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Mutual exclusion in distributed memory systems is realized by passing
messages among sites to establish a sequence for the waiting sites to enter the
critical section. We have evaluated various distributed mutual exclusion algo-
rithms on the IBM SP2 machine and the Intel iPSC�860 system, with their
empirical results compared in terms of such criteria as the number of message
exchanges and response time. The results take into account the effects of criti-
cal section request rate, critical section duration, and system size. Our results
indicate that the Star algorithm (1991, M. L. Neilsen and M. Mizuno,
in ``Proc. 11th Int. Conf. Distributed Computing Systems,'' pp. 354�360)
achieves the shortest response time in most cases among all the algorithms on
a small to medium-sized system, when sites request the critical section many
times before involving any barrier synchronization. This is because (1) it
requires the exchange of no more than three messages per critical section
entry, and (2) contention can quickly be alleviated after several entries into

doi:10.1006�jpdc.2000.1635, available online at http:��www.idealibrary.com on

785 0743-7315�00 �35.00
Copyright � 2000 by Academic Press

All rights of reproduction in any form reserved.

1 A preliminary version of this work was presented at the 11th International Parallel Processing Sym-
posium, April 1997. Research was partially supported by NSF Grants MIP-9201308 and CCR-9300075.
Correspondence may be sent to Dr. Shiwa Fu.



the critical section, if no barrier synchronization is involved in the meantime.
On the other hand, if every site enters the critical section only once before
encountering a barrier, the improved Ring algorithm (1995, S. S. Fu and
N.-F. Tzeng, ``Efficient Token-Based Approach to Mutual Exclusion in Dis-
tributed Memory Systems,'' Tech. Rep. TR-95-8-1, CACS, Univ. South-
western Louisiana, Lafayette) is found to outperform others under a heavy
load; but the Star algorithm and the CSL algorithm (1990, Y. I. Chang,
M. Singhal, and M. T. Liu, in ``Proc. 1990 Int. Conf. Parallel Processing,''
Vol. III, pp. 295�302) prevail when the request rate becomes light. The best
solution to mutual exclusion in distributed memory systems is determined by
how participating sites generate their mutual exclusion requests. � 2000

Academic Press

1. INTRODUCTION

Sites in a distributed system communicate by message exchanges through com-
munication channels and do not share global memory. Mutual exclusion in a dis-
tributed system is achieved by a mechanism that ensures involved sites get access
to a designated section of code (called the critical section) in a mutually exclusive
way. Mutual exclusion has been widely applied to solve many problems, such as
replicated data consistency [1, 2] and distributed shared memory [3]. In par-
ticular, the release consistency model [4] in distributed shared-memory systems
heavily utilizes the concept of mutual exclusion.

To measure traffic overhead caused by message exchanges due to mutual exclu-
sion, it is common to adopt the parameter of mean number of messages exchanged
per critical section entry, or NME for short. An algorithm that leads to a smaller
NME is preferable because it tends to yield lower traffic overhead. From the user's
point of view, however, response time appears more important than NME. To
allow its wide applicability, a mutual exclusion algorithm should scale well. In addi-
tion, an efficient such algorithm ought to avoid experiencing an exceedingly long
response time when encountering various critical section request rates or critical
section durations. The focus of this paper is on evaluating various distributed
mutual exclusion algorithms on two real machines, comparing their behaviors in
terms of NME and response time, and taking into account the effects of critical sec-
tion request rate, critical section duration, and system size. Four algorithms are
compared, including Raymond's algorithm [7], Neilsen and Mizuno's algorithm
[8] with star topology (called the Star algorithm), the improved Ring algorithm
[10], and Chang, Singhal, and Liu's algorithm (i.e., CSL in short) [9]. Our
improved Ring algorithm is a variation of that described earlier in [24] but
exhibits improved performance due to the elimination of unnecessary messages, as
detailed in Section 2.4. In addition, we also introduce and evaluate a modified
Raymond algorithm, which gives rise to better performance than the Raymond
algorithm.

The behavior of distributed mutual exclusion algorithms is very complex and
hard to analyze mathematically. It is difficult to obtain practical insights through
theoretical analysis only. Most previous works thus limit their analytic scopes to
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parameters that can be analyzed, mainly NME, while employing simulation techni-
ques to measure parameters that cannot be analyzed, such as response time. In
general, analytic evaluation can predict the complexity of algorithms in terms of
orders of magnitude; but it cannot clearly distinguish which algorithm outperforms
others when algorithms (such as these investigated in this paper) all have the same
order of NME complexity. As a result, early performance studies essentially relied
on simulation for evaluating distributed mutual exclusion algorithms. Performance
comparison through simulation, while remedying the shortcoming of theoretical
analysis, has limitations on assumptions of traffic patterns and program execution,
usually failing to reflect actual behaviors of algorithms and leading to impractical
results. As a result, it is highly desirable to conduct an empirical study that actually
implements these algorithms on real systems for performance comparison to over-
come the shortcomings and limitations associated with simulation or analysis.

