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Runtime Energy Consumption Estimation for Server Workloads
Based on Chaotic Time-Series Approximation
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This article proposes a runtime model that relates server energy consumption to its overall thermal enve-
lope, using hardware performance counters and experimental measurements. While previous studies have
attempted system-wide modeling of server power consumption through subsystem models, our approach
is different in that it links system energy input to subsystem energy consumption based on a small set of
tightly correlated parameters. The proposed model takes into account processor power, bus activities, and
system ambient temperature for real-time prediction on the power consumption of long running jobs. Using
the HyperTransport and QuickPath Link structures as case studies and through electrical measurements on
example server subsystems, we develop a chaotic time-series approximation for runtime power consumption,
arriving at the Chaotic Attractor Predictor (CAP). With polynomial time complexity, CAP exhibits high pre-
diction accuracy, having the prediction errors within 1.6% (or 3.3%) for servers based on the HyperTransport
bus (or the QuickPath Links), as verified by a set of common processor benchmarks. Our CAP is a superior
predictive mechanism over existing linear auto-regressive methods, which require expensive and complex
corrective steps to address the nonlinear and chaotic aspects of the underlying physical system.
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1. INTRODUCTION

The upwardly spiraling operating costs of the infrastructure for enterprise-scale com-
puting demand efficient power management in server environments. It is difficult to
achieve efficient power management in data centers, as they usually overprovision
their power capacity to address the worst case scenarios. This calls for quantitatively
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understanding the relationship between power consumption and thermal envelope at
the system level so as to optimize the use of deployed power capacity in the data
center.

Current AMD and Intel processors employ different techniques for processor-level
power management [AMD 2008; Intel 2009]. In general, those techniques take ad-
vantage of the fact that reducing switching activity within the processor lowers energy
consumption and that application performance can be adjusted to utilize otherwise idle
time slacks on the processor for energy savings [Contreras and Martonosi 2005]. Power
profiles of the Intel Pentium architecture have been studied for workstations [Isci and
Martonosi 2003a, 2003b, 2006] and servers [Bircher et al. 2004; Bircher and John
2007; Lee and Skadron 2005]. Recent investigation into the power profiles of servers
based on the NUMA architecture (for example, the AMD64 [AMD 2007], the Intel Ne-
halem [Intel 2009], and IBM POWER7 processors [Ware et al. 2010; Brochard et al.
2010]) indicates that managing server power profiles is complicated by the existence of
multiple cores per processor [Kansal et al. 2010; Tsirogiannis et al. 2010; Lewis et al.
2010; McCullough et al. 2011]. As a result, this article presents an effective full-system
continuous model with system-wide prediction of energy consumption for server blades
built on multicore processors.

Our model treats a single server blade as one closed black-box system, relying on
the fact that measured energy input into the system can be a function of the work
done by the system (in executing its computational tasks) and of residual thermal
energy given off by the system during execution. It utilizes the hardware performance
counters (PeCs) of the server for relating power consumption to its consequent thermal
envelope, enabling dynamical control of the thermal footprint under given workload.
With PeCs, the computational load of a server can be estimated using relevant PeC
readings together with a set of operating system’s performance metrics. The selection of
PeCs and metrics is guided by the observation that the computational load in processors
that use a Non-Uniform Memory Access (NUMA) architecture can be estimated by the
amount of data transferred to/from memory and among processors over system buses.
The result is that the underlying system is a dynamic system whose behavior can be
described as a system of deterministic differential equations whose solution can be
estimated via time-series approximation. Our energy consumption prediction treats
observed readings of available PeCs in a discrete time series and resorts to statistical
approximation to compensate for those model components that cannot be determined
exactly.

Generally, a time series model observes past outcomes of a physical phenomenon
to anticipate future values of that phenomenon. Many time series-based models of
processor energy consumption have been considered [Rivoire 2008; Bhattacharjee and
Martonosi 2009; Powell et al. 2009; Reich et al. 2010; Bircher and John 2011], with
recent work extending such models into the thermal domain [Coskun et al. 2008]. Time
series are typically handled in three broad classes of mechanisms: auto-regressive, in-
tegrated, and moving average models [Box et al. 1994]. Each of these classes assumes a
linear relationship between the dependent variable(s) and previous data points. How-
ever, energy consumption, ambient temperature, processor die temperatures, and CPU
utilization in computers can be affected by more than just past values of those mea-
surements made in isolation from each other [Bertran et al. 2010; McCullough et al.
2011]. Our analysis of experimental measurements of key processor PeC readings and
performance metrics reveals that the measured readings and metrics of a server over
the time series do not possess linearity and are chaotic in nature. This chaotic nature
may result from the behavior of various server components, like DC-DC switching
power converters commonly used by power circuitry in modern computers [Hamill
et al. 1997; Tse and Di Bernardo 2002]. It thus leads to our development of a Chaotic
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Attractor Predictor (CAP) that models the dynamics of the underlying system of differ-
ential equations.

