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Identification of Fraudulent Healthcare Claims
Using Fuzzy Bipartite Knowledge Graphs

Md Enamul Haque and Mehmet Engin Tozal

Abstract—Health insurance is one of the most important ser-
vices that people depend on for paying the bills related to hospital
and clinical services. This dependency on health insurance lures
some healthcare service providers to commit insurance frauds
which has become a grave concern. The majority of healthcare
fraud is committed by a very small number of untrustworthy
providers. Yet, such fraudulent actions damage the reputation
of the health service providers and cost the system billions of
dollars. In this paper, we specifically focus on the fraudulent claim
identification problem and develop different solution schemes to
identify the fraudulent cases in healthcare claims with minimal
data. We present a solution to the fraudulent claim identification
problem that translates diagnoses and procedure code’s relations
into Bipartite Graphs with Fuzzy Edges (BiGFuzzE). We also
investigate the extension of BiGFuzzE using vector representa-
tions of clinical codes instead of non-negative matrix factorization
(NMF). Our experimental evaluations demonstrate significant
outcomes.

Index Terms—Healthcare, Insurance, Fraud, Fuzzy Bipartite
Graph, Negative Insurance Claims

I. INTRODUCTION

Many countries face numerous challenges in their public
healthcare systems. Among these challenges, medical insur-
ance fraud is of a great importance, as it creates financial loss
for both patients and insurance providers. Medical or health
insurance fraud is defined as a crime which is committed
by a physician or group of physicians within a hospital to
gain financial benefits by misrepresenting claims to public or
commercial insurance providers [1]. The Center for Medicaid
and Medicare Services (CMS) in the U.S. projects that the
national healthcare expenditure (NHE) will increase to nearly
$6 trillion by 2027 [2]. A recent study shows that Medicare
and Medicaid paid an estimated $68 billion in improper
payments to the service providers that include fraud, waste,
and abuse [3]. The estimated financial losses due to the
fraudulent and fabricated claim submission is in the orders of
tens of billions of dollars in the United States [4]. However, an
insignificant portion of the total fraudulent cases are captured
and recovered despite the strict policies regarding fraud and
abuse [5].

Typically, a small number of dishonest providers commit
health insurance frauds, which include false diagnoses to
validate medically unnecessary procedures; billing for more
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expensive procedures than the actually performed; fabrication
of claims; and unbundling of procedures into multiple smaller
procedures. Furthermore, misrepresenting the need for proce-
dures that are not covered by the insurance companies such as
plastic surgeries, is also a method to obtain financial benefits
by the fraudulent providers. Nonetheless, due to the volume,
variety, and velocity of the data, it is not practical to apply
only domain knowledge to identify these frauds. Data mining
techniques are effective ways to analyze big data sources to
detect fraudulent claims at an early stage.

In this paper, we focus on the problem of healthcare fraud
detection from the perspective of health insurance providers
which include both private and government organizations. Our
prime goal is to identify unusual relations between diagnosis-
procedure pairs within a claim where limited but standardized
data is available. Our solution involves only diagnosis and
procedure codes which are common to medical claims among
other information such as patient data and claim amount. Ex-
isting methods try to identify frauds in insurance domain that
corresponds to different sources such as healthcare providers,
policy holders, and insurance amounts. In most of the cases,
these methods are applied on private datasets. In addition, the
features used in those datasets are diverse and generally not
compatible with each other to transfer a solution approach to
different healthcare software systems. Furthermore, the health
insurance companies are more reluctant to share the data
that involves patient specific information compared to other
sectors, such as retail and distribution. Therefore, we limit
our problem formulation to diagnosis and procedure codes
within a claim which can be processed similarly without
restricting to a country or healthcare management software.
Moreover, these medical codes are created and managed by
international organizations or national institutions. The limited
data usage also supports the Healthcare Insurance Portability
and Accountability Act (HIPAA) in the US, the General Data
Protection Regulation (GDPR) in Europe, or similar law in
other parts of the world. Our solution approach assumes that
the claim data contains fuzzy relationships between diagnosis
and procedure code pairs in International Classification of
Diseases (ICD) coding format. The proposed approach also
works on other coding formats such as Current Procedural
Terminology (CPT), Healthcare Common Procedure Coding
System (HCPCS), or their combinations.

Table I presents a sample treatment claim consisting of three
diagnosis and three procedure codes. Note that the insurance
claims do not convey the descriptions of the medical codes.
We obtained the descriptions from an online catalog to enrich
the information presented in the table [6].
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TABLE I
A SAMPLE POSITIVE CLAIM DATA CONTAINING ICD-9 DIAGNOSIS AND

PROCEDURE CODES.

Diagnosis Code ICD9v3 Description
41401 Coronary atherosclerosis of native coronary artery
4019 Other diagnostic procedures on lymphatic structures

V4581 Aortocoronary bypass status
Procedure Code ICD9v3 Description

3722 Left heart cardiac catheterization
42789 Other specified cardiac dysrhythmias
25000 Incision of tendon sheath

We represent the historical claim data as a fuzzy bipartite
graph where the nodes represent ICD, CPT, and/or HCPCS
format diagnosis and procedure codes. A fuzzy bipartite graph
is a graph such that the nodes are divided into two disjoint
sets D and P where no two vertices from the same set
share an edge between them. In addition, the edge weights
are bounded between 0 and 1, representing the normalized
occurrance frequency or probability of two codes appearing
together in a claim. More formally, a fuzzy bipartite graph G
is defined as G =< D,P,E >, where D = {di|1 ≤ i ≤ m},
P = {pj |1 ≤ j ≤ n}, E ⊆ D × P , and 0 ≤ Eij ≤ 1. We
present an example fuzzy bipartite graph in Figure 1, where
D and P contain diagnosis and procedure codes, respectively.
The diagnosis set D and procedure set P contain clinical codes
representing different diagnoses and procedures such as 7366
(“other acquired deformities of knee”) and 311 (“temporary
tracheostomy”). The edge weight, Eij , between a diagnosis-
procedure pair denotes the probability of the pair appearing
in a claim within the historical claims. For instance, diagnosis
code 0414 and procedure code 7301 has 0.01 probability of
appearing in a claim together.

Fig. 1. A partial fuzzy bipartite graph representation of a claim consisting of
diagnosis and procedure codes using fuzzy edges.

We construct Bipartite Graph with Fuzzy Edges
(BiGFuzzE) from the verified and reimbursed historical
insurance claims. Our goal in representing the claims using a
fuzzy bipartite graph is to be able to evaluate the strength of
direct relations between diagnoses and procedures. Moreover,
it helps us to assess the strength of indirect relations between
diagnoses and procedures through diagnosis to procedure
paths. Next, we use non-negative matrix factorization on
the reliable path length matrix to generate diagnoses’ and
procedures’ feature components. The path lengths allow us to
primarily identify the relevancy of a procedure and diagnosis
within a test claim. The diagnosis component facilitates
computing the similarity among diagnoses codes which is

employed in deciding a procedure as fraudulent or legitimate
in the final step of BiGFuzzE.

Our unique contributions in this study are summarized as
follows.

– We formulate the fraudulent claim identification problem
using fuzzy bipartite graphs and matrix factorization
over standardized claim data consisting of diagnosis and
procedure codes.

– We utilize reliable path lengths on the bipartite knowledge
graph to evaluate the relevancy between a pair of codes.

– We introduce clinical code-level similarity and compati-
bility within a claim to improve fraud identification tasks.

