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Identifying Health Insurance Claim Frauds Using
Mixture of Clinical Concepts

Md Enamul Haque and Mehmet Engin Tozal

Abstract—Patients depend on health insurance provided by
the government systems, private systems, or both to utilize
the high-priced healthcare expenses. This dependency on health
insurance draws some healthcare service providers to commit
insurance frauds. Although the number of such service providers
is small, it is reported that the insurance providers lose billions
of dollars every year due to frauds. In this paper, we formulate
the fraud detection problem over a minimal, definitive claim data
consisting of medical diagnosis and procedure codes. We present
a solution to the fraudulent claim detection problem using a novel
representation learning approach, which translates diagnosis and
procedure codes into Mixtures of Clinical Codes (MCC). We
also investigate extensions of MCC using Long Short Term
Memory networks and Robust Principal Component Analysis.
Our experimental results demonstrate promising outcomes in
identifying fraudulent records.

Index Terms—Healthcare, Insurance, Fraud, Mixture Model,
Clinical Concepts

I. INTRODUCTION

DATA analytics has progressively become crucial to al-
most any economic development area. Since healthcare

is one of the largest financial sectors in the US economy,
the massive amount of data, including health records, clinical
data, prescriptions, insurance claims, provider information, and
patient information “potentially” presents incredible opportu-
nities for data analysts. Health insurance agencies process bil-
lions of claims every year and healthcare expenses is over three
trillion dollars in the United States [1]. Figure 1 presents a con-
cise flow of a typical healthcare reconciliation process by using
different entities involved. First, the service provider’s office
ensures that the patient has adequate coverage through his/her
insurance plan or other funds before getting any service. Next,
the service provider identifies relevant diagnoses based on the
initial examinations performed on the patient. The service
provider then runs tests on the patient using one or more
medical interventions such as further diagnostics and surgical
procedures. These diagnoses and procedures are usually tagged
with the patient’s report along with other information such as
personal, demographic, and past/present visit information. At
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this point, the patient typically pays a copay defined in his/her
insurance plan and checks out. Then, the patient’s report is sent
to a medical coder who abstracts the information and creates
a “superbill” containing all information about the provider,
patient, visit diagnoses and procedures. The diagnoses and
procedures are also translated into medical codes in the
superbill. The medical coder electronically sends the superbill
to a medical biller who creates a medical claim by ensuring
that the claim meets the required coding standards and format.
Next, the claim is sent to the corresponding health insurance
provider where the validity, correctness, and compliance of
the claim is verified. They also prepare a detailed report that
describes the coverage of procedures by the patient’s insurance
plan and send the report to the medical biller. Lastly, the
medical biller sends an explanation to the patient describing
his/her insurance coverage, benefits and balances.
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Fig. 1. An overview of the entities interacting in a typical claim reconciliation
process [2].

Given the economic volume of the healthcare industry, it is
natural to observe fraudulent and fabricated claims submitted
to insurance companies. The National Health Care Anti-
Fraud Association (NHCAA) defines healthcare fraud as “An
intentional deception or misrepresentation made by a person,
or an entity, with the knowledge that the deception could
result in some unauthorized benefit to him or some other
entities” [3]. Those fabricated claims bear a very high cost,
albeit they constitute a small fraction. According to NHCAA
the fraud related financial loss is in the orders of tens of
billions of dollars in the United States [3]. Although there are
strict policies regarding fraud and abuse control in healthcare
industries, studies show that a very small portion of the losses
are recovered annually [4].978-1-5386-5541-2/22/$31.00 ©2022 IEEE
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Most typical fraudulent activities committed by dishonest
providers in the healthcare domain include the following.

• Making false diagnoses to justify procedures that are not
medically necessary.

• Billing for high priced procedures or services instead of
the actual procedures, also called “upcoding”.

• Fabricating claims for unperformed procedures.
• Performing medically unnecessary procedures to claim

insurance payments.
• Billing for each step of a procedure as if it is a separate

procedure, also called “unbundling”.
• Misrepresenting non-covered treatments as medically

necessary to receive insurance payments, especially for
cosmetic procedures.

It is not feasible or practical to apply only domain knowl-
edge to solve all or a subset of the issues listed above.
Automated data analytics can be employed to detect fraudulent
claims at an early stage and immensely help domain experts
to manage the fraudulent activities much better.

In this paper, we focus on the problem of healthcare
fraud detection from health insurance providers’ viewpoint.
We answer the question of how to classify a procedure as
legitimate or fraudulent from a claim when we only have
limited data available, i.e. diagnosis and procedure codes.
The problem of fraud detection in medical domain has been
identified using different approaches such as data mining [5],
classification methods [6], [7], Bayesian analysis [8], statis-
tical surveys [9], non-parametric approaches [10], and expert
analysis. Existing methods use physicians profile, background
history, claim amount, service quality, services performed
per provider, and related metrics from a claim database to
create models for claim status prediction. Although these
methods are successful, they often employ datasets that are
not publicly available. Furthermore, the variables featured in
those datasets are diverse and generally incompatible, which
makes the solutions very difficult to transfer. In this study
we limit our available data to diagnosis and procedure codes,
because obtaining third-party access to richer datasets is often
prohibited by Health Insurance Portability and Accountability
Act (HIPAA) in the US, General Data Protection Regulation
(GDPR) in Europe or similar law in other regions. Besides, the
healthcare industry is more apprehensive to share data com-
pared to other sectors. Moreover, different software systems
report different patient variables, which prohibits transferring
solutions from one system to another. As a result, we confine
our problem formulation to diagnosis and procedure codes
which can always be handled in the same way whether they
are country-specific or international. Our solution approach
assumes the claim data as a mixture of medical concepts
with respect to clinical codes of diagnoses and procedures in
International Classification of Diseases (ICD) coding format.
Moreover, the proposed approach works on other coding
formats, e.g., Current Procedural Terminology (CPT) and
Healthcare Common Procedure Coding System (HCPCS), or
their combinations without any modification.

We represent an insurance claim as a Mixture of latent
Clinical Concepts (MCC) using probabilistic topic modeling.
To the best of our knowledge this is the first work representing

insurance claims as mixtures of clinical concepts in a latent
space. We assume that every claim is a representation of
latent or obvious mixtures of clinical concepts such as pain,
mental or infectious diseases. Moreover, each clinical concept
is a mixture of clinical codes, i.e., diagnosis and procedure
codes. The intuition behind our model comes from the services
provided by doctor’s offices, clinics, and hospitals. In general,
a patient gets services based on specific issues consisting of
one or more diagnoses. Next, the service provider performs
necessary procedures to treat the patient. Therefore, the di-
agnoses and procedures in a claim can be represented as a
mixture of clinical concepts such as pain, mental, infectious
diseases and/or their treatments. Note that, we do not explicitly
label or interpret these concepts, as they are often not obvious,
complex or require domain knowledge.

