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Negative samples in health andmedical insurance domain refer to fraudulent or erroneous insurance claims that
may include inconsistent diagnosis-procedure relations with respect to a medical coding system. Unfortunately,
only a few datasets are publicly available for research in health insurance domain, yet none reports any
negative claims. On the other hand, negative claims are essential not only to develop new machine learning
approaches, but also to test and validate automated artificial intelligence systems deployed by insurance
providers. In this study, we introduce a synthetic negative claim generation procedure based on the bipartite
graph representations of positive claims. Our empirical results demonstrate promising outcomes that will
improve the development and evaluation processes of machine learning approaches in healthcare, where
negative samples are required, but not available. Moreover, the proposed scheme can be applied to other
domains, where bipartite graph representations are meaningful and negative samples are lacking.

CCS Concepts: • Computing methodologies→ Artificial intelligence; Machine learning approaches;

Additional Key Words and Phrases: Negative Health Insurance Claims, Distance Pooling, Diagnosis-Procedure
Bipartite Graphs

1 INTRODUCTION
The financial facet of the healthcare industry is a complex system consisting of multiple entities
working together. Figure 1 demonstrates a simplified view of the entities involved in a healthcare
claim reconciliation process. Before a patient gets any service, the service provider’s office confirms
the patient’s financial responsibilities and insurance plan. Next, the patient is checked in and
the service provider examines the patient to identify the relevant diagnoses. Depending on the
examination and initial diagnoses, the service provider treats the patient with one or more medical
interventions, including diagnostic or surgical interventions, that are collectively called procedures.
These diagnoses and procedures are typically stored in the patient’s report, along with secondary
and tertiary information about the patient and the visit. At this point, the patient typically checks
out with or without paying a copay depending on his/her insurance plan. Then, the patient’s report
is sent to a medical coder who translates the information in the report into medical codes, i.e.,
diagnosis and procedure codes, and forms a “superbill”. The medical coder electronically transfers
the superbill to a medical biller. The medical biller creates a medical claim and ensures that the claim
meets the coding standards and format. The claim is then sent to the patient’s health insurance
provider, which adjudicates the claim and decides whether the claim is valid, correct and compliant.
The health insurance provider prepares a report detailing the procedures that are covered by the
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Fig. 1. A simplified view of the entities involved in healthcare claim reconciliation process [14].

patient’s insurance plan and sends it back to the medical biller. Finally, the medical biller sends a
statement to the patient describing the benefits, insurance coverage and remaining balances.

Unfortunately, this process is not immune to frauds. Fraudulent or fabricated claims bear a very
high cost, despite they constitute a small portion of all claims in the United States. In fact, the
National Health Care Anti-Fraud Association (NHCAA) reports that the financial losses due to
fraudulent activities are in the orders of tens of billions of dollars in the U.S. [31]. Typical fraudulent
activities include billing for more expensive procedures, fabricating claims for unperformed proce-
dures, performing unnecessary procedures, separately billing multiple steps of a single procedure
and presenting medically unnecessary procedures, e.g., cosmetic surgeries, as inevasible. These
fraudulent activities often present themselves as inconsistencies between diagnoses and procedures
in an insurance claim.

In AI-based healthcare insurance claim processing, the fraudulent claims are of great importance
as they are necessary components to assess the accuracy of classification tasks or validate the
outputs of clustering tasks. A major issue in experimenting with the fraud, on the other hand is the
lack of fraudulent claim data in the publicly available datasets. Only a few datasets are publicly
available for research, yet none reports fraud or erroneous cases, i.e., negative claims. These negative
cases are essential not only to research and develop new machine learning approaches, but also to
test and validate the automated Artificial Intelligence (AI) systems deployed by insurance providers.
In this study, we introduce a synthetic negative claim generation procedure based on distance

pooling on bipartite graph representations of positive diagnosis-procedure codes. Moreover, we
investigate the variations of the process to achieve realistic negative claims where the diagnosis and
procedure codes are coherent to some desired, “quantifiable” extent. We formulate the problem over
a minimal, definitive claim data consisting of procedure and diagnosis codes, because accessing
richer datasets are often prohibited by law (HIPAA andGDPR) and exhibit differences among various
healthcare reporting software. Moreover, medical coding systems are typically developed, governed
and standardized by international organizations, while there is no standard for auxiliary information.
We use Medicare and Medicaid data from Centers for Medicare and Medicaid Services (CMS) [7].
Similar to [4, 19, 20], we assume that the CMS dataset consists of valid, positive ground truth
claims, which were analyzed and verified by the insurance provider before their reimbursements.
The positive dataset consists of claims containing a set of diagnosis codes and a set of procedure
codes, without one-to-one correspondences between them. Table 1 demonstrates a sample positive
claim data containing ICD-9 (International Classification of Diseases 9th Revision) diagnosis and
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Table 1. A sample positive claim data containing international ICD-9 diagnosis and procedure codes.

Diagnosis Code ICD9v3 Description
4439 Peripheral vascular disease, unspecified
4289 Heart failure
4240 Mitral valve disorders, unspecified

Procedure Code ICD9v3 Description
3950 Angioplasty of other non-coronary vessel(s)
4019 Other diagnostic procedures on lymphatic structures
49320 Laparoscopic Procedures on the Abdomen, Peritoneum, and Omentum
41400 Coronary atherosclerosis of unspecified type of vessel, native or graft

procedure codes. Note that the dataset contains only the codes, the code descriptions are retrieved
from an online catalog [13] to augment the codes in the table.
Let C+ = {𝑐+1 , 𝑐+2 , . . . , 𝑐+|𝐶+ | } be the set of ground truth, positive claims and 𝐷 and 𝑃 be the sets

of all diagnosis and procedure codes in our dataset, respectively. To generate a negative claim 𝑐−𝑖
from a positive claim 𝑐+𝑖 = {𝐷𝑖 , 𝑃𝑖 } consisting of a set of diagnosis 𝐷𝑖 ⊂ 𝐷 and a set of procedures
𝑃𝑖 ⊂ 𝑃 , a typical approach is to randomly decide to replace each procedure code in 𝑃𝑖 by some
probability, 𝜏 , while fixing the set of diagnosis codes, 𝐷𝑖 . The replacement process considers all
procedures in 𝑃 with uniform probability distribution. Unfortunately, the uniformly at random
replacement approach generates procedure codes that are highly irrelevant and inconsistent with
the diagnosis codes. For example, procedure code 3950 (Angioplasty of other non-coronary vessel)
in Table 1 can be replaced by procedure code 70714 (Ulcer of heel and midfoot), where the original
diagnoses are related to heart and vascular problems. Our main insight is that a realistic negative
claim generation process should randomly replace the procedures by the ones that are “close” or
“relevant” to the original set of diagnoses to some quantifiable extent.

To quantify the closeness of diagnoses and procedures and to measure the similarity of diagnoses
in terms of their treatments, we represent the relations appearing in positive claims as a bipartite
graph, 𝐺 = (𝐷, 𝑃, 𝐸), such that 𝐷 is the set of diagnosis codes, 𝑃 is the set of procedure codes
and 𝐸 ⊆ 𝐷 × 𝑃 is the set of edges representing the diagnosis and procedure codes appearing
in the same claim. Figure 2 shows the partial view of the ground truth, positive bipartite graph
demonstrating the claim presented in Table 1. In the figure, the vertices on the left represent the
diagnosis codes, the vertices on the right represent the procedure codes and the edges represent
the diagnosis-procedure code pairs appearing in the same claim. Intuitively, any two diagnoses that
are similar in terms of their treatments share one or more procedures. Moreover, the hop distances
between these diagnosis and their disjoint procedures are shorter in the bipartite graph compared
to their distances to other procedures.

