
Byte Embeddings for File Fragment Classification

Md Enamul Haquea,, Mehmet Engin Tozala,

aSchool of Computing and Informatics, University of Louisiana at Lafayette, Lafayette, 70504, LA, USA

Abstract

In digital forensics, file carving is the process of recovering files on a storage media in part or in whole without any file system
information. An important problem in file carving is the identification of fragment types. Many fragment classification studies in the
literature employ inflexible and indiscernible feature selection methods such as different statistics of byte frequency distributions.
Moreover, assessing the strengths and weaknesses of some approaches is difficult as they are specific to certain file types such as
graphics. In this paper, we propose a novel feature generation model using byte embeddings (Byte2Vec) which map fragments to
dense vector representations. The proposed model extends the word2vec and doc2vec document embedding models to bytes and
fragments, respectively. We use Byte2Vec for feature extraction and k-Nearest Neighbors (kNN) for classification. We present
effectiveness of Byte2Vec+kNN in file fragment classification using a publicly available digital forensics dataset and a random web
search dataset. Our experimental results show that Byte2Vec+kNN reaches an accuracy rate of 72% along with 74% precision and
72% recall. Compared to the other feature extraction techniques such as n-gram, byte distributions, byte statistics, byte distances,
and sparse dictionaries for byte n-gram along with different classifiers, Byte2Vec+kNN achieves an absolute improvement of 3%
and 12% in accuracy and precision, respectively.

1. Introduction

Digital forensics is a branch of forensic science dealing with
the collection and analysis of information affiliated with digital
devices. In its most common form, digital forensics involves
the analysis of data kept on storage media in electronic devices
such as computers, phones, tablets, and cameras. Digital stor-
age devices including hard drives, flash drives, or SD cards are
used for recording and retaining digital information. Often, the
recorded information such as email communications, pictures,
videos and confidential documents are used in legal proceed-
ings and criminal investigations.

A storage device stores information as blocks of raw data
without any particular organization or access control. A disk-
block (or sector) is the smallest physical storage unit on a stor-
age device with a typical size of 512 or 4096 bytes. A file
system on the other hand, facilitates the organization, manage-
ment, storage, and retrieval of information. File systems ab-
stract the entire storage area as file-blocks with typical size of
4096 bytes. More importantly, they store raw data in terms of
files and organize these files into folders. A file system over-
sees all in-use and available blocks on storage devices; manages
meta information, e.g., owner, size, access rights and creation
time, about files; and keeps track of the blocks holding the ac-
tual content of the files. File systems use the first several sectors
of a storage device to keep information about the overall stor-
age space, files and their organization. They use the remaining
blocks to store the actual content of the files. Figure 1 shows a
high-level outline of an ordinary storage medium. In the figure,

Email addresses: enamul@louisiana.edu (Md Enamul Haque),
metozal@louisiana.edu (Mehmet Engin Tozal)

the boot sector contains the instructions to boot the device. The
super block contains information about the file system itself.
The file system data structures keep information about files and
their data blocks. Lastly, the data blocks hold the actual content
of the files. Note that the data blocks constituting the content of
a file are not necessarily contiguous. In the figure, the first two
blocks of file A.pdf is followed by an unused block and three
blocks belonging to another file, B.png.

Figure 1. The high-level structure of an ordinary storage medium

File carving is the process of recovering files on a stor-
age media without the file system information in digital foren-
sics [1, 2, 3]. File system information may be unavailable due
to disk damages or disk format operations. However, the most
common cases take place when one or more deleted files are
needed to be recovered. Note that when a file is deleted the file
system deletes the internal record of the file and returns its data
blocks back to the pool of available blocks. Typically, the file
system does not zero-out the returned data blocks because their
content will be overwritten when they are reclaimed later.

A file system stores and retrieves the content of a file as

https: // doi. org/ 10. 1016/ j. future. 2021. 09. 019 Elsevier, Future Generation Computer Systems

https://doi.org/10.1016/j.future.2021.09.019

blocks of raw bytes without any reference to the type of the
content. However, files are encoded in standard formats to
achieve portability among different platforms and applications.
For example, .png files store bitmap images using lossless com-
pression or .pdf files encapsulate document layouts along with
images, texts, and fonts to display it. Therefore, an essential
step in file carving is the identification of block/fragment types.
Note that, the term “fragment type” instead of “block type” is
more common in digital forensics domain. Once the fragment
types are identified, the next step involves ordering and merg-
ing the fragments to reconstruct the original file(s) in part or in
whole [4].

Most of the earlier file fragment classification research fo-
cus on different statistical methods and machine learning al-
gorithms for feature generation and classification, respectively
[5, 6, 7, 8]. In some other works, researchers use file header,
footer, magic numbers and MIME types as features to clas-
sify fragments [9, 10, 11, 12]. Although, much progress have
been reported for statistical approaches, reproduction of the
observed results is quite challenging due to the use of non-
standard datasets [6, 13]. Additionally, it is difficult to assess
the strengths and weaknesses of some approaches, because they
do not generalize across different file types [14, 15, 16, 17].

In this work, we propose a novel feature generation model
using byte embeddings (Byte2Vec) which maps fragments
to dense vector representations. The proposed technique ex-
tends the idea of continuous vector representations of words
(word2vec), which is widely used in natural language process-
ing. Word2vec generates vector representations of words in
high-dimensional space using continuous bag of words [18] and
Skip-gram [19] models. Byte2Vec on the other hand, gener-
ates vector representations of bytes in file fragments using the
Skip-gram model. For each byte b in a fragment, Byte2Vec
generates a vector, b, based on the surrounding bytes of b in the
fragment. To generate the vector, b, we set up a neural network
which maximizes the log likelihood of the neighboring bytes of
b in the fragment. One can think of the vector b as the enclos-
ing context of byte b. Once we generate the continuous vector
representations of the bytes for different fragment types, we ag-
gregate them to obtain a corpus model for each file type. Next,
we generate features to train a k-Nearest Neighbors (kNN) clas-
sifier by averaging the vector representations of the bytes in our
training dataset. Finally given a fragment, we identify its type
using the classification model generated by the kNN classifier.

The main contribution of this paper is the Byte2Vec cor-
pus model which extends the word2vec and doc2vec to bytes
and file fragments, respectively. Unlike some of the previous
methods, Byte2Vec works for different block sizes and sup-
ports fragments of any type. Moreover, the addition of a new
file type does not require the reconstruction of any existing cor-
pus models. To support reproducibility, we use a publicly avail-
able dataset obtained from Digital Corpora to train, test and
compare our approach. We use Byte2Vec to extract features
from fragments and k Nearest Neighbor algorithm to classify
them, i.e., Byte2Vec+kNN. Our experimental results show that
Byte2Vec+kNN reaches an accuracy rate of 72% along with
74% precision and 72% recall. Compared to the other fea-

ture extraction techniques such as n-gram, byte distributions,
byte statistics, byte distances, and sparse dictionaries for byte
n-gram along with different classifiers, Byte2Vec achieves an
absolute improvement of 3% and 12% in accuracy and preci-
sion, respectively.

The rest of the paper is organized as follows. Section 2
presents the related work. Section 3 describes the proposed
model, Byte2Vec. Section 4 presents experimental results of
Byte2Vec model along with the dataset collection, creation,
and sampling. This section also presents comparative analysis
of results obtained from Byte2Vec and some well-known fea-
ture extraction and classification techniques in digital forensics.
Finally, section 5 concludes our work.

2. Related Work

Several works in the literature propose solutions to the file
and fragment type classification problem.

McDaniel and Heydari developed an approach to gener-
ate file “fingerprints” [20]. They use Byte Frequency Analy-
sis (BFA), Byte Frequency Cross-correlation (BFC), and File
Header/Trailer (FHT) algorithms for file type detection.

Roussev and Quates [21] introduced a deflate classifier, zs-
niff, for parsing zlib/deflate encoded data. The zlib/deflate en-
coding consists of a sequence of compressed blocks each com-
prising of a 3-bits header, Huffman tables, and compressed
data. The proposed tool can distinguish among deflate-coded
text/markup, deflate-coded image data (.png), and deflate-
coded portable executables.

Axelsson [5] applied normalized compression distance
(NCD) instead of standard Euclidean distance as the distance
metric to be used in k-NN classifier for file fragment classifica-
tion. To calculate NCD between two fragments, one needs to
first append the fragments together and then find the complex-
ity. Then the complexity is normalized using min-max function.
The proposed method performs significantly slower compared
to other fragment classification methods due to high computa-
tional complexity of NCD. On the other hand the classification
performance is not significant for most of the file types.

Gopal et al. reported four types of problematic cases in file
type classification including files with missing signature bytes,
random bytes, and isolated segments [22]. The main focus of
their work is on the performance comparisons of statistical clas-
sifiers and COTS (Commercial Off the Shelf) solutions. Exper-
iments, performed on RealisticDC corpus [23], also shows that
SVM and kNN outperforms all COTS solutions.

Conti et al. [6, 13] presented a statistical analysis of 14,000
low-level binary fragments along with the presentation and
evaluation of a classifier for identifying 14 primitive binary
fragment types. The statistical features include Shannon en-
tropy, Hamming weight, Chi squared goodness of fit measure,
and arithmetic mean which proved useful for analyzing low-
level binary data without relying on possibly non-existent or
untrustworthy metadata.

