of attacks. In
the following, we briefly provide the descriptions of these
datasets.

Botnet: Beigi et al. created the Botnet [30] dataset in 2014
using three existing datasets: ISOT [31], ISCX 2012 [32]
and CTU-13 [33]. The dataset contains various attacks from
botnets such as IRC bot, Virut, Black Hole, Neris, Menti
Rbot, Tbot, Murlo, Sogou, Weasel, Nsis, Zeus, and Zero-
access. Malicious IP addresses are provided as ground truth
for labeling the packets. The dataset is provided in a packet-
format. Payloads are present in the traffic capture. The dataset
is publicly available in two parts; training and test sets. We
use this dataset in our study because it contains labeled
payloads.

CIC DoS: The Canadian Institute for Cybersecurity cre-
ated CIC DoS [34] dataset in 2012. The dataset contains eight
different HTTP-based application layer DoS attacks. The
attack traffic was generated using Ddossim, Goldeneye and,
Hulk. Normal traffic was generated from non-attack traffic
of the ISCX 2012 dataset. The dataset is recorded in packet
format, labeled and is publicly available. Since this dataset
meets our dataset criteria of labeled packets with payloads,
we use it in this study.

CICIDS-2017: Sharafaldin et al. published the CICIDS-
2017 [35] dataset. This dataset is created over a duration of
5 days in 2017. The dataset is available in both packet and
bi-directional flow-based format and contains seven common
updated family of attacks. The authors have provided addi-
tional meta-data about IP addresses and attacks. The attacks
present in this dataset are Brute Force, Heartbleed, Botnet,
DoS, DDoS, Infiltration and Web Attack. This dataset is
well labeled and publicly available. We use the CICIDS-2017
dataset in our study, as it meets our dataset criteria.

CSIC HTTP 2010: Information Security Institute of CSIC
created the CSIC HTTP 2010 dataset [36]. This dataset
contains web requests which are automatically generated.
The dataset has three files: training with normal traffic,
testing with normal traffic, and testing with anomalous traffic.
The dataset only provides payloads, the packet headers are
removed. Three types of anomalous requests are included in
this dataset; Static attacks, Dynamic attacks and, Uninten-
tional illegal requests. However, the dataset is only labeled as
anomalous and normal. Payloads are not labeled as a certain
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TABLE 1: A short overview of the intrusion detection datasets used in this study.

Dataset
Year of

Creation
Availability Format Labeled

Traffic
Type

Meta
Data

Size
Count

Payload Balanced Attack Type

Botnet 2010 Public Packet Yes Emulated Yes
14GB

packets
Yes No

Botnets (IRC bot, Black Hole,
Neris, Virut, Menti, Rbot, Tbot,
Murlo, Sogou, Weasel, Nsis,
Zeus, and Zero-access)

CIC DoS 2012 Public Packet Yes Emulated No
4.6GB
packets

Yes No
Ddossim, Hulk, Slowhttptest,
Rudy, Goldeneye, Slowread,
Slowbody, and Slowloris

CICIDS
2017

2017 Public
Packet,
Flow

Yes Emulated Yes
3.1M
flows

Yes No
Brute Force, Heartbleed, DoS,
Botnet, DDoS, Infiltration,
and Web Attack

CSIC
HTTP 2010

2010 Public Packet Yes Emulated No
61k

packets
Yes No

Static attacks, Dynamic attacks,
and illegal request

CTU-13 2013 Public
Packet,
Flow

Yes Real Yes
81M
flows

Yes No
Botnets (Neris, Rbot, Menti,
Virut, NSIS, Murlo, and Sogou)

ECML-
PKDD

2007 Public Packet Yes Real No
46k

packets
Yes No

OScommanding, Xpath injection,
Cross-Site scripting, SQL Injection,
Path traversal, SSI, and
Ldap Injection

ISCX
2012

2012 Public
Packet,
Flow

Yes Emulated Yes
2M

flows
Yes No

Infiltrating, HTTP DoS, DDoS,
SSH Brute Force

ISOT 2010 Public Packet Yes Emulated Yes
11GB

packets
Yes No Botnet (Waledac and Storm)

NDSec-1 2016 On request
Packet,
Logs

Yes Emulated No
3.5M

packets
Yes No

Brute Force, DoS,
Web Attack (XSS/SQL injection)

UNSW-
NB15

2015 Public
Packet,
Other

Yes Emulated Yes
2M

points
Yes No

DoS, Generic, Reconnaissance,
Exploits, Backdoors, Shellcode,
and Worms

attack type. This dataset is publicly available. As it meets our
dataset criteria, we use it in our study.

CTU-13: Garcia et.al. [33] created the CTU-13 dataset
at CTU University, in 2011. Attacks are executed using
several botnets such as Neris, Rbot, Menti, Virut, NSIS,
Murlo, and Sogou. The dataset is public and available in
packet format. Instead of labeling anomalous packets to each
class of attacks, the authors have divided the traffic into 13
different scenarios. However, contributors have removed the
background traffic of normal packets due to privacy and secu-
rity concerns. As a result, only attack packets are available.
We use this dataset in our study in spite of the absence of
normal payloads. To handle the lack of normal packets, we
borrowed normal packets from CICIDS-2017. The details of
the sampling process are discussed in Section V-A.

ECML/PKDD 2007: The dataset was collected from
ECML-PKDD [37] competition in 2007. The competition
was about analyzing the web traffic to detect or isolate attack
patterns. The dataset contains seven different types of attacks.
The ECML/PKDD 2007 dataset was generated by recording
real traffic. The dataset is publicly available in train and test
subsets. It is provided in a packet-based format that contains
payloads. As packets of this dataset are labeled, we use this
dataset in our study.

ISCX 2012: Shiravi et al. [32] created the ISCX 2012
dataset. The dataset was captured in an emulated network

environment. ISCX 2012 contains the traffic of one week.
α and β profiles were created to define attack and normal
traffic, respectively. The dataset is publicly available in both
packet-based and bidirectional flow-based formats. ISCX
2012 contains four types of attacks such as DDoS, SSH Brute
Force, Infiltration, and DoS. This dataset contains payloads
as the authors have provided packets in pcap files. We use
this dataset in our study.