We extend the MCC model using Long-Short Term Memory
networks and Robust Principal Component Analysis. Our goal
in extending MCC is to filter the significant concepts from
claims and classify them as fraudulent or non-fraudulent. We
extend MCC by using the concept weights of a claim as a
sequence representation within a Long-Short Term Memory
(LSTM) network. This network allows us to represent the
claims as sequences of dependent concepts to be classified by
the LSTM. Similarly, we apply Robust Principal Component
Analysis (RPCA) to filter significant concept weights by
decomposing claims into a low-rank and sparse vector repre-
sentations. The low-rank matrix ideally captures the noise-free
weights.

Our unique contributions in this study can be summarized
as follows.

• We formulate the fraudulent claim detection problem over
a minimal, definitive claim data consisting of procedure
and diagnosis codes.

• We introduce clinical concepts over procedure and diag-
nosis codes as a new representation learning approach.

• We extend the mixtures of clinical concepts using LSTM
and RPCA for classification.

We compare our approaches to the Multivariate Outlier
Detection (MOD) [11] and a baseline method and report
improved performance. Multivariate Outlier Detection method
consists of two steps which are used to detect anomalous
provider payments within Medicare claims data. In the first
step, a multivariate regression model is built on 13 hand
picked features to generate corresponding residuals. Next, the
residuals are used as inputs to a generalized univariate proba-
bility model. Specifically, they used probabilistic programming
methods in Stan [12] to identify possible outliers in the claim
data. The authors use the same CMS (Centers for Medicare
and Medicaid Services) dataset that we use in our experiments
with a different problem formulation. Their study incorporates
providers and beneficiary data that was related to Medicare
beneficiaries within the state of Florida, while we employ
MOD on MCC features. On the other hand, the baseline
classifier assigns a test claim as the majority label present
in the training claim data.

Our experimental results show that MCC + LSTM reaches
an accuracy, precision, and recall scores of 59%, 61%, and
50%, respectively on the inpatient dataset obtained from CMS.
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In addition, it demonstrates 78%, 83%, and 72% accuracy,
precision, and recall scores, respectively on the outpatient
dataset.

We believe that the proposed problem formulation, repre-
sentation learning and solution will initiate new research on
fraudulent claim detection using minimal, but definitive data.

The rest of the paper is organized as follows. Section II
presents the related work. We formally introduce the problem
and present our solution in Section III. Section IV demon-
strates the empirical evaluations. Finally, we conclude the
paper in Section V.

II. RELATED WORK

Fraud and abuse are among the most prominent issues in the
massive healthcare system. In addition to frauds, accidental er-
rors in documentation causes significant losses of money, time
and labor. Several works in the literature propose solutions to
the problem of fraud, abuse and error detection in medical,
pharmaceutical, and related domains.

Yang and Hwang developed a fraud detection model using
the clinical pathways concept and process-mining framework
that can detect frauds in the healthcare domain [13]. The
method uses a module that works by discovering structural
patterns from input positive and negative clinical instances.
The most frequent patterns are extracted from every clinical
instance using the module. Next, a feature-selection module is
used to create a filtered dataset with labeled features. Finally,
an inductive model is built on the feature set for evaluating new
claims. Their method uses clustering, association analysis, and
principal component analysis. The technique was applied on a
real-world data set collected from National Health Insurance
(NHI) program in Taiwan. Although the authors constructed
different features to generate patterns for both normal and abu-
sive claims, the significance of those features is not discussed.

Bayerstadler et al. [14] presented a predictive model to
detect fraud and abuse using manually labeled claims as
training data. The method is designed to predict the fraud and
abuse score using a probability distribution for new claim in-
voices. Specifically, the authors proposed a Bayesian network
to summarize medical claims’ representation patterns using
latent variables. In the prediction step, a multinomial variable
modeling predicts the probability scores for various fraud
events. Additionally, they estimated the model parameters
using Markov Chain Monte Carlo (MCMC) [15].

Zhang et al. [16] proposed a Medicare fraud detection
framework using the concept of anomaly detection [17]. First
part of the proposed method consists of a spatial density based
algorithm which is claimed to be more suitable compared to
local outlier factors in medical insurance data. The second
part of the method uses regression analysis to identify the
linear dependencies among different variables. Additionally,
the authors mentioned that the method has limited application
on new incoming data.

Kose et al. [18] used interactive unsupervised machine
learning where expert knowledge is used as an input to the
system to identify fraud and abuse related legal cases in
healthcare. The authors used a pairwise comparison method
of analytic hierarchical process (AHP) to incorporate weights

between actors (patients) and attributes. Expectation maxi-
mization (EM) is used to cluster similar actors. They had
domain experts involved at different levels of the study and
produced storyboard based abnormal behavior traits. The pro-
posed framework is evaluated based on the behavior traits
found using the storyboard and later used for prescriptions by
including all related persons and commodities such as drugs.

Bauder and Khoshgoftaar [19] proposed a general outlier
detection model using Bayesian inference to screen healthcare
claims. They used Stan model which is similar to [20] in their
experiments. Note that, they consider only provider level-fraud
detection without considering clinical code based relations.

Many of those methods use private datasets or different
datasets with incompatible feature lists. Therefore, it is very
difficult to directly compare these studies. In addition, HIPAA,
GDPR and similar law enforce serious penalties for violations
of the privacy and security of healthcare information, which
make healthcare providers and insurance companies very re-
luctant to share rich datasets if not at all. For these reasons, we
formulate the problem over a minimal, definitive claim data
consisting of diagnosis and procedure codes. Under this setting
we tackle the problem of flagging a procedure as legitimate or
fraudulent using mixtures of clinical codes along with RNN
and RPCA based encodings.

III. MIXTURE OF CLINICAL CONCEPTS

In this section, we first briefly present the medical coding
in healthcare. Next, we formally introduce the fraud detection
with only diagnosis and procedure codes problem. Lastly, we
present our solution approach using health insurance claims
representation based on latent clinical concepts.