Xu et al. [24] proposed gray-scale image pixels based so-
lution for file fragment classification. The idea is to construct

2

features from binary fragments by linear transformation. A well
known image feature, GIST, is employed with kNN classifier to
classify the fragments. Their experimental results show that the
classification accuracy varies between 39% and 55%.

Veenman used histogram, entropy, and Kolmogorov com-
plexity as features to classify disc images [8]. Support vector
machine with unigram and bi-gram features are used to classify
file fragments in [4]. However, the general approaches for file
fragment classification, e.g., header-footer classification, statis-
tical analysis, and machine learning algorithms, are considered
flawed in [23].

Li et al. showed that collection of 1-gram binary distribu-
tions, file-prints, are distinct for different files [14]. They use
K-means clustering [25] on the file-prints to generate models
for each file type on eight different data sets. Although the ex-
perimental results show promising accuracy, the approach is not
applicable to most of the file fragments due to the use of header
information as prefix.

Calhoun and Coles performed Fisher analysis on four types
of graphics files (.jpeg, .gif, .bmp, and .pdf) for classifica-
tion [15]. Shannon entropy and frequency of ASCII codes are
considered as features to achieve 88.3% classification accuracy.
One limitation of this method is that it is applicable to only
graphic types.

Karresand et al. proposed a classification method named OS-
CAR [16] using a similar centroid idea presented in [14]. They
extend their previous work [17] by introducing rate-of-change
(RoC) which computes the difference of the ASCII values be-
tween two consecutive bytes. However, their method performs
well only on .jpg file types.

Recently, Wang et al. [26] proposed an approach for file frag-
ment classification that uses sparse coding of different dimen-
sions and uni/bigram as feature set. The method learns sparse
dictionaries for n-grams, continuous sequences of bytes, of dif-
ferent sizes with respect to file fragments. Later, these dictio-
naries are used for new file fragments to generate features and
classify them using Support Vector Machine (SVM).

In this study, we propose a novel approach for file fragment
classification with the introduction of continuous vector repre-
sentations of bytes, Byte2Vec. Unlike most other approaches,
our model works with high entropy file fragments and gener-
alizes the feature extraction process. Roussev and Garfinkel
argued that existing methods do not work well for high entropy
fragments because there is no discernible pattern to exploit [23].
The proposed approach on the other hand, does not have such
a limitation for either low or high entropy fragments. Although
there are different file types, our approach can efficiently dif-
ferentiate their fragment patterns except a few. As the original
bytes are transformed into a lower dimensional vector space,
the patterns become distinguishable enough for classification.

3. The Byte2Vec Model

In the following, we first describe Skip-Gram, CBOW [18,
19] and Paragraph Vector models [27] from which Byte2Vec
is extended. Next we introduce the theory of Byte2Vec along

with its implementation. Finally, we briefly present k-Nearest
Neighbors as it is the classifier used with Byte2Vec. We do
this to accentuate the fact that the underlying vector represen-
tation model used for feature generation in Byte2Vec is highly
transferable to solve problems in other domains.

Both continuous bag of words and skip-gram models, to-
gether called as word2vec, were proposed as an efficient neu-
ral language model to learn embeddings (or vector represen-
tations) for words. The word2vec model creates dense vec-
tor representations of words which carries semantic meanings
and are useful in a wide range of applications from senti-
ment analysis [28, 29, 30] to on-line product recommenda-
tions [31, 32, 33]. The most useful aspect of the word em-
beddings is that the vectors interpret the semantic meanings of
words. For example, words with similar/opposite connotations
are inclined to have similar/opposite vectors considering the co-
sine distance measure. Here is an example from the original pa-
pers [18, 34] that shows the idea: vqueen − vwoman + vman ' vking,
where vqueen, vwoman, vman and vking are the word vectors for
queen, woman, man, and king respectively. The working prin-
ciple of the two models (CBOW and Skip-gram) are opposite
of one another. In CBOW model, a word is predicted given a
context as an input which can be a single or multiple words.
In Skip-gram model however, the context is predicted given a
word as an input.

Paragraph vector model [27] is an unsupervised learning
framework that learns distributed representations of texts of any
length such as sentences, paragraphs, and documents. It is also
known as doc2vec which is an extension of word2vec for learn-
ing embedding vectors for documents. The doc2vec model cre-
ates unique vector representations for paragraphs with the help
of word2vec model. The word vectors in a paragraph are av-
eraged and/or concatenated along with unique document iden-
tifiers to obtain the paragraph vector. We used the coordinate-
wise average method to combine the byte embeddings.

The primary goal to build Byte2Vec is to create byte em-
beddings (or vector representations) for fragments which can
be used as features during classification processes. Note that
Byte2Vec generates a corpus model for all file types with re-
spect to different vector lengths and these corpus models can be
used with different classifiers. We used kNN as default classi-
fier in our experiments. In addition, new corpus models can be
generated with new file types and vector lengths independent of
the existing ones.

3.1. Byte2Vec Theory
We use the Skip-gram algorithm to generate corpus models

for different file types. The Skip-gram algorithm (word2vec) re-
quires the labeled file fragments to construct the corpus model
using a neural network. On the other hand, the vector aggrega-
tion concept from doc2vec is used to generate the final feature
representation from the output of the hidden layer of the Skip-
gram model.
Figure 2 shows the architecture to create a vector representation
of a byte with respect to its surrounding bytes with window size
c. The two-layer layer neural network consists of a hidden and
an output layer. The hidden layer generates a k-dimensional

3

Figure 2. Skip-gram model predicting context bytes given an input byte. This
architecture provides a vector of probabilities for all the context bytes of length
c.

vector representation of byte bi. The output layer generates the
probabilities for all the bytes present in the window c to be the
context of the input byte bi. As our goal is to generate the vector
representations of bytes, we are more interested in the output of
the hidden layer. The input vector is transformed into “one-hot”
representation that refers to a vector of length T consisting of
all zeros and a one at the i-th position. T refers to the vocab-
ulary size, and the i-th position is one for the i-th byte in the
vocabulary. As a result the i-th row of the hidden layer will
be selected, which is the vector representation of the i-th input
byte. Once Skip-gram model is trained on the whole corpus of
bytes, the vector representations are obtained from the output
of the hidden layer for the corresponding bytes. Note that the
vector length k refers to the feature size which is an important
parameter for our Byte2Vec corpus model. For a fragment of
size |F|, the Byte2Vec corpus model generates a feature vector
v of size k by applying vector averaging using Equation 1.

v =
1
|F|

|F|∑
i=1

Byte2Vec[bi] (1)

The training objective of the Skip-gram model is to find the
byte representations that are useful for predicting the context
bytes in a fragment or a file. More formally, given a stream of
training bytes b1, b2, b3, . . . , bL, the objective is to maximize the
average log probability:

1
L

L∑
t=1

∑
−c≤ j≤c, j,0

log p(bt+ j|bt) (2)

where c is the size of the training context or window which is
a function of the center byte bt and L is the number of input
bytes. The training time to build the models grow with the in-
crease in context size. The basic Skip-gram formulation defines
p(bt+ j|bt) using softmax function:

p(bO|bI) =
exp

(
v′bO
>vbI

)
∑T

b=1 exp
(
v′b
>vbI

) (3)

where vb and v′b are the input and output vector representations
of byte b, and T is the vocabulary size. In our training mod-
els each of the fragment types has a maximum of 256 unique
bytes. Computing ∇ log p(bt+ j|bt) (gradient) in Equation 2 of
basic Skip-gram model is computationally expensive. However,
in our approach, the computational cost is limited due to the
smaller vocabulary size, 256. In the original Skip-gram model,
a hierarchical softmax and negative sampling are used to mini-
mize the cost.

3.2. Byte2Vec Implementation

In this part we present the details of our Byte2Vec approach
using Algorithms 1 and 2. Note that, two types of training
inputs are mentioned in the algorithms. First, corpus training
files are needed to generate Byte2Vec corpus models. Second,
training and test fragments are required to generate feature ma-
trices from Byte2Vec corpus models as input for the kNN clas-
sifier. During feature matrix generation, file types are known
only for the training fragments.
Algorithm 1 explains how Byte2Vec corpus models are gener-
ated for different user defined vector lengths. We use a pub-
licly available dataset containing 1 million documents, col-
lected from govdocs1 [35]. Selected files are treated as input to
the algorithm. The files are then fragmented and sampled using
our “fragment generation” process which is described in Sec-
tion 4.1. Vocabulary and models are initialized to NULL dur-
ing the initialization phase of the algorithm. Minimum (η) and
maximum (λ) vector lengths are also initialized at this stage.
Note that, we increase vector length by the minimum vector
length (η) at each time step. One can easily use a customized
parameter for this during the corpus training phase. Once the
fragments are generated, lines 2-4 collect all the fragments to
build the vocabulary required for training Skip-gram model.
Lines 5-8 generate corpus models from the vocabulary for dif-
ferent vector lengths that are initialized at the initialization step.
Line 9 returns all the different Byte2Vec corpus models based
on the Skip-gram model.