In order to observe the actual behaviors of these algorithms, we implemented
them on the IBM's Scalable POWERparallel System 2 (SP2) [5] and the Intel
iPSC�860, collecting empirical results under different critical section request rates
and critical section durations. We carried out our study on the IBM SP2 machine
of size up to 64 and on the Intel iPSC�860 of size 16 (which is the largest subcube
available to users). Our results on both distributed-memory machines suggest that
Neilsen and Mizuno's Star algorithm [8] outperforms all other algorithms with
respect to response time for most cases, when the critical section is requested by
sites repeatedly and no barrier synchronization is involved in the meantime. This is
due to the following two facts: (1) the Star algorithm has the lowest NME unless
the request rate is extremely high, and (2) while all sites contend for the critical sec-
tion initially (since they start issuing their first critical section requests within a
short interval), fewer and fewer sites experience contention gradually, as only one
site is permitted to enter then leave the critical section at a time in sequence and
a site does not generate another critical section request until its earlier request has
been served. Consequently, sites gradually serialize their generation of critical sec-
tion requests and soon avoid most contention, as long as no barrier synchroniza-
tion is involved in the meantime. If every site issues just one request to the critical
section before being involved in barrier synchronization, our improved Ring algo-
rithm exhibits the best performance for a high request rate; but the Star and the
CSL algorithms are superior to others for a low request rate.

Our experimental results shed some light on the design of distributed systems
comprising computers interconnected by networks. In such a common distributed
system configuration, critical section execution typically involves some operations
that read from, or write to, remote memory locations. If the network for intercon-
nection in the future is made to reduce latency, the critical section duration in such
a distributed system becomes shorter. This will make the Star and CSL algorithms
more attractive than others, as will be shown by our experimental results. The rest
of this paper is organized as follows. Section 2 describes these algorithms considered
in this study. In Section 3, the empirical results under different numbers of critical
section entries are presented, whereas the performance outcomes under different
numbers of critical section entries are discussed in Section 4. Pertinent work is
described in Section 5. Conclusions are given in Section 6.
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2. DISTRIBUTED MUTUAL EXCLUSION ALGORITHMS

Distributed mutual exclusion algorithms can be divided into two classes: (1) per-
mission-based algorithms, where all involved sites vote to determine which site
receives the permission to enter the critical section, and (2) token-based algorithms,
in which only the site with the token may enter the critical section. For an algo-
rithm in class (1), a site must obtain the permission from a quorum of involved
sites in the same subset before entering the critical section. A system may consist
of only one set, which contains all sites [11, 12�14, 35], or multiple subsets
[15�17]. A class (2) algorithm, on the other hand, manages a unique token and
guarantees the site acquiring the token to enter the critical section. There are many
algorithms in this class [7�10, 18�22, 24, 34, 37].

For permission-based algorithms, each site typically communicates with most of
the sites and keeps the status information of many sites, creating excessive message
exchanges and involving high storage overhead. In general, a permission-based
algorithm involves higher communication traffic overhead than a token-based algo-
rithm, because the latter often communicates with fewer sites before entering the
critical section, as validated by Chang's simulation results [36]. We therefore focus
our attention to token-based algorithms in our empirical study. Among known
token-based algorithms, five of them have been shown to achieve better perfor-
mance, with their average NME values all being O(log N) per critical section entry
[7�9, 19, 37]. The simulation study in [36] compared a variety of permission-
based algorithms [12, 14, 15] and token-based algorithms [7, 19�21, 37], indicat-
ing that the algorithm by Naimi and Trehel [19] exhibits better NME and time
delay. This algorithm [19] adopted the token queue concept, where a queue con-
tains the identifiers of the sites requesting the critical section and the queue is
attached to the token message when it travels around the system. The disadvan-
tages of this algorithm are that (1) the size of the token queue is not fixed and
could grow up to N&1 in a system with N sites, and (2) time overhead to prepare
and process the token message and maintain local information at each site is high.
This token queue overhead has been overcome by the CSL algorithm [9]. To avoid
duplicated work with the previous studies in [9, 36], we therefore selected the CSL
algorithm [9] in our study among those described by [9, 19, 37]. Additionally, in
considering a variety of measurement issues, three other algorithms [7, 8, 10] are
chosen, as stated in sequence. Both the Raymond and the CSL algorithms have the
same NME complexity of O(log N) but the former employs a static structure while
the latter assumes a dynamic underlined structure. To compare and contrast the
impact of logical structures on performance, we included Raymond's algorithm [7]
in our portfolio. To measure the impacts of system size, request rate, and critical
section duration on performance of algorithms with different orders of magnitude
in complexity, we selected the improved Ring algorithm [10]. Although Banerjee's
algorithm in [34] has the same NME complexity of O(N) as the improved Ring
algorithm does, the latter has a wider range of NME values, namely 2 in the best
case and 2(N&1) in the worst case (in contrast to 3 and N, respectively, in
Banerjee's algorithm), making it an ideal candidate to illustrate issues mentioned
above. We also employed Neilsen and Mizuno's algorithm [8] in our study, since
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their fixed star topology has the merits of a simple structure and easy implementation,
potential to exhibit better performance than other algorithms in most cases. The
algorithms under this study are reviewed briefly below.

2.1. Raymond 's Algorithm

Raymond's algorithm [7] determines and maintains a static logical structure.
The logical structure (for example, a spanning tree) is kept unchanged throughout
its lifetime, but the directions of edges in the structure change dynamically as the
token migrates among sites, in order to point toward the possible token holder. The
token moves in response to a token request issued by a site wishing to enter the
critical section, and it stays at its current site until a token request arrives. When
the token travels over a link (in response to a token request) toward the requesting
site, the direction of the link is reversed because the requesting site will eventually
become the new token holder after receiving the token. As a result, the directions
of edges in the structure always point to the possible token holder, making the
token holder a sink node in the structure. Each site has a local queue to hold
requests coming from its neighbors and itself. When a request message arrives at a
site that has already issued a request, no further message is sent by the site, as the
token message will be drawn to the site (by the earlier request). Under such a cir-
cumstance, each site has only one outstanding request at any given time, resulting
in the local queue length no more than the node degree of the embedding structure.
This property eliminates unnecessary exchange messages and keeps the amount of
communication traffic low under any request load.