A mixture of concepts is assigned to a claim based on
different health conditions which are inherent characteristics
of a treatment. The World Health Organization (WHO) intro-
duced the International Statistical Classification of Diseases
and Related Health Problems (ICD) as concise representa-
tions of diagnoses and procedures in the form of alphanu-
meric codes. ICD codes are revised and improved at times.
CMS have replaced ICD-9 by ICD-10 coding format since
2015 [21]. We also observe different levels of coding methods
for procedures using Healthcare Common Procedure Coding
System (HCPCS). The level-I HCPCS codes are equivalent
to Current Procedural Terminology (CPT) codes which are
used to describe physician services such as blood transfusion.
Level-II HCPCS codes are separate from CPT codes and
used to describe non-physician services such as ambulance
rides, wheelchairs, durable medical equipment [22]. Level-III
HCPCS codes were developed for specific programs, but their
use have been dropped since 2003. HCPCS level-I and level-
II codes consist of only numeric and alpha-numeric values,
respectively.

Table I presents an example claim from outpatient claims
that includes ICD diagnosis, HCPCS level-I (CPT) proce-
dures, and HCPCS level-II procedure codes [23]. The claim
represents the treatment of a patient with diseases of the
circulatory system using ICD and HCPCS codes. The di-
agnoses contain both numeric and alpha-numeric codes that
use ICD coding format. On the other hand, procedure codes



4

include both level-I numeric and level-II alphanumeric HCPCS
codes. Note that the context descriptions in Table I are not
part of the claim dataset, though one can obtain them from
https://www.findacode.com/search/.

TABLE I
AN OUTPATIENT CLAIM DATA CONTAINING ICD FORMAT DIAGNOSIS AND

HCPCS FORMAT PROCEDURE CODES REPRESENTING TREATMENT /
SERVICE RELATED TO THE “DISEASES OF THE CIRCULATORY SYSTEM”.

Diagnosis code ICD9 v3 context
V719 Observation for unspecified suspected condition
7230 Spinal stenosis in cervical region
4359 Unspecified transient cerebral ischemia

Procedure code HCPCS context
36415 Under venous procedures
36430 Transfusion, blood or blood components
83880 Assay of natriuretic peptide
82043 Under chemistry procedures
80053 Under organ or disease oriented panels
A0021 Ambulance service

A. Problem Statement

Let us assume we are given a dataset of verified
and reimbursed (or positive) insurance claims, C+ =
{c1, c2, . . . , c|C+|}, where |C+| is the number of the claims.
Each claim ci consists of a set of diagnosis and procedure
codes summarizing the treatment for a particular patient. Let
us denote the set of all diagnosis codes D = {d1, d2, . . . , d|D|}
and procedure codes P = {p1, p2, . . . , p|P |}, where |D| and
|P | are the number of diagnosis and procedure codes, respec-
tively. The objective is to identify an insurance claim as either
fraudulent or legitimate with respect to the mixture of clinical
concepts. Note that, a major limitation in healthcare insurance
fraud identification is the lack of ground-truth negative claims.
We tackle that issue from a statistical sampling perspective,
introduced in Section IV.

The overall problem statement is that given ground truth,
positive claims and a new incoming test claim ct, can we
determine if ct has any inconsistent diagnosis and pro-
cedure codes implying a fraudulent or erroneous claim?
Let us consider that the test claim ct consists of codes
{d2761, d4271, p395, p428, p272} where d and p denote diag-
noses and procedures, respectively. We use subscript notation
of the code identification numbers with letters d and p to
differentiate between diagnosis and procedures. In the claim,
d2761 and d4271 diagnoses codes are related to a disease of
respiratory systems that denote Hyposmolality/hyponatremia
and Paroxysmal ventricular tachycardia, respectively. How-
ever, not all the procedure codes in the claim are compatible
with the diagnoses. p428 denotes Other repair of esophagus
which is related to disease of respiratory system. On the
other hand, p395 and p272 denote Other repair of vessels and
Diagnostic procedure on oral cavity which are treatments for
diseases related to circulatory and dental systems. Therefore,
the example claim ct should be identified as fraudulent (or
erroneous) and spared for further investigation due to the
existence of the irrelevant procedures, p395 and p272.

B. Problem Solution

In this part, we first demonstrate the hierarchical relation-
ships among related diagnosis and procedure codes using an
example claim. Next, we present our representation learning
process, the Mixture of Clinical Concepts (MCC), which ex-
tracts features based on weighted clinical concepts. Then, we
present an example claim with both diagnosis and procedure
codes to represent the tree structred hierarchy within the actual
ICD coding system. Subsequently, the concept weights of
a claim are treated as input features to a Long-Short Term
Memory (LSTM) [24] based recurrent neural network. The
primary objective to use LSTM with the MCC architecture
is to model the hierarchical dependencies and relatedness
among the concepts. In addition, we separately employ Robust
Principal Component Analysis (RPCA) to obtain a low rank
data structure which minimizes the impact of noise and outliers
in the MCC representation.

Usually, health insurance claims consist of multi-level re-
lations among the constituent ICD, HCPCS level-I (CPT),
and level-II codes. We demonstrate a simple example of a
claim containing four codes including two diagnoses (238.8,
238.73) and two procedures (58.51, 58.53) codes in Figure 2.
Both diagnosis and procedure codes follow a hierarchical tree
structure in the ICD coding format. Diagnosis and procedure
codes are connected using red dashed line in our partial
bipartite graph representation of this claim. For example,
the root node with diagnosis code 238 denotes Neoplasm of
uncertain behavior of other and unspecified sites and tissues
refering to the behavior of a tumor which cannot be predicted
via pathology. The child nodes of 238 are different versions of
the root node which share the same medical concept. Note that,
generally a claim involves diagnosis and procedure codes from
multiple disjoint trees where each tree represents a medical
concept. We only present single tree structure for simplicity
with respect to both diagnoses and procedures in Figure 2.
The parent node of the tree represents a broader diagnosis or
procedure. However, node 238 is not an abosolute root node
but an intermediate node of a bigger concept tree. For instance,
the node 238 is a sub-concept of Neoplasm which denotes an
abnormal growth or death of tissue. The terminal and inter-
mediate nodes provide more specific diagnosis and procedure
based on various health issues. The root nodes that represent
broader medical concepts are not included in the actual claim
for most of the cases. Therefore, we aim to include those latent
concepts in the representation of corresponding claims.

238.8

58.5358.51238.73

238

238.6

238.7 238.9

238.71 238.72

58

58.0 58.1

58.5

58.6 58.7

⋯

58.52

� �

Fig. 2. Hierarchy of clinical codes within a claim represented using ICD-9/10
CM coding format.