Algorithm 1 Byte2Vec corpus model generation

Input: input files . corpus training files
Output: models . corpus models

Initialization : vocabulary[] = ∅, model[] = ∅, η, λ
1: generate fragments from input files using Algorithm 3.
2: for each fragment do
3: vocabulary = vocabulary ∪ fragment
4: end for
5: for i = η to λ do
6: models[i] = build skip_gram model on the vocabulary

using Equations 2 and 3.
7: λ = λ + η
8: end for
9: return models

Algorithm 2 generates a feature matrix from the training frag-
ments. The number of the fragments (n), feature length (k), fea-
ture vector (v), and feature matrix (V) are initialized during the

4

initialization phase. We use 0n,k+1 to refer a matrix with n rows
and k + 1 columns having all the elements initialized to zero.
b refers to a byte vector of dimension 4096, i.e., a fragment. v
defines a k-dimensional vector of zeros (0k).
Lines 1-12 generate the feature matrix of dimension n × (k +

1). Line 2 converts the ith fragment into a byte array. Line
3 finds out the corresponding file type of the ith fragment. It
is to be noted that the test fragment types cannot be directly
known from this step. Line 4 is used to select the Byte2Vec
corpus model. Line 5 calculates the fragment length. Lines 6-
8 create a feature vector for each byte of the ith fragment and
aggregate them into vector v. m[b[j]] at line 7 refers to the
k-dimensional vector representation of the j-th byte of the i-th
fragment. Line 9 averages the aggregated vector representation
of the ith fragment. Line 10 copies the ith vector of length k to
ith row of matrix V. Vi,k+1 position is filled by the fragment type
collected at line 3. This process is repeated for all the fragments
available in the training and test dataset. The only difference for
the test dataset is that we remove the k + 1-th column. At the
end, the algorithm returns a feature matrix V.

Algorithm 2 Feature matrix generation

Input: input fragments . training or test fragments
Output: feature matrix, V

Initialization: n, k, V = 0n,k+1, v = 0k

1: for i = 1 to n do
2: b = ith fragment
3: t = ith file type . known for training fragments only
4: m = Byte2Vec corpus model
5: l = length of b
6: for j = 1 to l do
7: v = v + m[b[j]]
8: end for
9: v = v / l

10: Vi,1:k = v
11: Vi,k+1 = t
12: end for
13: return V

The low dimensional vector generation architecture is also
depicted in Figure 3. The figure shows a toy example frag-
ment with six bytes b1, b2, . . . , b6. For each of the bytes bi,
the corresponding vector vi of length k is generated using the
Byte2Vec corpus model. The vectors are averaged to get the
final feature vector of dimension k for all the six bytes present
in the fragment. For this particular example, we explain how
the averaging is performed using coordinate wise calculation.
As each byte has feature vector length k, the vector represen-
tation of byte b1 is vb1 = [v11, v12, . . . , v1k]. Similarly for byte
b6, we have vb6 = [v61, v62, . . . , v6k]. Thus the coordinate-wise
average of these six bytes become: 1

6
∑6

i=1[vi1, vi2, . . . , vik]. It
should also be mentioned that the original paper [19] refers to
concatenation as another method of aggregation.

3.3. Byte2Vec Classification
We consider Byte2Vec in the following supervised classifi-

cation setting. We create z labeled fragments V = (Xz,Yz) with

Figure 3. A framework for learning byte vectors. This diagram is shown for
an example fragment with six bytes (b1, b2, b3, . . . , b6) and their corresponding
vectors (vb1 , . . . , vb6) of length k.

the help of Byte2Vec corpus model. The fragments are then
randomly split into 70% training (Vtrain = (Xtrn,Y)) and 30%
test data (Vtest = (Xtst, Ŷ)) with 10-fold cross validation. While
building Byte2Vec corpus models using Algorithm 1, we ex-
amine 63 different file types. As a result Y ∈ {1, 2, 3, . . . , 63},
where each number in the set corresponds to a specific file type.
This setting makes our file fragment classification task a multi-
class classification problem.

In the following, we present a brief introduction to k-Nearest
Neighbors (kNN) classifier which we adopted to solve our
multi-class classification problem. kNN is nonparametric and
falls in the supervised learning family of algorithms. This
means that we are given a labeled dataset consisting of training
observations (Xtrn,Y) and would like to capture the relationship
between Xtrn and Y. More formally, our goal is to learn a func-
tion h : X → Y so that given an unseen observation x, h(x) can
confidently predict the corresponding output y. We employ a
basic kNN with 1-hop neighborhood as a parameter. Increasing
the value of k from 1 to 4 only adds computational complexity,
but does not provide significant improvement in the evaluation
metrics. Therefore, we chose k = 3 to reduce computational
complexity. Additionally, we tried standard SVM with linear
kernel to classify the data. However, that did not perform well
as it tries to make a universal hyperplane from the whole data
at the time of classification. On the other hand, kNN uses 1 hop
neighbor to see which fragment types are closer to the existing
fragments in the transformed space.

4. Experiments

In this section we first introduce our dataset. Next, we
present an empirical analysis of Byte2Vec. Then, we compare
our approach with several well-known classification techniques
in digital forensics literature. Next, we provide an approximate
timing analysis on feature generation and classification process.
Finally, we present a discussion on classification performance
with respect to file types and their general categories.

4.1. Dataset

Most of the earlier file fragment classification studies are
evaluated using private datasets. Additionally, researchers used

5

copyrighted datasets which are difficult to collect. Conse-
quently, the reproduction of their results may be quite challeng-
ing. Considering the issue, we use a publicly available dataset
containing 1 million documents, collected from govdocs1 [35]
which is also suggested in [36, 37]. This directory consists
of 1000 folders, each containing approximately 1000 files of
63 different file types. Each file in the corpus is presented as
a numbered file with a file extension, e.g., 0000001.jpg. Ta-
ble A.5 in Appendix Appendix A demonstrates the frequency
distribution of files and corresponding fragments. The table
shows that .pdf is the most frequent file type and .icns is the
least frequent. The file and fragment frequencies are imbal-
anced with respect to the file types. Since unconditional eval-
uations of imbalanced classifications might be misleading, we
applied under-sampling to achieve a clear assessment [38]. We
use another random dataset collected from Google search for 9
different file types with keywords as .docx, .gz, .jpg, .pdf, .png,
.pptx, .swf, .xls, .xlsx. We collect 10 files of each category and
create a separate set of fragments. In this case, we randomly
select different sample sizes ranging from 500 to 2500 with in-
crement of 500 as interval for the experiments. Note that the
sample size includes fragments from all 9 different file types.
On the contrary, we selected fragments with respect to type-
wise samples from govdocs1 data due to higher file counts.
In the following we detail the fragment creation and sampling
procedures to support reproducibility in future studies.

Figure 4. Concept of full and partial fragment creation using a toy example
with four full and one partial fragment. Each block is considered as a fragment.

Algorithm 3 Fragment creation

Input: F . set of files
Output: f . set of fragments

Initialization: q = 4096 .
fragment size

1: for i = 1 to |F| do
2: m = i-th file size
3: d = dm

q e . number of allocated fragments
4: if m mod q , 0 then
5: e = (q ∗ d) − m
6: lb = m − (d − 1) ∗ q .

last fragment data length
7: f = f ∪ generate d − 1 full fragments of size q
8: f = f ∪ generate 1 partial fragment of size q = e + lb
9: else

10: f = f ∪ generate d full fragments of size q
11: end if
12: end for
13: return f

Fragment creation. Algorithm 3 details the fragment creation

process. The algorithm expects a set of files, F, as input and
returns a set of fragments, f , as output. At lines 1-12 the algo-
rithm traverses the set of files and generates the fragments for
each file. Line 2 collects the file size in bytes into variable m.
Line 3 computes the fragment count of the ith file by dividing
the file size by fragment size q. We set the fragment size to
4096 bytes because it is the default value in modern file sys-
tems. Line 4-11 generates both full and partial fragments. If
file size is completely divisible by q, then the algorithm gen-
erates all full fragments by slicing the file into the fragments
of equal size q = 4096. Otherwise, it creates d − 1 full and
1 partial fragments. To create a partial fragment the algorithm
takes random bytes of length e from another file or fragment
and append it to the last bytes of length lb of the file being pro-
cessed. We included the partial fragment from random file types
to see how the performance gets impacted. Our intuition is that
the random bytes can not provide contextual byte similarities
to the existing fragment type. For example, including random
xlsx bytes at the end of a pdf fragment means it will only add
contextual bytes for xlsx. However, in the best case scenario,
random pdf bytes are appended at the end of a pdf file which
makes the classification relatively simpler. Figure 4 presents an
example file consisting of four full fragments and one partial
fragment. The area shown in white represent the bytes belong-
ing to the file. The black region corresponds to the bytes that
are randomly selected from another file or fragment. Note that
most of the previous works disregarded the partial fragments in
classification to avoid experimental complexity [15, 6, 39].
Sampling. Due to the large and uneven number of fragments,
we pick a set of random samples. A few file types such as .icns,
.mac and .lnk have frequency counts as close to zero compared
to some other high frequency files such as .pdf, .png and .csv.
We consider each fragment type as a strata and apply stratified
sampling with equal allocation to correct potential disputes re-
lated to imbalanced classification.

We made samples for both corpus model generation and
classification to conduct the experiments. While building
Byte2Vec corpus models, we considered maximum of 4000
samples from each fragment category to ensure involvement of
all 63 file types. However, the model generation is not limited
to the 63 file types available in the govdocs1 directory. We can
always update the models whenever new file types come into
account.

Table 1. The number of file types for different balanced sample sizes on
govdocs1 dataset.