We trained a one-class SVM classifier with the positive dataset and tested our approaches using
both true positive and synthetic negative claims. The empirical results show that our procedure
with average distance pooling, such as average softmax, performs worse or equal for all procedure
replacement probabilities compared to the baseline, uniform replacement at random, method on
inpatient dataset. It is important to note that a lower accuracy in our experiments implies better
performing negative insurance claims. Regarding the outpatient claims dataset, minimum distance
pooling with partitional softmax and partitional proportions exhibit lower accuracies compared to
the baseline approach for procedure replacement probabilities of 0.7 or lower. We observe similar
results for the methods based on average distance pooling as well. In addition, we developed the
truncated versions of the proposed approaches which decreases the classifier accuracy around 20%,
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Fig. 2. A partial view of the ground truth, positive bipartite graph demonstrating the claim presented in
Table 1.

on the average. Lastly, our methods incorporate diagnosis distance pooling which ensures that a
procedure that is directly connected to the diagnosis group of a positive claim will not be present
in the corresponding synthetic negative claim. However, baseline method with uniform procedure
replacement at random does not guarantee this incident.
The synthetic negative data generation problem appears in different application domains such

as DNA sequence analysis [41], image recognition [27], sentiment data generation [34], and view
generation [9]. Several other data generation solutions have been introduced in different domains
to alleviate the issue of imbalanced datasets [23] and missing data [21] [17] where the methods
follow various sampling and data estimation techniques. To the best of our knowledge, this is
the first study formulating the negative insurance claim generation problem in terms of relevant
diagnosis and procedure codes and introducing a solution within the same context. The proposed
scheme can also be applied to other domains to generate synthetic negative samples where positive
data can be represented as bipartite graphs.

The rest of the paper is organized as follows. In Section 2 we present the related work. In Section 3
we describe the negative claim generation procedure and its variations. Section 4 demonstrates the
dataset used in our experiments along with empirical evaluations. Finally, Section 5 concludes our
study.

2 RELATEDWORK
Negative example generation is crucial for the evaluation of classification and clustering algorithms.
Typically, datasets used in learning tasks have instances of all different classes. However, there
are cases where obtaining the instances of a class is not practical or simply not available. In those
cases one option is to generate high quality synthetic data. In the following, we present synthetic
data generation techniques in different domains such as medical image processing, computational
genomics, and natural language processing areas.
Protein Sequence Analysis: Synthetic protein dataset was generated in [43] according to the

structure and properties of SCOP95 (Structural Classification of Proteins) [33] protein sequence
data set. The authors employed a high-speed TRIBE-MCL algorithm to validate the synthetic data.
They demonstrate that the generated datasets have significant variability due to randomness in the
process which is suitable to test graph-based clustering algorithms on large-scale data.
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Medical Image Processing: Frid-Adar et al. developed a synthetic medical image data augmentation
technique using Generative Adversarial Network (GAN) for improved liver lesion classification [15].
They specifically focused on computed tomography (CT) images of 182 liver lesions for the aug-
mentation and used a convolutional neural network (CNN) based classifier to test the model. The
experimental results demonstrate that the data augmentation improves the classification perfor-
mance by 7% compared to the classical augmentation technique. Synthetic MRI images of brain
tumor are generated using GAN in [40]. The authors presented two major benefits of such data
generation in image segmentation and data privacy areas. Firstly, the synthetic image data helps
to identify brain tumor segments with robust performance. Second, the data generation helps to
share the patient tumor data with different levels of anonymization. They applied their method
on two publicly available brain tumor MRI datasets to demonstrate its effectiveness. Robust and
effective classification models for medical image analysis are difficult to build due to the scarcity of
labeled and well-distributed image data. In [5] the authors used GAN to generate realistic and high
resolution skin lesion images to help with creating labeled and non-skewed data. They used both
benign and malignant dermoscopic images from ISIC2018 challenge [22] to evaluate their models.
Computational Genomics: Smith et al. [41] developed a method to generate synthetic genome

data. Specifically, they improved the accurate assembly time of synthetic oligonucleotides DNA.
The method was tested by establishing conditions of rapid assembly of infectious genome of
bacteriophage 𝜙𝑋174. They also proposed to use larger assembled genomes separately which will
require a minimal cellular genome.
Sensory Data: Alzantot et al. [1] demonstrated a network model that uses a generator and

discriminator model to distinguish between actual and synthetic accelerometer traces of smartphone.
The goal of the study is to preserve the implications of data privacy for user specific data collection
and analysis.
Network Analysis: Barse et al. [2] developed a method to generate synthetic log data from a set

of authentic data as a seed. They specifically used Video-on-Demand (VoD) system data as the
authentic set to generate different scenarios such as break-in, billing, illegal redistribution, and
login fraud. The experiments demonstrated that the synthetic data can be used for training and
testing a fraud detection system for the VoD services.
System Process and Policies: Cognitive autonomous assets require unforeseen context based

knowledge to function properly in critical environments. Bertino et al. [6] proposed a method that
helps the system assets to generate the knowledge with minimal human supervision and mediation.
For instance, in a battlefield, robot armies may generate attack policy and retreat routes based on
the enemy behaviors.
Natural Language Processing: Synthetic text generation is one of the active research topics in

Natural Language Processing (NLP) area. Guo et al. [18] used a leaked feature extraction in the
GAN based discriminator phase to guide long text generation processes. The method solves the
problems of non-informativeness and sparsity compared to previous GAN based methods. Their
experimental results showed that the human ratings and BLEU scores [32] are significantly better
regarding longer sentences. Lin et al. [28] introduced RankGAN, a novel GAN based approach, to
generate language descriptors. The discriminator is trained using a ranking function to evaluate
human and machine written texts to create a better generator. They used policy gradient to optimize
the RankGAN objective function. The experimental results on several publicly available dataset
show the effectiveness of the method.
Medical Claim Frauds: In addition to insurance claim frauds, we also notice other fraudulent

activities such as medical and prescription frauds. Ekin et. al. [12] proposed a hierarchical Bayesian
method for medical fraud detection. Specifically, their method identifies the hidden relation between
a provider and medical procedures. The authors also utilized sampling in overpayment estimation
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and medical fraud assessment in [11]. Zafari and Ekin used topic models to group drugs based on
billing patterns and medical specialities [45]. The goal of this study is to assist medical auditors by
providing leads for auditing providers who prescribe medically unnecessary drugs. In one of their
recent studies [10], they used various classification algorithms and data proceprocessing methods
on claim payment and overpayment scenarios to help healthcare professionals evaluate the merits
and demerits of the analysis techniques.

Shi et.al. introduced a hybrid fraud detection approach (HFDA) which they employed in Dareway
Medical Insurance Claim System, China [39]. The system mainly transformed the claims into
behavior sequences and later obtained fraud probability through Dempster’s rule of combination.
The method relied on private claims dataset that includes claimant, hospital information, and claim
approving authorities. It mainly identifies cost distribution for various diseases based on disease
names for individual claimants and determines outliers. However, the method do not disclose any
standard coding scheme used within the HFDA system. Therefore, adopting the HFDA system for
fraud identification from claims with different coding format and standard is not possible.
Kareem et. al. demonstrated their primary stage fraudulent claim identification method based

on clustering and association rule mining [25]. The authors presented different steps of their
system with limited discussion on the claim data format. They also mentioned fraudulent and
non-fraudulent claims wihout proper definition of each categories. They presented support and
confidence scores of association rule mining applied on two example events based on disease
keywords. However, the authors have not disclosed whether the keywords are extracted from
clinical notes or not. Please note that the access to clinical notes are not only challenging but also the
use of keywords can raise ambiguous interpretation during attribute identification and generation
of association rules. Finally, they propose to use Support Vector Machine (SVM) as a supervised
clustering algorithm to classify claims into fraud and non-fraud cases without desciribing the
training and test data format.

Bauder et. al. [3] employed the database of Office of Inspector General List of Excluded Individuals
and Entities (LEIE) which provides a major source of fraudulent providers. As claims of a provider
is marked as fraudulent if that provider becomes a member of the LEIE database, the later submitted
claims are automatically tagged as fraudulent. This scheme fails to identify claim level fraud analysis
because not all the claims from a fraudulent provider are counterfeit. Additionally, the LEIE based
fraudulent provider identification is not a real-time procedure, which hinders the instantaneous
verification and validation of insurance claims without specifying the providers. Therefore, the
claims based fraud identification has greater importance in terms of practice.