Servers based on the HyperTransport bus [HyperTransport Technology Consortium
2007] and the Intel QuickPath Links [Intel 2009] are chosen as representatives to
validate our CAP for estimating runtime power consumption. CAP takes into account
key thermal indicators (like ambient temperatures and die temperatures) and system
performance metrics (like performance counters) for system energy consumption esti-
mation within a given power and thermal envelope. It captures the chaotic dynamics
of a server system without complex and time-consuming corrective steps usually re-
quired by linear prediction to account for the effects of nonlinear and chaotic behavior
in the system, exhibiting polynomial time complexity. This work demonstrates that
appropriate provision of additional PeCs beyond what are provided by a typical server
is required to obtain more accurate prediction of system-wide energy consumption.

2. PRIOR WORK

Used to guide power management mechanisms in server systems, power models can be
classified into two broad categories: simulation-based and analytical models. Although
simulation may provide details and breakdowns of energy consumption, it is usually
done statically in an off-line manner, is slow, and does not scale well nor apply favorably
to realistic applications and large datasets. For example, the HotSpot thermal simu-
lator [Skadron et al. 2004] models thermal behavior (and, indirectly, power behavior)
by building a network of thermal resistances and capacitances to account for heating
and power dissipation on a circuit. Such models must accurately reflect empirical data
from the real systems being simulated. Studies of the power characteristics of the SPEC
CPU 2000 and CPU 2006 benchmarks suites executed on the AMD Athlon 64 processor
[Mesa-Martinez et al. 2007] and thermal measures [Mesa-Martinez et al. 2010] show
that simulation-based models (1) need long execution times to accurately predict power
behavior and (2) have problems dealing with key thermal metrics. Mercury [Heath et al.
2006] attempts to address these issues by adopting a hybrid approach with an out-of-
band solver that processes component observations collected from a monitor daemon
on the target system. The solver in this system uses collected information to simulate
the thermal behavior in the system. The Mercury infrastructure was used to construct
Freon and FreonEC for thermal and energy management of clusters. However, the sta-
tistical analysis of methods similar to those used in Freon indicate significant issues in
this case [Davis et al. 2011]. Therefore, simulation-based models are unsuitable when
dynamic power and thermal optimization are concerned [Economou et al. 2006].

Analytical models, by contrast, rely on power measurements at the constituent com-
ponents of a server via sampling its hardware and software performance metrics, that
is, processor PeCs (performance counters) and operating system performance metrics.
PeCs are hardware registers that can be configured to count various micro-architectural
events, such as branch mispredictions and cache misses. Attempts have been made to
reconcile analytic models by mapping program phases to events [Isci and Martonosi
2006]. Common techniques for associating PeCs and/or performance metrics with en-
ergy consumption adopt linear regression to map collected metrics to energy consumed
during program execution [Contreras and Martonosi 2005; Economou et al. 2006; Isci
and Martonosi 2003b].

Models have been built for the processor, storage devices, single systems, and groups
of systems in data centers [Kadayif et al. 2001; Isci and Martonosi 2003b]. For exam-
ple, memory manufacturers provide clear architectural documentation concerning the
power consumption of their products [Micron, Inc. 2007]; this information is regularly
used as the foundation for modeling DRAM power usage [Liu et al. 2008; Lewis et al.
2008]. Similarly, detailed thermal and power models of storage devices [Gurumurthi
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et al. 2005] have been proposed. However, those models considered only the maximum
internal data rate, thereby inadequate for our purpose of runtime measurement. At
the processor level, Bellosa et al. [2003] and Contreras and Martonosi [2005] created
power models that linearly correlated power consumption with PeCs. Those models are
simple and fast with low overhead [Bircher and John 2007; Powell et al. 2009; Bircher
and John 2011], but they are sensitive to benchmarks chosen for model calibration and
often suffer from large worst-case errors, making them unsuitable for predictive pur-
poses [McCullough et al. 2011]. Furthermore, they do not consider full-system power
consumption.