Sample size 500 1000 1500 2000 2500
File type count 42 40 37 35 35

Table 1 shows the sample size and the number of fragment
types taken to generate the training and test data for the clas-
sification procedure. Note that, we omit the files with lower
frequencies while generating the training and test data to avoid
any classification bias. For example, sample size 1000 refers
to a set of randomly selected fragments where every type has
exactly 1000 instances. This process enabled us to generate a

6

large dataset of file fragments with an equal number of file frag-
ments from each file type. The type count decreases due to the
imbalanced fragment count. Table 1 also shows that the file
types decreases with the increase in sample size. If we continue
to increase the samples per type then total types will likely to
decrease. We take different samples to show how increasing
and decreasing the file types affect the overall performance of
the fragment classification process. Please see Appendix Ap-
pendix A for a detailed description of govdocs1 data statistics.
Corpus model building. It is to be noted that once we create
the set of fragments we do not refer to the files later. The corpus
model is generated by randomly selecting maximum of 4000
fragments. Also note that, we needed at least a single fragment
of each file type to build the whole corpus model. However,
during the testing phase of classification, we performed under-
sampling to acquire subsets of data fragments. The training and
test dataset is sampled from the same population used for the
model. Although random sampling may introduce some over-
lapping fragments, the training and test dataset do not overlap.
The overlap for building the corpus models does not affect our
results because it averages the byte embeddings for the frag-
ments of different file types. In summary, we followed the steps
below for the experimental evaluation.

• Model generation: we build corpus models from full file
fragment samples of file types where sample size does not
exceed 4000 fragments.

• Training and testing: we create a set of sample data frag-
ments of 500,1000,1500,2000, and 2500 for valid file
types. Here valid refers to the types that have at least the
desired number of sample fragments. We perform 10-fold
cross validation for every sampled dataset with train:test '
7:3 ratio.

Reproducing Byte2Vec. All data and code used in this paper,
as well as the models and sampled data fragments are avail-
able in this link (https://github.com/enamul-haque/
Byte2Vec/) to help with the reproduction of the results.

4.2. Empirical Analysis of Byte2Vec
In the following, we first use Byte2Vec to generate corpus

models for different file types. We demonstrate the time it takes
to generate the models using different vector lengths. Then,
we use the corpus models to generate a feature matrix for frag-
ment classification using kNN. We present the empirical results
demonstrating the accuracy, precision and recall with respect to
different vector lengths as well.

Figure 5 shows Byte2Vec model generation time in hours
for varying vector lengths starting from 5 to 100 with intervals
of 5. We used window size of 5 during model generation (cor-
pus training) step that reflects the context bytes at distance 5
for an input byte. In addition, we disregarded bytes with zero
frequency and employed four parallel threads for faster model
generation. The most computation sensitive part (off-line), cor-
pus model building, is run on a multi-core server with 32 phys-
ical processing cores, 512 GB of RAM, and a clock rate of 2.5
GHz per core. In the figure, model generation time decreases

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Vector length

2.0

2.5

3.0

3.5

4.0

M
o
de
l
ge
ne
ra
ti
on

ti
m
e
(h
ou
rs
)

Figure 5. Byte2Vec corpus model generation time for varying vector lengths
for govdocs1 dataset.

between vector lengths of 5 and 10 and then, it increases mono-
tonically. The decrease observed in the beginning is related to
the initial loading of data and model parameters. The model
generation time approximately presents a linear increase as the
vector length grows. Note that the state-of-the-art methods for
file fragment classification do not have any precomputed model
building step. Therefore, we are unable to compare this aspect.

Our experimental results involve the classification of frag-
ments using Byte2Vec generated features. Among five differ-
ent samples, we chose the highest sampled (2500) dataset to
explain the results while achieving an unbiased classification.
We use k-Nearest Neighbors (kNN) with k = 3 for all classifi-
cation steps. Additionally, we perform 10-fold cross validation
for every sampled dataset with train:test ' 7:3 ratio. The train
and test data never overlap to ensure bias-free classification.

4.2.1. Accuracy
Accuracy of a classifier is straightforward to measure. Equa-

tion 4 defines standard accuracy measure of a classifier where
ŷ and y denote actual and predicted class labels, 1(.) refers to
an indicator function, and n denotes the total number of the in-
stances.

Accuracy(y, ŷ) =
1
n

n∑
i=1

1(ŷi = yi) (4)

Figure 6a and 7a shows the classification accuracy of Byte2Vec
feature generation model on govdocs1 and random dataset, re-
spectively. The accuracy significantly improves for larger vec-
tor lengths up to 60 in Figure 6a. After 60 however, our results
show very small improvements in accuracy. Maximum accu-
racy (0.73) is achieved with vector/feature length of 60 and
above. Note that the model generation time also increases as
the vector length increases. Similar pattern is also observed in
Figure 7a using our corpus model while the pattern is not as
smooth as Figure 6a.

4.2.2. Precision
In order to support the accuracy of our model, we show the

precision scores in Figure 6b and 7b for govdocs1 and random
datasets. Precision scores measure the precision across all la-
bels, i.e., the number of times any class was predicted correctly

7

https://github.com/enamul-haque/Byte2Vec/
https://github.com/enamul-haque/Byte2Vec/

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Vector length

0.60

0.62

0.64

0.66

0.68

0.70

0.72

0.74

A
cc

ur
ac

y

(a) Accuracy

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Vector length

0.62

0.64

0.66

0.68

0.70

0.72

0.74

0.76

P
re

ci
si

on

(b) Precision

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Vector length

0.60

0.62

0.64

0.66

0.68

0.70

0.72

0.74

R
ec

al
l

(c) Recall

Figure 6. Classification (a) accuracy, (b) precision, and (c) recall for govdocs1 dataset with sample size of 2500 of each file type.

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Vector length

0.57

0.58

0.59

0.60

0.61

0.62

0.63

0.64

0.65

A
cc

ur
ac

y

(a) Accuracy

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Vector length

0.44

0.46

0.48

0.50

0.52

0.54

0.56

P
re

ci
si

on

(b) Precision

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Vector length

0.42

0.44

0.46

0.48

0.50

0.52

0.54

0.56

R
ec

al
l

(c) Recall

Figure 7. Classification (a) accuracy, (b) precision, and (c) recall for random dataset from Google search with sample size of 2500 of each file type.

(true positives) normalized by the number of the data points.
We use “macro” precision score as the dataset has balanced la-
bels. Equation 5 shows the normalization function P(.) with
actual and predicted output as parameters.

Precision =
1
|L|

∑
l∈L

P(yl, ŷl) (5)

where L denotes set of labels (|L| = 63) and P(yl, ŷl) =

|yl ∩ ŷl|/|yl|. The |yl ∩ ŷl| in the numerator denotes the number of
correct predictions. Figure 6b shows that the precision scores
are also consistent with the accuracy scores. The figure con-
firms the robustness of our method with a maximum precision
of 0.75 for vector length of 60 and above. Figure 7b shows that
the maximum precision of 0.54 is achieved for vector length
of 60 and above. We observe performance degradation as our
training data is very low in case of random fragments compared
to govdocs1 dataset.

4.2.3. Recall
We use “macro” recall as another evaluation metric due to

the balanced labels, again. Recall scores show the ratio of cor-
rectly predicted positive observations to all observations in a
particular class. Equation 6 computes the recall

Recall =
1
|L|

∑
l∈L

R(yl, ŷl) (6)

where L denotes set of labels (|L| = 63) and R(yl, ŷl) =

|yl ∩ ŷl|/|ŷl|. Figure 6c and 7c present recall scores for varying

vector lengths for govdocs1 and random datasets. In Figure 6c,
our recall scores also conform with the precision and accuracy
scores with a maximum recall of 0.73 for vector length of 60
and above. In Figure 7c, however, we observe reduced perfor-
mance for lower experimental samples.

Considering the accuracy, recall, precision and model gener-
ation time with respect to the vector length we decided to use
60 as our empirical vector length. Vector length of 60 achieves
very good scores in all performance metrics. Moreover, going
beyond 60 does not present a significant amount of gain (Fig-
ure 6 and 7).

4.3. Comparative Analysis

In this part we compare the Byte2Vec+kNN model with
several works in the literature including Unigram+SVM [7],
NCD+kNN [5], Cluster features+LDA [8], Stat+kNN [6],
NLP+SVM [4], and SparseCoding+SVM [26]. Note that we
represent each work using “features + classifier” pair to avoid
any elongated naming convention.

Table 2 and 3 demonstrate average accuracy, precision, and
recall scores for all methods with respect to different sample
sizes. Note that we show multiple sample sizes to demonstrate
the sensitivity of these approaches under varying sample sizes
for govdocs1 and random datasets, respectively. The table
shows partial performance scores for NCD+kNN because the
technique takes several days to complete the classification for
larger sample sizes. Lastly, Figure 8 and 9 present the plots of
the performance scores in Table 2 and 3, respectively, to pro-
vide the reader with visual insight.

8

500 1000 1500 2000 2500

Sample size

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

A
cc

ur
ac

y

clust+lda
nlp+svm
stat+knn
uni+svm
byte2vec
sparse+svm

(a) Accuracy

500 1000 1500 2000 2500

Sample size

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

P
re

ci
si

on

clust+lda
nlp+svm
stat+knn
uni+svm
byte2vec
sparse+svm

(b) Precision

500 1000 1500 2000 2500

Sample size

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

R
ec

al
l

clust+lda
nlp+svm
stat+knn
uni+svm
byte2vec
sparse+svm

(c) Recall

Figure 8. Summary of (a) accuracy, (b) precision, and (c) recall scores presented in Table 2 for govdocs1 dataset.