We compare BiGFuzzE with its diagnosis and procedure
component generation and neighbor selection methods based
on vector embeddings. In our default BiGFuzzE, we use
non-negative matrix factorization on the reliable path length
matrix for diagnosis and procedure component generation.
We initialize the components using vector representations of
clinical codes in BiGFuzzE+vector approach. We employ
a random selection classifier that labels a claim as either
fraudulent or non-fraudulent as a baseline comparison. Similar
to [7], we represent a claim as a sum of vector representations
of ICD9 and CPT codes. Then, we use the vector repre-
sentations as input to a traditional RNN with unidirectional
LSTM [8]. We also implement a bi-directinal RNN [9] to
efficiently represent the clinical codes in the vector space
for comparison. Additionally, we compute relevance scores
among diagnoses by non-negative matrix factorization and
cosine similarity to support the fraud identification procedure.
One important aspect of the proposed approach is that it can
provide procedure specific fraud scores for diagnoses, which
is not possible using the present methods (to the best of our
knowledge).

We collect health insurance claim dataset from the Center
for Medicaid and Medicare Services (CMS) which includes
verified and disbursed claims with diagnosis and procedure
codes. The dataset contains inpatient and outpatient claims
from years between 2008-2010. An inpatient visit refers to
services provided to patients with overnight stay in a hospital
or clinic by a physicians’ written order. On the other hand,
outpatient visits include emergency medical service, X-rays,
or any other services that do not require doctors’ written order.
Our experimental results show that Bipartite Graph with Fuzzy
Edges (BiGFuzzE) reaches an accuracy, precision, and recall
scores of 95%, 100%, and 87%, respectively on the inpatient
dataset acquired from CMS. Additionally, it demonstrates
97%, 100%, and 94% accuracy, precision, and recall scores,
respectively on the outpatient dataset. The proposed method
will directly benefit the health insurance companies and federal
government services such as Medicaid and Medicare in the
U.S. and abroad.

The rest of the paper is organized as follows. Section II
presents healthcare fraud related studies in general, including
both claim and provider level anomalies. Section III presents
a formal description of our problem setup for fraudulent
claim identification. Section V discusses detailed experimental
results. Finally, we conclude the paper in Section VI.
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II. RELATED WORK

According to the National Health Care Anti-Fraud Associa-
tion (NHCAA), healthcare fraud is defined as a deliberate act
of deceit or distortion of information that is submitted to orga-
nizations such as insurance companies with being aware that
the act would result financial gain [10]. Several works in the
literature propose solutions to the problem of fraudulent claim
identification and misuse of government provided insurance in
medical, pharmaceutical, and related domains. However, most
of the approaches are limited in terms of autonomous data
analysis, which performs independent fraud identification from
massive claim data.

Recent approaches to find fraudulent claims include fraud
detection in Medicare data without the provider labels by
applying machine learning models [11]. Bauder et al. [12]–
[14] proposed a fraud detection system that is similar to
identifying outliers in large payment systems using multiple
predictors. They applied their method on Medicare payment
and observed promising results [15]. They also used provider
specialty and payment distribution data to identify fraudulent
providers [16]. However, their assumption on the fraudulent
claims belonging to the providers from exclusion list is
impractical as the decision does not consider global claim
information and disease-procedure relations.

Mosley and Kucera used clustering, association analysis,
and principal component analysis of RIDIT [17, 18] scores
to find fraud in medical claims [19]. Similarly, Yang and
Hwang [10] built a healthcare fraud detection model with
the help of clinical pathways. Their method also demon-
strated hand crafted features for differentiating various types
of claims. They applied their methods on a real-world data
set collected from National Health Insurance (NHI) program
in Taiwan. Although the authors constructed different features
to generate patterns for both normal and abusive claims, they
did not mention the significance of those features.

Settipalli et al. [20] employed multivariate analysis and
a weighted multi-tree representation of claims to analyze
healthcare data. Their primary emphasis was on provider-
specific characteristics to detect potential instances of fraud.
However, their approach is not well-suited for identifying
fraud at the claim level. In contrast, our approach enables
claim-level testing even in situations where provider data is
unavailable, allowing us to uncover claim-level fraud more
effectively.

Farbmacher et al. [21] introduced text analysis to in-
corporate unstructured data into healthcare insurance fraud
detection. This approach successfully distinguished between
fraudulent and non-fraudulent claims, enabling accurate pay-
ment disbursement. Although our current solution relies on
structured data, we can enhance our method by incorporating
unstructured data as well, following the approach described in
their study.

Haque et al. [22] showcased the effectiveness of detecting
health insurance claim fraud by utilizing a combination of
clinical concepts extracted from insurance claims, such as di-
agnosis and procedure codes. While our approach to problem-
solving differs considerably from their study, we still leverage

similar structured data obtained from the claims to develop
our solution.

Zhang et al. [23] proposed a Medicare fraud detection
framework using anomaly detection method. The proposed
method consists of spatial density based algorithm. The au-
thors show that the method is more suitable compared to
simple local outlier factor (LoF) when applied on medical
insurance data. To overcome the issue of LoF, Kose et al. [24]
used interactive machine learning to incorporate knowledge
base in the unsupervised learning algorithms to identify fraud-
ulent and suspicious cases in healthcare domain.

Wang and Luo [25] presented a probabilistic programming
model based on Stan [26] to build an enhanced Beta regression
model and applied on Neuroprotection Exploratory Trials in
Parkinson’s Disease (PD) study. Bauder and Khoshgoftaar [16]
proposed a general outlier detection model using Bayesian in-
ference implemented in Stan [27] to screen healthcare claims.
Sowah et al. [28] used Genetic Support Vector Machines
(GSVMs) to demonstrate improved fraud detection and classi-
fication performance, resulting in reduced processing time and
increased accuracy compared to traditional SVM classifiers on
health insurance claims. Unlike solutions based on structured
healthcare claims, Mackey et al. [29] and Alnuaimi et al. [30]
created a healthcare fraud and abuse blockchain framework
and prototype on the Ethereum platform, utilizing essential
blockchain tools and layers such as consensus algorithms,
smart contracts, tokens, and governance based on digital
identity.

In general, we observe that the problem of detecting frauds
in medical domain has been identified using different ap-
proaches such as classification methods, Bayesian analysis,
statistical surveys, and expert analysis. Different data min-
ing approaches such as natural language processing, social
network analysis, text mining, temporal analysis, graphs,
and higher order feature constructions are used to discover
knowledge from massive healthcare data as well [31]–[34]. In
addition, many studies use private data or hand-picked non-
standard features for fraud detection. As a result, transferring
these solutions to other systems or directly comparing these
approaches turn into a challenge by itself.

Unlike most other approaches, our solution approach rep-
resents the claim data (diagnosis-procedure relations) using
a fuzzy bipartite graph termed as knowledge graph, where
diagnoses and procedure codes are considered as the prime
elements of a claim. Under this setting we tackle the problem
of flagging a procedure as legitimate or fraudulent using
neighborhood based similarity of diagnoses for a particular
procedure code within a test claim.

III. FRAUDULENT CLAIM IDENTIFICATION PROCESS

In this section, we formally introduce the fraudulent health-
care claim identification problem and its solution using Bi-
partite Graphs with Fuzzy Edges (BiGFuzzE). We execute
our solution approach on publicly available health insur-
ance claims data. In the following, we first describe a brief
background on bipartite graphs with fuzzy edges. Next, we
formally present the problem and solution by describing the
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process to create a bipartite knowledge graph from the health
insurance claims. Finally, we demonstrate the overall solution
approach using offline pre-computation and online fraudulent
claim identification transformations and algorithms. Moreover,
we describe individual components of the transformations and
algorithms using illustrative examples.