The black-box approach, without detailed knowledge of underlying hardware, has
been applied recently to full-system modeling [Bircher and John 2007; 2011] by using
PeCs to estimate power consumption of I/O devices, in addition to the processor. In
general, full-system models can be created using operating system CPU utilization [Fan
et al. 2007] and similar metrics [Heath et al. 2005] in addition to PeCs. Such full-system
models, like MANTIS [Economou et al. 2006; Rivoire 2008] and trickle-down power
modeling [Bircher and John 2011], relate usage information to the power of the entire
system rather than of its individual components. Each of those models requires one
or more calibration phases to determine the contribution of each system component
to overall power consumption. The accuracy and the portability of full system power
models were assessed earlier [Rivoire et al. 2008], revealing that reasonable accuracy
across machines and different workloads was achievable by considering both PeCs
(performance counters) and operating system performance metrics, since they together
may capture all components of system dynamic power consumption.

Auto-regressive (AR) techniques have been adopted popularly to construct power
and temperature models for servers [Coskun et al. 2008; Powell et al. 2009; Bircher
and John 2011], since they are simple and efficient. The linear AR models attempt to
correlate PeCs to system behavior, with an average error of five to twenty-five percent
(depending on architecture and benchmarks). Unfortunately, their maximum errors
tend to be ill-conditioned, because of their stationary nature. In a stationary process, the
probability distribution does not change with time, nor do the mean and the variance.
Hence, AR and auto-regressive/moving average (ARMA) models are not suited for
data that exhibits sudden bursts of large amplitudes at irregular time epochs, due
to their assumptions of normality [Tong 1993]. Given workload dynamics of a server
vary in time and its power profiles often diverge over time, effort has been made to
accommodate this diverse behavior [Mesa-Martinez et al. 2007; Coskun et al. 2008] so
as to permit continuing use of AR and ARMA models. This way, however, negatively
impacts the performance advantage resulting from auto-regressive techniques, namely,
their simplicity.

Lately, the power consumption data collected during benchmark execution have sig-
nified their increasing nonlinearity over time. For example, an analysis of published
results for the SPECpower ssj2008 benchmark [Varsamopoulos et al. 2010; Hsu and
Poole 2011] revealed maximum errors as large as 40% when modeling the benchmark
results using linear two-point interpolation with the observation that the behavior of
the power curves of this benchmark was neither linear nor convex. A variation of the
MANTIS power model [Economou et al. 2006] was used to analyze the power curves
of the SPEC CPU2006, PARSEC multithreaded benchmark suite [Bienia 2011], and a
set of synthetic system stress benchmarks [McCullough et al. 2011]. This work found
for multicore processors that the mean relative error doubled as compared to when
the benchmark was restricted to executing on a single core. Furthermore, mean rel-
ative errors for individual subsystems, such as the CPU, were significantly higher,
with an average error of 10-14% and the largest error as much as 150% for some
workloads.
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The cause of nonlinear behavior in power data may be attributed to a number of fac-
tors. First, while the assumption of linearity depends upon homogeneous workloads,
observations of the behavior of SPEC CPU benchmarks in both physical and virtual
machine environments reveal that distributing execution tasks across multicore pro-
cessors is rarely uniform to have homogeneous workloads [Kansal et al. 2010]. Second,
modern processors have no simple features that can be abstracted easily to permit
linear models (for example, effects such as cache contention, processor performance
optimizations, and hidden device states) [McCullough et al. 2011].

Dealing with workload dynamics without high computational complexity requires
efficient estimation able to address inherent nonlinearity in the time series. One ap-
proach follows local polynomial fitting via weighted least squares regression [Fan and
Gijbels 1996] or its variation [Singh et al. 2009]. Another approach is to utilize a mov-
ing average technique for smoothing the data by computing an average of the subset of
data from the time series observations. For example, an exponentially weighted mov-
ing average will weight the members of the subset in geometrically decreasing order
to give less weight to samples as they are further away in time [NIST 2010]. A third
approach to fitting nonlinear curves with varying degrees of smoothness in different lo-
cations makes use of the derivatives of an approximating function with discontinuities.
This can be accomplished by employing splines with discontinuities existing at points
identified as knots. An example of this approach is Multivariate Adaptive Regression
Splines (MARS) [Friedman 1991], which models the time series as a weighted sum of
basis functions Bi(x) and constant coefficients ci:

f (x) =
k∑

i=1

ci Bi(x), (1)

where each of the basis functions can take the form of (1) a constant 1, with only one
such term present, the intercept, (2) a hinge function in the form of max(0, x − c) or
max(0, c − x), or (3) a product of two or more hinge functions. MARS is suitable for
modeling power behavior because of their good balance between bias and variance. A
model with low bias signifies that it is flexible enough to address nonlinearity while
sufficiently constrained to maintain low variance. More details about MARS can be
found in the Appendix.