Each site wishing to enter the critical section inserts its local request to the rear
of its local queue, so that all requests that appear at that site are in a first-come-
first-served order. While it is possible to obtain better performance by inserting a
locally generated request at the front of the local queue, referred to as the eager
Raymond algorithm (because the local site is then allowed to enter the critical sec-
tion immediately when the token reaches the site) [7], this tends to pose a concern
on the fairness of requests being served and is thus not considered here.

2.2. Modified Raymond Algorithm

On seeing the token, an intermediate site (which is not waiting for the critical
section) in Raymond's algorithm determines the link along which the token is to be
forwarded, by examining the head request in its local queue. The head request is
then dequeued, once the token is forwarded along. If the local queue is not empty
after dequeueing (indicating that some site(s) in the other branch is (are) waiting
for the token), a token request is produced and sent along the link taken by the
token, in order to get the token back after all waiting sites in the branch get served
[7]. In other words, a token request always follows the token from an intermediate
site whose local queue contains more than one element. This situation happens
more frequently as the critical section request rate grows.

We introduce a simple modification, as shown in Fig. 1, to lower communication
traffic by eliminating the token request from a site whose local queue (i.e., Req�Q)
contains multiple elements. Instead of sending a separate token request (i.e., REQT
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FIG. 1. Modified Raymond algorithm.

message), the site marks in the token message the situation that the token has to
come back later on (see the 4th last lines in Figs. 1a and 1c, the 7th last line in 1b
and the 5th last line in 1d). A marked token causes an enqueueing operation at the
receiving site (the 2nd line in 1d), recording that the token will be sent back along
the link from which it gets to the site. This combines the token message with a sub-
sequent token request message at every site whose local queue length is greater than
1, effectively lowering mutual exclusion traffic and thus improving performance.

2.3. Neilsen and Mizuno's Star Algorithm

Instead of passing the token step by step through intermediate sites in the logical
structure to the token requestor as in Raymond's algorithm [7], Neilsen and
Mizuno proposed an algorithm where the token holder can send the token directly
to the requesting site with one message [8]. This is made possible by attaching the
requestor's ID in the request message so that the token holder knows, on receiving
the message, who is the requestor.

One special case of this algorithm is that the logical structure can be a fixed star
topology (called the Star algorithm). Under such a situation, the root site makes
it possible to establish a distributed waiting queue (of all requesting sites) by
recording the site which has most recently requested the token (and is the tail site
in the distributed waiting queue). Any site (except the root) ready to enter the critical
section always sends a request message attached with its own ID directly to the root
site (of the star topology), whereas the root site sends its message to the tail site of
the queue. When receiving a request message piggybacked with a site ID, the root
forwards the message to the tail site (of the queue) and updates its record, unless
the root itself holds the token. A token holder, after exiting from the critical section,
forwards the privilege to the next waiting site directly using a token message. The
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token hence traverses along the requesting sites in a sequence dictated by the wait-
ing queue. When the queue is empty, the token stays at the site which entered the
critical section latest, until the site receives a token request message. A very attrac-
tive property of the Star algorithm is that it always takes three exchange messages
for a requestor to get the token, if the root does not own the token, and only two
messages if the root holds the token. In this algorithm, the concept of forming a dis-
tributed waiting queue of all requesting sites follows a similar idea as in [23] to
solve mutual exclusion in shared-memory multiprocessor systems. Mutual exclusion
in shared memory systems is achieved by accessing the global shared memory
instead of passing messages as in the distributed-memory systems. Evaluation of
software-based mutual exclusion algorithms for shared memory systems was
performed in [31], with the effects of architectures and systems taken into account.

2.4. Improved Ring Algorithm

The algorithm proposed in [24] establishes a static logical ring over all sites and
allows the token to move along a fixed direction, in response to a token request,
which travels along an opposite ring direction. The logical ring and the directions
of its links are all kept unchanged, making the algorithm simple and easy to imple-
ment. When ready to enter the critical section, a site without the token, say Sw ,
must request the token from the current token holder using a request message; site
Sw has the privilege to enter the critical section as soon as it receives the token.
After issuing a request message, Sw goes to the WAIT (short for waiting) state until
it receives the token. Since Sw has no knowledge about the current token holder,
it always sends the request message to its successor, site S(w+1) mod N , which then
becomes the substitute site of Sw (for requesting the token) after receiving the
request message, where N is the system size. If S(w+1) mod N is not the token holder,
it sends a request message to its successor, site S(w+2) mod N , which again becomes
the substitute site of Sw (for requesting the token). This process repeats until the
site with the token, say Sh , receives a request message from its predecessor and the
sites within Sw and Sh (along the direction of the request message traversals) are
all at the SUBS (short for substitute) state. On receiving a request message, the
token holder, if not in need of the token, forwards the privilege to its predecessor
using a token message. The token is then forwarded by the SUBS sites in sequence
to site Sw (along the reverse direction of the request message). If the number of
SUBS sites is :, 0�:<N&1, the total number of messages exchanged for Sw to
obtain the privilege of entering the critical section equals 2(:+1).