ISOT: Saad et al. [31] published the ISOT dataset in 2010.
The malicious traffic was generated from the French chapter
of the honeynet project. The dataset is publicly available
in packet format. The authors provided the IP addresses of
anomalous and normal traffic for labeling. We use this dataset
in our study because it meets our criteria for labeled payloads.

NDSec-1: Beer et al. [38] created the NDSec-1 dataset in
2016. The synthetic dataset was captured in a packet-based
format. Additional log files are provided by the authors.
The attacks present in the dataset are brute force, DoS,
Web Attack (XSS/SQL injection). NDSec-1 is available on
request. The dataset is labeled and payloads are available.
Hence, we use this dataset in our study.

UNSW-NB15: Moustafa et al. [39] created the UNSW-
NB15 dataset in a small emulated environment. The network
traffic is captured for more than 31 hours. The IXIA Perfect
Storm tool was used to create normal and malicious traffic.
It contains different types of attacks such as DoS, generic,
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FIGURE 3: Experimental flow diagram of
PayloadEmbeddings. The flow diagram is divided
into three stages, and sequence of flow is identified as steps.

exploits, backdoors, reconnaissance, shellcode, and worms.
The dataset is publicly available in packet-based and flow-
based formats. The authors provided separate train and test
sets as part of the dataset. The payload is available in this
dataset. We included the UNSW-NB15 dataset in our study.

In summary, we chose the presented ten datasets out of
34 datasets based on whether the dataset is in packet-based
format, labeled, and contains anomalous payloads.

V. EXPERIMENTAL DESIGN
In this section, we provide a detailed experimental flow of
PayloadEmbeddings. We divide our proposed approach
into three stages: Data Preprocessing, Training, and Testing
stages as depicted in Figure 3.

A. DATA PREPROCESSING STAGE
Step 0. We use ten datasets, including Botnet, CIC DoS,
CICIDS-2017, CSIC HTTP 2010, CTU-13, ECML/PKDD
2007, ISCX 2012, ISOT, NDSec-1 and, UNSW-NB15, in our
study. First, we extract network packets with payloads. Pack-
ets that do not contain any payload data are discarded. Then,
each packet is labeled using the ground truth provided within
the datasets. We remove the packets with duplicate payloads
based on the destination ports and labels. The packet-counts
of the resulting datasets are reported in Table 2. By observing
the left portion of Table 2, it is noticeable that all datasets are
imbalanced before sampling. Imbalanced datasets may cause
some classifiers to be biased towards the majority class [40].
To overcome this problem, we perform under-sampling to
the majority classes. We randomly remove the instances of
the majority classes to balance the attack and normal traffic
classes in the datasets. Note that, CTU-13 dataset does not
have any normal packets. In order to balance this dataset, we
chose normal packets from the CICIDS-2017 dataset. Please
note that normal packets used in the CTU-13 dataset and the
normal packets used in the CICIDS-2017 dataset are disjoint.
The packet-count of each dataset after sampling is reported
in the right portion of Table 2. After generating the sample
datasets, we divide each of the 10 datasets randomly into two
equal parts: the training set and the testing set. The training
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FIGURE 4: Effect of window size PayloadEmbeddings
on CICIDS-2017 dataset.

set is used in Step 1, Step 2, and Step 3 of the training stage.
The testing set is used in Step 4, and Step 5 of the testing
stage.

B. TRAINING STAGE
Step 1. We generate byte embeddings for payloads by train-
ing a shallow neural network (already described in Sec-
tion III-A). We create multiple byte embeddings models for
different vector lengths starting from 5 to 50 with intervals of
5 using (1) and (2). During this byte embeddings generation
process, we use a window size of 5, which states that for
any input byte, its context bytes are located at a distance of
5 or less. The window size is a hyper-parameter and it is
chosen after fine-tuning. We selected CICIDS-2017 dataset
for hyper-parameter tuning because the dataset has a wide
range of attack payloads after sampling (see Table 1 and
2). Figure 4 illustrates the rationale behind using window
size 5. All four evaluation metric ranges between 95.1%-
95.4%. However, increasing the window size also increases
computation time. Hence, we choose window size 5 to keep
our approach computationally fast whilst not degrading per-
formance.

Step 2. The next step after byte embeddings generation
is to compute feature vectors, i.e., payload embeddings, for
each payload. For each byte embedding vector length, we
compute the payload embeddings using (3). The output of
this step is multiple payload embeddings models.

Step 3. We train k-Nearest Neighbors (kNN) using pay-
load embeddings models created in Step 2. Note that kNN is
non-paramteric. Hence, it uses all the samples of training data
for classification in the training step. We experimented with
different values of k, in a range between 1-9. Additionally, we
performed 10-fold cross-validation for every training dataset.
The experimental results are shown in Figures 2 − 11 in
the supplementary file. Analyzing the figures shows that the
performance of PayloadEmbeddings slightly increases,
decreases, or fluctuates when k is greater than 3. In fact,
larger values of k present lower variance, but higher bias.
Therefore, we set k to 3 in our experiments.
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TABLE 2: Summary of the number of anomalous and normal packets for each dataset.

Dataset Before Sampling After Sampling
Attack Packets Normal Packets Total Packets Attack Packets Normal Packets Total Packets

Botnet 193237 2594419 2787656 45943 45943 91886
CIC DoS 6842 2232433 2239275 6842 6842 13684

CICIDS-2017 76060 76060 152120 76060 76060 152120
CSIC 25065 36000 61065 25065 25065 50130

CTU-13 169040 - 169040 169040 169040 338080
ECML/PKDD 15110 35006 50116 15110 15110 30220

ISCX 2012 109289 1364617 1473906 42600 42600 85200
ISOT 55158 1061591 1116749 55158 55158 110316

NDSec-1 1469 222981 224450 1469 1469 2938
UNSW-NB15 558729 12405175 12963904 47539 47539 95078

C. TESTING STAGE
Step 4. In the testing stage, first, we generate feature vec-
tors, i.e., payload embeddings, for each payload in network
packets, similar to the Step 2. However, the testing set is used
during the payload embeddings computation process in this
step.

Step 5. Finally, the trained kNN classifier uses the payload
embeddings created in Step 4 to classify the payloads as
anomalous or normal.