Chaotic systems are ubiquitous in nature, found in many different physical domains.
One key feature of such a dynamic system is its sensitivity to initial conditions, whose
small difference �x can result in the marked difference of �xeλt after time t, for a
certain λ > 0. This exponential separation signifies that even a small difference or
error may lead to large divergence in the near future.

From a mathematical standpoint, chaos can be produced by both continuous and
discrete systems. A continuous system expressed by a differential equation

dx(t)
dt

= F(x(t)), (2)

with at least three degrees of freedom x(t) = [x1(t), x2(t), x3(t), . . . , xm(t)], can be related
to a companion discrete system of

xn+1 = f (xn), (3)

by considering Equation (3) as a projection of the flow for Equation (2) on a surface.
Three conditions are necessary for such a system to show chaos: (1) the differential
equation and companion discrete system are deterministic, (2) the functions of f and
F must be nonlinear, and (3) the discrete system must have a positive Lyapunov
exponent [Liu 2010].
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Fig. 1. AMD Opteron architecture.

3. SYSTEM MODELING

In order to develop a deterministic continuous energy consumption model based on
computational load of the system, we consider Edc, the total DC power input to the
system, at the output of the power supply. Most servers operate on the AC input,
with efficiency of power conversion from AC to DC equal to 72 – 80% (depending on
the system load [Ton et al. 2008]) and with the DC output delivered in the domains
of +/−12V, +/−5V, and +/−3.3V [Server System Infrastructure Consortium 2004].
Typically, two 12 Vdc lines supply power to the processor’s hard drive(s) and cooling
fans in the system. The 5 Vdc and 3.3 Vdc lines are dedicated to supplying power to
the support chips and peripherals on the board.

Energy delivered to a server system, Edc = Esystem, can be expressed as a sum of
energy consumed by constituent sub-systems in the server. Generally, there are five
sources of energy consumption in a server system:

Eproc: energy consumed in the processor due to computation,
Emem: energy consumed by DRAM chips,
Ehdd: energy consumed by the hard disk drive(s),
Eboard: energy consumed by peripherals in support of board the operations,
including all devices in multiple voltage domains across the board (like chip-set
chips, voltage regulators, bus control chips, connectors, interface devices, etc.),
Eem: energy consumed by all electrical and electromechanical components in
the server, including fans and other support components.

Total energy consumed by the system with a given computational workload can be
expressed as:

Esystem = Eproc + Emem + Ehdd + Eboard + Eem. (4)
Each of the above terms is explored in turn by following an energy conservation prin-
ciple. In order to get a true measure of the computational load on the system, our
approach snoops on bus transactions per unit time (indicated by PeC readings), mea-
sures the temperature changes (in die and ambient sensor readings), and records the
speeds of cooling fans, in the course of job execution. The use of those PeCs and metric
readings fits well to NUMA-based multicore processors.

3.1. Processor Energy Consumption

Consider the AMD Operton architecture and the Intel Nehalem architecture, as de-
picted in Figures 1 and 2. The former is a NUMA-based processor (Figure 1), with
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Fig. 2. Intel Xeon (Nehalem) architecture.

Northbridge functionality incorporated in the processor core and each core responsible
for local access to the memory connected to that Northbridge logic (shown in Figure 1
as “Integrated Memory Controller”). Processor cores on a single die are connected via
a crossbar to the HyperTransport bus (i.e., HT1) between processors. A coherent bus
protocol is used to ensure memory consistency between processor cores on each die. In
addition, the master processor in the system is connected via a second HyperTrans-
port bus (i.e., HT2) to the Southbridge device that manages connections to the outside
world. A similar structure exists in the Intel Xeon Nehalem architecture. Unlike the
AMD Operton, each Nehalem processor is connected to an Input-Output handler, which
provides the Southbridge with connecting functions for off-chip resources.

It is observed that work done by any of the processors, as the heart of energy con-
sumption in a server system, can be quantified in terms of bus transactions in and
out of the processors. Traffic on the external buses provides a measure of how much
data is processed by the processor. In the case of the NUMA architecture, this quantity
can be measured by determining the amount of data transmitted over interconnect be-
tween processor cores (HyperTransport for AMD processors, QPI links for recent Intel
processors). Our energy consumption model aims to treat each processor as a black
box, whose energy consumption is a function of its work load (as manifested by core die
temperatures measured at the system level by ipmitool through sensors on the path of
the outgoing airflow from the processor). In practice, when estimating processor power
consumption based on PeCs (performance counters), there are only a limited number
of PeCs for tools, like cpustat, to track simultaneously.