A. Fundamental Definitions

Fuzzy graphs are usually defined in two categories where
either both vertices and edges or only the edges are considered
fuzzy. Rosenfield defined a fuzzy graph where both vertices
and edges follow a membership function as:

Definition 1. “A fuzzy graph G = (σ, µ) consists of pair of
functions σ and µ where σ : S → [0, 1] and µ : S×S → [0, 1]
for all x, y ∈ S where µ(x, y) ≤ σ(x) ∧ σ(y).” [35]

On the other hand, Yeh et al. defined a fuzzy graph where
only edges follow a membership function as:

Definition 2. “A fuzzy graph Gf = (V,R) where V is a
set of vertices and R is fuzzy relation on V in which the
edges connecting the vertices in V have membership function
µR : V × V → [0, 1].” [36]

We represent the healthcare claims as a bipartite graph where
diagnoses and procedures are kept in two separate sets. Ad-
ditionally, we choose the membership function to assign edge
weights to the bipartite graph by following Definition 2.

Definition 3. A fuzzy bipartite graph Bf = ⟨D,P,E⟩ where
D and P are two distinct sets of vertices and E denotes the
edges connecting the vertices between D and P , where Eij →
[0, 1]∀di ∈ D, pj ∈ P .

B. Problem Statement

We assume that our dataset consists of healthcare claims
with diagnoses/procedure code information. The i-th claim
consists of a set of diagnoses and a set of procedures codes.
The claim data from healthcare providers is viewed as a
bipartite graph G = ⟨D,P,E⟩, where D = {di : 1 ≤ i ≤ m},
P = {pj : 1 ≤ j ≤ n}, and E ⊆ D × P . D and P are
referred as diagnosis and procedure code sets, respectively.
E refers to the fuzzy edge set representing the immediate
relations between D and P . We assume the graph G has m
diagnosis in set D and n procedures in set P . We present
our fraud identification algorithms using a bipartite graph
where a fuzzy edge weight refers to the probability of a
pair of diagnosis and procedure codes to appear in a claim
together. Figure 2 is an example fuzzy bipartite graph with
four diagnoses and four procedures. The weights of each
link is computed using the normalized occurrance frequency
(probability) of a diagnosis-procedure pair appearing in a
claim in our dataset. The corresponding bi-adjacency matrix
of Figure 2 is shown in Figure 3 where each row and column
represents a diagnosis and a procedure, respectively. Note that,
we use the bi-adjacency matrix in our solution approach as a
knowledge graph representing the immediate relations between
diagnoses and procedures.

Fig. 2. An illustrative bipartite graph representing relations between diagnoses
and procedures.

B =


w11 w12 0 0
w21 0 0 w24

0 0 w33 w34

0 w42 w43 0


Fig. 3. Bi-adjacency matrix representation of the bipartite graph shown in
Figure 2 where wij denotes that diagnosis i and procedure j are linked wij%
of times compared to all other occurrences in the historical positive claims.
Each row and column correspond to a diagnosis and procedure, respectively.

Our problem formulation asks: given a ground truth knowl-
edge graph Bf , how can we flag procedure pi as legitimate
or fraudulent for a new test claim Ct, assuming that the
ground truth data contains all historical claims. Note that,
the bipartite knowledge graph is a one time computation
and can be updated with the introduction of new diagno-
sis and procedure codes in the claims. A new test claim
data Ct is represented as a diagnosis-procedure vector tuple
({d1, d2, . . . , dk}{p1, p2, . . . , pl}), where di and pj refer to
the i-th diagnosis and j-th procedure, respectively. To give a
simple example, consider a new test claim Ct containing tuples
({d1, d4}{p1, p3, p4, p5}).

IV. PROBLEM SOLUTION

In this section, we present BiGFuzzE using a twofold
approach which includes offline and online computation pro-
cesses. The offline computation process involves building a
bipartite knowledge graph. The online computation process
involves verifying a new claim against the pre-built knowledge
graph. First, we demonstrate the offline computation elements
with comprehensive illustrations and discussions. Next, we
explain the online computation steps using an algorithm, an
illustrative example, and discussions. Finally, we present the
interpretation of our fraudulent claim identification process
using a sample claim.

A. Offline Pre-computation Steps

We demonstrate the offline computation steps in Figure 4.
Our primary goal during these computations is to build the
knowledge graph, Bf , and all pairs diagnoses similarity score,
S, to use as inputs for the online computation process later.

Fuzzy Bipartite Graph: We construct a fuzzy bipartite
graph Bf using the probability between a diagnosis and proce-
dure pair from the claims dataset. The diagnosis and procedure
components are extracted from the dataset to be used as two
disjoint sets in the bipartite graph. The edge weights, Eij

between diagnosis di and procedure pj is computed using the
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NMF on

Diagnoses Component
Extraction

All Pairs Maximum Reliable 
Path Length Matrix

Adjacency Matrix

Logarithmic TransformationFuzzy Bipartite GraphHistorical Positive Claims

All Pairs Similarity Matrix

Fig. 4. Offline computation processes to demonstrate individual steps to store fuzzy biaprtite graph Bf and similarity matrix S that store bipartite graph
structure of the historical positive claims and all pairs diagnoses similarity scores. Higher width of the edge in Bw denote high reliable path.

probability Pr(di, pj). In a bipartite graph, edges exist between
vertices of two different types, providing various levels of
proximity between vertex pairs. Following the modeling of
first-order proximity [37, 38], we model explicit relations
between a pair of vertices in the fuzzy bipartite graph. The
probability of a pair of diagnosis and procedure appearing in
a claim is defined using Equation 1.

Pr(di, pj) =
wij∑

eij∈E

wij
(1)

where wij denotes the number of times di and pj appeared
together in a claim. eij refers to a link between the i-th
diagnosis and j-th procedure code in the bipartite graph Bf .
The edge weights between a diagnosis and procedure falls
between 0 and 1 and stores the pairwise significance of
diagnosis and procedure pairs. If a diagnosis and procedure
pair is very frequent in the dataset, it will have a higher
probability.

Definition 4. First-order (local) proximity: The first order
proximity of a bipartite graph G = ⟨V1, V2, E⟩ is the local
pairwise distance between nodes from two vertex sets. For
every pair of vertices from set V1 and V2 that are connected
via an edge eij , the frequency of that edge wij denotes the first
order proximity between i and j where i ∈ V1 and j ∈ V2.
The proximity is non-zero only if there is an edge between
the target node to others.

Logarithmic Transformation: The offline computation

steps require shortest path computation between all pairs of
diagnoses and procedures in Bf . The shortest path lengths
are used as an input to the matrix factorization algorithm to
generate diagnosis and procedure components, which facili-
tates diagnosis and procedure similarity computations. As the
edge weights of the bipartite knowledge graph are represented
using probabilities, the direct application of the shortest path
algorithm is not appropriate. If we directly apply all-pairs
shortest path algorithm such as Johnsons algorithm on the
fuzzy bipartite graph, the paths with higher probability scores
may assume less importance. However, in our problem setting,
we consider an edge as important when the probability is
relatively higher. We illustrate the problem of direct appli-
cation of all-pairs shortest path on an example bipartite graph
in Figure 2. We redraw Figure 2 in Figure 5 for better
understanding and clarity with example edge weights.

Path	I

Path	II

Fig. 5. Redrawn layout of Figure 2 to illustrate logarithmic edge transforma-
tion for shortest path computation.