D. IMPLEMENTATION DETAILS
We utilize a multi-core server having 32 processing cores
with 2.5 GHz per core and 512 GB of RAM to conduct the
experiments of this study. We implement our experiments in
Python3.6. To generate the byte embeddings, we convert the
bytes into integers and use the gensim library. Window size,
number of workers, and minimum count parameters are set
to 5, 4, and 1, respectively. We use Python’s sklearn library
for the k-NN classification and cross-validation. To promote
reproducibility in science, we share our implementations and
supplementary file online2.

VI. EMPIRICAL VALIDATIONS
In this section, we first present the results of our proposed
technique, PayloadEmbeddings, across all datasets.
Next, we discuss the results via the average byte frequency
distributions, confusion matrices, and t-distributed Stochastic
Neighbor Embedding (t-SNE) plots.

Figure 5 shows the performance results of our approach
over the ten datasets used in this study. For each dataset, the
results are reported for different vector lengths ranging from
5 to 50 with intervals of 5. Except for ISOT and NDSec-1
datasets, the performance over the datasets improves when
the vector length is increased from 5 to 10. Above 10, the
performance of our model either declines or saturates. Our
approach achieves its best performance at different vector
lengths over different datasets. Botnet, CIC DoS, CICIDS-
2017, CSIC HTTP 2010, CTU-13, ECML/PKDD, ISCX-

2BitBucket: Payload Embeddings

2012, ISOT, NDSec-1, and UNSW-NB15 datasets achieve
the best performance (in terms of Accuracy, Precision, Re-
call and F1-score) for the vector lengths of 25, 50, 10,
45, 25, 40, 15, 10, 5 and, 50, respectively. However, we
found in our experiments that there is a sharp rise in the
performance when the vector length is increased from 5
to 10 for most of the datasets, except ISOT and NDSec-1.
Increasing the vector length from 10 to 50 with intervals of 5,
the performance of PayloadEmbeddings either improves
insignificantly (UNSW NB-15, CIC DoS, ECML/PKDD,
CSIC HTTP, CTU-13, and Botnet) or declines (CICIDS-
2017, ISOT, NDSec-1, and ISCX2012). Therefore, we use
vector length 10 throughout our experiments.

A. PERFORMANCE ANALYSIS
In the following we discuss the performance of our ap-
proach over ten datasets. PayloadEmbeddings achieves
the highest performance on ISOT dataset. The optimal per-
formance is obtained for vector length 10 with accuracy 99%,
precision 99%, recall 99% and F1-score 99%. ISOT dataset
has only one type of anomaly with payload, i.e., SMTP spam.

TABLE 3: Confusion matrix for ISOT dataset.

Data Type Normal SMTP Spam
Normal 8276 8

SMTP Spam 19 8245

The confusion matrix in Table 3 shows that only 8 out 8284
normal payloads have been misclassified as anomalous and
19 out of 8263 anomalous payloads have been misclassified
as normal payloads. To understand the reason behind our
high-performance rates over the ISOT dataset, we present the
average byte frequencies of anomalous and normal payloads
in Figure 6. The frequency of each byte is divided by the
total number of bytes in a payload. Then, the average byte
frequency distribution is computed for normal and anoma-
lous traffic in the dataset. In Figure 6 it is noticeable that
the average byte frequency of anomalous payloads is quite
distinguishable from the normal payloads. Normal payloads
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FIGURE 5: Classification (a) Accuracy, (b) Precision, (c) Recall, and (d) F1-score using k-NN classifier.
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FIGURE 6: Average byte frequency distribution of ISOT
dataset.

have uniform-like average byte frequencies, whereas anoma-
lous payloads have fluctuating average byte frequencies. The
t-SNE plot for the ISOT dataset is also shown in Figure 7.
t-distributed Stochastic Neighbor Embedding (t-SNE) is a
very popular dimensionality reduction technique introduced
by Maaten and Hinton [41]. t-SNE also attempts to generate
representative visualizations of higher dimensional data in
two-dimensional space by considering varying, non-linear
transformations. For generating t-SNE plots, we selected
500 random samples from each class to produce sample
visualizations of clusters. The t-SNE plot in Figure 7 depicts
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FIGURE 7: t-SNE plot for ISOT dataset.

that anomalous payloads are easily separable from normal
payloads in ISOT dataset.

Figure 5 shows that amongst the ten datasets,
our approach performs the worst on CTU-13 dataset.
PayloadEmbeddings achieves 75.15% accuracy, 75.13%
recall and 74.79% F1-score, when the vector length is 10. The
CTU-13 dataset has 13 scenarios generated from different
bots such as Neris, Rbot, Virut, Menti, Murlo, Sogou, and
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TABLE 4: Confusion matrix for CTU-13 dataset.

Data Type Normal Scenario 1 Scenario 2 Scenario 4 Scenario 5 Scenario 6 Scenario 7 Scenario 8 Scenario 9 Scenario 12 Scenario 13
Normal 6505 261 60 0 49 0 0 2 65 6 578

Scenario 1 256 408 26 0 15 0 0 2 31 3 211
Scenario 2 243 75 575 0 8 0 0 2 30 1 134
Scenario 4 0 0 0 4 0 0 0 0 0 0 0
Scenario 5 283 47 6 0 523 0 0 0 24 1 166
Scenario 6 1 1 2 0 0 2 0 0 0 0 1
Scenario 7 0 1 0 0 1 0 8 0 0 1 1
Scenario 8 0 0 0 0 0 0 0 10 0 0 0
Scenario 9 432 115 32 0 21 0 2 0 638 6 216
Scenario 12 3 2 4 0 1 0 0 0 8 72 2
Scenario 13 939 282 46 93 0 0 0 0 105 1 1352
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FIGURE 8: Average byte frequency distribution of CTU-13
dataset.

NSIS. Scenarios 1 and 2 include IRC, Spam, and Click-fraud
attacks using Neris bot. Scenario 3 includes IRC, Portscans,
and US (compiled and controlled by the authors) attacks
using Rbot. Scenario 4 includes IRC, DDoS, and US attacks
also using Rbot. Scenarios 5 and 13 include Spam, Portscans,
and HTTP attacks using Virut. Scenario 6 and 8 include
only Portscans attacks using Menti and Murlo, respectively.
Scenario 7 includes HTTP attacks using Sogou. Scenario
9 includes IRC, Spam, Click-fraud, and Portscans attacks
using Neris. Scenarios 10 and 11 include IRC, DDoS, and
US attacks using Rbot. Scenario 12 includes P2P attacks
using NSIS. The authors provide trace files and ground truth
for each of the scenarios separately. However, the labels
only indicate the type of bot used to generate anomalous
packets instead of the label of each anomalous class. As a
result, the confusion matrix in Table 4 has scenario numbers
instead of particular attack classes. Also, anomalous packets
from scenarios 3, 10, and 11 do not have payloads. So, we
discarded the packets from these scenarios.