For the AMD dual-core Operton architecture (shown in Figure 1), traffic on the HT
buses is viewed as a representative of the processor workload, reflecting the amount
of data being processed by a processor (i.e., its involved cores). The HT2 bus is non-
coherent and connects one of the two processors to the Southbridge (whereas the North-
bridge is included on the Opteron processor die). Thus, traffic on the HT2 bus reveals
hard-disk and network transactions. This model scales by considering the effect of net-
work traffic and disk I/O transactions. HT1 is a coherent bus between the two SMP
processors and, as such, PeCs on HT1 provide accurate estimation on the processing
load of cores executing jobs. Per-core die temperature readings are directly affected
by the number of transactions over the HT1 bus. A similar observation holds for the
QPL links present in the Intel Nehalem architecture, with traffic between its two cores
reflected by transactions on QuickPath Links between the cores, denoted by QPLC (see
Figure 2).
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Therefore, total processor power consumption at time t, Pproc(t), is related to pro-
cessor temperature readings and the estimated amount of data being processed at the
time, and it can be expressed as a function of three metrics: die temperature read-
ings for processors 0 and 1, and the number of bus transactions (i.e., traffic over HT1
for the AMD server and over QPLC for the Intel server). We have processor energy
consumption between times t1 and t2 as follows:

Eproc =
∫ t2

t1
(Pproc(t))dt. (5)

3.2. DRAM Energy Consumption

Energy consumed by the DRAM banks is directly related to the number of DRAM
read/write operations involved during the time interval of interest, and the number
is reflected by (1) the last-level cache misses for all N constituent cores (CMi(t), i =
1, 2, . . . , N) in the server when executing jobs and (2) the data amount due to disk
accesses for OS support (like page tables, checkpoints, virtual environments) and due
to performance improvement for peripheral devices (like buffered data for disks and
optical devices, spooled printer pages). The data amount in (2), named DB(t), is reflected
by traffic over HT2 (or QuickPath links between the two cores and the Input/Output
handler, denoted by QPLIO) for the AMD Opteron server (or the Intel Xeon server),
as demonstrated in Figure 1 (or Figure 2). This is because network traffic does not
exist in either testing server, which comprises only a single chip. Additional energy
contributors include activation power and DRAM background power (due to leaking
currents), represented by Pab. As stated earlier [Micron, Inc. 2007], DRAM activation
power and background power can be obtained from the DRAM documentation, and
they together amount to 493 mW for one DRAM module in our AMD Opteron server.
Consumed energy over the time interval between t1 and t2 can be expressed by

Emem =
∫ t2

t1

((
N∑

i=1

CMi(t) + DB(t)

)
× PDR + Pab

)
dt,

where PDR refers to DRAM read/write power per unit data.

3.3. Hard Disk Energy Consumption

Energy consumed by the hard disk(s) is approximated by using a combination of rel-
evant PeCs and drive ratings. Building a full-system model of disk drive energy con-
sumption is complicated by the distance (from the processor) and the high latency of
the disk drive. Two earlier modeling approaches exist, with one analyzing drive per-
formance and capacity based on the physical characteristics of the drive [Gurumurthi
et al. 2005] and the other utilizing PeCs (which measure DMA accesses on the memory
bus, uncacheable accesses, and interrupts) to estimate the value of Ehdd [Bircher and
John 2011].

By contrast, our disk model is interested in the amount of information being trans-
ferred back and forth to the device. So, it is possible to calculate this value using
information collected by the operating system and physical characteristics of the disk
drive. Both our test servers use the Hitachi’s SATA hard disk (whose specification and
relevant power consumption figures are listed in Table I). Based on the physical, elec-
trical, and electromechanical parameters of a hard disk, one can construct its detailed
power consumption model. However, a cruder but simpler model can be obtained from
the typical power consumption data of hard disks and pertinent PeCs, including (1)
the number of reads and writes per second to the disk and (2) the amount of data (in
kilobytes) read from and written to the disk. Those PeCs can be measured by the tool
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Table I. Hitachi HDT725025VLA360 Disk Power
Parameters

Parameter Value
Interface Serial ATA
Capacity 250 GB
Rotational speed 7200 rpm
Power

Spin up 5.25 W (max)
Random read, write 9.4 W (typical)
Silent read, write 7 W (typical)
Idle 5 W (typical)
Low RPM idle 2.3 W (typical for 4500 RPM)
Standby 0.8 W (typical)
Sleep 0.6 W (typical)

of iostat, arriving at approximate disk power consumption, Ehdd, as:

Ehdd = Pspin-up × Tsu + Pread

∑
Nr × Tr

+ Pwrite

∑
Nw × Tw +

∑
Pidle × Tid,

where Pspin-up is the power required to spin-up the disk from 0 to full rotation, and Tsu
is the time required to achieve spin up, typically about 10 sec. Pread (or Pwrite) is the
power consumed per kilobyte of data read from (or written to) the disk, whereas Nr (or
Nw) is the number of kilobytes of data reads (or data writes) in time-slice Tr from (or
to) the disk. The Hitachi disk achieves read operations at 1.5 Gbits/s, when consuming
530 mA current at +5V, thereby exhibiting approximately 13.3μW /Kbyte. Similarly, it
is found to consume 6.67μW /Kbyte for write operations. The numbers of Nr and Nw

can be obtained using iostat according to the chosen time slice.
There are two idle states for the disk: idle and unloaded idle (when disk read/write

heads are unloaded). The time to go from the unloaded idle state to the idle state is
usually less than 1 second (smaller than the resolution of iostat). Thus, a history
match count in the iostat statistics with zero reads and writes signifies the periods in
which the disk is idle, permitting us to compute idle energy consumption accordingly.
iostat readings for the durations of switching to different disk power states may be
obtained with a more in-depth analysis, which is not considered in this work.

3.4. Board Energy Consumption

The quantity of Eboard represents energy consumption caused by the support chipsets,
control logic, buses, signal links, etc., and it usually falls into the 3.3V and 5V power
domains. Exhibiting little variation, Eboard can be difficult to measure, as chipset power
is drawn from multiple domains. Hence, earlier models [Kansal et al. 2010; Bircher and
John 2011] treated Eboard as a constant. In our case, however, this value is obtained
using current probe-based measurements. The results are measured over an interval
of interest, tinterval and exclude the effects of processor, disks, fans, and optical devices.
Note that introducing the current sensors (possibly taking up to 28 for a server [Server
System Infrastructure Consortium 2004]) to the power lines on the board will provide
instantaneous current readings for use in Eboard.

Aggregated power consumption effects on the board may be captured using ambient
temperature readings on the board. Such readings can be obtained using system man-
agement tools commonly found in server environments (such as IPMI), and they are
included in the set of our PeCs for energy consumption estimation.

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 3, Article 15, Publication date: September 2012.



15:10 A. W. Lewis et al.

3.5. Electromechanical Energy Consumption

A server always involves electromechanical energy consumption, Eem, which is mainly
due to the electromechanical functions related to system cooling. Multiple fans often
exist in a server for cooling. Power drawn by the ith fan at time t can be given by the
following equation:

Pi
f an(t) = Pbase ×

(
RPMi

f an(t)

RPMbase

)3

, (6)

where Pbase defines the base power consumption of the unloaded system when running
only the base operating system and no application workload. The Pbase value is obtained
experimentally by measuring the current drawn on the +12V and +5V lines, using a
current probe and an oscilloscope. There is a current surge at system start, which
is neglected. Under nominal conditions, the +12V line draws approximately 2.2A to
power both blower fans in the AMD testing server. Total electromechanical energy
consumption over a given task execution period of Tp equals:

Eem =
∫ Tp

0

(
N∑

i=1

Pi
f an(t)

)
dt.

4. EFFECTIVE PREDICTION

The current generation of server systems lacks (1) the complete set of measurement and
monitoring capabilities and (2) data flow state capture mechanisms required in order to
formulate the parameters of an exact analytical model. For example, the system board
DC and AC power consumption cannot be easily split in measurements or analyses,
due to the presence of large numbers of voltage/current domains, each with multiple
components. Therefore, effective prediction on future power consumption based on
past power consumption readings/measurements (obtained from PeCs and performance
metrics) is critical.

In Equation (4), Esystem signifies total energy consumed by the system for a given
computational workload, equal to the sum of five terms: Eproc, Emem, Ehdd, Eboard, and
Eem. Adopting Equation (4) for server energy consumption estimation, one needs to
predict change in Esystem over the time interval of (t, t + �t). Such prediction, following
a time series to make observations of the server system, based on PeCs and performance
metrics, can be approximated by

Esystem = f̂ (Eproc, Emem, Ehdd, Eboard, Eem), (7)

where the involved parameters correspond to the five server energy contributors mod-
eled in Sections 3.1 to 3.5.