Several studies exist in the literature that introduces synthetic electronic health record generation
technique to evaluate different classification and clustering models. Walonski et. al [44] introduced
Synthea 1 at MITRE corporation to visualize and interact with synthetic patient and population
health data, which is used in the state of Massachusetts, USA. However, their study does not include
synthetic insurance claims, which is left for future works.
Recent studies also attempted to identify fraudulent healthcare claims from Medicare claims

dataset using different techniques such as concept drift and primitive sub peer group analysis [38],
sequence mining [29], weighted risk model [35], blockchain based models [36], and manifold
learning [16]. However, these studies consider payment, visit sequence, frequency of disease
patterns, and other transactions data to identify fraud cases. In addition, the publicly available
health insurance claims data do not report fraud or erroneous cases, i.e., negative claims, which are
essential not only to research and develop new machine learning approaches, but also to test and
validate the automated Artificial Intelligence (AI) systems deployed by insurance providers.

1https://synthea.mitre.org/

https://synthea.mitre.org/
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In this work, we formulate the negative insurance claim generation problem in terms of relevant
diagnosis and procedure codes and introduce a solution based on the bipartite graph representations
of positive claims.

3 NEGATIVE CLAIM GENERATION PROCESS
In this section, we first formally introduce the negative data generation problem. Next, we demon-
strate our overall solution approach using an algorithmic template. Finally, we detail the individual
components of the algorithmic template.

3.1 Problem Statement
Let us assume that we are given a dataset of positive, ground truth insurance claims C+ =

{𝑐+1 , . . . , 𝑐+|𝐶+ | }, where |C
+ | is the number of claims. By “positive” claim dataset, we imply that

the claims in the dataset have been analyzed, verified and reimbursed by an insurance provider.
Each claim 𝑐𝑖 consists of a set of diagnosis and procedure codes summarizing the treatment for a
particular patient. Let𝐷 = {𝑑1, 𝑑2, . . . , 𝑑 |𝐷 | } and 𝑃 = {𝑝1, 𝑝2, . . . , 𝑝 |𝑃 | } be the sets of all diagnosis and
procedure codes in the dataset, where |𝐷 | and |𝑃 | are the number of unique diagnosis and procedure
codes, respectively. The overall problem statement is that given a set of ground truth, positive
claims, C+, can we synthetically generate a set of negative claims, C− , comprised of inconsistent or
irrelevant diagnosis and procedure codes to some quantifiable extent?

In this paper, we tackle the problem from a graph theoretic perspective using statistical sampling.
Our hypothesis regarding negative example generation is that the proposed method(s) should
generate realistic negative examples which create difficulty for classifiers or domain experts to
distinguish between class labels.

3.2 Problem Solution
Given a positive claim, 𝑐+𝑖 = {𝐷𝑖 , 𝑃𝑖 } in 𝐶+ such that 𝐷 ⊃ 𝐷𝑖 = {𝑑1, . . . , 𝑑𝑘 }, 𝑃 ⊃ 𝑃𝑖 = {𝑝1, . . . , 𝑝𝑙 },
consisting of 𝑘 diagnoses and 𝑙 procedures, a typical negative claim generation approach involves
replacing the diagnosis and procedure codes randomly at uniform. The new claim, 𝑐−𝑖 would
bring inconsistent and irrelevant procedures and diagnoses together. A closely related, alternative
approach is to randomly replace only the procedure codes of 𝑐+𝑖 , which would also generate
procedures that are inconsistent among each other, but also highly irrelevant to the corresponding
diagnoses. Please note that, inconsistent procedures are fine, as long as they are relevant to their
corresponding diagnoses in the diagnosis set. On the other hand, inconsistent diagnoses are natural
in positive claims, as one may have multiple unrelated conditions.
We compute a hop distance matrixM, representing the distances between diagnosis and pro-

cedure codes. To put in other words, each row inM is a vector embedding of a diagnosis code
in terms of its distance to all procedure codes. To generate a negative claim 𝑐−𝑖 from a positive
claim 𝑐+𝑖 = {𝐷𝑖 , 𝑃𝑖 } consisting of a set of diagnoses 𝐷𝑖 and a set of procedures 𝑃𝑖 , we first pool the
distance embeddings of diagnosis codes, 𝐷𝑖 , fromM by aggregating the distances via element-wise
averages or minimum. Next, we assign probabilities to each procedure based on its distance to
the set of diagnoses in the claim. We developed four different probability assignment schemes,
including softmax, proportions, partitional proportions and partitional softmax, where the goal is to
assign relatively higher probabilities to the procedures that are closer to the set of diagnoses. Lastly,
we randomly decide to replace each procedure by proabability 𝜏 . If a procedure is to be replaced,
we consider all procedures in 𝑃 according to the probability distribution scheme computed in the
previous step.
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Table 2 demonstrates an example synthetic, negative claim (right) generated from a positive
claim (left) containing ICD-9 diagnosis and procedure codes. Note that the dataset contains only
the codes, the code descriptions are retrieved from an online catalog [13] to augment the codes
in the table. The random sampling method presented in Table 2 has a major limitation that the
procedures are extremely inconsistent and/or they are ridiculously irrelevant to the corresponding
diagnoses. For example, procedure code 3950 (Angioplasty of other non-coronary vessel) in Table 2
is replaced by procedure code 70714 (Ulcer of heel and midfoot), where the original diagnoses are
related to heart and vascular problems. These negative examples are not only unrealistic but also
easily separable from positive claims by classifiers and/or domain experts.

Table 2. An example synthetic negative claim (right) generated from a positive claim (left) containing ICD-9
diagnosis and procedure codes.

Positive Claim Synthetic Negative Claim
Diagnosis Code ICD9v3 Description Diagnosis Code ICD9v3 Description

4439 Peripheral vascular disease, unspecified 4439 Peripheral vascular disease, unspecified
4289 Heart failure 4289 Heart failure
4240 Mitral valve disorders, unspecified 4240 Mitral valve disorders, unspecified

Procedure Code ICD9v3 Description Procedure Code ICD9v3 Description
3950 Angioplasty of other non-coronary vessel(s) 70714 Ulcer of heel and midfoot
4019 Other diagnostic procedures on lymphatic... 4019 Other diagnostic procedures on lymphatic ...
49320 Laparoscopic Procedures on the Abdomen ... 49320 Laparoscopic Procedures on the Abdomen ...
41400 Coronary atherosclerosis of unspecified type ... 5502 Nephrostomy

Generating more realistic negative examples requires quantifying the extent of relevancy (or
irrelevancy) of procedures to diagnoses. We represent the positive, ground truth dataset C+ as a
bipartite graph,𝐺 = (𝐷, 𝑃, 𝐸), such that the diagnoses and procedures are two disjoint sets 𝐷 and 𝑃
and an edge in 𝐸 only connects a vertex in 𝐷 and a vertex in 𝑃 . The bipartite graph representation
allows us to exploit the shortest path lengths between diagnoses and procedures as a measure of
relevancy. A procedure with a shorter distance to a diagnosis, has a greater relevancy compared to
a procedure with a longer distance.