By analyzing the confusion matrix in Table 4, we can de-
duce that our approach can successfully classify anomalous
traffic from scenarios 1 and 5 with 100% accuracy. Normal
traffic has been classified with 86% accuracy. Anomalous
traffic from scenarios 9, 2, 13, and 7 have been mostly
misclassified. Scenario 9 has been misclassified as scenario
13 and normal with 22% and 43%, respectively. Scenario
2 has been misclassified as scenario 4 (29%), scenario 13
(14%), 9 (14%), and normal (14%). Scenario 13 and scenario
7 have been the most misclassified as normal traffic with 48%
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FIGURE 9: t-SNE plot for CTU-13 dataset.

and 30%, respectively. Figures 8 and 9 can explain the higher
rates of misclassification that we observe in CTU-13 dataset.

Figure 8 shows that average byte frequencies of normal
and anomalous traffic demonstrate similar patterns, which
makes it difficult for PayloadEmbeddings to differen-
tiate. Figure 9 further explains that the attack classes and
normal traffic overlap with each other. It makes it difficult
for the classifier to define an optimal decision boundary. As
a result, the performance of our approach suffers more.

For other datasets, our approach exhibits varying, but
higher performance results. CIC DoS, CICIDS-2017, and
UNSW-NB15 datasets have the accuracy, precision, recall,
and F1-score with a range between 92%-95% for differ-
ent vector lengths. CSIC HTTP 2010, Botnet, ISCX-2012,
ECML/PKDD, and NDSec-1 datasets have the accuracy,
precision, recall, and F1-score with a range between 77%-
84% for different vector lengths.

Computational Overhead. In addition to the time com-
plexity of PayloadEmbeddings presented in Sec-
tion III, we present the physical execution times of
PayloadEmbeddings. We summarize the execution
times of PayloadEmbeddings and report it in Table 5
for vector length 10 and k = 3. Our proposed approach takes
5300 ms to 508000 ms to generate the byte embeddings for
different training datasets. The large variation in execution
times is due to the number and the size of the payloads in
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TABLE 5: Summary of execution time of
PayloadEmbeddings across 10 datasets when k=3
and vector length=10. The execution times are reported in
milliseconds.

Dataset
Training Stage Testing Stage

Byte Embeddings
Generation

Feature Computation
(per packet)

Classification
(per packet)

Botnet 182000 2.09 0.084

CIC DoS 21000 2.97 0.058

CICIDS-2017 355000 2.62 0.111

CSIC 69000 1.83 0.075

CTU-13 508000 3.46 0.105

ECML/PKDD 72000 3.9 0.089

ISCX 2012 177000 2.07 0.089

ISOT 132000 1.09 0.113

NDSec-1 4900 1.43 0.085

UNSW-NB15 178000 2.55 0.075

the training datasets. Feature computation and classification
tasks are carried out in the testing stage. Feature computation
refers to computing the PayloadEmbeddings from the
trained byte embeddings. We compute the average time (in
milliseconds) for each payload to generate its corresponding
payload embeddings and report it in the feature computation
step of the testing stage in Table 5. ISOT dataset is the
fastest and ECML/PKDD dataset is the slowest among all
the datasets in terms of creating feature vectors for each
payload. We employed 10-fold cross-validation to measure
and report the performance metrics (as described in Sec-
tion V-B). On the other hand, we designed a 70%:30% split
dataset experiment to measure the average execution time of
the classification task per packet. The kNN classifier takes
only 0.058 to 0.113 ms per packet to label as anomalous
or non-anomalous, on average. In addition, we compute the
execution time of other state-of-the art methods based on
CICIDS-2017 dataset in Table 6. Training time refers to the
time it needs to build a trained model based on the training
set of the dataset. Testing time refers to the time it needs to
generate features and classify an incoming packet. All the
values are reported in milliseconds.

B. COMPARATIVE ANALYSIS

In the following, we compare PayloadEmbeddings
model with other techniques. We divide these previous stud-
ies into categories. They are as follows: Traditional Feature
Extraction based, Neural Network based, and other state-of-
the-art techniques. First, we present a brief overview of the
comparison methods. We also provide the details of their
experimental settings. Then, we discuss the performance of
PayloadEmbeddings against these methods. We sum-
marize the comparative analyses with respect to accuracy,
precision, recall, and F1-score over all datasets in Table 7.

TABLE 6: Summary of execution time of other state-of-
the-art methods along with PayloadEmbeddings. The
execution times are calculated for CICIDS-2017 dataset and
reported in milliseconds.

Methods Training Stage Testing Stage
(per packet)

PAYL 235,800 1.93
McPAD 451,250 3.48

HMMPayl 634,000 4.5
AEIDS 275,800 2.65
HAST 676,000 4.2

OCPAD 423,450 3.2
EsPADA 1,326,900 7.5

CBID 875,000 9.73
PL-RNN 720,000 2.91

Packet2Vec 515,000 3.54
PayloadEmbeddings 355,000 2.73

1) Traditional Feature Extraction Techniques
We categorize PAYL [4], McPAD [6], and HMMPayl [9] as
traditional feature extraction techniques.

PAYL. Wang et al. proposed PAYL [4] that utilizes the byte
frequency distributions of normal traffic by applying the n-
gram technique. The authors use n-grams (n=1) to produce
256 features that represent the occurrence frequencies of 256
possible bytes in a payload. A centroid model is developed
using these 256 features along with their mean and standard
deviation. Mahalanobis Distance MAP (MDM) is calculated
for new incoming traffic against a precomputed centroid
model. The threshold for MDM is set to 256. Incoming traffic
is labeled anomalous if the Mahalanobis distance exceeds the
threshold.
PayloadEmbeddings vs. PAYL: According to Ta-

ble 7, PayloadEmbeddings outperforms PAYL on 8
out of 10 datasets based on accuracy, and F1-score.
PayloadEmbeddings outperforms PAYL on 7 out of 10
datasets based on precision, and 9 out of 10 datasets based
on recall. The main disadvantage of PAYL is that it does not
learn context information from payloads, which is captured
by PayloadEmbeddings.