The objective of the medical codes representation learning is
to find vector-based claim representations such that each claim
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ci is represented as a k dimensional vector vi. An effective
vector representation would place related clinical codes under
similar latent concepts. We exploit Latent Dirichlet Allocation
(LDA) [25], a popular method from the NLP community that
have already been used with success in medical informatics,
in our first step of claim representation. Using LDA, each
claim is represented as a mixture of different clinical concepts
where each claim is considered to have a set of concepts
that are assigned to it via LDA. The assignment process is
similar to probabilistic latent semantic analysis (pLSA) [26].
The only difference with LDA is that the concept distribution
is assumed to have sparse Dirichlet priors which encodes a
claim using a small set of concepts and the concepts use only
a small set of frequently used clinical codes. In practice, this
process provides a concise and hierarchical representation of
clinical codes and a more compact assignment of claims to the
concepts. We generate concepts using LDA which assumes
that the whole claim data contains predefined K concepts.
Generally, each claim is characterized by a distribution over
concepts as θ. Additionally, each concept is represented by a
distribution over all V clinical codes as ϕ. Considering LDA
to generate concept zi,j from a claim, the following generative
process is considered.

1) θi ∼ DirichletK(α), where i ∈ {1, . . . , |C|} and
Dirichlet(α) is a Dirichlet distribution with sparse sym-
metric parameter α.

2) ϕk ∼ DirichletV (β), where k ∈ {1, . . . ,K} and β is
sparse.

3) For each of the code positions i, j, where i ∈
{1, . . . , |C|} and j ∈ {1, . . . , Ni}

a) Choose a concept zij ∼ Multinomial(θi)
b) Choose a code wij ∼ Multinomial(ϕzij )

where α and β are hyper-parameters of Dirichlet priors. zij
is the identity of concept of code j in claim i and an integer
between 1 and K. wij is the identity of code w in claim i and
and integer between 1 and V . Ni denotes number of codes
in the ith claim. Note that, different prior distributions can be
assumed based on problem domains.

Concept

Observed	ICD	code

Concept	Assignment

Claim	Specific
Concept	Distribution

Dirichlet

Dirichlet

Fig. 3. Plate diagram for generating concepts using Latent Dirichlet Alloca-
tion.

We demonstrate the generative process of MCC using the
following plate diagram in Figure 3. The process begins by
initializing the concept as a Multinomial distribution over all
diagnosis and procedure codes in the training claims which

is parameterized by ϕk. The α and β hyperparameters of
Dirichlet priors denote the document-concept and concept-
clinical code density, respectively. A smaller α contributes to
imposing less number of concept for a claim. Similarly, a high
β contributes to making a concept using most of the codes.

We present a simplified architecture of the Recurrent Neural
Network with LSTM blocks used in our experiments in
Figure 4. In the enhanced learning step, the clinical concept
distribution over a defined number of concepts are treated as
the features of a claim. The features are then fed into the
recurrent neural network with two LSTM layers for enhanced
claim representation. Each claim is initially passed through an
embedding layer. The encoder is a two sequential LSTM layers
with sigmoid activation functions. The output layer is passed
through another sigmoid function for the binary classification.
The main purpose of using LSTM for encoding the mixture
data is to differentiate the unique features from every claim.

LSTMLSTM

�

Mixtured
Claim
Concept

Embedded concept

Encoding

0/1

Fig. 4. Two-layer sequential LSTM architecture for enhanced representations
of claims based on mixtures of clinical concepts.

In addition to LSTM, we used Robust Principal Component
Analysis [27] (RPCA) to remove noise from the features.
RPCA is a variant of Principal Component Analysis. The main
idea behind RPCA is that the errors in the dataset can occur in
large quantity but sparsely (that is with only a few entries). So
a balance between the sparseness of the error and the quantity
of the error is considered to calculate the principal components
optimally. Robust PCA decomposes a matrix D into L and
S where D = L + S by solving the following optimization
problem:

min
L,S

||L||∗ + λ||S||1

s.t. ||D− L− S||2F = 0
(1)

where L is the low rank matrix, S denotes the sparse matrix,
D is the original data matrix, ||L||∗ is the nuclear norm of L,
||S||1 is the one norm of S, ||D − L − S||2F is the squared
Frobenius norm of D−L−S and λ is the sparsity parameter.
RPCA recovers the underlying low-rank data matrix, L, even
in the presence of outliers, large errors and noise, captured in
S.

IV. EMPIRICAL EVALUATIONS

In this section, we first introduce the dataset used in our
experiments. Next, we demonstrate the negative claim data
preparation from positive claims. Finally, we present and
discuss the experimental results.
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TABLE II
A SAMPLE INPATIENT CLAIM DATA CONTAINING ICD-9 V3 DIAGNOSIS AND PROCEDURE CODES.

Diagnosis code ICD9 v3 context
41041 Acute myocardial infarction of other inferior wall, initial episode of care
30000 Anxiety state, unspecified
4139 Other diagnostic procedures on spleen

41401 Coronary atherosclerosis of native coronary artery
V5869 Long-term (current) use of other medications
25000 Diabetes mellitus without mention of complication,

type II or unspecified type, not stated as uncontrolled
2721 Biopsy of bony palate
5601 Paralytic ileus
2948 Other persistent mental disorders due to conditions classified elsewhere

Procedure code ICD9 v3 context
4019 Other diagnostic procedures on lymphatic structures
2724 Biopsy of mouth, unspecified structure

V5861 Long-term use anticoagulants
66 Operations on fallopian tubes

A. Datasets

We collect medicare and medicaid data from Centers for
Medicare and Medicaid Services (CMS) website [28]. The
dataset contains inpatient and outpatient claims from years
between 2008-2010 containing 20 files each. The claims
include medical diagnosis and procedure codes along with
other de-identified zip code, location, beneficiary payments,
provider data and patient specific information. In our model we
omit this information, because not only it is irrelevant to our
problem definition but also it limits our approach to the infor-
mation captured by a certain software or healthcare provider.
On the other hand, diagnosis and procedure codes, whether
country-specific or international, can always be handled in the
same way.

We conducted two sets of experiments to demonstrate the
effectiveness of Mixture of Clinical Concepts (MCC) using
66,773 inpatient and 79,079 outpatient claims from a ran-
domly selected single data file. A patient is categorized as
inpatient if the hospital stay is longer and prescribed by an
authorized doctor for relevant procedures. On the contrary, a
patient is categorized as an outpatient if he/she gets lab test, X-
rays, or any other hospital services without the written order
from a doctor to be admitted to a hospital as an inpatient.
Inpatient medicaid and medicare claims consist of ICD format
coding for both diagnoses and procedures. On the other hand,
outpatient claims consist of ICD, CPT, and HCPCS coding
formats.