(a)
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Fig. 3. An example demonstration of diagnosis and procedure code distance matrix

We illustrate the concept of distance levels using a small example in Figure 3 where we as-
sume that the entire claim dataset contains only five diagnoses (𝑑1, 𝑑2, . . . , 𝑑5) and four procedures
(𝑝1, 𝑝2, . . . , 𝑝4). Figure 3(a) demonstrates the example bipartite graph representation of the dataset
consisting of diagnosis (left) and procedure (right) codes. The edges between diagnosis and proce-
dure code pairs indicate that the pair appears together in a claim record in the dataset. Figure 3(b)
presents the all pairs shortest paths distance matrix of the bipartite graph in Figure 3(a). Each
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row in the matrix denotes the vector embedding of a diagnosis in terms of its hop distance to
all procedures. The distance levels in the matrix are odd integers because of the bipartiteness
property of the claims. For instance, the distance from diagnosis 𝑑1 to procedure 𝑝3 is 7 which
indicates less relevancy compared to its distance to procedure 𝑝4. We employ the distance matrix to
assign meaningful procedure replacement probabilities to different distance levels while generating
synthetic negative claims from positive claims.
The synthetic negative claim generation algorithm traverses the set of ground truth positive

claims. For each procedure in a positive claim, the algorithm makes a random decision to replace
the procedure by a fixed probability. If the decision is to replace, the algorithm randomly replaces
the procedure at uniform with another one from the set of all procedures, 𝑃 . Random replacement at
uniform, i.e., selecting a new procedure with 1/|𝑃 | probability, generates unrealistic negative claims
that are easy to identify, hence we propose alternative procedure selection probability distributions
based on the shortest path lengths in the bipartite graph 𝐺 . The probability assignment process is
called “procedure probability setting”. In this study, we introduce four different procedure probability
setting approaches: softmax, proportions, partitional proportions and partitional softmax. Given
that a positive claim consists of a set of diagnoses along with a set of procedures without specifying
the exact mappings between individual diagnoses and procedures, we consolidate the distances of
the procedures to the diagnosis group. This diagnosis group distance consolidation or bundling
process is called “diagnosis distance pooling”. In this study we introduce two types of diagnosis
distance pooling approaches: minimum and average pooling.
Algorithm 1 presents a procedural template to generate negative claims using a ground truth,

positive claim dataset. The algorithm, expects a positive claim dataset, C+, a procedure replacement
probability, 𝜏 , a preferred diagnosis distance pooling approach, Ψ and a preferred procedure
probability setting approach, Φ, as input and returns a negative claim dataset, C− .
Lines 1-4 of the algorithm initializes a bi-adjacency matrix, B, representing the positive claims

as a bipartite graph of diagnoses and procedures. Similar to [42], we transform the bi-adjacency
matrix B into an adjacency matrix A using Equation 1 at line 3 of Algorithm 1.

A =

(
0 B
B⊤ 0

)
(1)

Line 4 computes the all pairs shortest path matrix using Johnson’s [24] algorithm. Johnson’s [24]
algorithm produces the distance block matrix D presented in Equation 2.

D =

[
𝐷 ⇝ 𝐷 |𝐷 |× |𝐷 | 𝐷 ⇝ 𝑃 |𝐷 |× |𝑃 |
𝑃 ⇝ 𝐷 |𝑃 |× |𝐷 | 𝑃 ⇝ 𝑃 |𝑃 |× |𝑃 |

]
(2)

where the top right block 𝐷 ⇝ 𝑃 |𝐷 |× |𝑃 | of the distance matrix D refers to the shortest distances
between |𝐷 | diagnoses and |𝑃 | procedure pairs. Without loss of generality we only consider the
top right block of the distance matrixM at line 5.
The algorithm traverses the set of positive claims between Lines 6 and 21. At line 7, it clones a

positive claim, 𝑐+𝑖 , as a candidate negative claim, 𝑐−𝑖 . At line 9 it pools the distances of the diagnoses
in 𝑐−𝑖 to the procedures according to the preferred pooling approach, Ψ. The result of this step
is a vector of diagnosis group distances, v to all procedures. At line 11 the algorithm translates
the distances into probabilities using the preferred procedure probability setting approach, Φ. The
result of this step is a probability distribution, u, over all procedures.

At lines 12-17, Algorithm 1 traverses the procedures of 𝑐−𝑖 for random replacement. At line 13 it
generates a random value 𝑝 ∈ [0, 1]. If 𝑝 is smaller than the procedure replacement probability 𝜏 , it
randomly replaces the procedure according to probability distribution u.
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Algorithm 1: An algorithmic framework for synthetic negative claim generation.

Input: Positive claims dataset, C+ = {𝐷, 𝑃}
Input: Procedure replacement probability, 𝜏
Input: Diagnosis distance pooling approach, Ψ
Input: Procedure probability setting approach, Φ
Output: Synthetic negative claims dataset, C− = {𝐷 ′ ⊆ 𝐷, 𝑃 ′ ⊆ 𝑃}
1: Initialization:
2: Build a bi-adjacency matrix B𝑚𝑥𝑛 using the input dataset 𝐶+
3: Build the adjacency matrix A using the bi-adjacency matrix B
4: Compute all pairs shortest path matrix D on A using the Johnson’s algorithm
5: SetM to the top right block-distance matrix of D
6: for ∀𝑐+𝑖 ∈ 𝐶+ do
7: 𝑐−𝑖 ← 𝑐+𝑖
8: Diagnosis Distance Pooling:
9: v← Pool the distances to the diagnoses 𝐷𝑖 of 𝑐−𝑖 usingM according to Ψ
10: Procedure Probability Setting:
11: u← Assign the probabilities of all procedures 𝑃 using v according to Φ
12: for ∀𝑝𝑖 𝑗 ∈ 𝑃𝑖 of 𝑐−𝑖 do
13: 𝑝 ← generate a random value between 0 and 1
14: if 𝑝 ≤ 𝜏 then
15: replace 𝑝𝑖 𝑗 by a randomly selected procedure from 𝑃

according to probability distribution u
16: end if
17: end for
18: if at least one procedure is randomly replaced in 𝑐−𝑖 then
19: 𝐶− ← 𝐶− ∪ 𝑐−𝑖
20: end if
21: end for
22: return 𝐶−

If at least one procedure is replaced in the candidate negative claim 𝑐−𝑖 , then it is placed in the
set of negative claims at line 19. Lastly, line 22 returns the negative claim dataset 𝐶− .

Given that the core of Algorithm 1 lies in “diagnosis distance pooling” and “procedure probability
setting” employed at lines 8 and 10, we present their details in the following subsections.

3.2.1 Diagnosis Distance Pooling. Algorithm 1 clones a positive claim to create a candidate negative
claim. The candidate, 𝑐−𝑖 , consists of a set of diagnosis, 𝐷𝑖 ⊂ 𝐷 , and set of procedures, 𝑃𝑖 ⊂ 𝑃 . The
first step to generate a negative claim is to compute the distances between the diagnosis set, 𝐷𝑖

and all procedures 𝑃 , which will be translated into probabilities later. In fact, each row, v𝑗 , ofM
in Algorithm 1 is a distance vector corresponding to the distances between diagnosis 𝑑 𝑗 and all
procedures. Given that we have multiple diagnoses in 𝐷𝑖 we have multiple distance vectors to 𝑃 .
Therefore, it is necessary to pool all those distances into a single distance vector. In other words,
it is necessary to compute the distances between the procedures and the group of the diagnoses
rather than between the procedures and the individual diagnosis in the group. We define pooling as
a element-wise aggregation function over a list of distance vectors. In the following we introduce
two aggregation methods: minimum pooling and average pooling.
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Minimum Pooling: Given a candidate negative claim 𝑐−𝑖 = {𝐷𝑖 , 𝑃𝑖 }, let 𝐷𝑖 = {𝑑1, 𝑑2, . . . , 𝑑𝑘 }
have the corresponding distance vectors {v1, v2, . . . , v𝑘 }. Minimum pooling aggregates all distance
vectors into a single vector v by taking the element-wise (or positional) minimum of the distance
vectors as shown in Equation 3.

v𝑖 = min{v1𝑖 , v2𝑖 , . . . , v𝑘𝑖 } (3)
where v𝑗𝑖 is the distance of the 𝑗𝑡ℎ diagnosis to the 𝑖𝑡ℎ procedure and v𝑖 is the distance of the
diagnosis group to the 𝑖𝑡ℎ procedure. The interpretation of minimum pooling is that the distance of
a group of diagnoses to a particular procedure should not be more than the closest diagnosis to
the procedure. Figure 4 (top) demonstrates the minimum pooling concept using a diagnoses group
consisting of two diagnosis.
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Fig. 4. A simple example of how minimum (top) and average (bottom) pooling are computed using Equation 3
and Equation 5.