Suppose that we want to compute the shortest path between
nodes d1 and p4. The shortest path algorithm have two paths
to choose from d1 to p4. For the first path that includes nodes
d1, p1, d2, and p4, the total weight is 0.064. The second path
with nodes d1, p2, d4, p3, d3 and p4 has total weight 0.279.
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Therefore the first path will be selected as the shortest path
from d1 to p4. However, if the algorithm selects the first path
we are giving more priority to weak links such as p1 to d2 and
d2 to p4 having probabilities 0.001 and 0.003, respectively. On
the other hand, if we use negative logarithm transformation on
the edges of the fuzzy bipartite graph before applying all pairs
shortest path algorithm, we get 15.53 and 14.76 for the first
and second paths, respectively. In this case, the second path
is selected rightfully.
By following the maximum reliability path [39, 40], the
edges of the fuzzy bipartite graph, Bf is transformed using
a negative logarithmic transformation which will allow us to
apply Johnson’s all-pairs shortest path algorithm on the fuzzy
bipartite graph. We transform the fuzzy bipartite graph Bf to
Bw so that the edge EBw

= − log
(
EBf

)
as shown in Figure 4.

This subproblem is formulated as follows. Suppose that we are
given a bipartite graph Bw = ⟨D ∪P,E⟩ on which each edge
(di, pj) ∈ E has an associated probability score Pr(di, pj) that
represents the reliability of a diagnosis-procedure relation from
vertex di to vertex pj . In order to compute the most reliable
path between a pair of vertices within the graph, our goal is
to find a path r̂ such that the product of the edge probabilities
within that path is maximized. Let di be the source diagnosis
and pj be the destination procedure, and let R be the set of
all possible paths from di to pj . The maximum reliable path
r̂ [39] is then defined using Equation 2.

r̂ = argmax
r∈R

∏
(dk,pl)∈r

Pr(dk, pl) (2)

where r denotes a path from source di to destination pj and
represented as r = (di, p∗), . . . , (dk, pl), . . ., (d∗, pj). The
problem in Equation 2 is transformed into a shortest path
problem by translating the edge weights using negative loga-
rithm. As the logarithm is a strictly monotonically increasing
function, we can apply the logarithm on Equation 2 without
changing the maximization problem using Equation 3 [39].

r̂ = argmax
r∈R

(
log

∏
(dk,pl)∈r

Pr(dk, pl)

)
= argmax

r∈R

∑
(dk,pl)∈r

log Pr(dk, pl)

(3)

Next, we can transform the maximization problem in Equa-
tion 3 into the minimization probelm in Equation 4 by negating
the sum and keeping the objective unchanged [39]. This
transformation helps us to apply the shortest path algorithm
on the edge weights (− log(ri)) of the bipartite graph.

r̂ = argmin
r∈R

(
−

∑
(dk,pl)∈r

log Pr(dk, pl)

)
= argmin

r∈R

∑
(dk,pl)∈r

− log Pr(dk, pl)

(4)

As our bipartite graph is very sparse, we apply Johnson’s
algorithm to solve the all pairs shortest path problem on
the transformed graph. The initialization of edge probabilities

takes O(E) time, and the rest is the same as Johnson’s algo-
rithm. Therefore, the algorithm runs in O

(
V E log V

)
+O(E)

or O(V E log V ) where V = |D + P |, which is equivalent
time complexity of Johnson’s algorithm.

Adjacency Matrix and Shortest Paths: As we are dealing
with a bipartite graph, the shortest path algorithm can not
be directly applied on the bi-adjacency matrix. Therefore, we
transform the bi-adjacency matrix into adjacency matrix A as
illustrated in Figure 4.

Definition 5. All pairs shortest paths (APSP) of a graph refers
to finding the shortest path between all pairs of vertices in the
graph and it corresponds to the maximum reliability path in
our setup. Formally, let G = (V,E) be a graph consisting a
vertex set V and edge set E. For each pair of nodes (u, v) in
V , a subset of edges from E need to be selected so that the
subset contains a simple path with start and end vertex of u
and v and has minimal weighted sum. If there exists no such
path the shortest path set is empty and its length is infinite.

All-pairs maximum reliability path matrix D is computed
from an adjacency matrix. We employ Johnson’s [41] all-
pairs shortest path algorithm on the bi-adjacency matrix. The
algorithm requires a square adjacency matrix where we repre-
sent every pair of vertices with their edge weights. However,
bipartite graphs do not have inter-connection within the nodes
of individual sets, hence the bi-adjacency matrix does not
capture all pairs relationship. Therefore, we transform the
initial bi-adjacency matrix Bw into a sparse adjacency matrix
A using the following matrix operation in Equation 5.

A =

(
0 Bw
B⊤w 0

)
(5)

Considering the bi-adjacency matrix with rows as diagnoses
and columns as procedures, we get the following four blocks
in the final all-pairs maximum reliable paths matrix, D.

D =

[
D⇝ Dm×m D⇝ Pm×n

P⇝ Dn×m P⇝ Pn×n

]
(6)

As we only require the path lengths between diagnosis-
procedure pairs, we can use either the top-right or bottom-left
block from matrix D. In our experiments, we used the top right
block. We compute the closeness or relevancy score between
all pairs of diagnosis-procedure codes using the reciprocal of
the maximum reliable path lengths from the bipartite graph,
Bw. The closeness matrix Z is computed from the second
component of matrix D using Equation 7.

Zij =

{
1

|di,pj | , if di ⇝ pj

0, otherwise
(7)

where di ⇝ pj refers to a valid path between diagnosis di
and procedure pj , and |di, pj | denotes the maximum reliable
path-length between them.

Diagnoses Similarity: To address the subproblem, finding
similarity between a pair of diagnoses, we apply a two-step
process: i) latent factor modeling on the closeness matrix to get
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diagnosis and procedure components and ii) diagnosis similar-
ity matrix using cosine metric from the diagnosis component
of the latent factor modeling.

Given a row vector (diagnosis component in the latent
space) di ∈ D, we need to compute a similarity score for each
row node dj ∈ D where i ̸= j. The final outcome is a 1-by-m
vector consisting of all the similarity scores from di where
m refers to the number of unique diagnoses. We assume that
the diagnoses and procedures share a common latent space
where they can be factorized into two separate components
each describing the properties of diagnoses and procedures,
respectively. To materialize the assumption, we consider non-
negative matrix factorization on the closeness matrix and get
two new components for diagnoses and procedures in the latent
space. Let the closeness matrix Z share a latent space by two
non-negative matrix components D and P such that:

Z ≈ DP (8)

where D and P denote the latent space representations of
diagnosis and procedure codes. We decompose the matrix Z
into two components with dimensions m×k and k×n, respec-
tively where k < min(m,n). m,n, and k denote the number
of diagnoses, procedures, and latent factors, respectively.
To find an approximate factorization of Z ≈ DP, we first
define a cost function that quantify the quality of approxi-
mation by minimizing the distance between Z and the matrix
product DP. We used Frobenius norm as the distance function
which is an extension of the Euclidean norm to matrices [42].
Therefore, the optimization problem for decomposing the
closeness matrix into diagnosis and procedure components is
formulated using Equation 9.

arg min
D,P>0

1

2
||Z −DP||2F (9)

NMF is an NP-hard Problem and its complexity is O(mnr)
on most real-world problems [43], where m,n and r are the
number of rows, columns and the desired rank of a matrix.

After we decompose the closeness matrix Z into D and
P, we construct the similarity matrix S for all diagnosis pairs
by employing the cosine similarity metric using Equation 10.
Note that the cosine similarity metric allows us to ignore the
magnitude of the diagnoses in the latent factor space, but
consider their dimensions.

S(di, dj) =


∑r

k=1 dikdjk√∑r
k=1 dik

2
√∑r

k=1 djk
2
, if i ̸= j

1, if i = j
(10)

where di and dj are the rows of D, representing the diagnoses
in the latent space. The similarity matrix S is symmetric since
the edges of the bipartite graph in our problem formulation are
undirected.