500 1000 1500 2000 2500

Sample size

0.1

0.2

0.3

0.4

0.5

0.6

0.7

A
cc

ur
ac

y

clust+lda
nlp+svm
stat+knn
uni+svm
sparse+svm
byte2vec

(a) Accuracy

500 1000 1500 2000 2500

Sample size

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

P
re

ci
si

on

clust+lda
nlp+svm
stat+knn
uni+svm
sparse+svm
byte2vec

(b) Precision

500 1000 1500 2000 2500

Sample size

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

R
ec

al
l

clust+lda
nlp+svm
stat+knn
uni+svm
sparse+svm
byte2vec

(c) Recall

Figure 9. Summary of (a) accuracy, (b) precision, and (c) recall scores presented in Table 3 for random dataset.

The first method, Unigram+SVM, uses unigram features
and SVM classifier [7]. The maximum accuracy and precision
achieved through this method is 69% and 62%, respectively on
govdocs1 dataset. On the other hand, we achieved a maximum
of 58% accuracy on random dataset. Using unigram counts
as features is similar to using byte frequency distribution or
histogram of bytes. One major drawback of this technique is
that different file types can have similar frequency distributions
which may cause increased mis-classifications.

The second method, NCD+kNN, uses normalized compres-
sion distance (NCD) and k-nearest neighbor (kNN) classi-
fier [5]. The NCD of two files X and Y is defined as

NCD(x, y) =
C(xy) −min{C(x),C(y)}

max{C(x),C(y)}
(7)

where C(x) is the compression distance of file x and C(xy)
refers to the compression distance of two combined files or
fragments. While implementing this process, we noticed that
the calculation of distance measure takes long. The complexity
of NCD compression for n samples is O(n2). Therefore, kNN
classifier takes longer to generate k neighbors set. As a result
this technique is not suitable for larger datasets. We had to stop
our experiment for this technique after running it for more than
72 hours. Hence, we report the results of sample size 500 for
this particular technique on govdocs1 data. The maximum ac-
curacy, precision, and recall achieved through this method is
42%, 40%, and 31%, respectively. However, we were able to
run this technique on our smaller random dataset that achieved
a maximum of 42% accuracy.

The third comparison method, Cluster features+LDA, uses
several statistical features collected from disk clusters and
Fisher classifier [40] for classification. We use linear dis-
criminant analysis (LDA) which is a generalization of Fisher
classifier as the classification algorithm for reproducing the
method [41]. The authors use unigram (histogram of byte val-
ues), entropy, and Kolmogorov complexity as cluster features.

Entropy [42] is used to calculate the lower bound of the num-
ber of bits required to encode a string of symbols based on their
frequency. The authors use the entropy as a feature due to the
randomness of a byte frequency for each 256 values of different
file fragments. This feature is also used in Veenman’s statis-
tical approach [8]. For a random variable, X with n outcomes
(x1, . . . , xn), the Shannon entropy, H(X), is defined as

H(X) = −

n∑
i=1

p(xi) log p(xi) (8)

where X is the byte-frequency content of a file fragment,
n=256, and p(xi) is the probability of byte xi.

Given a string x, Kolmogorov complexity [43] refers to the
length of the smallest function or program that generates x.

C(x) = min
p
{|p| : f (p) = x} (9)

where C(x) denotes complexity, f (p) is the function that regen-
erates the string x. C(x) computes the information content of
string x. The maximum accuracy, precision, and recall achieved
through this method on govdocs1 is 58%, 55%, and 44%, re-

9

Table 2. Performance comparison of Byte2Vec with the state-of-the-art tech-
niques on govdocs1 dataset. All the results are rounded to two digits after dec-
imal point. >3d indicates the computation did not finish after 3 days.

Method Sample size Accuracy Precision Recall

Unigram + SVM [7]

500 0.63 0.52 0.41
1000 0.67 0.57 0.46
1500 0.69 0.62 0.52
2000 0.69 0.60 0.52
2500 0.65 0.63 0.51

NCD + kNN [5]

500 0.42 0.40 0.31
1000 >3d >3d >3d
1500 >3d >3d >3d
2000 >3d >3d >3d
2500 >3d >3d >3d

Cluster features + LDA [8]

500 0.56 0.48 0.39
1000 0.54 0.49 0.38
1500 0.55 0.55 0.42
2000 0.58 0.53 0.44
2500 0.53 0.51 0.43

Stat + kNN [6]

500 0.44 0.37 0.24
1000 0.55 0.48 0.32
1500 0.60 0.56 0.39
2000 0.64 0.58 0.40
2500 0.62 0.60 0.41

NLP + SVM [4]

500 0.63 0.52 0.41
1000 0.68 0.57 0.46
1500 0.69 0.62 0.52
2000 0.69 0.60 0.51
2500 0.65 0.61 0.52

Sparse coding + SVM [26]

500 0.33 0.14 0.12
1000 0.38 0.26 0.19
1500 0.37 0.20 0.20
2000 0.38 0.28 0.26
2500 0.38 0.30 0.25

Byte2Vec + kNN

500 0.71 0.73 0.71
1000 0.72 0.74 0.72
1500 0.72 0.74 0.72
2000 0.73 0.75 0.73
2500 0.72 0.74 0.72

Table 3. Performance comparison of Byte2Vec with the state-of-the-art tech-
niques on random dataset. All the results are rounded to two digits after decimal
point. The “Sample size" column denotes total sample fragments used for the
experiment, instead of denoting sample size for each file type.

Method Sample size Accuracy Precision Recall

Unigram + SVM [7]

500 0.48 0.35 0.35
1000 0.58 0.44 0.39
1500 0.57 0.38 0.37
2000 0.57 0.38 0.36
2500 0.58 0.34 0.38

NCD + kNN [5]

500 0.42 0.27 0.22
1000 0.34 0.19 0.25
1500 0.42 0.16 0.20
2000 0.38 0.16 0.16
2500 0.33 0.19 0.18

Cluster features + LDA [8]

500 0.18 0.18 0.17
1000 0.56 0.44 0.45
1500 0.53 0.40 0.40
2000 0.60 0.49 0.49
2500 0.62 0.52 0.51

Stat + kNN [6]

500 0.53 0.35 0.25
1000 0.60 0.40 0.28
1500 0.60 0.43 0.32
2000 0.61 0.46 0.35
2500 0.64 0.53 0.38

NLP + SVM [4]

500 0.58 0.29 0.30
1000 0.56 0.22 0.25
1500 0.65 0.40 0.37
2000 0.62 0.45 0.49
2500 0.60 0.40 0.38

Sparse coding + SVM [26]

500 0.44 0.22 0.26
1000 0.45 0.23 0.25
1500 0.46 0.18 0.21
2000 0.46 0.19 0.21
2500 0.47 0.25 0.25

Byte2Vec + kNN

500 0.61 0.54 0.52
1000 0.65 0.53 0.50
1500 0.62 0.50 0.51
2000 0.63 0.53 0.52
2500 0.64 0.54 0.54

10

spectively. On the other hand, the method achieved maximum
of 62% accuracy on random dataset.

The fourth method, Stat+kNN uses a different set of statisti-
cal measures including Shannon entropy, Chi square, Hamming
weight, and arithmetic mean and kNN classifier [6]. The kNN
algorithm is used with Euclidean distance and its neighbor se-
lection parameter, k, is set to 10.

Mean byte value refers to the arithmetic mean of the bytes in
a fragment. They use Chi square (χ2) Goodness of fit measure
(Equation 10) to compare the byte distributions with a uniform
random distribution.

χ2 =

n∑
i=0

(observed - expected)2

expected
(10)

Hamming weight is defined by the fraction of the total num-
ber of ones divided by the total number of bits [6]. We con-
verted each fragment to a byte array of 4096 bytes and counted
the total number of one bits and divided that by 4096×8=32768.
The maximum accuracy, precision, and recall achieved through
this method on govdocs1 is 64%, 60%, and 41%, respectively.
On the other hand, the method achieved maximum of 64% ac-
curacy on random dataset.

The fifth comparison method, NLP+SVM, uses several sta-
tistical and natural language processing (NLP) features and
SVM classifier [4]. The statistical feature set includes his-
togram of byte values (i.e. unigram counts), histogram of bi-
gram counts, Shannon entropy of the bigram counts, Hamming
weight, mean byte value, and compressed length of file frag-
ments. The NLP features include average distance between
consecutive bytes and longest contiguous streak of repeating
bytes. Average distance between consecutive bytes within a
fragment is defined using Equation 11 in [4].

C =

4094∑
i=0

|bytei − bytei+1|

4096
(11)

Longest contiguous streak of repeating bytes represents a se-
quence of bytes that have the highest length within a fragment.
The maximum accuracy, precision, and recall achieved through
this method on govdocs1 is 69%, 62%, and 52%, respectively.
On the other hand, the method achieved maximum of 65% ac-
curacy with 40% precision on random dataset. Note that our
approach also achieved 62% accuracy in that particular experi-
mental setting (sample size of 1500 in total) with 57% precision
and 54% recall.