Average Pooling: Given a candidate negative claim 𝑐−𝑖 = {𝐷𝑖 , 𝑃𝑖 }, let 𝐷𝑖 = {𝑑1, 𝑑2, . . . , 𝑑𝑘 } have
the corresponding distance vectors {v1, v2, . . . , v𝑘 }. Average pooling aggregates all distance vectors
into a single vector v by taking the element-wise (or positional) average of the distance vectors as
shown in Equation 4.

v𝑖 =
1
𝑘

𝑘∑︁
𝑗=1

v𝑗𝑖 (4)

where v𝑗𝑖 is the distance of the 𝑗𝑡ℎ diagnosis to the 𝑖𝑡ℎ procedure and v𝑖 is the distance of the
diagnosis group to the 𝑖𝑡ℎ procedure. The interpretation of average pooling is that the distance of a
group of diagnoses to a particular procedure should be the average of the distances of the individ-
ual diagnosis to the procedure. Although the average pooling approach considers all procedure
distances, it masks the existence of procedures which have only one-hop distance to one or more
of the diagnoses in the group. Detecting these procedures is important, because they should not be
part of a negative claim as they are directly related to at least one diagnosis in the claim. Therefore
we modify Equation 4 as follows:

v𝑖 =

1 ∃v𝑗 s.t. v𝑗𝑖 = 1
1
𝑘

𝑘∑
𝑗=1

v𝑗𝑖 otherwise
(5)

where the distance is forced to one, if there is a diagnosis with one hop distance to a particular
procedure in the group. Figure 4 (bottom) demonstrates the average pooling concept using a
diagnoses group consisting of two diagnosis.
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3.2.2 Procedure Probability Setting. To probabilistically replace the procedures of a candidate neg-
ative claim, 𝑐−𝑖 , Algorithm 1 translates its pooled distance vector, v, into a probability distribution
vector, u. Remember that random procedure replacement at uniform, i.e., selecting a new proce-
dure with 1/|𝑃 | probability, generates unrealistic negative claims with trivial decision boundaries.
Therefore, we propose alternative procedure selection probability distributions, u, based on the
pooled diagnosis distance vector, v, representing the distances between the group of diagnosis in
the candidate claim and all procedures.

First of all, the distances between diagnoses and procedures only assume odd numbers, {1, 3, 5, . . .},
because edges between any two diagnoses or procedures are not allowed in 𝐺 = (𝐷, 𝑃, 𝐸), by def-
inition. Secondly, to achieve realistic or non-trivial negative claims, the procedure probabilities
should be inversely proportional to their distance to the diagnosis group. That is the farther a
procedure is to the diagnosis group, the lower its selection probability. Thirdly, the procedures that
have one hop distance to the diagnosis group, should assume zero probability, as they are directly
related to one or more diagnosis in the group. Lastly, the probability distribution vector u should
satisfy the Kolmogorov Axioms of Probability [26]. The first statement is only a fact. To address
the second statement, we utilize the reciprocals of distances instead of the distances themselves.
To put in other words, we utilize 1/v𝑖 , rather than v𝑖 . To address the third statement, we define
our probability assignment procedures as piecewise functions. The last statement is satisfied by
the distances being positive and the necessary normalizations being applied. In the following, we
introduce four different procedure probability assignment approaches satisfying our requirements:
softmax, proportions, partitional proportions and partitional softmax.
Softmax: Softmax is a normalized exponential function which is frequently used in machine

learning and statistics to assign probabilities to a vector of real values. Given a pooled diagnosis-
procedure distance vector v, we assign probabilities to procedures using the exponents of the
reciprocals of distances. Equation 6 translates the distance vector v into probability vector u over
all procedures:

u𝑖 =


0 if v𝑖 = 1
exp

(
1
v𝑖

)
|𝑃 |∑
𝑗=1

exp( 1
v𝑗
)

otherwise (6)

where |𝑃 | denotes the number of procedures in the original bipartite graph block-distance matrix
M in Algorithm 1. One particular limitation of softmax expressed in Equation 6 is that it is not scale
invariant. Hence, when the real values are between 0 and 1, it may not emphasize the procedures
with shorter distances as much as one may desire. In fact, this case is illustrated in Figure 5 where
the probabilities that are assigned to procedures with shorter distances are roughly similar to the
ones with longer distances.
Proportions: Proportional frequency or magnitude is a normalized function, which forms the

basis of frequentist interpretation of probability. Given a pooled diagnosis-procedure distance vector
v, it assigns probabilities to procedures by directly using the reciprocals of distances. Equation 7
translates the distance vector v into probability vector u over all procedures:

u𝑖 =


0 if v𝑖 = 1(

1
v𝑖

)
|𝑃 |∑
𝑗=1

(
1
v𝑗

) otherwise (7)
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Fig. 5. Demonstration of probability distribution of procedures using group distance vector with respect to
different transformations.

where |𝑃 | denotes the number of procedures in the original bipartite graph block-distance matrix
M in Algorithm 1. Figure 5 illustrates that the probabilities that are assigned to procedures with
shorter distances are much higher compared to the ones with longer distances.

On the other hand, if there are many procedures with shorter distances and a few with medium
or longer distances, then the ones with shorter distances overwhelmingly assume a great portion
of the total probability and let the few medium or longer distance procedures starve. Figure 5
illustrates this phenomena where the procedures with distance three assume a great portion of
total probability compared to the ones with distance five with proportions approach. The reason
behind this phenomena is that we assign the probabilities directly to individual distances, rather
than unique distance values.

Partitional Proportions: To alleviate the problem of many procedures with shorter distances
assuming a great portion of the total probability, we first partition the distance vector v based on
the unique distance levels. Let {𝑙1, 𝑙2, . . . , 𝑙𝑟 } be the unique distance levels (or values) of v. Next,
we assign probabilities to distance levels using the reciprocals of distance levels as presented in
Equation 8

l𝑖 =


0 if 𝑙𝑖 = 1(

1
𝑙𝑖

)
𝑟∑
𝑗=1

(
1
𝑙 𝑗

) otherwise (8)

where 𝑙 𝑗 is the the 𝑗𝑡ℎ unique distance level and l𝑖 is the likelihood assigned to the distance level 𝑙𝑖 .
Then, we equally distribute the likelihood of a distance level, among its procedures to build the
probability distribution vector u as presented in Equation 9

u𝑖 =
1
|𝑙𝑖 |

∑︁
l𝑖1(𝑙𝑖 = v𝑖 ) (9)

where |𝑙𝑖 | is the size of the 𝑖𝑡ℎ distance partition, l𝑖 is the partitions likelihood and 1(𝑙𝑖 = v𝑖 ) is an
indicator function that is 1 when the 𝑖𝑡ℎ procedure’s distance is equal to the 𝑖𝑡ℎ partition’s level.
Figure 5 illustrates that procedures with distance three do not overwhelmingly assume the total
probability. Note that, in the figure the probability assigned to the procedures with distance three
is lower than the procedures with distance five. Although this looks like a contradiction leading
to the procedures with distance five having higher selection probabilities, the higher number of
procedures with distance three compensates for the case.