We have introduced a variation of the Ring algorithm to achieve improved per-
formance [10]. The pseudocode of this algorithm is illustrated in Fig. 2, where each
site can be in one of the four possible states: IDLE, SUBS, WAIT, and EXCU
(executing the critical section). A site is in the IDLE state initially, and it goes to
the SUBS state after receiving a REQT message, if it is not the token holder. When
a site wishes to enter the critical section, it moves to the WAIT state, if it is not
the token holder; otherwise, it goes to the EXCU state, starting to execute the criti-
cal section. The improvement of this algorithm results from the following two facts:
(1) it is possible that SUBS sites may also wish to enter the critical section in the
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FIG. 2. Improved Ring algorithm.

meantime, and such a site is allowed to do so by holding the token until it finishes
with the critical section after it receives the token message from its successor, and
(2) a SUBS site does not have to issue any message to its successor for requesting
the token, because the token will traverse the site on its way to Sw (i.e., the token
requestor), and the site can enter the critical section when it observes the token. A
SUBS site ready to enter the critical section goes to the WAIT state, and a site at
the WAIT state is allowed to enter the critical section on receiving the token [10].
In the best scenario, as many as (:+1) sites (i.e., those : SUBS sites and Sw) may
enter the critical section in sequence with 2(:+1) messages exchanged, giving rise
to NME=2. This attractive property occurs under a heavy request load for the
critical section. However, the NME could be as large as 2(N&1) for a system with
N sites in the worst case, as the token message might travel one revolution (in
response to the request message) to serve a requestor under a very light request
load. Since the token message moves along a fixed direction, each token requestor
can be served within one revolution; consequently, the potential last-come-first-
served problem in the sites transiting from the SUBS state to the WAIT state does
not pose much concern in this algorithm. Our experimental study considered this
variant ring algorithm, referred to as the improved Ring algorithm [10], for it
results in better performance than that proposed in [24].

2.5. Chang, Singhal, and Liu's Algorithm

The algorithm by Naimi and Trehel [19] employed a dynamic logical structure,
which keeps changing during execution. It requires a local queue to keep the iden-
tifiers of all sites ready to enter the critical section, and the token message carries
the queue when it travels around the system. As a result, the size of the token
message is not fixed and could grow up to N&1 in a system with N sites. This is
an undesirable property. Chang, Singhal, and Liu considered an algorithm [9] to
overcome this drawback by maintaining a list that links all requesting sites (i.e., a
distributed queue) such that each requesting site records (using variable Next) only
the identifier of its next requesting site, thereby simplifying the data structure of the
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token message [9]. The logical structure in the CSL algorithm is a star topology
initially, and it changes dynamically as the algorithm proceeds. A site is the tail in
the distributed queue, if it is waiting for the token and its Next is NIL. If its Next
is not NIL, its successor site in the distributed queue is pointed by Next. As a
result, when a token request message arrives at a site which is the tail in the dis-
tributed queue, the site simply sets its Next to the requesting site. If a request
message arrives at a site which neither holds nor is requesting the token, or which
is requesting the token but its Next is not NIL, the request message is forwarded
to the possible token holder (pointed by variable NewRoot) to form a distributed
queue; NewRoot is then set to point to the current requestor because it will even-
tually becomes the new token holder. On sending the token message to the next
site, the variable NewRoot is piggybacked in the token message so that the next site
can update its NewRoot accordingly.

The NME complexity of this algorithm depends on the height of the logical tree,
and it is O(log N) per critical section entry, where N is the system size.

2.6. Summary

A summary of the four algorithms considered in this study is provided in Table 1,
where the NME complexity of Raymond's algorithm is O(log N) and so are the
modified Raymond algorithm and the CSL algorithm; it is O(N) for the improved
Ring algorithm, and is no more than 3 for the Star algorithm. The token message
and the request message used to communicate among sites are of fixed sizes for all
these algorithms. In our implementation, both types of messages by default contain
four words (i.e., the source identifier, the destination identifier, the message type,
and the communicator which specifies the set of processes that share this com-
munication context). They are five words in the CSL algorithm due to carrying one
extra word of identifiers. The request message in the Star algorithm contains five
words owing to carrying one extra word of identifiers.

TABLE 1

Comparison of Various Algorithms

Raymond [7]
Modified Raymond Improved Ring [10] CSL [9] Star [8]

NME O(log N ) O(N ) O(log N ) �3

Token message size Fixed Fixed Fixed Fixed
Request message size Fixed Fixed Fixed Fixed

Logical structure Static Static Dynamic Static

� Node degree of
Local queue at each site logical structure No No No

Implementation difficulty Difficult Easy Moderate Easy

Load balance Worse Good Good Worse
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Only the CSL algorithm maintains a dynamic logical structure, while others
construct static logical structures throughout their lifetimes. The Raymond algo-
rithm and the modified Raymond algorithm require a local queue in each site to
hold the requests (with totally no more than the node degree of the logical struc-
ture), but all three other algorithms require no local queue at any site. From the
implementation standpoint, Raymond's algorithm is the most difficult to imple-
ment, followed by the CSL algorithm, as the former must maintain the local queue
and adjust the directions of edges in the logical structure when the token moves,
while the latter constantly keeps the dynamic structure. Both the improved Ring
and the Star algorithms have a simple and fixed logical structure which is easy to
implement. When the load balance in each node is taken into account, both the
Star and the Raymond algorithms have worse load balance with the nodes closer
to the center of the logical structure having higher NME values. However, all nodes
in the Star algorithm, according to our empirical results, have the same response
time under different request loads and system sizes, indicating that the load
imbalance at the center node does not degrade its performance. The CSL and the
improved Ring algorithms have good load balance across nodes due to their respec-
tive dynamic and uniform logical structures. The performance evaluation of these
algorithms is provided in the next section.