The primary goal of our experiments is to predict whether
a claim contains inconsistent procedures with respect to its
diagnosis set. The inpatient data contains maximum of 10 and
5 diagnosis and procedure codes, respectively. On the other
hand, the outpatient data contains maximum of 10 and 44
diagnosis and procedure codes, respectively. Similar to [29],
we assume that our dataset contains valid, positive ground
truth claims. By positive ground truth claim, we mean that the
claims were properly analyzed and verified by the insurance
providers before the reimbursements of the claimed amounts
to the service providers. Table II shows a sample inpatient
claim consisting of diagnosis and procedure codes along with
their descriptions. The claim in the table consists of ICD codes

for both diagnosis and procedures. The diagnosis codes of the
claim indicates that the patient suffered from anxiety, diabetes,
paralysis of the intestinal muscles, and coronary related dis-
eases. In addition, the procedure codes reflect the treatment
of the diagnoses using biopsy and operations on fallopian
tubes. Note that the context descriptions in Table II are not
part of the claim dataset, though one can obtain them from
https://www.findacode.com/search/. The actual inpatient sam-
ple dataset can be found from https://tiny.cc/inpatient claim/.
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Fig. 5. Diagnosis and procedure frequency distributions per claim.

Figures 5(a) and 5(b) present the frequency distributions of
the diagnosis and procedure codes per claim in our dataset.
As shown in the figures both distributions have long tails as
expected, because doctors often make zero to a few diagnoses
and apply zero to several treatment procedures. Insurance
claims with so many diagnosis and so many procedures are
rare. Figure 6 presents a heatmap denoting the co-occurrence
of diagnosis and procedure frequencies in our claims dataset.
Consistent with Figure 5, Figure 6 demonstrates that around
8% of the claims have one diagnosis and one procedure,
followed by 6% having one diagnosis and two procedures. In
addition, 7% of the claims have two diagnosis and one or two
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Fig. 6. Co-occurrence map of diagnosis and procedure codes’ frequencies

procedures, followed by 9% having nine diagnosis and one or
two procedures. In the dataset we only have two claims that
have ten diagnosis and 44 procedures.

One significant challenge to identify fraudulent claims under
supervised learning setting is the lack of negative ground truth
claims. We generate synthetic negative claims by replacing the
procedure codes of the positive claims by a certain probability,
τ , while preserving their diagnosis codes. Our goal is to
generate inconsistent procedures or irrelevant diagnoses and
procedures by randomly replacing the procedure codes in a
claim while preserving the diagnosis codes.

Algorithm 1 presents the pseudocode for the synthetic
negative claim generation process. The algorithm expects the
set of positive claims, C+, and the procedure replacement
probability, τ ∈ (0, 1], as the input and returns the set of
negative claims, C− as the output. The outer loop at line 1
goes through every claim in C+ and creates a candidate
negative claim, c−, by cloning a positive claim at line 2. The
inner loop at line 3 goes through all procedures in c− and
attempts to replace each procedure with another procedure in
set P \ Pi by probability τ at lines 4 to 7. If at least one
procedure is replaced in c−, the algorithm adds c− to the set
of negative claims C− at lines 9 to 11. Finally, line 13 returns
the set of negative claims.

B. Experimental Results

In our dataset, the inpatient claim data allocates ten fields for
diagnosis codes and five fields for the corresponding procedure
codes for every claim. On the other hand, the outpatient claim
data allocates ten fields for diagnosis codes and 44 fields for
the corresponding procedure codes for every claim.

In the first step, we employ LDA on the claim dataset to
compute the concept level weights (probabilities) with respect
to the individual claims. Next, we use the concept weights of
each claim as an input feature to the embedding layer of the
LSTM network. Then, the resulting dense representation of the
claim is fed into two sequential LSTM layers to extract the
significant concepts. In the output layer we use the sigmoid
function for binary classification. In addition to using LSTM
on top of the clinical concept mixture for each claim, we
use Robust Principal Component Analysis (RPCA) to extract

Algorithm 1: Negative Claim Generation Process

Input: Set of positive claims, C+ = {c+i |c
+
i = (Di, Pi)}

Input: Replacement probability, τ ∈ (0, 1)
Output: Set of negative claims, C− = {c−j |c

−
j = (Dj , Pj)}

1: for ∀c+i ∈ C+ do
2: c−i ← c+i
3: for ∀pij ∈ Pi of c−i do
4: p← generate a random value between 0 and 1
5: if p ≤ τ then
6: replace pij by a randomly
7: selected procedure fromP \ Pi

8: end if
9: end for

10: if at least one procedure is randomly replaced in c−i
then

11: C− ← C− ∪ c−i
12: end if
13: end for
14: return C−

significant concepts without noise. We present two heat-maps
of fifty randomly selected RPCA processed claims in Figure 7.
The figures demonstrate that each claim has fewer concepts
which light-up more than the others. Note that, the claims
show distinguishable patterns on the lower concept mixture.

Methods: We use MCC and two other variants denoted
as MCC + LSTM and MCC + RPCA as hybrid methods.
We compare our methods with Multivariate Outlier Detection
(MOD) [11] and Baseline classifier that always predicts most
frequent label in the training claims. MCC uses the basic LDA
model for the initial representations of the claims. MCC +
LSTM uses additional LSTM networks for enhanced represen-
tation of claim codes. MCC + RPCA uses a variant of principal
component analysis to compute a low rank and a sparse matrix.
We employ the low rank matrix for later evaluation. We use
Support Vector Machine (SVM) for classification with MCC
and MCC + RPCA.

Model parameters and specifications: We use varying
model parameters for both LDA and LSTM methods. In our
proposed method, as LDA requires predefined number of
clinical concepts, we select a range of concepts from 10 to
100 with intervals of 10. We use the same concept frequency
as embedding vector length in LSTM networks. In addition,
we use two sequential LSTM layers with dropout as 0.5 to
avoid model over-fitting. The sequential layers use sigmoid as
activation function. We used scikit learn package in Python to
implement our models.

In the following, we present the experimental results of all
the methods with respect to varying concept sizes and pro-
cedure replacement probability thresholds. Next, we present
a brief discussion after selecting roughly the best parameters
using concept size and procedure probability threshold.

1) Effect of Clinical Concept Size: We use different clinical
concept sizes to represent a claim as a feature vector. MCC,
MCC + LSTM, MCC + RPCA, Multivariate Outlier Detection,
and Baseline with respect to varying concept sizes are pre-
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Fig. 7. Heatmap on the mixture claim representations of 50 randomly selected claims for (a) 10 and (b) 30 concepts.
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Fig. 8. Evaluation metrics for four different methods with respect to concept size on inpatient claims.
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Fig. 9. Evaluation metrics for four different methods with respect to concept size on outpatient claims.

sented in Figures 8 and 9 for inpatient and outpatient datasets.
Note that, we present the average results in both figures for
each concept size where results are averaged over ten different
procedure replacement threholds.