4.1. Performance Counters and Metrics

In our prediction approach, fourteen (14) observable PeCs and accessible performance
metrics (referred to as “measures” collectively for simplicity) are involved in the AMD
server, as listed in Table II. They are grouped into five clusters, depending on their
relevance to the server energy contributors. More specifically, the top three measures
are related to Eproc, named MP AMD

proc = [
TC0 , TC1 , HT1

]
. The next five measures dic-

tate Emem, denoted by MP AMD
mem = [

HT2, CM0, CM1, CM2, CM3
]
. Those CMi measures,

capturing the total L2 cache miss counts due to Core i, are registered at PAPI L2 TCM
(being OpenSolaris generic events equivalent to the matching event in the Linux PAPI
performance counter library [London et al. 2001]) and mapped to the AMD perfor-
mance counters at 0x7E (as defined in [AMD 2006]). The following two measures are
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Table II. PeCs and Performance Metrics for AMD
Opteron Server

Variable Measurement
TC0 CPU0 Die Temp
TC1 CPU1 Die Temp
HT1 HT1 Bus X-Actions
HT2 HT2 Bus X-Actions
CM0 Last-level Cache Misses due to Core0
CM1 Last-level Cache Misses due to Core1
CM2 Last-level Cache Misses due to Core2
CM3 Last-level Cache Misses due to Core3

Dr Disk bytes read
Dw Disk bytes written
TA0 Ambient Temp0
TA1 Ambient Temp1
FC CPU Cooling Fan Speed
FM Memory Cooling Fan Speed

Table III. PeCs and Performance Metrics for Intel
Nehalem Server

Variable Measurement
TC0 CPU0 Die Temp
TC1 CPU1 Die Temp

QPLC Transactions on QPL between Cores
QPLIO Transactions on QPLs for IO Handler
CM0 Last-level Cache Misses due to Core0
CM1 Last-level Cache Misses due to Core1

Dr Disk bytes read
Dw Disk bytes written
TA0 Ambient Temp0
TA1 Ambient Temp1
TA2 Ambient Temp2
FC Memory Cooling Fan Speed

FM2a Memory Cooling Fan Speed 2a
FM2b Memory Cooling Fan Speed 2a
FM3a Memory Cooling Fan Speed 3a
FM3b Memory Cooling Fan Speed 3b
FM4a Memory Cooling Fan Speed 4a
FM4b Memory Cooling Fan Speed 4b
FM5a Memory Cooling Fan Speed 5a
FM5b Memory Cooling Fan Speed 5b

pertinent to Ehdd, represented by MP AMD
hdd = [

Dr, Dw

]
, which refer to the total num-

bers of bytes in disk reads and disk writes, respectively, during a period of 5 seconds
(in our experiments) for all I/O devices (which are limited to the disk only, since no
network traffic nor optical disks exist in the two testing servers), as recorded by the
system activity monitor. The next two measures are related to Eboard, indicated by
MP AMD

board = [
TA0 , TA1

]
, which register the temperature readings of two board locations

where temperature sensors are placed. Finally, the last two measures determine Eem,
shown by MP AMD

em = [
FC, FM

]
, which provide speed information of the CPU cooling fan

and the memory cooling fan. Collectively, each observation at time t includes the 14
measures of MP AMD(t) = [

MP AMD
proc , MP AMD

mem , MP AMD
hdd , MP AMD

board , MP AMD
em

]T .
On the other hand, the Intel Nehalem server involves twenty (20) measures, as

listed in Table III. Again, they are classified into five groups, each associated with one
server energy contributor. Notice that QPLC and QPLIO are relevant to QuickPath
Links (depicted in Figure 2), and they are associated with Eproc and Emem, respectively.
In practice, however, there is just one single PeC for holding aggregated QPLC and
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QPLIO together. Among those measures listed in Table III, the top three are perti-
nent to Eproc, comprising MPIntel

proc . The next three measures determine Emem, forming
MPIntel

mem . Those two CMi measures indicate the total L3 cache miss counts due to Core
i, i = 0 or 1. The cache miss counts record the last-level cache (i.e., L3) misses for the
Intel Xeon processor on which our testing Intel server is built. They are reflected by
the OpenSolaris generic event, PAPI L3 TCM (as detailed in Sun Microsystems [2008]
and Intel [2009]). The next two measures are related to Ehdd (and constitute MPIntel

hdd ),
signifying the total numbers of bytes in disk reads and disk writes, respectively,
during a period of 5 seconds. The subsequent three measures dictate Eboard, ob-
tained from 3 temperature sensors placed on the board for ambient temperature
readings; they form MPIntel

board. Finally, the last nine measures determine Eem, offer-
ing speed information of those nine memory cooling fans, to constitute MPIntel

em . As a
result, each observation for the Intel server at time t comprises the 19 measures of
MPIntel(t) = [

MPIntel
proc , MPIntel

mem , MPIntel
hdd , MPIntel

board, MPIntel
em

]T
.