B. Online computation Process

In this part, we present the online computation process
to classify new claims using our proposed algorithm and an
illustrative example.

Online Algorithm: We demonstrate the working princi-
ples of the fraudulent claim identification process using an
algorithmic template presented in Algorithm 1. The algorithm
expects a test claim Ct, the fuzzy bipartite knowledge graph
Bf , a decision threshold λ, and the diagnoses similarity matrix
S as inputs, and returns a test claim status Ψ, verifying
whether the claim is fraudulent or not. The decision threshold
λ is a hyper-parameter of our algorithm which is initialized
between 0.01 and 0.5. This can be set appropriately based on
the system requirements. Higher values of λ enforces strict
rules for fraudulent claim identification. On the other hand,
lower values of λ can produce high false positives. Note
that, both the knowledge graph and the similarity matrices
are precomputed during the offline process, which contributes
to lower computational complexity in the verification process.

Lines 1-3 initialize the test claim status, global similarity,
and new procedure link frequency. The claim staus Ψ is initial-
ized to false, indicating non-fraudulent. Global similarity and
procedure link frequencies are set to zero. Global similarity is
used to store the total similarity score for all new daignosis-
procedure pairs within the test claim. Line 3 stores the number
of procedures L that have complete new assignment within a
test claim. For example, if a procedure pi have at least one
new shared edge with the diagnosis group, then L is increased
by one.

Definition 6. Trust set R denotes a set of diagnoses codes,
which have links to a procedure in the knowledge graph and
has non-zero probability. On the other hand, non-trust set
R′ contains all diagnoses from the test claim which are not
included in the trust set R. Therefore R′ = {Dt} \ R where
{Dt} is the diagnoses set of the test claim.

At lines 4-27, Algorithm 1 traverses all the procedures
within the test claim Ct to compute the local and global
similarity scores. Line 5 initializes the local similarity score σl.
Line 6 initializes the number of links α between a procedure
and the diagnoses group, which were not seen previously in
the historical claims. Local similarity score is computed for
every procedure with respect to the diagnoses set within the
test claim. For example, if a test claim consists of m diagnoses
{d1, d2, . . . , dm} and one procedure, the local similarity score
will be computed in m iterations. At each iteration, a diagnosis
will be compared with the trust set of the procedure using
diagnoses similarity matrix S. If the procedure is linked with
trusted diagnoses set R which do not overlap with the m
diagnoses within the test claim, then the value of the number
of unseen links α will be m and the local similarity σl for
a single procedure within the test claim is computed using
Equation 11.

σl =

α∑
i=1

|R|∑
j=1

S(di, ρj)

|R| ∗ α
(11)

where ρj denotes j-th diagnosis within the trust set R. This
computation is performed at line 22.

Line 7 initializes a binary variable Φ to ensure the use of
a procedure only once with the group of diagnoses in trust
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Algorithm 1: Online algorithmic framework for fraudulent claim identification.
Input: New test claim, Ct = {Dt, Pt}
Input: Fuzzy bipartite graph Bf // precomputed knowledge graph from the offline process
Input: All pairs diagnoses similarity matrix S // precomputed from the offline process
Input: Decision threshold similarity values λ
Output: Test claim status, Ψ

1: Test claim status Ψ← False // test claim status is initialized to non-fraudulent
/* Online computation steps for fraudulent score */

2: Global similarity σg ← 0
3: New procedure links L ← 0 // number of procedures with at least one new link
4: for ∀pi ∈ Pt of Ct do
5: Local similarity σl ← 0
6: Temporary active links α← 0
7: Φ← False
8: for ∀dj ∈ Dt of Ct do
9: if Bf [pi][dj ] ≤ 0 then

10: α← α+ 1
11: if Φ == False then
12: L ← L+ 1
13: Φ← True
14: R ← find diagnoses set from pi using Bf // diagnoses stored in trust set with respect

to pi
15: end if
16: for ρ ∈ R do
17: σl ← σl + S(ρ, dj) // similarity scores between a pair of diagnoses
18: end for
19: end if
20: end for
21: if α ̸= 0 then
22: σl ← σl

|R|∗α // local similarity scores between a pi and other diagnosis
23: else
24: σl ← 1 // when all the relations have non-zero probability in Bf
25: end if
26: σg ← σg + σl // accumulating global similarity from local similarities
27: end for
28: if L > 0 then
29: σg ← σg

L // average global similarity
30: if σg ≤ λ then
31: Ψ← True // mark Ct as fraud for additional verification
32: end if
33: end if
34: return Ψ

set R if at least one link is new. The algorithm proceeds by
comparing this variable on line 11 to prohibit locating the
same trust set for multiple times. Lines 8-20 traverses the
diagnoses of claim Ct for computing the local similarity σl for
a single procedure. Line 9 checks whether a link between a
procedure and a diagnosis is valid from the bipartite graph Bf .
Line 10 increments the temporary active links variable that is
required to keep track of the number of non-existent diagnosis-
procedure links within the test claim. Line 11 verifies the
indicator variable Φ once a link between a procedure and
a diagnosis is not found in Bf . This also ensures that the
procedure link L is updated only once for a procedure from
the test claim if the procedure has at least one new diagnosis.

Line 13 resets the indicator variable for a procedure to avoid
multiple increments of L. It also looks up for the trust set only
once during each iteration to avoid computational complexity
at line 14. Lines 16-18 finds similarity scores between a
diagnosis from the test claim and the diagnoses set which
share positive edge weights with the procedure.

Lines 21-25 computes local similarity score σl if at least one
new link is found, otherwise the link is already in Bf . Line
26 sums up all local similarity scores to get the total global
similarity score for all procedures within claim Ct. Line 29
computes the average global similarity score using the new
procedure link count L in Equation 12.
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σg =

∑
pi∈Pt

σpi

l

L
(12)

where pi is a member of the procedures set Pt from test
claim Ct and σpi

l denotes local similarity of procedure pi
from Equation 11. Line 31 assigns the claim status label based
on the threshold value λ, which is chosen empirically. Note
that, the value of λ should be chosen according to the level
of flexibility that can be tolerated by the organization that is
going to use the system for the claim reconciliation purposes.
Finally, line 36 returns the test claim status Ψ.

Algorithm 1 requires a precomputed knowledge graph Bf
and a diagnoses similarity matrix S. The memory complexity
of our approach is |D||P | + |D||D| = |D|(|P | + |D|) where
|D| is the number of diagnoses and |P | is the number of
procedures with respect to a medical coding system. The
algorithm runs in |Pt||Dt||D| time, which is asymptotically
bounded by |P ||D||D| where |D| is the number of diagnoses
and |P | is the number of procedures with respect to a medical
coding system.

Once we apply our fuzzy bipartite graph method on a
new sample claim, we flag the claim based on the pre-
computed closeness and similarity scores from the ground
truth knowledge graph. In the following, we present an il-
lustrative example to briefly visualize the working principles
of the online algorithm presented in Algorithm 1.

Illustrative Example: Figure 6 presents a simplified ex-
ample computing the fraud score for a procedure within a
test claim. Although, the example test claim consists of five
procedures, we only demonstrate the online algorithm applied
on a single procedure as the rest follow the same process.