McPAD. Perdisci et al. proposed McPAD [6] that extracts
features from normal payloads using 2v-gram technique.
Instead of using the standard n-gram (n=2) technique, the
occurrence frequency of n bytes that are v positions apart
is measured. Varying the value of v (0,1,...,10), 11 normal
payload models are developed. Test payload is modeled with
the same 2v-gram technique and classified with a one-class
SVM classifier for each model.
PayloadEmbeddings vs. McPAD: According to Ta-

ble 7, PayloadEmbeddings outperforms McPAD on 9
out of 10 datasets based on accuracy, precision and F1-score.
However, in terms of recall, PayloadEmbeddings out-
performs McPAD on 6 datasets. Such superior performance
of PayloadEmbeddings over McPAD is attributable to
McPAD not explicitly considering the anomalous traffic pat-
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TABLE 7: Performance comparison of PayloadEmbeddingswith other state-of-the-art and traditional methods using kNN.

Methods Metrics Botnet CIC DoS CICIDS CSIC HTTP CTU-13 ECML/PKDD ISCX-2012 ISOT NDSec-1 UNSW-NB15

PAYL

Accuracy 0.529 ± 0.003 0.761 ± 0.005 0.701 ± 0.004 0.792 ± 0.001 0.633 ± 0.001 0.495 ± 0.002 0.698 ± 0.003 0.999 ± 0.0 0.735 ± 0.006 0.826 ± 0.004

Precision 0.873 ± 0.001 0.621 ± 0.002 0.864 ± 0.0 0.979 ± 0.001 0.722 ± 0.001 0.706 ± 0.003 0.937 ± 0.001 0.998 ± 0.0 0.556 ± 0.009 0.954 ± 0.0

Recall 0.404 ± 0.002 0.648 ± 0.011 0.532 ± 0.004 0.672 ± 0.001 0.579 ± 0.001 0.366 ± 0.002 0.526 ± 0.003 0.999 ± 0.0 0.836 ± 0.054 0.667 ± 0.006

F1-score 0.553 ± 0.002 0.634 ± 0.004 0.658 ± 0.003 0.797 ± 0.001 0.643 ± 0.001 0.482 ± 0.002 0.674 ± 0.002 0.999 ± 0.0 0.591 ± 0.011 0.785 ± 0.004

McPAD

Accuracy 0.63 ± 0.007 0.757 ± 0.007 0.752 ± 0.009 0.734 ± 0.006 0.788 ± 0.002 0.645 ± 0.006 0.77 ± 0.008 0.914 ± 0.01 0.773 ± 0.002 0.882 ± 0.006

Precision 0.519 ± 0.007 0.661 ± 0.005 0.823 ± 0.006 0.635 ± 0.009 0.768 ± 0.008 0.518 ± 0.008 0.513 ± 0.004 0.835 ± 0.002 0.755 ± 0.01 0.887 ± 0.006

Recall 0.774 ± 0.006 0.739 ± 0.004 0.628 ± 0.005 0.884 ± 0.009 0.844 ± 0.006 0.898 ± 0.003 0.615 ± 0.008 0.892 ± 0.004 0.656 ± 0.009 0.807 ± 0.009

F1-score 0.591 ± 0.005 0.711 ± 0.006 0.699 ± 0.006 0.676 ± 0.004 0.791 ± 0.009 0.637 ± 0.003 0.585 ± 0.003 0.873 ± 0.01 0.708 ± 0.003 0.841 ± 0.008

HMMPayl

Accuracy 0.844 ± 0.009 0.65 ± 0.001 0.922 ± 0.005 0.84 ± 0.007 0.86 ± 0.002 0.731 ± 0.006 0.838 ± 0.006 0.889 ± 0.01 0.889 ± 0.004 0.803 ± 0.009

Precision 0.892 ± 0.008 0.711 ± 0.001 0.85 ± 0.005 0.778 ± 0.002 0.817 ± 0.004 0.849 ± 0.005 0.765 ± 0.004 0.803 ± 0.01 0.86 ± 0.003 0.814 ± 0.007

Recall 0.691 ± 0.01 0.693 ± 0.002 0.909 ± 0.003 0.688 ± 0.005 0.828 ± 0.01 0.717 ± 0.004 0.608 ± 0.004 0.89 ± 0.01 0.792 ± 0.002 0.875 ± 0.01

F1-score 0.72 ± 0.007 0.701 ± 0.008 0.878 ± 0.008 0.724 ± 0.002 0.821 ± 0.008 0.773 ± 0.005 0.623 ± 0.002 0.858 ± 0.002 0.746 ± 0.004 0.851 ± 0.006

AEIDS

Accuracy 0.821 ± 0.006 0.521 ± 0.009 0.773 ± 0.009 0.845 ± 0.006 0.624 ± 0.006 0.649 ± 0.009 0.756 ± 0.002 0.668 ± 0.002 0.868 ± 0.004 0.733 ± 0.007

Precision 0.774 ± 0.009 0.525 ± 0.006 0.632 ± 0.008 0.602 ± 0.007 0.803 ± 0.007 0.64 ± 0.004 0.768 ± 0.003 0.654 ± 0.01 0.569 ± 0.004 0.589 ± 0.009

Recall 0.656 ± 0.001 0.874 ± 0.009 0.584 ± 0.002 0.728 ± 0.004 0.534 ± 0.005 0.506 ± 0.01 0.784 ± 0.008 0.527 ± 0.006 0.827 ± 0.007 0.807 ± 0.004

F1-score 0.684 ± 0.006 0.66 ± 0.002 0.618 ± 0.009 0.695 ± 0.002 0.702 ± 0.008 0.55 ± 0.004 0.728 ± 0.006 0.618 ± 0.005 0.899 ± 0.005 0.693 ± 0.01

HAST

Accuracy 0.805 ± 0.008 0.647 ± 0.002 0.642 ± 0.004 0.615 ± 0.005 0.685 ± 0.007 0.797 ± 0.009 0.878 ± 0.004 0.774 ± 0.009 0.832 ± 0.009 0.768 ± 0.01