The sixth and final method, SparseCoding+SVM, uses
sparse coding of different dimensions and uni/bigram as fea-
ture set for the classification purpose. The method only uses
18 file types from govdocs1 dataset. The method selects 64
randomly sampled n-grams from each file fragment to use dur-
ing dictionary learning phase. We replicated the method us-
ing scikit-learn dictionary learning library with all the file types
from govdocs1 and found differences in empirical results. In
addition, the study shows that Office Open XML (OOXML) or
Microsoft Open XML (MOX) file types such as docx, pptx, and
xlsx files exhibit very poor performance. However, we observe

better performances in OOXML file types in our proposed ap-
proach compared to SparseCoding+SVM. The biggest draw-
back of this approach is the amount of time it takes to ex-
tract the feature set from a given file fragment due to expensive
computation during the dictionary learning. The maximum ac-
curacy, precision, and recall achieved through this method on
govdocs1 is 38%, 30%, and 26%, respectively. On the other
hand, the method achieved maximum of 47% accuracy with
25% precision and 26% recall on random dataset.
Byte2Vec generates a corpus model for all file types with re-

spect to different vector lengths and these corpus models can be
used with different classifiers. We used kNN as default classifier
in our experiments. We explain the effectiveness of Byte2Vec
using sample confusion matrices in Table 4 and Figure 10 that
show evaluation from sample of 2500 fragments of each file
types and vector lengths of 60. Note that, we share all confusion
matrices in our code repository for comprehensive comparison
as well.

4.4. Discussions

In this part, we discuss per file type classification perfor-
mance with respect to the internal file structure. We present
confusion matrices from both datasets to explain the misclassi-
fication of individual file types using Table 4 and Figure 10 for
govdocs1 and random datasets, respectively.

From the first confusion matrix presented in Table 4, we no-
tice that fragments with distinguishable patterns such as bitmap
tags for bmp, the commas in csv, and tags in xml are the most
easily classified file types. Overall, we notice that bmp, csv,
eps, gif, html, xml, xls, and txt fragments are classified with
more than 85% accuracy. On the contrary, we observe moder-
ate prediction accuracy for doc, docx, dwf, jpg, kmz, png, ppt,
and zip file fragments. The content of a doc file is stored ei-
ther using plain text or binary format. The confusion matrix
of the table shows that most of the doc files are misclassified
as other container file types such as png, pdf, and ppt in the
range between 3% and 5%. We also observe similar behavior
from docx file fragments with respect to misclassification of file
types. docx files are encoded in xml format consisting of a zip
archive file containing xml and binaries. docx fragments are
mismatched with doc, dwf, gz, kmz, pdf, pps, ppt and zip in the
range between 4% and 8%. The maximum mismatch occurred
with kmz file type which is an xml notation for expressing geo-
graphic annotation and visualization within Internet-based 2-D
maps and 3-D Earth browsers. Design Web Format (dwf) is
a secure and highly compressed file format developed by Au-
todesk Inc. 1 for efficient and fast distribution of rich media
data such as 3-D CAD (Computer Aided Design) drawings. As
a result, the misclassification of dwf files mostly occur with
compressed file formats such as gz, pdf, and zip and media files
such as kmz, png, and swf. The misclassification rate for dwf
fragments ranges between 4% (pdf) and 16% (kmz). The other
file types such as jpg, kmz, png, ppt, and zip exhibit less than
50% accuracy due to mismatch with each other in the range

1https://www.autodesk.com/

11

https://www.autodesk.com/

Table 4. Confusion matrix of kNN classifier on govdocs1 dataset. The height of the table has been increased to augment the visual clarity for the readers.

data_type bmp csv dbase3 doc docx dwf eps f fits gif gz html jpg kml kmz log pdf png pps ppt pptx ps rtf sgml sql squeak swf text tmp txt unk wp xls xml zip
bmp 0.97 0.0 0.0 0.01 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.01 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
csv 0.0 0.99 0.0

dbase3 0.0 0.0 0.93 0.0 0.0 0.0 0.0 0.01 0.0 0.0 0.0 0.01 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.01 0.0 0.0 0.0 0.0 0.01 0.01 0.0 0.0 0.0 0.0
doc 0.01 0.0 0.0 0.39 0.03 0.05 0.0 0.0 0.0 0.01 0.04 0.0 0.04 0.0 0.06 0.0 0.03 0.03 0.05 0.05 0.01 0.0 0.01 0.03 0.0 0.0 0.03 0.01 0.02 0.01 0.0 0.03 0.02 0.0 0.05

docx 0.0 0.0 0.0 0.04 0.47 0.04 0.0 0.0 0.0 0.01 0.04 0.0 0.03 0.0 0.08 0.0 0.04 0.04 0.04 0.04 0.02 0.0 0.0 0.02 0.0 0.0 0.03 0.0 0.0 0.0 0.0 0.0 0.01 0.0 0.06
dwf 0.0 0.0 0.0 0.06 0.05 0.25 0.0 0.0 0.0 0.01 0.06 0.0 0.02 0.0 0.16 0.0 0.04 0.06 0.02 0.06 0.02 0.0 0.0 0.04 0.0 0.0 0.07 0.01 0.0 0.0 0.0 0.0 0.0 0.0 0.06
eps 0.0 0.0 0.0 0.0 0.0 0.0 0.98 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.01 0.01 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

f 0.0 0.0 0.02 0.0 0.0 0.0 0.0 0.88 0.0 0.0 0.0 0.01 0.0 0.0 0.0 0.01 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.01 0.01 0.0 0.0 0.0 0.0 0.01 0.03 0.0 0.0 0.0 0.0
fits 0.0 0.0 0.0 0.01 0.0 0.0 0.0 0.0 0.93 0.01 0.0
gif 0.0 0.0 0.0 0.01 0.01 0.02 0.0 0.0 0.01 0.74 0.01 0.0 0.01 0.0 0.01 0.0 0.04 0.01 0.01 0.02 0.03 0.0 0.0 0.01 0.0 0.0 0.02 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.01
gz 0.0 0.0 0.0 0.05 0.03 0.06 0.0 0.0 0.0 0.01 0.54 0.0 0.02 0.0 0.05 0.0 0.02 0.05 0.04 0.02 0.02 0.0 0.0 0.02 0.0 0.0 0.02 0.01 0.0 0.0 0.0 0.0 0.0 0.0 0.04

html 0.0 0.0 0.01 0.01 0.0 0.0 0.0 0.01 0.0 0.01 0.0 0.89 0.0 0.01 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.01 0.0 0.0 0.0 0.0 0.0 0.01 0.01 0.0 0.0 0.01 0.0
jpg 0.0 0.0 0.0 0.05 0.03 0.04 0.0 0.0 0.0 0.03 0.03 0.0 0.43 0.0 0.04 0.0 0.03 0.03 0.04 0.08 0.02 0.0 0.0 0.03 0.0 0.0 0.03 0.0 0.0 0.0 0.0 0.0 0.01 0.0 0.08
kml 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.99 0.0
kmz 0.0 0.0 0.0 0.03 0.05 0.07 0.0 0.0 0.0 0.01 0.04 0.0 0.01 0.0 0.49 0.0 0.04 0.05 0.02 0.03 0.01 0.0 0.0 0.02 0.0 0.0 0.08 0.01 0.0 0.0 0.0 0.0 0.0 0.0 0.04
log 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.01 0.0 0.0 0.0 0.92 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.05 0.01 0.0 0.0 0.0 0.0 0.0
pdf 0.0 0.0 0.01 0.02 0.03 0.06 0.0 0.0 0.0 0.02 0.03 0.01 0.03 0.0 0.05 0.0 0.52 0.03 0.02 0.03 0.01 0.0 0.0 0.02 0.0 0.0 0.03 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.04
png 0.0 0.0 0.0 0.04 0.05 0.07 0.0 0.0 0.01 0.01 0.05 0.0 0.02 0.0 0.1 0.0 0.06 0.32 0.02 0.05 0.03 0.0 0.0 0.04 0.0 0.0 0.07 0.01 0.0 0.0 0.0 0.0 0.0 0.0 0.05
pps 0.0 0.0 0.0 0.04 0.02 0.02 0.0 0.0 0.01 0.0 0.02 0.0 0.03 0.0 0.03 0.0 0.01 0.03 0.64 0.04 0.02 0.0 0.0 0.01 0.0 0.0 0.01 0.0 0.0 0.0 0.0 0.0 0.01 0.0 0.04
ppt 0.0 0.0 0.0 0.05 0.04 0.04 0.0 0.0 0.01 0.01 0.04 0.0 0.07 0.0 0.08 0.0 0.04 0.04 0.08 0.30 0.03 0.0 0.0 0.03 0.0 0.0 0.04 0.0 0.0 0.0 0.0 0.0 0.01 0.0 0.05
pptx 0.0 0.0 0.0 0.01 0.03 0.03 0.0 0.0 0.0 0.02 0.02 0.0 0.03 0.0 0.04 0.0 0.01 0.04 0.03 0.02 0.62 0.0 0.0 0.03 0.0 0.0 0.03 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.02
ps 0.0 0.0 0.0 0.0 0.0 0.0 0.01 0.01 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.96 0.01 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
rtf 0.0 0.0 0.0 0.01 0.0 0.0 0.01 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.96 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

sgml 0.0 0.0 0.0 0.03 0.03 0.03 0.0 0.0 0.0 0.0 0.01 0.0 0.01 0.0 0.06 0.01 0.02 0.01 0.01 0.04 0.01 0.0 0.0 0.63 0.0 0.0 0.02 0.01 0.0 0.01 0.01 0.0 0.0 0.0 0.03
sql 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.01 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.98 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