Let us assume that a test claim Ct consists of four diagnoses
{d1, d2, d3, d4} and five procedures {p1, p2, p3, p4, p5}. Our
goal is to identify whether the claim Ct is fraudulent or not.
We explain the figure using the fraud score computation for
procedure p1. The remaining procedures are treated similarly
to compute the overall fraud score for Ct. In Figure 6(a) the
claim with four diagnoses and five procedures are presented
with a fully connected bipartite graph. We represent the
connection between every diagnosis and procedure pair using
dashed lines to emphasize that the edges (or relations) need
to be verified. In Figure 6(b) we demonstrate the relation
between a diagnosis and procedure using both dashed and solid
edges. The dashed edges denote a complete bipartite graph
between all pairs of diagnoses and procedures in Ct, similar
to Figure 6(a). The set of diagnoses that are connected with a
procedure using solid edges denote the trusted diagnoses set R
for that procedure which is extracted from the pre-computed
knowledge graph. Note that, a diagnosis from a test claim,
which is initially marked as dashed, can also be in the trusted
set for a procedure after analyzing the knowledge graph. It
means that the specific diagnosis-procedure pair in the test
claim is valid. In our example, diagnosis d3 belongs to both the
test claim and the trust set of procedure p1. Therefore the edge
between p1 and d3 are legitimate. We find the diagnoses from
the test claim which are not present in the trusted set R for a
particular procedure. Next, we compute the similarity scores

between a diagnosis of non-trust set R′ and all the members
of R. We repeat this process for all non-trust set diagnoses
and the procedure. For instance, the diagnoses members of
non-trust set are d1, d2, and d4 for procedure p1 as shown
with dashed lines.

In Figure 6(c), we demonstrate the first iteration of the on-
line algorithm where the similarity lookup between a non-trust
diagnosis d1 and all members of the trust set {di, dj , dk, d3} is
computed. The goal of this operation is to validate the relation
between diagnosis d1 and procedure p1 with respect to the
knowledge graph Bf . The similarity score σd1

is computed by
averaging the lookup similarity scores from the precomputed
similarity matrix S, mentioned at line 17 of Algorithm 1.
Similar to the first iteration, we demonstrate the second and
third iterations for procedure p1 in Figures 6(d) and 6(e),
respectively. In the second iteration, the similarity scores
are looked up from S for non-trust diagnosis d2 and all
members of the trust set members {di, dj , dk, d3} using
S(d2, di),S(d2, dj),S(d2, dk), and S(d2, d3), respectively. In
the third iteration, we compute σd4 by using the same process.
Therefore, for a procedure within the test claim every iteration
computes the average similarity score of the corresponding
diagnosis with the existing diagnoses. If the average score
is very low, the diagnosis within the test set is likely to be
a fraud and needs further investigation. In our example, the
overall similarity score with respect to procedure p1 is further
averaged with respect to the number of non-trusted diagnoses
as σp1

= (σd1
+ σd2

+ σd4
)/(|R| ∗ |R′|).We follow the

similar process for the remaining procedures p2, p3, p4, and
p5 of the test claim. The average similarity score is computed
with respect to all the five procedures of test claim Ct as
σg = (σp1

+ σp2
+ · · · + σp5

)/|Pt|. Finally, a fraudulent
flag is assigned to claim ct if the similarity score is less than
a predefined threshold parameter λ.

C. Interpretation

Interpretable models are one of the prime requirements
in the healthcare domain for predictive tasks, such as claim
status identification. The model should be explainable so
that the theory behind the algorithm is well understood. In
BiGFuzzE, we achieve this by analyzing the closeness matrix
and neighborhood selection steps. Closeness matrix stores the
relevancy between all pairs of diagnosis and procedures codes
and later used to generate diagnosis components in the latent
space. On the other hand, the trust set R finds a set of
diagnoses that are directly related to a procedure pj within
a test claim. When the procedure pj is tested for suspicion
with respect to a valid diagnosis code di, first the procedure
code pj is searched in the knowledge graph Bf where it is in
the direct neighborhood of the diagnosis di. If there is no link
available in Bf , we then search for the similarity between
di and the trusted set of pj including the diagnoses from
Bf that are immediately connected to pj via positive edge
weights. Our assumption is that if the procedure is not directly
related to the diagnosis di, the neighbor diagnoses, dk, of the
procedure might be related to the diagnosis di, where k ̸= i
and k ∈ {1, 2, . . . ,m}. Finally, the procedure pj is marked
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Fig. 6. Illustration of the online computation process for procedure p1. Dashed edges refer to the relations between diagnoses and procedure codes which
needs verification. Solid edges denote the trust set R from the knowledge graph Bf .

as suspicious if the average similarity score between the test
diagnoses and the trust set R goes below predefined decision
threshold λ.

V. EMPIRICAL EVALUATIONS

We conducted experiments on two claims data to determine
if BiGFuzzE offers significant prediction performance com-
pared to the baseline and RNN based models. Note that, we
do not compare our approach with the existing fraud detection
studies that use CMS claim data, because all the methods
use non-clinical code based features such as provider payment
information and physicians’ previous historical claim amounts
with different problem formulation [11]–[16]. In addition,
our clinical-code based synthetic negative claim generation
methods are not applicable for those studies. To the best
of our knowledge, there is no existing study that benefits
from using diagnoses and procedure codes within the claim
while identifying claim-based frauds. As the diagnoses and
procedure codes not only contain rich information regarding
treatments but also remain unchanged due to universal coding
format within a claim, we only emphasize on these codes in
our developed BiGFuzzE models.

In this section, we first describe the experimental setup
followed by the evaluations of BiGFuzzE with alternative and
baseline models. Then, we present a qualitative visualization
of the diagnoses and procedures relations that demonstrate the
fraudulent claims.

A. Datasets

We collect health insurance claim dataset from the Center
for Medicaid and Medicare Services (CMS) which includes
verified and disbursed claims with diagnosis and procedure
codes. The dataset contains inpatient and outpatient claims
between years 2008-2010. The claims include medical diag-
nosis and procedure codes in conjunction with de-identified
zip code, beneficiary payments, and patient information. In
our BiGFuzzE model, we discard this information, as not
only it limits our model to certain software or healthcare
provider but also it is irrelevant to our problem definition.

We apply offline computation on the historical positive claims
from two random data files from the CMS dataset. We perform
two sets of experiments in the online testing process to
demonstrate the efficacy of BiGFuzzE using 33,387 inpatient
and 39,540 outpatient positive claims from two randomly
selected data files. The offline and online computation data do
not overlap. Note that, our test data includes corresponding
synthetic negative claims as well.
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Fig. 7. Diagnosis and procedure frequency distributions per claim.

Figure 7 summarizes the combined inpatient and outpatient
positive claims with respect to the number of diagnosis and
procedures within a claim. As shown in the figures both
distributions have long tails with a spike at nine in Figure 7(a),
because doctors often make zero to a few diagnoses and apply
zero to several procedures as part of a treatment.

Synthetic negative claim generation: One important chal-
lenge in evaluating the fraud identification models is the lack
of negative ground truth claims. We generate synthetic nega-
tive claims based on the bipartite relations between diagnosis
and procedure pairs within historical positive claims [44].
The first step in our negative claim generation method is
to generate probabilities over all procedures in the ground
truth positive claims. We use minimum pooling and softmax
procedure probability assignment to produce such probabili-
ties. Finally, we randomly draw negative procedures according
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to the computed probability distribution to generate negative
claims by replacing the procedures in a set of positive claims.

Given a candidate negative claim C = {Di, Pi}, let
Di = {d1, d2, . . . , dk} have corresponding distance vectors
{v1,v2, . . . ,vk}. Each row, vj of second block of the dis-
tance matrix D in Equation 6 denotes the relevancy between
diagnosis dj and all procedures. Minimum pooling aggregates
all distance vectors into a single vector v by computing
element-wise minimum of the distance vectors as shown in
Equation 13.

vi = min{v1i,v2i, . . . ,vki} (13)

where vji denotes the distance of the j-th diagnosis to the
i-th procedure and vi is the distance of the diagnosis group
to the i-th procedure. We use minimum pooling approach in
the negative claim generation process because the distance of
a group of diagnoses to a particular procedure should not be
more than the closest diagnosis to the procedure.