Precision 0.535 ± 0.008 0.617 ± 0.004 0.885 ± 0.006 0.816 ± 0.005 0.731 ± 0.007 0.703 ± 0.003 0.73 ± 0.005 0.756 ± 0.007 0.737 ± 0.01 0.798 ± 0.01

Recall 0.771 ± 0.008 0.637 ± 0.003 0.689 ± 0.008 0.724 ± 0.009 0.5 ± 0.01 0.792 ± 0.006 0.606 ± 0.002 0.899 ± 0.009 0.802 ± 0.003 0.77 ± 0.006

F1-score 0.609 ± 0.006 0.613 ± 0.009 0.749 ± 0.002 0.774 ± 0.01 0.679 ± 0.009 0.752 ± 0.003 0.694 ± 0.007 0.793 ± 0.009 0.762 ± 0.007 0.775 ± 0.005

OCPAD

Accuracy 0.694 ± 0.013 0.693 ± 0.005 0.786 ± 0.008 0.78 ± 0.003 0.603 ± 0.009 0.64 ± 0.012 0.945 ± 0.005 0.879 ± 0.004 0.767 ± -0.003 0.755 ± 0.016

Precision 0.632 ± 0.005 0.634 ± 0.009 0.804 ± 0.012 0.636 ± 0.014 0.787 ± 0.009 0.781 ± 0.015 0.813 ± 0.011 0.729 ± 0.005 0.624 ± 0.017 0.863 ± 0.008

Recall 0.71 ± 0.009 0.686 ± 0.011 0.671 ± 0.007 0.831 ± 0.002 0.624 ± 0.016 0.69 ± 0.01 0.569 ± 0.019 0.914 ± 0.017 0.825 ± 0.013 0.783 ± 0.014

F1-score 0.599 ± 0.009 0.629 ± 0.01 0.745 ± 0.008 0.788 ± 0.012 0.664 ± 0.006 0.611 ± 0.019 0.644 ± 0.013 0.864 ± 0.017 0.787 ± 0.021 0.766 ± 0.013

EsPADA

Accuracy 0.788 ± 0.012 0.681 ± 0.004 0.644 ± 0.005 0.796 ± 0.015 0.662 ± 0.019 0.681 ± 0.008 0.88 ± 0.014 0.87 ± 0.01 0.795 ± 0.007 0.853 ± 0.005

Precision 0.769 ± 0.007 0.562 ± 0.013 0.867 ± 0.006 0.75 ± 0.018 0.656 ± 0.012 0.749 ± 0.009 0.687 ± 0.02 0.75 ± 0.011 0.68 ± 0.019 0.752 ± 0.006

Recall 0.619 ± 0.009 0.644 ± 0.011 0.716 ± 0.012 0.775 ± 0.015 0.649 ± 0.005 0.699 ± 0.002 0.602 ± 0.003 0.881 ± 0.014 0.677 ± 0.006 0.856 ± 0.003

F1-score 0.563 ± 0.013 0.613 ± 0.011 0.786 ± 0.012 0.657 ± 0.017 0.84 ± 0.005 0.708 ± 0.008 0.63 ± 0.006 0.909 ± 0.002 0.782 ± 0.016 0.681 ± 0.009

CBID

Accuracy 0.676 ± 0.015 0.686 ± 0.005 0.689 ± 0.014 0.722 ± 0.011 0.709 ± 0.003 0.697 ± 0.012 0.717 ± 0.014 0.82 ± 0.009 0.842 ± 0.014 0.828 ± 0.002

Precision 0.757 ± 0.005 0.604 ± 0.017 0.833 ± 0.015 0.754 ± 0.02 0.764 ± 0.004 0.667 ± 0.009 0.75 ± 0.003 0.8 ± 0.017 0.67 ± 0.011 0.861 ± 0.01

Recall 0.665 ± 0.008 0.869 ± 0.007 0.735 ± -0.002 0.737 ± 0.01 0.711 ± 0.01 0.606 ± 0.007 0.618 ± 0.009 0.904 ± 0.016 0.718 ± 0.014 0.843 ± 0.009

F1-score 0.605 ± 0.005 0.702 ± 0.01 0.769 ± 0.015 0.651 ± 0.007 0.746 ± 0.009 0.634 ± 0.01 0.657 ± 0.007 0.841 ± 0.01 0.774 ± 0.008 0.787 ± 0.007

PL-RNN

Accuracy 0.876 ± 0.015 0.644 ± 0.014 0.68 ± 0.009 0.922 ± 0.011 0.773 ± 0.018 0.562 ± 0.012 0.726 ± 0.007 0.81 ± 0.015 0.862 ± 0.011 0.763 ± 0.007

Precision 0.822 ± 0.012 0.729 ± 0.01 0.833 ± 0.012 0.715 ± 0.012 0.782 ± 0.009 0.726 ± 0.003 0.685 ± 0.011 0.91 ± 0.007 0.721 ± 0.001 0.72 ± 0.016

Recall 0.692 ± 0.008 0.748 ± 0.013 0.563 ± 0.006 0.727 ± 0.017 0.723 ± 0.021 0.567 ± 0.007 0.542 ± 0.012 0.751 ± 0.007 0.898 ± 0.014 0.882 ± 0.017

F1-score 0.62 ± 0.006 0.722 ± 0.009 0.693 ± 0.012 0.69 ± 0.012 0.872 ± 0.015 0.745 ± 0.004 0.68 ± 0.018 0.782 ± 0.011 0.766 ± 0.013 0.747 ± 0.02

Packet2Vec

Accuracy 0.677 ± 0.017 0.716 ± 0.002 0.662 ± 0.008 0.742 ± 0.024 0.729 ± 0.001 0.667 ± 0.008 0.818 ± 0.007 0.833 ± 0.011 0.739 ± 0.006 0.725 ± 0.003

Precision 0.713 ± 0.009 0.663 ± 0.005 0.84 ± 0.012 0.719 ± 0.008 0.822 ± 0.004 0.846 ± 0.006 0.777 ± 0.008 0.886 ± 0.007 0.692 ± 0.019 0.72 ± 0.011

Recall 0.678 ± 0.003 0.805 ± 0.003 0.728 ± 0.008 0.819 ± 0.003 0.674 ± 0.007 0.705 ± 0.009 0.594 ± 0.019 0.862 ± 0.011 0.832 ± 0.004 0.879 ± 0.016