3. PERFORMANCE EVALUATION

Our experiment was conducted on both the IBM SP2 machine [5] at Argonne
National Laboratory (ANL) and the Intel iPSC�860 system at Mississippi State
University (MSU).

3.1. Platforms

The SP2 involves 128 nodes, which are standard POWER2 Architecture RISC
System�6000 processors with speed of 66.7 MHz and are interconnected by a multi-
stage network similar to the Omega network. Each node has its own local memory,
and communication among nodes is achieved by message passing. In our study, the
message-passing interface (MPI) [25] standard supported by SP2 is utilized to
achieve communication between any two nodes, and the nonblocking point-to-
point MPI functions are used. The latency for sending a message from one node to
another involves (1) software overhead to initiate a send operation, and (2)
hardware overhead of 46+0.035m +s [26], where m is the message size in bytes.
According to our measurement on the IBM SP2 at ANL, it takes about 110 +s to
send a 1-byte message to another node in the system.

The Intel iPSC�860 is a distributed memory system, with its nodes interconnected
according to the hypercube topology. Each cube node is a 40-MHz i860 processor
with 8 Mbytes of memory. Communication and coordination among nodes are
through message-passing. Again, the time taken to deliver a message includes
software overhead and hardware overhead, which can be expressed by
95+0.394m+10.3d +s for m bytes over distance d [29], with the distance between
two neighboring nodes being 1. Our measurement on the iPSC�860 reveals that it
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takes roughly 150 +s to transfer a 1-byte message between two nodes of 1 unit dis-
tance. The communication time on the iPSC�860 is larger than that on the IBM
SP2. While the iPSC�860 machine at MSU contains 32 nodes, a user may request
up to only 16 nodes (a 4-dimensional subcube) at a time.

3.2. Implementation Details

The static logical structure (i.e., a ring) for the improved Ring algorithm is
embedded in a straightforward way in which site Sx is connected to site
S(x+1) mod N , where x is the logical ID of a particular node and N is the allocated
system size. The token is assigned to an arbitrary site initially. For the (modified)
Raymond algorithm, a binary spanning tree is embedded across involved nodes
according to Prim's method stated in [27] with some modifications, and an
arbitrary node is selected as the root. A star topology is embedded for both the
CSL algorithm and the Star algorithm after the token is assigned to an arbitrary
site as the root. Note that the logical structure (a star initially) in the CSL algo-
rithm changes dynamically as the algorithm proceeds, while it remains unchanged
for the Star algorithm. The Star algorithm in our implementation follows that
described in [8] with a slight modification to maintain the fixed star structure
throughout its lifetime.

Workload and performance metrics. In our experiment, every involved site
produces mutual exclusion requests in a random fashion governed by a random
number generator with a mean value of 1 (which is the mean time between releas-
ing the critical section and requesting it again by a typical site). Note that this way
of generating mutual exclusion requests corresponds to many real situations where
a site cannot proceed until its issued mutual exclusion request is served. Conse-
quently, the degree of contention reduces gradually, as long as there is no barrier
synchronization involved, since sites enter and leave the critical section one by one.
The time taken by a site to execute the critical section is specified by !. Our
experimental results were collected under a wide range of workloads with 1 chosen
from 300 to 18,000 +s and ! from 100 to 1000 +s. A larger 1 value reflects a lighter
request load, while a small ! mirrors the situation that the critical section contains
a few instructions.

The performance measures of interest include (1) NME and (2) the response
time, which is defined as the average time from requesting the token to finishing the
critical section by a site. A small NME value indicates light traffic overhead, while
a short response time reflects assigning the critical section to waiting sites effec-
tively. In evaluating these two performance measures, we take into account the
effects of critical section request interval (1 ), critical section duration (!), and
system size, as demonstrated in the following subsection.

3.3. Empirical Results and Discussion

We first examine the impacts of the critical section request interval (1 ) and the
critical section duration (!) on system performance. All sites execute the same code
and stop execution after any one of them reaches 10,000 critical section entries (by
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broadcasting a stop message to terminate the remaining sites). The results
illustrated in Figs. 3�8 are averaged values over all the involved sites.

A program code typically consists of the critical section part and the noncritical
section part. Both parts are likely to have some read�write operations, and the criti-
cal section normally contains a few instructions. In a distributed memory system
(like SP2 or iPSC�860), a read from or write to a remote memory location takes
at least one message sending time, which is about 110 +s on SP2 and about 150 +s
on iPSC�860. For convenience, the critical section duration (!) in our experiment
is set to multiples of 100 +s.