Partitional Softmax: Given a pooled diagnosis-procedure distance vector v, we can also extend
the partitional proportions approach to softmax. Again, we first partition the distance vector v
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based on the unique distance levels. Let {𝑙1, 𝑙2, . . . , 𝑙𝑟 } be the unique distance levels (or values) of v.
Next, we assign probabilities to distance levels using the exponents of the reciprocals of distance
levels as presented in Equation 10

l𝑖 =


0 if 𝑙𝑖 = 1
exp

(
1
𝑙𝑖

)
𝑟∑
𝑗=1

exp
(
1
𝑙 𝑗

) otherwise (10)

where 𝑙 𝑗 is the the 𝑗𝑡ℎ unique distance level and l𝑖 is the likelihood assigned to the distance level 𝑙𝑖 .
Then, we equally distribute the likelihood of a distance level, among the procedures having the
same distance to build the probability distribution vector u as presented in Equation 9 where |𝑙𝑖 |
is the size of the 𝑖𝑡ℎ distance partition, l𝑖 is the partitions likelihood and 1(𝑙𝑖 = v𝑖 ) is an indicator
function that is 1when the 𝑖𝑡ℎ procedure’s distance is equal to the 𝑖𝑡ℎ partition’s level. As illustrated
in Figure 5 this approach typically assigns higher probabilities to smaller number of procedures
with medium or larger distances. Although we do not prefer this approach, we introduce it for the
sake of completeness.

The synthetic negative insurance claim generation process presented inAlgorithm 1, goes through
all procedures of the candidate claim 𝑐−𝑖 = (𝐷𝑖 , 𝑃𝑖 ) and replaces a procedure with probability 𝜏 and
selects a replacement procedure according to the probability setting approach Φ. Obviously, the
number of procedures to be replaced is random and depends on the replacement probability 𝜏 . In
fact, the number of procedures to be replaced is binomially distributed. However, we consider a
claim negative only if at least one procedure is replaced. Therefore, the number of procedures,
𝑋 , replaced in a synthetic negative claim 𝑐−𝑖 = (𝐷𝑖 , 𝑃𝑖 ) is distributed by zero-truncated binomial
distribution with parameters |𝑃𝑖 | and 𝜏 :

𝑃 (𝑥) =
(
|𝑃𝑖 |
𝑥

)
𝜏𝑥 (1 − 𝜏) |𝑃𝑖 |−𝑥

1 − (1 − 𝜏) |𝑃𝑖 |
(11)

As a result the expected value of the replaced procedures in 𝑐−𝑖 is:

𝐸 [𝑋 ] = |𝑃𝑖 |𝜏
1 − (1 − 𝜏) |𝑃𝑖 |

(12)

4 EMPIRICAL EVALUATIONS
In the following, we first introduce experimental setup with a brief discussion on the process
of transforming claims into vector of real numbers. Next, we discuss the datasets used in the
experiments. Finally, we present experimental results on two types of health insurance claims data,
namely inpatient and outpatient datasets.

4.1 Experimental Setup
Our experiemental setup consists of two steps. In the first step, we transform claims into vectors
of real numbers to classify into positive and negative classes. We employ a language model on
alphanumeric claim codes to embed the inherent relationships between frequently occurring
diagnosis and procedure codes within the claims dataset. We specifically use Skip-gram [30]
language model to transform claims into vectors. Skip-gram model uses an unordered sequence of
diagnosis and procedure codes from claims dataset to compute log-likelihood of the codes within
a predefined context window. The context window in our problem setup refers to the number of
codes that are frequently used with individual code within the whole claims dataset. Note that the
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context window and vector size of the Skip-gram model are two different parameters where vector
size is used to represent a code to predict its nearby codes by training a shallow neural network.
Formally, given a set of diagnosis and procedure codes {𝑐1, 𝑐2, . . . , 𝑐𝑞}, Skip-gram model computes
log-likelihood of every code 𝑐𝑖 within a predefined context window𝑤 , as shown in Equation 13.
We set the context window𝑤 as 5 to allow the Skip-gram model capture claim level representation
of procedure codes. To explain the process further, we look at the Equation 13 and Figure 6 where
most frequent diagnosis and procedure counts are 10. Therefore we use context window 5 to allow
the model look for 5 codes on both left and right sides totaling 10 codes within its window.∑︁

𝑖−𝑤≤ 𝑗≤𝑖+𝑤
log𝑝 (𝑐 𝑗 |𝑐𝑖 ) (13)

where 𝑝 (𝑐 𝑗 |𝑐𝑖 ) denotes the conditional probability of appearing code 𝑐 𝑗 within the context window
of code 𝑐𝑖 . The conditional probability is defined using a softmax function as follows.

𝑝 (𝑐 𝑗 |𝑐𝑖 ) =
exp(𝑉𝑐𝑖 .𝑈𝑐 𝑗 )∑

𝑐𝑘 ∈𝐶
exp(𝑉𝑐𝑖 .𝑈𝑐𝑘 )

(14)

where 𝑉𝑐𝑖 denotes 𝑇 -dimensional input vector representation of code 𝑐𝑖 , 𝑉 ∈ R |𝐶 |×𝑇 . Similarly,𝑈𝑐 𝑗

denotes 𝑇 -dimensional output vector representation of code 𝑐 𝑗 , 𝑈 ∈ R |𝐶 |×𝑇 . We defined the vector
length 𝑇 as 10, 20, and 50 in our experiments. We present the evaluations using vector length 20 as
other lenghts exhibit similar outcomes. Once Skip-gram model is trained, we receive input code
and output context code matrices. The input matrix is used to represent the codes in a defined
𝑇 -dimension vector space for various predictive jobs.

A stochastic gradient descent algorithm is used to maximize the objective function in Equation 13.
The computation of the objective function is expensive as the denominator in Equation 14 sums
over all codes in the code vocabulary𝐶 . Mikolov et. al. [30] used negative sampling with Skip-gram
to avoid the expensive computation. Once we receive the input vector representation of codes,
we use that as a look-up matrix for the claim code. We used the look-up matrix to find feature
representation for both training and test claims.

We employed one-class SVM [37] to classify positive and negative test claims. Usually, an SVM
model is created based on splitting the training data points using a boundary with maximum gap
and penalizing data points that are misclassified. The one-class SVM is trained on datasets that has
only one labeled-class data. We used linear kernel with 𝛾 = 0.001 and a = 0.95 in one-class SVM
during training phase on 80% positive claims. We used the rest of the positive claims and synthetic
negative claims for testing. On the other hand, we used both positive and negative claims in binary
class SVM model with 10-fold cross validation. The negative claims are populated for every positive
claims in the dataset by following different diagnosis distance pooling and procedure probability
settings (Table 3).

4.2 Datasets
We collect Medicare and Medicaid data from Centers for Medicare and Medicaid Services (CMS)
website. The dataset contains inpatient and outpatient claims from years between 2008-2010,
containing 20 files [7]. Each claim includes medical diagnosis and procedure codes along with
de-identified patient and payment specific information. We conducted two sets of experiments to
demonstrate the effectiveness of our method using 33,387 inpatient and 39,540 outpatient positive
claims from two randomly selected data files. A patient is categorized as inpatient if the hospital
stay is longer and prescribed by an authorized doctor for relevant procedures. Note that inpatient
CMS dataset contains ICD-9 format diagnosis and procedure codes. A patient is categorized as an
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outpatient if he/she gets lab test, X-rays, or any other hospital services without the written order
from a doctor to be admitted to a hospital as an inpatient. Outpatient dataset contains both ICD-9,
HCPCS level-I (CPT), and level-II codes for the procedures.
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Fig. 6. Combined Medicaid and Medicare claim distributions in terms of diagnosis and procedure numbers
per claim.

Figure 6 summarizes the inpatient and outpatient claims in terms of the number of diagnoses
and procedures present in a claim. The figure shows that a claim consists of maximum 10 and 44
diagnoses and procedures, respectively in the combined claims data. We observe that the majority
of the claims share high numbers of diagnoses in the actual claims data. In addition, we observe
claims that have no procedure codes. Note that our synthetically generated negative claim diagnosis
and procedure frequency distribution follows similar distributions as positive claims in Figure 6,
except for the claims without procedures.

4.3 Experimental Results
In this part we evaluate our negative claim generation procedures using one-class SVM. The
ground truth, positive claim data is used to train a one-class SVM classification model. We use both
positive and synthetically-generated negative claims for testing the model. We include additional
experimental results in the supplemental file to demonstrate the need for truncated and non-
truncated procedure probability settings. In addition, we present binary SVM based classification
results on both inpatient and outpatient datasets.