Next, given a pooled diagnosis-procedure distance vector
v, we assign probabilities to procedures using the softmax
function in Equation 14, which translates the distance vector
v into probability vector u over all procedures.

ui =


0 if vi = 1

exp

(
1
vi

)
n∑

j=1

exp
(

1
vj

) otherwise (14)

where n denotes the number of procedures in the original
bipartite graph Bf . We replace a procedure of a positive claim
based on randomly selected procedure from P according to
the probability distribution u.

B. Experimental Results

In this part, first we present the experimental design that
includes Recurrent Neural Network (RNN) and baseline meth-
ods for comparison. We compare two versions of BiGFuzzE
with these methods. Note that, we use Skip-gram [45] model
to transform the ICD codes into vector embeddings, as the
RNN method requires code embedding as input. We ran our
experiments on a server machine with 48 Intel Xeon CPUs
and 512 GB RAM, running the Ubuntu flavor of Linux OS.

The first two proposed models include BiGFuzzE and
BiGFuzzE+vector. The other models include RNN+uni,
RNN+bi, and baseline. Our model has one hyper-parameter λ
that controls the flexibility of the fraud detection. In addition,
we have procedure replacement probability parameter that is
used for generating different levels of negative claims.
BiGFuzzE: During the knowledge graph generation phase,
input claims are transformed into a fuzzy bipartite graph
Bf . Then Bf is passed to logarithmic transformation and
adjacency matrix computation. Next, the adjacency matrix is
fed to the Johnson’s all-pairs shortest path algorithm to com-
pute the closeness matrix Z based on the logarithmic graph
transformation. The closeness matrix Z is later factored into
diagnosis and procedure components to compute similarity
scores between diagnosis pairs. The matrix factorization step

using non-negative matrix factorization method requires the
factor size as a parameter which we empirically chose to be 20
as other choices such as 50 and 100 produce similar outcomes.
BiGFuzzE+vector: We use a similar setup as BiGFuzzE,
except the diagnoses and procedures are initialized according
to the vector representations of the medical codes. We apply
Skip-gram [45] model on the historical claim data to produce
the vector representations.
Baseline: As a naive baseline, we employ a random selection
classifier that labels a claim as either fraudulent or non-
fraudulent. This approach explains the effect of diagnosis
neighborhoods of procedures.
RNN+uni: Similar to [7], we use traditional RNN with a uni-
directional LSTM [8]. The model computes average of ICD9
and CPT code embeddings to represent claim embeddings and
uses that as inputs to the model.
RNN+bi [9]: It is similar to RNN+uni in terms of using
recurrent neural network and clinical code features. However,
we apply a bidirectional LSTM [46] to efficiently embed the
clinical codes in the vector space in RNN+bi.

TABLE II
A SAMPLE POSITIVE CLAIM DATA CONTAINING ICD-9 DIAGNOSIS AND

PROCEDURE CODES.

Diagnosis code ICD9 description
7366 Other acquired deformities of knee

V4365 Knee joint replacement
04104 Streptococcus infection
V145 Personal history of allergy to narcotic agent
2724 Other and unspecified hyperlipidemia
2720 Pure hypercholesterolemia

53081 Esophageal reflux
V5866 Long-term (current) use of aspirin
4254 Other primary cardiomyopathies

Procedure code ICD9 description
73 Other procedures inducing or assisting delivery

311 Temporary tracheostomy

The primary goal of our experiments is to predict whether
a claim consists of fraudulent procedures with respect to its
diagnoses set. To substantiate the goal, we conduct two sets of
experiments and demonstrate the effectiveness of BiGFuzzE
using two different datasets: inpatient and outpatient claims. A
patient is categorized as inpatient if the hospital stay is longer
and prescribed by authorized doctors for relevant procedures.
On the other hand, a patient is categorized as an outpatient
if he/she gets lab test, X-rays, or any other hospital services
without the written order from a doctor to admit to a hospital
as an inpatient. Each claim includes a set of diagnoses and
procedures among many other attributes such as de-identified
patient information. We demonstrate a sample positive claim
containing ICD-9 (International Classification of Diseases 9th
Revision) diagnosis and procedure codes in Table II. Note that,
the CMS dataset only includes the codes in the claim, the code
descriptions are retrieved from an online catalogue to augment
the codes [6].

Our proposed method, BiGFuzzE evaluates test claims
that include positive claims similar to Table II and synthetic
negative claims generated by the process introduced in Sec-
tion V-A. We measure accuracy, precision, and recall scores
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Fig. 8. Results on the inpatient dataset with respect to replacement probability threshold
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Fig. 9. Results on the outpatient dataset with respect to replacement probability threshold

on claim datasets with varying levels of negative procedures
controlled by procedure replacement probability parameter.
The larger the replacement probability, the higher the average
number of irrelevant procedures in negative claims.

Effect of Procedure Replacement Probability: In this
part, we present accuracy, precision, and recall scores of our
methods and the compared models with respect to inpatient
and outpatient datasets. Note that, we present average results
for all the methods using ten procedure replacement proba-
bility thresholds to demonstrate the impact of the variation
of negative claims on the results. In addition, we use vector
length 20 for claim embedding for both RNN+uni and RNN+bi
approaches.

Figure 8 presents accuracy, precision, and recall scores
for all methods with respect to varying probability threshold
on inpatient claim data. The accuracy scores in Figure 8(a)
shows that BiGFuzzE and BiGFuzzE+vector approaches
achieve average scores between 91% and 95%. BiGFuzzE
uses non-negative matrix factorization (NMF) on the closeness
matrix for diagnosis component generation. On the other
hand, BiGFuzzE+vector uses medical code embeddings
generated using the Skip-gram model. The matrix factorization
based BiGFuzzE encodes the distance between a pair of
codes from the historical positive claims through closeness
matrix. The medical code embeddings encode the relationship
of codes with respect to their neighboring codes within a
claim. Note that the inpatient claims are smaller in terms of
the number of clinical codes. Therefore, unlike NMF based
embeddings on the closeness matrix, the vector embedding
has limited capability to capture the relationship among the

codes. As a result, we observe that BiGFuzzE performs rel-
atively better compared to BiGFuzzE+vector considering
the accuracy scores.
We observe that RNN with unidirectional and bidirectional
LSTM and Baseline approaches achieve accuracy scores be-
tween 0.41 and 0.62 on varying procedure probability thresh-
olds. Since RNN based methods use code embeddings to rep-
resent a claim as features to classify as either non-fraudulent or
fraudulent, the performance is not promising. Smaller number
of codes within the inpatient claims also affect the results.
A claim is represented as the average embeddings of all the
codes that make up the claim. In addition, both negative and
positive claims share the exact diagnoses codes in our problem
formulation. The only difference in the negative claims is
the procedure codes which are controlled by the procedure
replacement threshold. The code embeddings capture the sim-
ilarity of diagnoses or procedure codes with respect to the
most commonly paired neighboring codes within a claim.
As a result there exists insignificant differences in the code
embeddings between positive and negative claims. Therefore,
we observe similar results when RNN based methods are used
for classification compared to the random Baseline method
which randomly assigns class labels to a claim.
The precision scores in Figure 8(b) also demonstrate a similar
trend for all methods. BiGFuzzE and BiGFuzzE+vector
demonstrate high precision with respect to replacement thresh-
old of 0.2 and higher. The results show that BiGFuzzE
and BiGFuzzE+vector have insignificant false positives.
RNN and Baseline methods perform poorly because of the
same reason of lower accuracy scores. The recall scores in
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Figure 8(c) demonstrate inconsistent behavior for RNN and
Baseline approaches. BiGFuzzE and BiGFuzzE+vector
demonstrate consistent results with minimal false negatives.
Overall, BiGFuzzE and BiGFuzzE+vector demonstrate
high accuracy, precision, and recall scores with minimum false
negatives for inpatient claims. Note that, the false negatives
will add additional human intervention to verify a positive
claim which was labeled as negative during the testing phase.