Effect of critical section request interval. In Fig. 3, NME and response time ver-
sus 1 obtained on SP2 under system size N=16 are illustrated for these algorithms,
where ! is chosen as 100 +s and 1 ranges from 300 to 18,000 +s. The improved
Ring algorithm has the lowest NME value (of 2) under a heavy request rate (i.e.,
1�1000 +s), but its NME grows quickly as 1 increases. This is because most inter-
mediate sites are in the WAIT state under a heavy request rate, but fewer sites are
in the WAIT state as the request rate decreases. The NME values of Raymond's
and the modified Raymond algorithms grow as 1 increases, but they flatten off after
1>6000 +s (or 12,000 +s). The modified version has a smaller NME than the
original Raymond algorithm for any 1, as expected. When compared with the
improved Ring algorithm under a heavy request rate (say 1�3000 +s), the
modified Raymond algorithm yields worse performance on both NME and
response time. The reason is that each site in the improved Ring algorithm then
requires as few as two messages (one request message and one token message) to
accomplish one mutual exclusion entry, whereas each site in the tree structure of
the modified Raymond algorithm requires more messages to do so, because the
token message in the tree structure travels (in response to a request message) along
each of the (N&1) edges exactly twice in order to bring the token to all N sites in
the tree.

It is observed from Fig. 3 that NME for the CSL algorithm increases slightly at
the beginning but remains flat afterward (i.e., 1>3000 +s). Although both the
Raymond and the CSL algorithms have the same NME complexity of O(log N),
the CSL algorithm yields better performance in regard to NME than the modified

FIG. 3. NME and response time versus 1 on the IBM SP2 with N=16 and !=100 +s.
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Raymond algorithm under a moderate to light request load, indicating that the
dynamic logical structure used in the CSL algorithm can effectively adjust and
evolve according to the occurrence of critical section requests, while the token
message in the static structure used in the modified Raymond algorithm must move
step by step through intermediate sites, which may not request the critical section
in the meantime. However, the situation reverses under a heavy request load
because most of the intermediate sites are then ready for the critical section, while
sites in the CSL algorithm still need to forward request messages to form a dis-
tributed queue. The Star algorithm keeps a fixed NME value (of about 3)
throughout the simulated 1 values, as expected.

The response time is dictated by 1 as shown in Fig. 3b. Under a heavy request
rate (i.e., a small 1 value), many sites wait to enter the critical section and a long
waiting queue results, thus prolonging response time. The response time curves of
all these algorithms decrease gradually before flattening off as 1 increases. The Star
algorithm has the best performance in regard to response time under almost all the
1 values (except for 1=300 +s). The curve of the CSL algorithm stays close to that
of the Star algorithm throughout the range of 1 examined. The improved Ring
algorithm leads to the shortest response time when 1=300 +s (due to its low
NME), but it has the longest response time as 1 goes beyond 6000 +s, since the
token message must then go through many intermediate sites to reach the
requestor. The gap between the Star algorithm (or the CSL algorithm) and the
improved Ring algorithm (and the modified Raymond algorithm) tends to be large.

NME and response time versus 1 under these algorithms on iPSC�860 with
N=16 are shown in Fig. 4, where ! and the 1 range are selected as above. Again,
the improved Ring algorithm presents the smallest NME value for a high request
rate, but its NME increases consistently and much faster than any other algorithm
if 1 grows. As might be expected, our modified Raymond algorithm always yields
better performance than the original Raymond algorithm. The improved Ring algo-
rithm is superior to the modified Raymond algorithm (in terms of both NME and
response time) under a heavy request rate (say 1<2000 +s). The Star algorithm
exhibits better performance than the CSL algorithm throughout the 1 range con-
sidered. In fact, the Star algorithm always leads to the shortest response time
among all algorithms, despite the fact that it has a slightly larger NME value than

FIG. 4. NME and response time versus 1 on the Intel iPSC�860 with N=16 and !=100 +s.
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FIG. 5. NME and response time versus ! on IBM SP2 with N=16 and 1=6000 +s.

the improved Ring algorithm or the modified Raymond algorithm when the request
rate is very high. When comparing Figs. 3b and 4b, we find that the response time
of a given case is more on iPSC�860 than on SP2, since communication takes
longer on iPSC�860.

Effect of critical section duration. The effect of the critical section duration (!)
on NME and the response time for SP2 is depicted in Fig. 5, where N=16 and
1=6000 +s. As can be seen, a larger ! reduces the NME value but increases the
response time for all algorithms. Especially, the NME for the improved Ring algo-
rithm decreases dramatically when ! increases, because more intermediate sites are
then in the WAIT state for a larger !. In general, the improved Ring algorithm and
the (modified) Raymond algorithm experience more pronounced reduction in NME
than the other two algorithms when ! grows, as can be seen in Fig. 5a. An increase
in ! causes more sites to wait for the critical section (i.e., a longer waiting queue),
thus prolonging response time. Our modified Raymond algorithm outperforms
Raymond's algorithm with respect to both NME and response time. The Star algo-
rithm and the CSL algorithm yield shorter response times for all ! values. It is
interesting to observe that the response time for the improved Ring algorithm is
close to that of the Star algorithm (and the CSL algorithm) after !>700 +s. This
is mainly due to its extremely low NME value for a large ! (see Fig. 5a). It is
apparent from Fig. 5b that the Star algorithm and the CSL algorithm outperform
other algorithms in terms of response time.

NME and response time as a function of the critical section duration (!) for
iPSC�860 with N=16 is shown in Fig. 6, where 1 equals 6000 +s. It is observed
that an increase in ! leads to a smaller NME value for the (modified) Raymond
and the improved Ring algorithms, but a slightly larger NME value for the Star
and the CSL algorithms. However, the response time grows monotonically as !
increases for all the algorithms considered. While the Star algorithm maintains the
smallest NME value until ! grows to 920 +s but is inferior (in terms of NME) to
the improved Ring algorithm afterward, it consistently leads to the shortest
response time (which is very close to the response time of the CSL algorithm).