F1-score 0.592 ± 0.011 0.851 ± 0.015 0.627 ± 0.015 0.681 ± 0.006 0.694 ± 0.016 0.606 ± 0.014 0.74 ± 0.021 0.788 ± 0.015 0.739 ± 0.007 0.609 ± 0.014

PayloadEmbeddings

Accuracy 0.78 ± 0.002 0.92 ± 0.004 0.953 ± 0.009 0.789 ± 0.002 0.752 ± 0.009 0.81 ± 0.005 0.809 ± 0.005 0.999 ± 0.0 0.847 ± 0.001 0.984 ± 0.003

Precision 0.78 ± 0.008 0.921 ± 0.008 0.953 ± 0.002 0.787 ± 0.003 0.766 ± 0.001 0.823 ± 0.006 0.809 ± 0.008 0.999 ± 0.0 0.848 ± 0.009 0.984 ± 0.009

Recall 0.78 ± 0.003 0.92 ± 0.002 0.953 ± 0.006 0.772 ± 0.005 0.751 ± 0.005 0.809 ± 0.002 0.809 ± 0.006 0.999 ± 0.0 0.847 ± 0.009 0.984 ± 0.003

F1-score 0.78 ± 0.005 0.92 ± 0.002 0.953 ± 0.008 0.777 ± 0.008 0.748 ± 0.009 0.808 ± 0.008 0.809 ± 0.009 0.999 ± 0.0 0.847 ± 0.003 0.984 ± 0.005
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terns, alike AEIDS.
HMMPayl. Ariu et al. proposed HMMPayl [9] that also

applies the n-gram technique on payloads of normal traffic. A
sliding window of n-bytes is used to extract sequences from
the payload. A subset of these sequences is selected randomly
and passed to a Hidden Markov Model (HMM). The authors
set up 5 HMM models. In the training stage, each HMM
model assigns a probability to the sequence of normal traffic.
In the testing phase, the probability estimation from each
HMM model is combined using non-trainable combiners.
The authors use four combiners as the maximum, the min-
imum, the mean, and the geometric mean. The probability
scores are combined and checked with a threshold value to
classify a payload as anomalous or normal.
PayloadEmbeddings vs. HMMPayl: According to

Table 7, PayloadEmbeddings is only able to outper-
form HMMPayl on 5 out of 10 datasets based on accu-
racy, and 6 out of 10 datasets based on precision. However,
for other metrics PayloadEmbeddings shines against
HMMPayl. Our proposed method outperforms HMMPayl on
9 out of 10 datasets based on recall and F1-score. Similar to
PayloadEmbeddings, HMMPayl considers full payload
during the feature extraction process. As a result, HMMPayl
achieves better performance in terms of accuracy and preci-
sion compared to other methods.

2) Neural Network-based Techniques We categorize
AEIDS [12], HAST [11], PL-RNN [13], and Packet2Vec [24]
as neural network-based techniques.
AEIDS. AEIDS [12] uses a deep learning architecture- Au-
toencoder to detect low rate attacks as outliers in a dataset.
It is an unsupervised approach that is trained on normal
traffic. Autoencoders use a neural network to set the target
values equal to the inputs. The authors utilize Autoencoder,
along with a statistical thresholding approach to identify
outliers by generating reconstruction error on the normal
traffic. They use a modified z-score to calculate the threshold.
Reconstruction error of new incoming traffic is transformed
into modified z-score and the targeted traffic is labeled as
anomalous if z <3.5.
PayloadEmbeddings vs. AEIDS: Our proposed

method, PayloadEmbeddings outperforms AEIDS on 7
datasets out of 10 based on accuracy. Based on precision
and F1-score, PayloadEmbeddings outperforms AEIDS
on 9 out of 10 datasets. Morever, PayloadEmbeddings
outperforms AEIDS across all the datasets based on recall.
The major reason behind the results is that AEIDS considers
only byte frequency distributions to compute reconstruction
errors. Additionally, the unsupervised approach does not
learn the anomalous traffic pattern in the training phase.
Thus, it suffers during testing and/or detection phases.

HAST. HAST [11] uses deep convolutional neural net-
works (CNNs) to learn low-level spatial features and long
short-term memory (LSTM) to learn high-level temporal
features from network traffic. HAST has two different ar-
chitectures. HAST-I architecture takes network flow as in-

put and uses only CNN to learn spatial features. HAST-
II architecture takes network packets as input and uses a
combination of CNN and LSTM to learn spatial-temporal
features. We implemented HAST-II architecture for a fair
comparison, as PayloadEmbeddings uses packet-based
data. In HAST-II architecture, each packet is transformed into
a two-dimensional image using One-hot encoding (OHE).
For example, if the OHE vector is m-dimensional, then the
first n-bytes of a network packet is transformed into an m*n
two-dimensional image. The preprocessed data is then fed
into HAST-II architecture which produces a vector as output.
The softmax classifier is used on the final vector to identify
the input traffic to be normal or anomalous.
PayloadEmbeddings vs. HAST: According to Ta-

ble 7, PayloadEmbeddings outperforms HAST on 8 out
of 10 datasets based on accuracy. PayloadEmbeddings
outperforms HAST on 9 out of 10 datasets based on pre-
cision. Also, PayloadEmbeddings outperforms HAST
across all datasets based on recall and F1-score. HAST
considers only the first 100 bytes of the packets. Therefore,
it misses valuable patterns lying in the rest of the payloads.
As PayloadEmbeddings considers the full length of
payloads, it yields better classification performance.

PL-RNN. Liu et al. [13] proposed two deep learning-based
models: PL-CNN and PL-RNN. We decided to use the PL-
RNN model as it outperforms PL-CNN in their reported re-
sults. For the PL-RNN model, the authors employ the LSTM
(Long Short-Term Memory) network which consists of 1
hidden layer with 128 hidden states. The first n characters
of the payloads are used to train the model. The input size
n is set to the average length of the payloads in a particular
dataset. Finally, the softmax function is used in the output
layer to classify the payloads.
PayloadEmbeddings vs. PL-RNN: PL-RNN achieves

the highest accuracy on Botnet and CSIC HTTP 2010
datasets. It also achieves the highest recall values on
NDSec-1 and F1-score on CTU-13 datasets. However,
PayloadEmbeddings outperforms PL-RNN based on all
the performance metrics across all other datasets. PL-RNN
employs an LSTM network that needs fixed-size input. Most
of the payloads are either trimmed to 1000 bytes or padded
in order to feed a fixed-size input to LSTM. Hence, the
network learns from limited or unrelated information which
negatively affects the overall performance.