squeak 0.01 0.0 0.0 0.01 0.0 0.93 0.0 0.0 0.0 0.0 0.0 0.01 0.0 0.0 0.0
swf 0.0 0.0 0.0 0.02 0.03 0.06 0.0 0.0 0.01 0.01 0.02 0.0 0.01 0.0 0.1 0.0 0.03 0.03 0.01 0.03 0.01 0.0 0.0 0.02 0.0 0.0 0.59 0.0 0.0 0.0 0.0 0.0 0.01 0.0 0.02
text 0.0 0.0 0.0 0.01 0.01 0.01 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.01 0.0 0.01 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.91 0.0 0.0 0.01 0.01 0.0 0.0 0.0
tmp 0.0 0.0 0.0 0.02 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.01 0.0 0.0 0.0 0.06 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.86 0.0 0.01 0.01 0.0 0.0 0.0
txt 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.02 0.0 0.0 0.0 0.01 0.0 0.0 0.0 0.01 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.01 0.0 0.0 0.0 0.0 0.0 0.90 0.03 0.0 0.0 0.0 0.0
unk 0.0 0.0 0.01 0.0 0.0 0.0 0.0 0.02 0.0 0.0 0.0 0.01 0.0 0.0 0.0 0.01 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.01 0.0 0.0 0.0 0.0 0.0 0.03 0.86 0.01 0.0 0.0 0.0
wp 0.0 0.0 0.0 0.01 0.0 0.0 0.0 0.01 0.0 0.0 0.0 0.01 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.01 0.0 0.0 0.0 0.0 0.0 0.01 0.01 0.0 0.0 0.0 0.01 0.90 0.02 0.0 0.0
xls 0.0 0.0 0.0 0.04 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.01 0.0 0.0 0.0 0.01 0.01 0.0 0.0 0.0 0.01 0.0 0.0 0.01 0.0 0.01 0.0 0.01 0.02 0.86 0.0 0.0
xml 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.02 0.0 0.96 0.0
zip 0.0 0.0 0.0 0.05 0.03 0.06 0.0 0.0 0.0 0.01 0.04 0.0 0.06 0.0 0.07 0.0 0.03 0.03 0.02 0.05 0.03 0.0 0.0 0.02 0.0 0.0 0.04 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.46

12

do
cx gz jp
g

p
df

pn
g

pp
tx sw
f

xl
s

xl
sx

Predicted Class

xlsx

xls

swf

pptx

png

pdf

jpg

gz

docx

T
ru
e
C
la
ss

8 1 3 8 19 20 1 0 27

0 0 0 0 0 0 0 5 0

1 1 0 7 2 0 3 0 1

15 3 2 44 31 86 2 0 17

8 4 1 43 132 33 6 0 4

7 7 0 326 28 19 15 1 11

0 2 11 1 1 0 2 0 0

0 11 0 25 3 5 7 0 0

4 1 0 9 5 7 0 0 4

KNeighborsClassifier Confusion Matrix

(a) 1500

do
cx gz jp
g

p
df

pn
g

pp
tx sw
f

xl
s

xl
sx

Predicted Class

xlsx

xls

swf

pptx

png

pdf

jpg

gz

docx

T
ru
e
C
la
ss

6 5 0 6 17 22 4 0 34

0 0 0 0 0 0 0 7 0

1 4 0 9 4 5 2 0 0

10 12 1 45 36 165 3 2 25

2 3 0 46 219 34 1 0 7

7 47 2 399 31 52 2 0 11

0 0 18 2 0 1 0 0 1

1 15 0 23 5 14 3 0 3

2 4 0 14 0 3 2 0 1

KNeighborsClassifier Confusion Matrix

(b) 2000

do
cx gz jp
g

p
df

pn
g

pp
tx sw
f

xl
s

xl
sx

Predicted Class

xlsx

xls

swf

pptx

png

pdf

jpg

gz

docx

T
ru
e
C
la
ss

1 1 1 4 3 11 5 0 94

0 0 0 0 0 0 0 12 0

0 0 0 7 3 0 18 0 1

6 10 1 22 19 302 4 0 19

2 3 0 16 374 19 0 0 1

5 15 0 589 15 10 5 0 3

0 0 18 0 0 1 0 0 0

0 60 0 19 4 2 2 0 1

28 2 0 9 1 1 0 0 1

KNeighborsClassifier Confusion Matrix

(c) 2500

Figure 10. Sample confusion matrix from random dataset experiment using vector lengths of 60 on sample data size of (a) 1500, (b) 2000, and (c) 2500.

from 1% to 8%. All these file types have common structures
such as high compression, xml encoding, and media embed-
dings. Therefore, they are moderately mixed with each other
during the classification process. Another important aspect is
that we included partial fragments in the test data which can
increase the misclassification rate. A typical scenario for par-
tial data case is that the randomly included bytes can dominate
the overall bytes in the newly constructed partial fragment. For
instance, a partial fragment of pdf can contain majority of its
bytes from a random zip fragment.

Figure 10 demonstrates confusion matrices on a smaller
dataset that is collected from random web search using file
types as keywords. We present three sample results that
used vector length 60 during feature generation process us-
ing Byte2Vec model. We observe higher misclassification of
OOXML (docx, pptx, xlsx) and high-entropy (gz) fragments
with small data sample. Although the errors are widely spread
over all file types for high-entropy fragments, we notice sig-
nificant bias toward the gz file type with file types such as pdf
and png. However, we notice significant improvement in Fig-
ure 10c on both types of fragments with the increase in sample
size. Therefore, the results from Figure 10 indicate that ex-
perimenting on larger training data results in more favorable
classification performance.

In general, we notice that the most significant improvements
when using the Byte2Vec model as feature generator are for
file types with common byte sequences such as csv, text, xls, and
xml. For high-entropy file types such as gz, we notice that they
are mixed with each other at a moderate rate. Regarding con-
tainer file types such as pdf and pptx, we observe that they are
misclassified with image and compressed files. For instance,
a pdf file is very likely to be embedded with different image
formats such as jpg, png, and bmp. Regarding OOXML file
types, we observe that our feature generation method performs
very well with larger training data. All things considered, the
results indicate that our approach is able to capture the inherent
file structure on a broader scale, due to the transformation of
original features into a vector space, and improves the overall
classification performance.

5. Conclusions

File carving is the process of recovering files on a storage me-
dia in part or in whole without any file system information. An
important problem in file carving is the identification of frag-
ment types. Many fragment classification studies in the litera-
ture employ inflexible or indiscernible feature selection meth-
ods such as different statistics of byte frequency distributions.
Moreover, assessing the strengths and weaknesses of some ap-
proaches is difficult because they do not generalize across dif-
ferent file types.

In this paper, we propose a novel feature generation model,
Byte2Vec, to identify file fragment types using byte embed-
dings, i.e., vector representations. The proposed model extends
the word2vec and doc2vec models to bytes and fragments, re-
spectively. Unlike some of the previous methods, Byte2Vec
works for different block sizes and supports fragments of any
type. Moreover, the addition of a new file type does not re-
quire the reconstruction of any existing corpus models. We used
Byte2Vec for feature extraction from fragments and k Nearest
Neighbors for classification.

Our experimental results show that Byte2Vec+kNN reaches
an accuracy rate of 72% along with 74% precision and 72% re-
call. Compared to the other feature extraction techniques such
as n-gram, byte distributions, byte statistics, byte distances, and
sparse dictionary learning features along with different classi-
fiers, our approach achieves an absolute improvement of 3%
and 12% in accuracy and precision, respectively.

Above all, we demonstrate that Byte2Vec can be posed as
a feature extraction technique and that classifying fragments
without looking at the inherent structure can be made tractable
and accurate. Our proposed formulation is general and offers a
potentially different mode of thinking about file fragment clas-
sification problem in digital forensics and security area. It is
also important to note that Byte2Vec model is highly transfer-
able to other domains.

Appendix A. Govdocs1 data statistics

We present the frequency distribution of all files and frag-
ments with respect to file types from all the files collected from
digital corpora in Table A.5.

13

Table A.5. Frequency distribution of all files and fragments with respect to
file types from all the files collected from digital corpora.

File type File Count Fragment Count

.123 2 56

.bin 1 1

.bmp 72 7878

.chp 2 10

.csv 18360 856331

.data 3 218

.dbase3 2601 6307

.doc 76616 7528792

.docx 163 8340

.dwf 299 10850

.eps 5191 722399

.exported 3 42

.f 602 11486

.fits 182 83395

.fm 25 850

.g3 2 64

.gif 36302 756618

.gls 60 94

.gz 13725 2215529

.hlp 659 1495

.html 214568 3286673

.icns 1 1

.ileaf 4 210

.java 292 1970

.jpg 109233 9192380

.js 2 6

.kml 993 39363

.kmz 943 69242

.lnk 2 2

.log 9976 871937

.mac 2 2

.odp 2 299

.pdf 231232 33230061

.png 4125 277581

.pps 1619 925252

.ppt 49702 31236286

.pptx 215 143597

.ps 22015 7040370

.pst 1 3

.pub 55 227

.py 1 61

.rtf 1125 117175

.sgml 62 5555

.sql 462 30908

.squeak 1 3170

.swf 3476 476535

.sys 7 7

.tex 163 1390

.text 839 190140

.tmp 180 3683

.troff 110 1067

.ttf 10 198

.txt 78285 12240966

.unk 5186 374462

.vrml 1 83

.wk1 7 816

.wk3 1 29

.wp 364 10835

.xbm 8 78

.xls 62635 7248727

.xlsx 37 1635

.xml 33458 2130210

.zip 10 3945

References

[1] V. L. Thing, T.-W. Chua, M.-L. Cheong, Design of a digital forensics
evidence reconstruction system for complex and obscure fragmented file
carving, in: Computational Intelligence and Security (CIS), 2011 Seventh
International Conference on, IEEE, 2011, pp. 793–797.