Results on SP2 with different sizes. To observe the results of these algorithms
on a larger system, we conducted experiments on the IBM SP2 machine with
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FIG. 6. NME and response time versus ! on Intel iPSC�860 with N=16 and 1=6000 +s.

N=32 (note that the maximum available subcube on our Intel iPSC�860 machine
is of size 16 only). The collected NME and response time versus 1 are illustrated
in Fig. 7, where ! is 100 +s and 1 ranges from 300 to 18,000 +s. When compared
with those for N=16 shown in Fig. 3, the NME curves of the (modified) Raymond
algorithm in Fig. 7 grow more quickly as 1 increases. The CSL algorithm leads to
a larger NME value (of 4.5) in Fig. 7 than that in Fig. 3, when 1 grows to
18,000 +s. On the other hand, the Star algorithm has a fixed, small NME of
roughly 3 for both N=16 and 32, revealing its good scalability.

When compared to the response time curves for N=16 shown in Fig. 3b, the
curves depicted in Fig. 7b follow a similar trend but have larger values. Under a heavy
request rate (1�1000 +s), for example, every algorithm under N=32 experiences
at least two times of response time of that under N=16 (see Fig. 3), because the
waiting queue then becomes longer when the system size (N) increases. The curves
for all algorithms flatten off as 1 increases. In the case of 1=9000 +s, the increases
in response time (when compared with that under N=16) is about 240 for the
Star algorithm, 260 for the CSL algorithm, 490 for the improved Ring algorithm,
and 65�670 for the (modified) Raymond algorithm, indicating that both the Star
algorithm and the CSL algorithm exhibit better scalability.

To investigate the behaviors of these algorithms on various system sizes, we
carried out our experiment on SP2 of size up to 64, with NME and response time

FIG. 7. NME and response time versus 1 on the IBM SP2 with N=32 and !=100 +s.
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FIG. 8. NME and response time versus system size on SP2 under 1=100 +s and !=100 +s.

results as a function of N illustrated in Fig. 8, where the mutual exclusion request
interval (1 ) and the critical section duration (!) are both set to 100 +s. Each site
requests the critical section very frequently under this 1 value, i.e., an extremely
heavy request rate. Every algorithm presents an almost fixed NME throughout the
considered range of N under this heavy request rate, as demonstrated in Fig. 8a.
The improved Ring and the modified Raymond algorithms have the lowest NME
values, whereas the CSL and the Star algorithms give rise to NME=3. It is
observed from Fig. 8b that the Star algorithm, the CSL algorithm, and the
improved Ring algorithm exhibit shorter response times consistently, while both the
Raymond and the modified Raymond algorithms have much longer response times.

4. PERFORMANCE UNDER DIFFERENT NUMBERS OF
CRITICAL SECTION ENTRIES

The previous subsection displays the results of various mutual exclusion algo-
rithms under the situation that (1) every involved site produces a critical section
request randomly after its earlier request gets served, and (2) every site makes a
large number of critical section requests (say hundreds or thousands of them)
before encountering a barrier synchronization, if any. This situation exists in many
real applications, such as the traveling salesman problem developed at Rice Univer-
sity [32], QuickSort (QS), and Water from the Stanford Parallel Applications for
Shared Memory (SPLASH) benchmark suite [33]. However, there are other situa-
tions where a participating site makes a few requests to the critical section before
involving one barrier synchronization. An example of these situations can be found
in such a benchmark code as Integer Sort (IS) in the NAS benchmark suite [30];
specifically, a site in IS requests the critical section exactly once before facing a
barrier synchronization. Under these situations, all involved sites after the barrier
synchronization issue their critical section requests within a short period of time,
causing high contention. The mutual exclusion algorithms under these situations
are investigated here to unveil their behaviors.

The empirical study under these situations was conducted on the IBM SP2
machine with N equal to 64. Again, every involved site issues mutual exclusion
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FIG. 9. NME and response time versus number of critical section entries achieved by each
individual processor on SP2 with N=64, under 1=100 +s and !=100 +s.

requests randomly with a mean value of 1, which is the mean time between releas-
ing the critical section and requesting it again by the site. We plot NME and
response time versus number of critical section entries in Fig. 9, where 1 and ! are
both set to 100 +s (to reflect an extremely high degree of contention). When the
number of critical section entries is 1, the improved Ring algorithm is observed to
yield the shortest response time and the smallest NME, because each site in the ring
structure sends one message to its successor and all the sites are ready for the criti-
cal section under this 1 value. In contrast, every site in the Star algorithm sends its
critical section request message to the root at about the same time (under this 1
value), causing serious contention and thus exhibiting the worst response time.
Similarly, the CSL algorithm also suffers from high contention and results in a long
response time.

If each site enters the critical section multiple times before encountering a barrier
synchronization during the course of program execution, the degree of contention
subsides gradually. This is because a site normally does not produce another
request for the critical section while waiting for the earlier request to be served, and
the sites enter then leave the critical section one at a time. While all sites start
generating requests for the critical section within a short time period initially, they
generate their second critical section requests over a much longer period of time,
reducing the degree of contention. All sites eventually serialize their generation of
requests for the critical section and almost avoid producing critical section requests
at the same time. This phenomenon makes the Star algorithm quickly become the
most efficient algorithm, as can be observed in Fig. 9b. These results reveal that the
Star algorithm is preferred if each site requires the critical section to be centered a
number of times before encountering any barrier synchronization.