One-class SVM is an extension of SVMwhich is applicable for the datasets with no negative claims.
Unlike binary SVM, one-class SVM identifies negative samples by learning a decision boundary
that maximizes the separation between the samples of the positive class and the rest [8, 37]. The
goal is to evaluate different negative claim generation techniques using accuracy, precision, and
recall on inpatient and outpatient claims data. Our evaluation also includes a uniform procedure



Negative Insurance Claim Generation 17

Table 3. Abbreviations of legends using diagnosis distance pooling and procedure probability setting functions.

Pooling Method Procedure Probability Setting
minsoft Minimum Softmax
minpsoft Minimum Partitional softmax
minprop Minimum Proportions
minpprop Minimum Partitional proportions
avgsoft Average Softmax
avgpsoft Average Partitional softmax
avgprop Average Proportions
avgpprop Average Partitional proportions

baseline (uniform) N/A Uniform

selection method as a baseline negative claim generator. Note that, we use the legends from Table 3
for the two diagnosis distance pooling and four procedure probability settings in the evaluations.
In the following, we discuss the evaluation results for inpatient and outpatient datasets with

respect to Skip-gram [30] based transformed features from diagnosis and procedure codes. We
extract features of vector lengths 10, 20, and 50. We present the results based on vector length 20, as
we observe similar results for the other vector lengths. In the following, we evaluate our approaches
on both inpatient and outpatient datasets using one-class SVM. One-class SVM is applied on
the positive claims to create a classification model and test on both positive and negative claims
generated using our proposed approaches and the baseline approach. We use 80% of the positive
claims for training and the remaining positive and negative claims as test data for evaluation using
one-class SVM.

4.3.1 Comparative evaluation with uniform replacement as a baseline. Figure 7 presents the accu-
racy, precision, and recall scores on inpatient dataset using one-class SVM with minimum and
average diagnosis distance pooling. One-class SVM is trained using only positive claims and tested
on both true positive and synthetic negative claims. The results in Figures 7(a) through 7(d) show
that the accuracy and precision scores increase linearly with negligible improvement with respect
to procedure replacement probability thresholds. However, we observe significant false positive
claims in the prediction results which contributes to high recall scores in Figure 7(e) and Figure 7(f).
To demonstrate the cause of high recall on inpatient data, we provide a sample confusion matrix
of one-class SVM classification in Table 4. The table shows a very high false positive score where
minimum distance pooling with softmax procedure probability setting and 0.1 procedure replace-
ment probability. The accuracy, precision, and recall scores from the confusion matrix are 0.162,
0.161, and 0.957, respectively. Therefore, the evidence supports the nature of one-class SVM which
easily identifies positive claims. However, the classifier exhibits a very poor performance to identify
negative claims. It mistakenly classifies 19,079 negative claims as positives. Therefore, the results
suggest that our proposed distance pooling based transformations have generated negative claims
which is very similar to the positive claims.

The primary reason for one-class SVM to perform poorly using all the proposed functions is that
the test data includes negative claims generated from the diagnosis distance pooling approaches. Our
approaches consist of a threshold parameter that regulates the contribution of positive procedures
within a negative claim, which also creates different levels of difficulties for the classifiers. The
poor classification performance of one-class SVM demonstrates that our negative claim generation
techniques can simulate actual fraudulent claims which are similar to positive claims.
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Fig. 7. Evaluation metrics of minimum (left) and average (right) poolings of negative claim generation and
the baseline approaches on inpatient dataset using a one-class SVM classifier.

Figures 7(a), 7(c), and 7(e) present one-class SVM results with respect to minimum diagnosis
distance pooling function. Minimum aggregation functions perform very similar to the baseline
(uniform) approach that replaces positive procedures uniformly at random. However, we observe
subtle differences in accuracy and precision scores between minimum and baseline (uniform)
approaches. In Figure 7(a), most of our approaches demonstrate lower accuracy compared to
the baseline (uniform) when procedure replacement probability is below 0.7. For the remaining
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Table 4. Confusion matrix for minimum distance pooling with softmax procedure probability setting and 0.1
procedure replacement probability using one-class SVM classification on inpatient claims. 𝑃 and 𝑁 denote
positive and negative classes, respectively.

Predicted
P N

Actual P 3670 161
N 19079 73

thresholds, our approaches either perform better or equal to the baseline. The reason behind this
phenomena is that our methods generate negative claims which are highly similar to the positive
claims in the vector space when replacement probability is lower. On the other hand, our methods
generate relatively distinguishable claims with replacement probability of 0.7 and higher compared
to the baseline. Precision scores in Figure 7(c) follows a similar pattern as accuracy presented in
Figure 7(a). Figure 7(e) demonstrates the strength of one-class SVM irrespective of the negative
claim generation method. The reason behind this is that the classifier is trained on a single type of
claim data.

Figures 7(b), 7(d), and 7(f) present one-class SVM results with respect to average diagnosis distance
pooling function on inpatient claims. Unlike minimum aggregation functions, our approaches with
average aggregation demonstrate lower accuracy compared to the baseline (uniform) approach for
higher replacement probability threshold of 0.8 or higher in Figure 7(b). It also shows that several of
our approaches such as average-softmax performs poor for lower threshold probability compared
to the baseline. Precision scores in Figure 7(d) follows a similar pattern as accuracy in Figure 7(b).
The reason for the average aggregation method to generate negative claims closer to the positive
claims within the inpatient claims is that it can choose a procedure in the negative claim which is
closer to the directly connected procedure set. Finally, recall scores demonstrate one-class SVM’s
ability to recognize the claim types accurately regarding the trained dataset. It also exhibits the
classifier’s consistent performance with respect to different data generation approaches.
Next, we present the performance of the proposed approaches on the outpatient data using

Figure 8. The figure shows that the classification results deteriorate steadily with the decrease in
replacement probability threshold. The major reason for low probability threshold based claim
features to be classified with lower performance is the graph structural differences between positive
and negative claims. We also notice that the overall performance improves with respect to the
regions of three threshold limits. The first two regions are from 0.1 to 0.5 and 0.5 to 0.8, which show
a piece-wise linear increase. In the final region between 0.8 and 1.0 the metrics show a steep increase.
Figures 8(a), 8(c), and 8(e) present accuracy, precision, and recall scores of our approaches based on
minimum aggregation on outpatient dataset. The accuracy scores are lower for partitional softmax
(minpsoft) and partitional proportions (minpprop) compared to the baseline (uniform) for procedure
replacement probabilities between 0.1 and 0.7. For higher thresholds both minpsoft and minpprop
either performs poorly (for threshold 0.9) or similarly. The softmax based procedure probability
setting has limitation of being scale invariant which might not ensure proper emphasis on the
procedures with shorter distances. On the other hand, proportions based procedure probability
setting has limitation of providing majority of the total probability to the majority of the procedures
with shorter distances compared to the few medium or longer distance procedures. To alleviate
these issues, partitional proportions and partitional softmax based procedure probability settings
are introduced. As a result, claims generated by both of these approaches perform poorly during
the classification process. Due to similar reasons, we observe identical behavior in Figures 8(b), 8(d),
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Fig. 8. Evaluation metrics of minimum (left) and average (right) poolings of negative claim generation and
the baseline (uniform) approaches on outpatient dataset using a one-class SVM classifier.

and 8(f) for both partitional softmax and partitional proportions with respect to average procedure
probability settings as well. We provide a sample confusion matrix of one-class SVM in Table 5
which shows a similar pattern compared to the results of inpatient claims in Table 4. In both cases,
false positive claims are very high which contributes to higher recall shown in Figures 8(e) and 8(f).