Figure 8 presents accuracy, precision, and recall scores for
all the methods with respect to varying concept sizes on
inpatient dataset. Figure 16(a) demonstrates that the accuracy
scores of MCC and MCC + RPCA are roughly constant with
respect to the concept sizes. We observe similar behavior
for MOD and Baseline approaches. Generally, the number
of concepts increases as the claim frequency grows with the
inclusion of various diagnosis and procedure codes. Due to

the effect of latent concept size of a claim, our proposed
approaches using MCC and the variants perform similarly
with respect to different concept size initializations. However,
MCC + LSTM performs better for concept sizes of 10,
70, and 100 for inpatient dataset shown in Figure 16(c).
We also observe that both MCC and MCC + RPCA works
better for smaller concept sizes of 20 or less with respect to
accuracy, precision, and recall. With the increase in concept
size, the scores do not exhibit significant improvement. The
reason for this phenomena is that both MCC and MCC +
RPCA does not capture distinguishable concepts with higher
number of initialized concepts in the model. On the other
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hand, MCC + LSTM demonstrates better results for higher
concept sizes such as 70. The reason for LSTM based MCC
to perform better for higher concept sizes is that the LSTM
network is able to extract significant concepts from longer
input sequences. LSTM + MCC also shows poor recall scores
for concept sizes between 20 and 50.

Figure 9 presents the accuracy, precision, and recall scores
of all the methods with respect to concept sizes on outpatient
data. Note that, outpatient claims have typically more clinical
codes per claim than the inpatient claims. An inpatient claim
has maximum of ten and five diagnosis and procedure codes,
respectively. On the other hand, outpatient claims have max-
imum of ten and fourty-four diagnosis and procedure codes,
respectively. This is very important due to the fact that the
number of codes within a claim determines the number of
concepts a claim can be associated with. Unlike the results
obtained from the methods on inpatient data, we observe
inconsistencies in results with respect to outpatient dataset
when MCC and MCC + RPCA are applied. Both methods
perform similarly with larger concept sizes of 50 or more.
MCC performs better for smaller concept sizes such as 10 and
20, followed by gradual decrease for the higher concept sizes.
We can conclude that default MCC with lower concept size
have relatively more distinguishing features. However, MCC
+ RPCA demonstrates different pattern where smaller concept
sizes show poor results, followed by a steep increase for
higher concept sizes. More specifically, MCC + RPCA works
better for concept sizes of 50 or higher. The reason for this
phenomena is that the low rank features extracted by the RPCA
procedure from the MCC generated data are very similar for
both positive and negative claims. MCC + LSTM, MOD, and
Baseline approaches exhibit constant results with respect to
the concept sizes. Note that, MCC + LSTM performs the best
among all the variants of MCC and the other approaches.

We present the evaluations for the multivariate regression
splines residuals with Bayesian univariate outlier detection
model [11] (MOD) to detect fraudulent claims based on the
MCC generated features in Figures 8 and 9 with respect to
inpatient and outpatient claims, respectively. As all the features
are probability distributions over concepts, most of the feature
values are very close to each other, except a few. Therefore,
the MOD model performs poorly compared to MCC + LSTM
on all concept sizes. It also performs poorly compared to
MCC and MCC + RPCA for lower concept sizes on inpatient
data. In addition, it shows poor performance compared to
MCC and MCC + RPCA for lower and higher concept sizes,
respectively on outpatient claims. Note that, in the original
study [11], the authors employ MOD to detect “anomalous
provider payments” in Medicare claims data using 13 variables
such as zip code, year, number of services provided by
providers, and average payment amount. Since these features
are irrelevant to our problem setup, we used the proposed
approach, MOD, with MCC generated features. In addition, an
“outlier” is not necessarily a “fraudulent” claim. A claim with
inconsistent diagnosis procedure codes may not deviate from
the population in terms of zip code, year, number of services
or payment amount. In fact, our negative sample generation
process (Algorithm 1) generates such negative claims. Hence,

the difference in performance should be attributed to different
problem formulations rather then the strengths of the methods.
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Fig. 10. An example of a claims’ concept weight distribution for (a) 10 and
(b) 20 concepts.

We observe that the evaluation of MCC and MCC +
RPCA on inpatient dataset demonstrate constant performance
in Figure 8. On the other hand, MCC + LSTM demonstrates
consistent results for both types of claims data in Figures 8
and 9. The primary reason of the phenomena can be described
using the latent concept size. As we extract varying number of
concepts from the same claim, we should expect an optimal
number that is applicable to a claim. For instance, a claim
might contain 10 significant concepts in actual analysis. As a
result, we should expect to have 10 significant concepts in our
concept weight distribution for larger concept sizes as well.
We explain the phenomena in Figure 10 where we assume
that a claim consists of five significant concepts denoted as
C1, C2, C3, C4, and C9. We use concept sizes 10 and 20
to extract those five significant concepts using MCC and its
variants such as MCC + LSTM and MCC + RPCA. Although
the initialization of concept sizes are 10 and 20 for MCC,
we notice that both Figures 10(a) and 10(b) show similar
weights for the corresponding concepts. Therefore, we can
conclude that the concept weight distribution of a claim does
not change significantly with respect to different concept size
initializations in MCC.
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Fig. 11. Similarity between two claims with respect to the probability
distribution of concepts.
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Fig. 12. Evaluation metrics for four different methods with respect to the replacement probability in negative procedure sampling on inpatient claims.

Overall, we observe that MCC and MCC + RPCA performs
better for concept size of 10 on inpatient data. Similar pattern
is observed for MCC on outpatient data as well. However,
MCC + RPCA performs better when concept size is 50 or
more on outpatient data. MCC + LSTM performs constantly
better on both inpatient and outpatient claims with respect to
most of the concept sizes.

Our empirical analysis finds that positive claims exhibit
lower number of major concepts compared to the negative
claims which is also intuitive, because a claim with higher
number of medical concepts are not common. We present
two example positive claims m and n from our dataset
based on the cosine similarity of their MCC based feature
representation when initial concept size is chosen as 100. The
cosine similarity between the representations of these two
claims is 0.64. Claim m consists of procedure codes 96.71
and 34.59. On the other hand, claim n consists of 96.71,
42.731, and 53.085. We present the similarity in Figure 11
where claim m and n share two concepts. Procedure code
96.71 denotes continuous invasive mechanical ventilation for
less than 96 consecutive hours. Procedure code 34.59 indicates
decortication of lung which is a medical procedure to help the
lung re-expand to normal state. Additionally, procedure 42.731
indicates atrial fibrillation which is used to express rapid heart
rate condition. However, 53.085 denotes health issues related
to under incision procedures on the urethra. Therefore, the
figure suggests that the claims share majority of the concepts
based on heart related problems. Similarly, negative claims
differ from positive claims by significant concept probability.