Packet2Vec. Goodman et al. [24] proposed Packet2Vec that
utilizes a shallow neural network, i,e., Word2Vec to generate
packet vectors. The authors use n-grams to create a dictio-
nary. As n = 2, the vocabulary size reaches to 65,536 (216).
To reduce the complexity, Packet2Vec limits vocabulary size
to top |v| most frequent n-grams, where |v|= 50, 000. The
vector length for each packet vector is set to 128. Finally,
the packet vectors are used as features and classified using
Random Forest (RF).
PayloadEmbeddings vs. Packet2Vec: Our pro-

posed method outperforms Packet2Vec on 9 out of
10 datasets based on accuracy and recall. Additionally,
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PayloadEmbeddings outperforms Packet2Vec on all
datasets based on F1-score, and 8 out of 10 datasets
based on precision. However, Packet2Vec was able to
achieve the highest precision on the CTU-13 dataset. Al-
though Packet2Vec also employs Word2Vec, it differs from
PayloadEmbeddings in vocabulary size and vector
length. N -grams (n = 2) was not able to capture contextual
information from bytes as well as PayloadEmbeddings.

3) Other State-of-the-Art Techniques
We categorize CBID [23], EsPADA [22], and OCPAD [7] as
other state-of-the-art techniques.

CBID. CBID (Compressed Bitmap Index and traffic
Downsampling) [23] is a payload attribution scheme for de-
tecting cybercriminal activities. CBID uses a downsampling
technique to store the digest of original traffic in multi-
section bloom filters. The downsampling threshold is set to
40 bytes. The bloom filters are optimized with a compressed
bitmap index table. If an incoming packet does not match the
stored bitmap index table, then it is considered anomalous.
PayloadEmbeddings vs. CBID: CBID acheives its

highest performance on NDSec-1 dataset, according to Ta-
ble 7. textttPayloadEmbeddings is able to outperform CBID
on all the datasets based on accuracy, precision, recall, and
F1-score. CBID utilizes a downsampling technique to deal
with the huge amount of network traffic, which makes it lose
useful byte information.

EsPADA. EsPADA [22] extracts features from payloads
using the n-gram technique where n = 3. The extracted n-
grams are stored in Counting Bloom Filters (CBF). Each
incoming packet payload is compared to the normal and
adversarial models, and a global similarity score (GSC) is
computed. If the GSC < τ (τ ∈ [−1, 1]), the packet is
classified as anomalous.
PayloadEmbeddings vs. EsPADA: Based on accu-

racy, EsPADA performs the best on ISCX-2012 dataset
among all other datasets. However, PayloadEmbeddings
outperforms EsPADA on 8 out of 10 datasets based on
accuracy. Recall and F1-scores demonstrate that our method
performs better than EsPADA on all datasets but one. Es-
PADA constructs both normal and adversarial models. This
method relies on the n-grams of payloads which falls short
to capture the contextual relationships between bytes.

OCPAD. OCPAD [7] generates a feature vector for each
payload using the n-gram technique where n = 3. Next, the
minimum and maximum occurrence probability of n-grams
are calculated and stored in a Probability Tree. Only normal
payloads are used in the training phase. In the testing phase,
incoming packets are detected as anomalous if the probability
ranges of n-grams are not in the probability tree.
PayloadEmbeddings vs. OCPAD: OCPAD achieves

the highest accuracy on ISCX-2012 dataset among all the
methods. However, PayloadEmbeddings outperforms
OCPAD on 9 out of 10 datasets based on accuracy, recall, and
F1-score. PayloadEmbeddings also outperform OCPAD
on all but CTU-13 and ISCX-2012 datasets based on pre-

cision results. OCPAD uses a Probability Tree constructed
from n-grams of normal payloads which falls short on de-
tecting different types of attack patterns correctly.

It is deducible from the comparative analysis that there is
no single method that outperforms all other methods over
all datasets. Depending on byte distributions, and relevance
of contextual information, some methods perform better on
some datasets. Nevertheless, PayloadEmbeddings out-
performs all other techniques on CIC DoS, CICIDS-2017,
ISOT, and UNSW-NB15 datasets based on all four evaluation
metrics. It also outperforms all other techniques on Botnet,
ECML/PKDD, and ISCX-2012 datasets based on F1-score.
Hence, PayloadEmbeddings can be recommended to
use on these seven datasets and achieve a high performance
compared to other existing state-of-the-art methods.

VII. LIMITATIONS
PayloadEmbeddings considers only the payloads for
anomaly detection while ignoring the packet headers. As a re-
sult, the proposed method is vulnerable to only header-based
attacks such as scanning or probing attacks. On the other
hand, it can effectively augment existing header-based intru-
sion detection systems. In addition, PayloadEmbeddings
may require to be retrained as the nature of normal and/or
attack traffic patterns change in time.

VIII. CONCLUSIONS
In this paper, we propose a payload-based intrusion detec-
tion model, PayloadEmbeddings, using vector repre-
sentations of bytes in network packet payloads. The pro-
posed model extends word2vec model in the Natural Lan-
guage Processing domain. We generate payload embeddings
from the vector representations of bytes. These embed-
dings are then fed to a k-Nearest Neighbor (kNN) clas-
sifier to detect a network packet as anomalous or non-
anomalous. We evaluated our approach over ten different
datasets out of 34 datasets that we assessed. Our experi-
mental results show that PayloadEmbeddings performs
well on ISOT, UNSW-NB15, CICIDS-2017, and CIC DoS
datasets with at least 92% accuracy. Our approach also
achieves above-75% performance figures on other datasets.
Lastly, we compared our approach to ten other state-of-
the-art and traditional feature extraction techniques for in-
trusion detection. We found that no single technique can
outperform all techniques on all datasets. In spite of that,
we showed our approach outperforms other techniques in
terms of accuracy, precision, recall, and F1-score over most
of the datasets. Also, we share the implementations of
PayloadEmbeddings and other comparisons methods
online. Moreover, PayloadEmbeddings is transferable in
other domains where the vector representations of bytes are
relevant.
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