[2] A. Hadi, et al., Reviewing and evaluating existing file carving techniques
for jpeg files, in: Cybersecurity and Cyberforensics Conference (CCC),
2016, IEEE, 2016, pp. 55–59.

[3] G. G. Richard III, V. Roussev, Next-generation digital forensics, Commu-
nications of the ACM 49 (2) (2006) 76–80.

[4] S. Fitzgerald, G. Mathews, C. Morris, O. Zhulyn, Using nlp techniques
for file fragment classification, Digital Investigation 9 (2012) S44–S49.

[5] S. Axelsson, The normalised compression distance as a file fragment clas-
sifier, digital investigation 7 (2010) S24–S31.

[6] G. Conti, S. Bratus, A. Shubina, B. Sangster, R. Ragsdale, M. Supan,
A. Lichtenberg, R. Perez-Alemany, Automated mapping of large binary
objects using primitive fragment type classification, digital investigation
7 (2010) S3–S12.

[7] Q. Li, A. Ong, P. Suganthan, V. Thing, A novel support vector machine
approach to high entropy data fragment classification, in: Proc. South
African Information Security Multi-Conf.(SAISMC), 2011, pp. 236–247.

[8] C. J. Veenman, Statistical disk cluster classification for file carving, in:
Information Assurance and Security, 2007. IAS 2007. Third International
Symposium on, IEEE, 2007, pp. 393–398.

[9] P. Penrose, R. Macfarlane, W. J. Buchanan, Approaches to the classifi-
cation of high entropy file fragments, Digital Investigation 10 (4) (2013)
372–384.

[10] W. Qiu, R. Zhu, J. Guo, X. Tang, B. Liu, Z. Huang, A new approach to
multimedia files carving, in: Bioinformatics and Bioengineering (BIBE),
2014 IEEE International Conference on, IEEE, 2014, pp. 105–110.

[11] E. Uzun, H. T. Sencar, Carving orphaned jpeg file fragments, IEEE Trans-
actions on Information Forensics and Security 10 (8) (2015) 1549–1563.

[12] K. Nguyen, D. Tran, W. Ma, D. Sharma, A proposed approach to com-
pound file fragment identification, in: International Conference on Net-
work and System Security, Springer, 2014, pp. 493–500.

[13] G. Conti, S. Bratus, A. Shubina, A. Lichtenberg, R. Ragsdale, R. Perez-
Alemany, B. Sangster, M. Supan, A visual study of primitive binary frag-
ment types, White Paper, Black Hat USA.

[14] W.-J. Li, K. Wang, S. J. Stolfo, B. Herzog, Fileprints: Identifying file
types by n-gram analysis, in: Information Assurance Workshop, 2005.
IAW’05. Proceedings from the Sixth Annual IEEE SMC, IEEE, 2005,
pp. 64–71.

[15] W. C. Calhoun, D. Coles, Predicting the types of file fragments, digital
investigation 5 (2008) S14–S20.

[16] M. Karresand, N. Shahmehri, Oscar—file type identification of binary
data in disk clusters and ram pages, Security and privacy in dynamic en-
vironments (2006) 413–424.

[17] M. Karresand, N. Shahmehri, File type identification of data fragments by
their binary structure, in: Proceedings of the IEEE Information Assurance
Workshop, 2006, pp. 140–147.

[18] T. Mikolov, K. Chen, G. Corrado, J. Dean, Efficient estimation of word
representations in vector space, arXiv preprint arXiv:1301.3781.

[19] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, J. Dean, Distributed
representations of words and phrases and their compositionality, in: Ad-
vances in neural information processing systems, 2013, pp. 3111–3119.

[20] M. McDaniel, M. H. Heydari, Content based file type detection algo-
rithms, in: System Sciences, 2003. Proceedings of the 36th Annual
Hawaii International Conference on, IEEE, 2003, pp. 10–pp.

[21] V. Roussev, C. Quates, File fragment encoding classification—an empiri-
cal approach, Digital Investigation 10 (2013) S69–S77.

[22] S. Gopal, Y. Yang, K. Salomatin, J. Carbonell, Statistical learning for file-
type identification, in: Machine Learning and Applications and Work-
shops (ICMLA), 2011 10th International Conference on, Vol. 1, IEEE,
2011, pp. 68–73.

[23] V. Roussev, S. L. Garfinkel, File fragment classification-the case for spe-
cialized approaches, in: Systematic Approaches to Digital Forensic En-
gineering, 2009. SADFE’09. Fourth International IEEE Workshop on,
IEEE, 2009, pp. 3–14.

[24] T. Xu, M. Xu, Y. Ren, J. Xu, H. Zhang, N. Zheng, A file fragment classi-
fication method based on grayscale image., JCP 9 (8) (2014) 1863–1870.

14

[25] T. Kanungo, D. M. Mount, N. S. Netanyahu, C. D. Piatko, R. Silverman,
A. Y. Wu, An efficient k-means clustering algorithm: Analysis and imple-
mentation, Pattern Analysis and Machine Intelligence, IEEE Transactions
on 24 (7) (2002) 881–892.

[26] F. Wang, T.-T. Quach, J. Wheeler, J. B. Aimone, C. D. James, Sparse cod-
ing for n-gram feature extraction and training for file fragment classifica-
tion, IEEE Transactions on Information Forensics and Security 13 (10)
(2018) 2553–2562.

[27] Q. Le, T. Mikolov, Distributed representations of sentences and docu-
ments, in: Proceedings of the 31st International Conference on Machine
Learning (ICML-14), 2014, pp. 1188–1196.

[28] S. Poria, E. Cambria, A. Gelbukh, Deep convolutional neural network tex-
tual features and multiple kernel learning for utterance-level multimodal
sentiment analysis, in: Proceedings of the 2015 conference on empirical
methods in natural language processing, 2015, pp. 2539–2544.

[29] A. Severyn, A. Moschitti, Twitter sentiment analysis with deep convolu-
tional neural networks, in: Proceedings of the 38th International ACM SI-
GIR Conference on Research and Development in Information Retrieval,
ACM, 2015, pp. 959–962.

[30] C. dos Santos, M. Gatti, Deep convolutional neural networks for sen-
timent analysis of short texts, in: Proceedings of COLING 2014, the
25th International Conference on Computational Linguistics: Technical
Papers, 2014, pp. 69–78.

[31] W. X. Zhao, S. Li, Y. He, E. Y. Chang, J.-R. Wen, X. Li, Connecting
social media to e-commerce: Cold-start product recommendation using
microblogging information, IEEE Transactions on Knowledge and Data
Engineering 28 (5) (2016) 1147–1159.

[32] F. Vasile, E. Smirnova, A. Conneau, Meta-prod2vec: Product embeddings

using side-information for recommendation, in: Proceedings of the 10th
ACM Conference on Recommender Systems, ACM, 2016, pp. 225–232.

[33] M. E. Haque, M. E. Tozal, A. Islam, Helpfulness prediction of online
product reviews, in: Proceedings of the 2018 ACM Symposium on Doc-
ument Engineering, ACM, 2018.

[34] T. Mikolov, W.-t. Yih, G. Zweig, Linguistic regularities in continuous
space word representations., in: hlt-Naacl, Vol. 13, 2013, pp. 746–751.

[35] Digital Corpora, Govdocs1, http://downloads.digitalcorpora.
org/corpora/files/govdocs1/.

[36] S. Garfinkel, P. Farrell, V. Roussev, G. Dinolt, Bringing science to dig-
ital forensics with standardized forensic corpora, digital investigation 6
(2009) S2–S11.

[37] C. Grajeda, F. Breitinger, I. Baggili, Availability of datasets for digital
forensics–and what is missing, Digital Investigation 22 (2017) S94–S105.

[38] X.-Y. Liu, J. Wu, Z.-H. Zhou, Exploratory undersampling for class-
imbalance learning, IEEE Transactions on Systems, Man, and Cybernet-
ics, Part B (Cybernetics) 39 (2) (2009) 539–550.

[39] Q. Li, A. Y. Ong, P. N. Suganthan, V. L. Thing, A novel support vec-
tor machine approach to high entropy data fragment classification., in:
SAISMC, 2010, pp. 236–247.

[40] R. O. Duda, P. E. Hart, D. G. Stork, Pattern classification, John Wiley &
Sons, 2012.

[41] M. Welling, Fisher linear discriminant analysis, Department of Computer
Science, University of Toronto 3 (1).

[42] C. E. Shannon, W. Weaver, A mathematical theory of communication
(1948).

[43] O. Watanabe, Kolmogorov complexity and computational complexity,
Springer, 1992.

15

http://downloads.digitalcorpora.org/corpora/files/govdocs1/
http://downloads.digitalcorpora.org/corpora/files/govdocs1/

	Introduction
	Related Work
	The Byte2Vec Model
	Byte2Vec Theory
	Byte2Vec Implementation
	Byte2Vec Classification

	Experiments
	Dataset
	Empirical Analysis of Byte2Vec
	Accuracy
	Precision
	Recall

	Comparative Analysis
	Discussions

	Conclusions
	Govdocs1 data statistics