2) Effect of Procedure Replacement Probability: In this
part, we present the average results for all the methods with
respect to the procedure replacement probability threshold
for ten different concept sizes. The random sampling process
enables us to create a dataset with procedure codes that are
inconsistent with each other or with their respective diagnosis
codes. Naturally, the negative dataset has claims with varying
concepts that are difficult to distinguish from the positive
ones, because the procedure codes are replaced randomly by
probability τ .

The evaluation results presented in Figure 12 shows that the
replacement probability, τ , in Algorithm 1 does not have a
significant effect on the overall performance, except for MCC
+ LSTM method on inpatient dataset. We notice similar results
for MCC + RPCA compared to MCC as the aim for both meth-

ods is to emphasize the concepts that are significant within a
claim. MCC + LSTM demonstrates improved accuracy and
precision scores in Figures 12(a) and 12(b) with respect to
increased probability threshold. However, we notice interesting
results of MCC + LSTM for different procedure replacement
probabilities where recall scores fluctuate in Figure 12(c).
As the LSTM network uses dependency among the concepts
to embed a claim, the final representation of two different
claims with negligible change in concept weights become
significantly different. As a result the final layer of LSTM
with sigmoid function can assign them to the classes. However,
we believe that the phenomena occurs due to the significant
presence of claims with no procedure codes. As a consequence
of such presence, the positive claim data will contain concept
features solely based on the diagnosis codes of a claim. For
example a claim might contain “pain” and “fever” concepts
based on diagnosis codes only. On the other hand, another
claim may contain the same concepts based on both diagnosis
and procedure codes.

Figure 13 presents accuracy, precision, and recall scores for
all the methods with respect to procedure probability threshold
on outpatient claims. Unlike the results of MCC + LSTM
on inpatient data with respect to the probability threshold,
we observe impressive performance on outpatient data. The
accuracy, precision, and recall scores increase linearly for all
the methods, except the Baseline approach as it predicts a
claim based on the majority of the class labels in the training
dataset. MCC and MCC + LSTM methods perform better for
all the replacement thresholds, except MCC + RPCA which,
unlike inpatient dataset, performs poorly compared to MOD
approach. The reason for MCC + RPCA to work poorly
relates to the higher number of clinical codes within a claim
in outpatient dataset. The low rank data extracted from the
MCC generated features have more overlapping component
within a claim which increases both false positive and false
negatives. We observe better results when only MCC generated
features are used for classification for the similar reason. In
addition, we notice rising accuracy, precision, and recall for all
the methods with respect to increasing probability threshold.
This happens due to the higher number of procedure codes
changed in the negative claims. The best performing method,
MCC + LSTM, achieves nearly 75% and 80% accuracy for
50% and 100% procedure changes in the negative claims,
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Fig. 13. Evaluation metrics for four different methods with respect to the replacement probability in negative procedure sampling on outpatient claims.

respectively. MCC and MCC + RPCA achieves nearly 71%
and 65% accuracy for the similar procedure percentage change
on the outpatient dataset.

3) Discussions: In this part we present a rough approxima-
tion of the evaluation metrics with respect to both concept size
and procedure replacement probability threshold. In addition,
we present a comparative evaluation of all the methods using
limited concept size with respect to inpatient and outpatient
claim datasets.

TABLE III
COMPARATIVE RESULTS WITH RESPECT TO ACCURACY, PRECISION, AND
RECALL FOR FIVE DIFFERENT CLAIM IDENTIFICATION APPROACHES ON

INPATIENT DATA.

Methods Evaluation Metrics
Accuracy Precision Recall

MCC 0.527 0.527 0.527
MCC+LSTM 0.587 0.612 0.503
MCC+RPCA 0.519 0.519 0.519

MOD 0.518 0.518 0.518
Baseline 0.493 0.493 0.493

TABLE IV
COMPARATIVE RESULTS WITH RESPECT TO ACCURACY, PRECISION, AND
RECALL FOR FIVE DIFFERENT CLAIM IDENTIFICATION APPROACHES ON

OUTPATIENT DATA.

Methods Evaluation Metrics
Accuracy Precision Recall

MCC 0.740 0.740 0.740
MCC+LSTM 0.784 0.832 0.721
MCC+RPCA 0.523 0.523 0.523

MOD 0.679 0.679 0.679
Baseline 0.491 0.491 0.491

First, we select lower concept size 20 which roughly works
better for all the approaches analyzing the results demonstrated
in Figures 8, 9, 12, and 13. Table III presents accuracy,
precision, and recall scores of all five methods using inpatient
data for concept size 20 and procedure replacement probability
threshold 0.9. We select 0.9 as the replacement threshold for
the discussion as it shows improved performance for all the
methods. In all cases, MOD and Baseline methods do not
perform well as MOD considers all the weights as features in
the regression model and Baseline favors the most frequent
labels in the training data as predicted labels for test claims.
On the other hand, our methods use some form of filtering

on the concept weights to represent as a claim feature. The
experimental results demonstrate that our proposed methods
have improvement scope with respect to accuracy, precision,
and recall scores for inpatient dataset. We believe the methods
can be further improved by identifying different group of
claims with respect to the frequency of procedures and actual
concept hierarchies present in a claim. The concept hierarchies
can be extracted from multiple sources such as clinical notes
and patient logs which is not publicly available. In addition,
we consider the inclusion of hierarchy as out of scope to our
study as our goal is to use minimal data to find out fraudulent
claims.

Next, we present accuracy, precision, and recall scores for
all the methods with respect to the same concept size 20
and procedure replacement threshold of 0.9 on outpatient data
using Table IV. In this case, MCC and MCC + LSTM performs
better compared to MOD approach. However, MOD outper-
forms MCC + RPCA as the later method generates significant
false positive and negative outcomes. In all cases, MCC +
LSTM outperforms the remaining approaches because of the
transformation of concept weights. Based on the previous
analysis and results from Table IV, we suggest to use smaller
concept size based on the number of claims and the average
number of clinical codes present in the outpatient claim. It
reduces the computational complexity for larger numbers of
claim processing. We use Robust PCA (RPCA) instead of
PCA which is able to extract the low-rank structured principal
components even with extreme sparsity in the data. RPCA
exploits both nuclear and ℓ1 norm minimization to allow
sparsity and noise by applying a convex optimization. Hence,
by using the low rank component of the claim data we ensure
that the final feature representation of a claim can effectively
identify the underlying concept mixtures. As the number of
codes within inpatient claims are lower compared to outpatient
claims, we notice a moderate difference in the classification
outcome, which is an indirect consequence of using low rank
component from a claim.