It is important to note that our original outpatient claim data has a significant portion of the total
claims with very low frequency of procedures. As a result, the replacement probability affects highly
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Table 5. Confusion matrix for minimum distance pooling with softmax procedure probability setting and 0.1
procedure replacement probability using one-class SVM classification on outpatient claims. 𝑃 and 𝑁 denote
positive and negative classes, respectively.

Predicted
P N

Actual P 7086 403
N 37348 94

for those claims with respect to the differences in procedure codes between positive and negative
claims. The synthetically generated negative claims’ partial bipartite structure looks completely
different compared to the original positive claim. Note that, we may face situations where a negative
claim is exactly similar to another negative claim. Those cases will reduce the number of generated
negative claims in the dataset. We describe the expected negative data generation by replacing
procedure codes in Figure 9 using a simple example. The illustration helps us to understand the
impact of expected number of edge switchings between diagnoses and procedure codes on the
bipartite graph structure for higher 𝜏 .
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Fig. 9. Example illustrations of expected number of edge switchings between diagnoses and procedures when
creating negative claims structures. (a) original positive claim, transformed claims with (b) 𝜏 = 0.5, (c) 𝜏 = 0.5,
and (d) 𝜏 = 1.0

Initially, we consider a positive claim with two diagnoses and two procedures in Figure 9(a). Next,
we show three examples of expected number of edge switchings on the original partial bipartite
graph structure of the positive claim. Figure 9(b) and 9(c) both are negative claim structures with
𝜏 = 0.5 where edges connected with one procedure are unchanged. Figure 9(d), on the other hand
is a complete edge switched negative claim. The illustration demonstrates that high probability
thresholds are expected to create completely new structures in negative claims, which help classifiers
to perform relatively better. We notice a similar behavior in Figure 7 as well.

The performance of one-class SVM is essentially poor for all procedure replacement probability
thresholds, yet relatively better for higher thresholds due to different types of codes and graph
structures created by our methods on both inpatient and outpatient datasets. This phenomena also
denotes that one-class SVM can not differentiate between positive and negative class claims with
varying levels of perturbations in the procedure codes.
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Fig. 10. Evaluation metrics of minimum (left) and average (right) poolings of truncated negative claim
generation and the baseline approaches on inpatient dataset using one-class SVM classifier.

4.3.2 Comparative evaluation with truncated procedure replacement. Figures 7 and 8 show that
the baseline method behaves similar to the proposed approaches, especially at higher procedure
replacement probabilities. As we analyzed our dataset further to explain this phenomena, we
noticed that the dataset contains too many procedures at all distance levels. For example the
inpatient dataset has only four distance levels, i.e., 1, 3, 5, and 7, covering 3126 procedure codes.
Similarly, the outpatient dataset has only five distance levels, i.e., 1, 3, 5, 7, and 9, which covers
2831 procedure codes. Therefore, the assignment of different probabilities to different distance
levels spreads out very thinly over all procedures. To empirically emphasize the difference between
the proposed approaches and the baseline approach we introduce the modified versions of the
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proposed approaches, where the distant procedures are explicitly truncated. That is, the procedures
that are located at five or more hops to the diagnoses group are assigned zero probabilities. To
demonstrate this idea, we conducted a similar experiment over the inpatient dataset using one-class
SVM with minimum and average diagnosis distance pooling. In this experiment we employed
the truncated versions of the proposed approaches, i.e., truncated-minsoft, truncated-minprop,
truncated-minpsoft, truncated-minpprop. Figure 10 presents the accuracy, precision and recall
values of different procedure replacement probabilities with minimum and average distance pooling.
In the figure the truncated versions of the proposed methods perform worse than the baseline ap-
proach in terms of all metrics for varying procedure replacement probabilities. Moreover, compared
to Figure 7 the truncated versions perform worse than the original ones. That is, the truncated
approaches generate more challenging negative claims for the classifier to classify which only
indicates improved synthetic negative claims. Please note that a lower accuracy in our experiments
implies better performing negative insurance claims. Table 6 shows the accuracy comparisons of the
original and truncated versions of the proposed approaches with minimum and average poolings
and 0.5 procedure replacement probability for the inpatient dataset. The ability of the classifier
to distinguish between positive and negative claims decreases between 18.99% and 22.61% for all
truncated approaches, where the maximum decrease is observed for the truncated proportional
softmax. Clearly, replacing the positive procedures with the negative ones that are much closer
to the diagnoses group creates a more challenging task for the classifier. In fact, we observed a
similar behavior over the outpatient dataset as well. On the other hand, the baseline approach, i.e.,
uniform replacement at random, does not account for any distance levels by nature. Although a
modified version of the baseline approach which truncates the distant procedures is possible, the
modification tarnishes the concept of baseline, i.e., “uniform replacement at random”.

Table 6. Accuracy comparisons of the original and truncated versions of the proposed approaches with
minimum and average poolings and 0.5 procedure replacement probability for the inpatient dataset

softmax partitional softmax proportions proportional softmax
original 0.1704 0.1698 0.1706 0.1722minimum truncated 0.1360 (20.18%↓) 0.1354 (20.26%↓) 0.1354 (20.63%↓) 0.1357 (21.20%↓)
original 0.1706 0.1719 0.1706 0.1796average truncated 0.1359 (20.39%↓) 0.1352 (21.35%↓) 0.1382 (18.99%↓) 0.1390 (22.61%↓)

Finally, we conclude our experimental discussion by emphasizing the need for both truncated
and non-truncated versions of procedure replacement techniques for generating synthetic negative
claims. Based on our experimental results, discussions, and data formats we noticed that the non-
truncated version of replacement is ideal for claim dataset where procedure code vocabulary has
limited number of codes. The reason for this phenomena is that the small number of procedures
have shorter group distance vector, which leads to selecting relevant procedures from corresponding
positive claim. On the other hand, truncated version of replacement is ideal for claims dataset
where procedure code vocabulary has large number of codes. The reason behind this is that the
large number of procedures have longer group distance vector, which leads to selecting irrelevant
procedures from corresponding positive claims. Therefore, we truncate the group distance vector
to eliminate highly irrelevant procedures from corresponding positive claim. Please note that,
inconsistent procedures are satisfactory within negative claims as long as they are consistent to
their corresponding diagnoses in the diagnosis set. On the contrary, inconsistent diagnoses are
natural in positive claims, as a patient may have multiple unrelated health conditions.
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5 CONCLUSIONS
In this paper, we developed a procedure to generate negative insurance claims from a ground
truth, positive health insurance claim dataset. In particular, we define positive claims as sets of
diagnosis and procedure codes and exploit the relationship between them as bipartite graphs to
quantify the relevancy or closeness between diagnosis groups and procedures. We presented two
distance pooling and four procedure probability setting approaches and explored the variations of
the negative insurance claim generation procedure. We used Medicare and Medicaid dataset from
Centers for Medicare and Medicaid Services (CMS) and applied our approach to both inpatient
and outpatient datasets which have discrepancies in their medical coding systems. We trained
a one-class SVM classifier using the positive dataset and tested our approaches using both true
positive and synthetic negative claims. The empirical results show that our procedure with average
distance pooling, such as average softmax, performs worse or equal for all procedure replacement
probabilities compared to the baseline method on the inpatient dataset. Note that a lower accuracy in
our experiments implies better performing negative insurance claims. On the other hand, methods
with minimum distance pooling performs poorly compared to the baseline method for procedure
replacement probabilities of 0.7 or lower on the inpatient dataset. Regarding the outpatient claims
dataset, minimum distance pooling with partitional softmax and partitional proportions exhibit
lower accuracies compared to the baseline approach for procedure replacement probabilities of 0.7
or lower. We observe similar results for the methods based on average distance pooling as well.
In addition, we introduced the truncated versions of the proposed approaches which reduce the
accuracy of the classifier around 20%, on the average. In summary, our experimental results show
that the generated negative claims are useful to simulate fraudulent claims in healthcare fraud
research, where negative instances are not available. Moreover, the presented synthetic negative
claim generation process is transferable to other domains where bipartite graph representations
are meaningful.
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