Figure 9 presents the accuracy, precision, and recall scores
of all methods with varying procedure replacement thresholds
on the outpatient data. Note that, outpatient claims generally
consist of more procedures compared to the inpatient claims.
An inpatient claim consists of maximum of ten and five
diagnoses and procedures codes, respectively. On the other
hand, an outpatient claim has maximum of ten and forty-
four diagnoses and procedures, respectively. The difference
between inpatient and outpatient claims in terms of the number
of procedures is very critical. Because, difference not only
influences the evaluation scores but also explains the reason
behind such evaluations.
Figure 9(a) presents accuracy scores for all methods.
BiGFuzzE and BiGFuzzE+vector outperform consis-
tently over all the replacement thresholds and demon-
strate scores between 95% and 97%. We also notice
that BiGFuzzE+vector performs better compared to
BiGFuzzE. The reason is that the code embeddings can make
a distinguishable feature set between positive and negative
claims due to the numbers of higher procedures. The test
claims are identified with high precision as our methods
construct knowledge graph on the positive claims. The results
demonstrated in Figure 9(b) also suggest that BiGFuzzE and
BiGFuzzE+vector can accurately detect negative claims.
However, we observe that BiGFuzzE records insignificant
false negatives which contribute to a relatively lower recall
in Figure 9(c). The scores for RNN based classifier shows
improvements compared to the results of inpatient claims as
the number of procedure codes are higher in outpatient clams.
However, the baseline approach shows approximately scores
around 50% due to the random label assignment on the test
claims.

Parameter sensitivity analysis: In this part, we demon-
strate the sensitivity of accuracy, precision, and recall
scores with respect to the decision threshold parameter λ
on both inpatient and outpatient datasets in Figures 10
and 11, respectively. We initialized the decision parameter
λ = {0.01, 0.02, 0.03, . . . , 0.55}. We observe that the results
on both datasets are better when λ is 0.3 or more. The
decision threshold parameter in our algorithm is used to find
the similarity between a trust set R and all diagnoses within
a claim. If the overall similarity is lower than the threshold
then the algorithm labels the claim as fraudulent.

Figure 10 presents accuracy, precision, and recall scores
based on different decision threshold, λ, applied on inpa-
tient dataset. We explain the results based on the compo-
nents used to represent diagnosis similarity in our algo-
rithm. We prepare the diagnosis and procedure components
using non-negative matrix factorization for BiGFuzzE ap-
proach. On the other hand, diagnoses and procedure codes

are embedded in a vector space using Skip-gram model in
BiGFuzzE+vector method. We observe that BiGFuzzE
and BiGFuzzE+vector perform poorly when the value of
λ is between 0.01 and 0.05. Both these methods demon-
strate similar results in accuracy within the similar values
of λ presented in Figure 10(a). Additionally, both methods
demonstrate identical results when λ is set at 0.3 or more.
Further, both the methods perform poorly for lower values
of λ because highly dissimilar diagnoses codes are properly
differentiated by both NMF and vector embeddings. As NMF
factorizes the closeness matrix, which captures path lengths
between diagnosis and procedure pairs, the diagnoses which
are not commonly paired within a treatment share a longer
path in the bipartite knowledge graph. Similarly, the diagnoses
which are commonly paired with each other within a treatment
share a shorter path in the bipartite knowledge graph. We
observe similar phenomena when vector embeddings concept
is used to represent diagnoses. The reason behind such phe-
nomena is that both the most frequently and infrequently
appearing codes are very well separated by the Skip-gram
model applied on the inpatient claims. As our inpatient claim
data has lower average number of codes, closeness matrix
can properly capture the path lengths between a diagnosis
and procedure pair. Another way to look at it is that claims
with fewer diagnoses and procedure codes create a bipartite
knowledge graph with fewer edges compared to claims with
higher number of codes within claims. Therefore, we observe
significant differences in accuracy and recall scores between
BiGFuzzE and BiGFuzzE+vector methods for lower
values of λ. BiGFuzzE demostrates better results compared
to BiGFuzzE+vector within the values of λ between 0.05
and 0.03. The reason is that lower average number of codes
create issues for Skip-gram model to associate different claims
based on the neighborhood of codes within a predefined sliding
window parameter. Overall, we observe insignificant number
of false negatives in the results for both methods when λ is
more than 0.3, which contributes to higher accuracy scores in
Figure 10(a). We also notice insignificant false positives when
the value of λ is 0.05 or more. As a result the precision scores
in Figure 10(b) show exceptional results. However, the recall
scores in Figure 10(c) follow accuracy score as it generates
fewer false negatives when decision threshold λ ≤ 0.3. It also
shows insignificant false negatives when λ > 0.3.

Figure 11 presents the accuracy, precision, and recall scores
for BiGFuzzE and BiGFuzzE+vector methods based on
different decision threshold, λ, applied on outpatient claims
data. We notice that BiGFuzzE+vector performs rela-
tively better compared to BiGFuzzE based on accuracy
and recall scores. As the average number of codes within a
claim is higher in outpatient compared to inpatient claims,
the Skip-gram model can differentiate between fraudulent
and non-fraudulent claims. On the other hand, a diagnosis
and procedure can share a path in the bipartite knowledge
graph although they appeared in both fraudulent and non-
fraudulent claims. Therefore, the results of BiGFuzzE show
that in some cases, non-fraudulent claims are identified as
fraudulent, resulting in false negatives. The false negatives
affect accuracy and recall scores presented in Figures 11(a)
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Fig. 10. Parameter sensitivity with respect to λ on the inpatient dataset
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Fig. 11. Parameter sensitivity with respect to λ on the outpatient dataset

and 11(c), respectively. On the other hand, both BiGFuzzE
and BiGFuzzE+vector demonstrate no false positive on
outpatient claims data based on varying values of λ, resulting
100% precision scores in Figure 11(b).

VI. CONCLUSIONS

In this paper, we solve the problem of fraudulent healthcare
claim identification using fuzzy bipartite graphs and ma-
trix factorization techniques. We formulate the problem over
claims with nominal information consisting of only diagnoses
and procedure codes, because accessing richer datasets are
often prohibited by law and present inconsistencies among
different software systems. We employ the maximum reliabil-
ity paths on fuzzy edges of the bipartite knowledge graph as a
distance metric between diagnosis and procedure code pairs.
In addition, our proposed approach adopts clinical code-level
relation analysis within claims to perform fraud identification.
We extend our proposed BiGFuzzE approach using vector
embeddings of codes that substitutes matrix factorization sub-
process and provides improved performance on claims with
higher code frequencies. Our experimental results show that
Bipartite Graph with Fuzzy Edges (BiGFuzzE) reaches an
accuracy, precision, and recall scores of 95%, 100%, and
87%, respectively on the inpatient dataset acquired from CMS.
Additionally, it demonstrates 97%, 100%, and 94% accuracy,
precision, and recall scores, respectively on the outpatient
dataset. We believe that the proposed problem formulation,
medical code-level analysis, and solution will initiate new
research on fraudulent claim identification using nominal, but
definitive data in healthcare records.
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