Finally, we present experimental results using only accuracy
scores in Table V for five concept sizes with respect to two
types of datasets and five methods. We select both small
and large concept sizes due to lower claim counts in the
dataset and also because higher concept size does not provide
improved results for most methods. We select the procedure
replacement probability as 0.5 for unbiased evaluation. In
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TABLE V
ACCURACY SCORES FOR DIFFERENT METHODS WITH RESPECT TO CONCEPT SIZES ON BOTH DATASETS.

Concept Size Inpatient Outpatient
MCC MCC+LSTM MCC+RPCA MOD Baseline MCC MCC+LSTM MCC+RPCA MOD Baseline

10 0.570 0.586⋆ 0.543 0.510 0.494 0.734 0.743⋆ 0.510 0.629 0.498
20 0.535 0.580⋆ 0.516 0.532 0.487 0.728 0.750⋆ 0.536 0.624 0.499
50 0.513 0.574⋆ 0.507 0.507 0.488 0.639 0.743⋆ 0.638 0.633 0.491
70 0.525 0.573⋆ 0.495 0.521 0.488 0.617 0.746⋆ 0.629 0.629 0.495

100 0.524 0.572⋆ 0.498 0.525 0.494 0.598 0.734⋆ 0.582 0.632 0.497

general, both small and large concept sizes work better for
both datasets when MCC + LSTM is used. However, smaller
concept sizes are preferred on inpatient dataset when other
MCC approaches are used. In addition, MCC + RPCA works
best on outpatient dataset for larger concept sizes. Note that,
the medical concepts are very widely spread in the outpatient
claims as it contains additional HCPCS level-I (CPT) and
level-II codes in the procedure code set. As a result, MOD
and the Baseline methods perform poorly on inpatient data
compared to outpatient dataset. In addition, we observe that
the increase in concept size does not have significant impact on
the results. However, we observe performance improvements
on outpatient dataset that have increased unique diagnosis and
procedure codes and fewer claims with null procedures.

Overall, MCC and MCC + LSTM generate more consistent
and better results for varying concept sizes and replacement
probabilities over MCC + RPCA, MOD, and Baseline. MCC
+ LSTM reaches an accuracy, precision, and recall scores of
59%, 61%, and 50% (Table III), respectively on the inpatient
dataset. Besides, it presents 78%, 83%, and 72% (Table IV)
accuracy, precision, and recall scores, respectively on the
outpatient dataset. We notice similarity between the results
of MCC and MCC + RPCA, as both use an SVM classifier.
We also share our implementation at http://tiny.cc/
mcc-concpet/ to support reproduction of our results in
future studies.

V. CONCLUSIONS

In this paper, we pose the problem of fraudulent insurance
claim identification as a feature generation and classification
process. We formulate the problem over a minimal, definitive
claim data consisting of procedure and diagnosis codes, be-
cause accessing richer datasets are often prohibited by law and
present inconsistencies among different software systems. We
introduce clinical concepts over procedure and diagnosis codes
as a new representation learning approach. We assume that
every claim is a representation of latent or obvious Mixtures of
Clinical Concepts which in turn are mixtures of diagnosis and
procedure codes. We extend the MCC model using Long-Short
Term Memory network (MCC + LSTM) and Robust Principal
Component Analysis (MCC + RPCA) to filter the significant
concepts from claims and classify them as fraudulent or non-
fraudulent. Our results demonstrate an improvement scope to
find fraudulent healthcare claims with minimal information.
Both MCC and MCC + RPCA exhibit consistent behavior
for varying concept sizes and replacement probabilities in the
negative claim generation process. MCC + LSTM reaches
an accuracy, precision, and recall scores of 59%, 61%, and

50%, respectively on the inpatient dataset. Besides, it presents
78%, 83%, and 72% accuracy, precision, and recall scores,
respectively on the outpatient dataset. We notice similarity
between the results of MCC and MCC + RPCA, as both
use an SVM classifier. We believe that the proposed problem
formulation, representation learning and solution will initiate
new research on fraudulent insurance claim detection using
minimal, but definitive data.

APPENDIX A

A. Supplemental Results

In this supplemental part, we demonstrate the significance
of the accuracy scores of different methods. First, we present
additional results from Logistic regression, Random forest,
and Decision tree algorithm to augment the analysis from
our previous discussions. We chose MCC + LSTM from
our previous discussion because the method provides superior
results among other methods. Next, we present a pairwise
comparison among all the methods when applied on inpatient
dataset. We chose to use inpatient dataset because outpatient
claims demonstrate superior performance in both concept and
replacement probability settings.

We present the results of Logistic regression (LR), Random
forest (RF), Decision tree (DT), and LST based MCC in Fig-
ures 14, 16, 15, 17. Figure 14 presents accuracy, precision, and
recall scores of MCC based LR, DT, RF, and LSTM applied
on inpatient dataset with respect to different concept size. The
results demonstrate that both DT and LSTM performs better
compared to other methods. Figure 15 presents similar results
applied on inpatient dataset with respect to different procedure
replacement threholds.

Figure 16 and 17 presents accuracy, precision, and recall
scores of LR, DT, RF, and LSTM based methods applied on
outpatient dataset with respect to concept size and procedure
replacement probability threhosld, respectively. We observe
similar results in both figures, however, LSTM remains the
top performer in both concept and probability threshold cases.

Finally, we present p-values from non-parametric Nemenyi
pairwise comparison among all the methods applied on the av-
erage accuracy scores of every procedure replacement thresh-
old on inpatient dataset in Table VI. The scores clearly
demonstrates that there are significant differences between the
results of MOD and MCC based LSTM and DT. Similarly,
MCC based LSTM, DT, and RF are significantly different
from the baseline. We consider 95% significance level with
p < 0.05 to measure the differences. We can interpret the
remaining p-values from the symmetric Table VI and consult
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Fig. 14. Evaluation metrics for four different methods with respect to concept size on inpatient claims.
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Fig. 15. Evaluation metrics for four different methods with respect to the replacement probability in negative procedure sampling on inpatient claims.
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Fig. 16. Evaluation metrics for four different methods with respect to concept size on outpatient claims.

with the accuracy, precision, and recall plots to provide an
in-depth differences of results.
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