The CSL algorithm has the same NME and response time as the Star algorithm
when the number of critical section entries equals 1, because both of them have the
same logical structure (i.e., a star) initially. As the program proceeds and reaches
five critical section entries (see Fig. 9), the CSL algorithm exhibits a higher NME
and response time because the token, under such a heavy request load, travels quite
frequently among sites and the dynamic logical structure, at this moment, is under
a transient stage (i.e., no longer a star) which cannot effectively adjust and evolve.
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FIG. 10. NME and response time versus number of critical section entries achieved by each
individual processor on SP2 with N=64, under 1=18,000 +s and !=100 +s.

While entering the critical section many times, all sites in the CSL algorithm
gradually serialize their generation of requests; meanwhile, the logical structure
evolves to a relatively stable condition, leading to pronounced reduction in NME
and response time as shown in Fig. 9.

The situation for a light request load of 1=18,000 +s is illustrated in Fig. 10,
where the Star and CSL algorithms exhibit shorter response times than others for
any given number of critical section entries due to extremely low contention.

5. PERTINENT WORK

A simulation study was performed previously by Johnson [6] to contrast mutual
exclusion algorithms described in [7�9], mainly in terms of NME. That simulation
study examined a different construct of the Star algorithm [8], with its logical
structure changed dynamically, as opposed to a fixed structure with a designated
site as the root in our implementation. When the root of the Star algorithm is fixed,
it requires no more than three messages exchanged per critical section entry,
exhibiting better performance than a construct with its structure changed dynami-
cally. Raymond's algorithm studied in that simulation study is limited to its original
form, but our work here introduces a modified version of the algorithm and
compares the behaviors of both the original and the modified Raymond algorithms.
We also present the results of our improved Ring algorithm.

Our empirical evaluation gives rise to a different conclusion than the earlier
simulation study performed in [6] does, as stated in the following. The CSL and
original Raymond algorithms are investigated by both studies. Raymond's algo-
rithm, according to Johnson's simulation results [6], exhibits a lower NME than
the CSL algorithm under heavy request loads, whereas our empirical study
indicates that the CSL algorithm outperforms Raymond's one throughout all
request loads investigated, including extremely heavy load. The main reasons
behind this difference are that the simulation study in [6] (1) could not truly reflect
real traffic patterns generated by these algorithms, (2) is unable to simulate the logi-
cal tree structure under real machines, (3) could not fully take into account the

802 FU, TZENG, AND CHUNG



program behaviors (for example, maintaining the local queue and logical struc-
tures) that impact the performance, and (4) fails to mimic possible network conges-
tion. By contrast, our empirical study addresses these issues through actual
implementation of these algorithms on real machines, obtaining realistic outcomes.
In fact, the NME values of Raymond's algorithm collected by our empirical work
are quite close to the analytic result provided by Raymond's work [7] in that the
best NME value (under extremely heavy load) is 4(N&1)

N , signifying on an average
approximately four messages involved in mutual exclusion under a system with N
sites.

6. CONCLUDING REMARKS

We have investigated empirically various distributed mutual exclusion algo-
rithms, including our proposed modified Raymond algorithm and improved Ring
algorithm [10], in this study. Our investigation was conducted on the IBM SP2
machine and the Intel iPSC�860 system. The performance measures of interest are
NME (i.e., mean number of messages exchanged per section entry) and response
time. If sites produce requests to the critical section repetitively many times before
involving any barrier synchronization, the Star algorithm achieves the best perfor-
mance from the response time standpoint under almost all request loads, closely
followed by the CSL algorithm, On the other hand, the improved Ring algorithm
[10] is found to yield the smallest NME under a heavy request load, but the Star
algorithm leads to the lowest NME under a moderate to light request rate. A larger
critical section duration (!) reduces the NME value but increases the response time
for all algorithms. In particular, the Ring algorithm and the (modified) Raymond
algorithm experience more pronounced reduction in NME than the Star algorithm
and the CSL algorithm when ! grows. From the scalability standpoint, the Star
algorithm and the CSL algorithm are superior, since they exhibit smaller NME
values and response times than Raymond's algorithm and the Ring algorithm when
the system size increases. Being simple yet effective for practical system sizes, the
Star algorithm has been employed to implement mutual exclusion in distributed
shared-memory systems under the lazy release consistency model [28].

If every site enters the critical section only once before facing a barrier syn-
chronization, different conclusions result, depending on the request rate. Under a
heavy request load, our improved Ring algorithm seems to be most attractive, as
it results in the smallest NME and the shortest response time. For a light request
load, however, the CSL and Star algorithms prevail. As a result, the best algorithm
for mutual exclusion in distributed memory systems depends on how those involved
sites produce mutual exclusion requests.

The experimental results presented here could be useful for the future distributed
system design, like a computer cluster with its constituent machines interconnected
by a network. In such a distributed system, critical section execution typically
involves some operations that read from, or write to, remote memory locations.
Those remote memory accesses must go through the network, thus prolonging the
critical section duration. If the network for interconnection is made with reduced
latency in the future, the critical section duration experienced by each site in such
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a cluster system shrinks, making the Star and CSL algorithms more attractive than
others, as demonstrated by our experimental results shown in Figs. 5 and 6. Conse-
quently, a faster network with lower latency for constructing distributed systems
would favor the Star and CSL algorithms.
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