A common prediction approach follows the linear auto-regressive (AR) combination
of observation measures to predict the quantities in Equation (7) [Lewis et al. 2008].
It yields Esystem by adding up fco(MPco) for all server energy contributors, with each
fco (due to Contributor co) being a linear summation of its constituent measures, as
detailed in Appendix. Such a linear AR approach has characteristics that make it
unsuitable for modeling server systems. Consider the traces of actual power shown
in Figures 7 and 8 for the SPEC CPU2006 zeusmp benchmark as executed on an
AMD Opteron or Intel Nehalem server. We saw indications of (1) periodic behavior
and (2) large swings in the power draw throughout the course of the benchmark run.
Similar scenarios were observed for other benchmarks on the AMD Opteron server
and the Intel Nehalem server under this work. Linear regression-based prediction for
power draw can mispredict substantially (up to 44%, as indicated in Table X). Thus, it
is reasonably conjectured that nonlinear dynamics do exist in server systems. Given
large swings in power draw usually occur to a typical server and cannot be completely
attributed to noise, more accurate prediction than linear auto-regression and MARS
[Friedman 1991] is indispensable.

4.2. Chaotic Prediction

The continuous system expressed in Equation (4) can be viewed as a multivariate
differential equation in the time domain (energy being power used in a time period).
The time series approximation of a system solution can be viewed as a projection of
the flow of Equation (4) onto a surface [Liu 2010]. The projection is defined in a way
that the behavior (i.e., energy consumption) of the dynamic system is reflected in our
discrete approximation (i.e., our time series measures).

We performed an analysis on the data collected from our test systems to determine
if the behavior of our time series can be attributed to some form of chaotic behavior.
A chaotic process is one that is highly sensitive to a set of initial conditions. Small
differences in those initial conditions yield widely diverging outcomes in such chaotic
systems. In order to determine whether a process is chaotic, we must be able to show
that (1) it demonstrates high sensitivity to initial conditions and topological mixing,
and (2) its periodic orbits are dense [Sprott 2003]. After analyzing our experimental
data, we believe that the power consumption of a server demonstrates chaotic behavior.

In order to evaluate a server’s sensitivity to initial conditions, we consider the
Lyapunov exponents of the time series data observed while running those bench-
marks described in the previous section. The Lyapunov exponent quantifies the
sensitivity of a system such that a positive Lyapunov exponent indicates that the
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Table IV. Indications of Chaotic Behavior in
Power Time Series (AMD, Intel)

Hurst Average
Parameter Lyapunov

Benchmark (H) Exponent
bzip2 (0.96, 0.93) (0.28, 0.35)

cactusADM (0.95, 0.97) (0.01, 0.04)
gromacs (0.94, 0.95) (0.02, 0.03)
leslie3d (0.93, 0.94) (0.05, 0.11)
omnetpp (0.96, 0.97) (0.05, 0.06)
perlbench (0.98, 0.95) (0.06, 0.04)

system is chaotic [Sprott 2003]. The average Lyapunov exponent can be calculated
using λ = limN→∞ 1

N

∑N−1
n=0 ln| f ′(Xn)|.

We found a positive Lyapunov exponent when performing this calculation on our
dataset, ranging from 0.01 to 0.28 (or 0.03 to 0.35) on the AMD (or Intel) test server, as
listed in Table IV, where each pair indicates the parameter value of the AMD server
followed by that of the Intel server. Therefore, our data has met the first and the most
significant criterion to qualify as a chaotic process.

The second indication of the chaotic behavior of the time series in Equation (7) is
an estimate of the Hurst parameter H for the datasets collected in each benchmark.
A real number in the range of (0, 1), the Hurst parameter is in the exponents of the
covariance equation for Fractional Brown motion (fBm) [Sprott 2003]. If the value of the
Hurst parameter is greater than 0.5, an increment in the random process is positively
correlated and long range dependence exists in the case of time series. In a chaotic
system, a value of H approaching 1.0 indicates the presence of self-similarity in the
system. As demonstrated in Table IV, the time series data collected in our experiments
all have values of H close to 1.0, ranging from 0.93 to 0.98 (or 0.93 to 0.97) on the AMD
(or Intel) test server.

From a predictive standpoint, the unpredictable deterministic behavior of chaotic
time series means that it is difficult to build a predictor that takes a global parametric
view of the data in the series. However, it is possible to generate a highly accurate
short-term prediction by reconstructing the attractor in the phase space of the time
series and applying a form of least square prediction to the resulting vector space [Itoh
1995; Su 2010].

4.2.1. Chaotic Attractor Predictors. With the time series introduced in Equation (7), let
yt be the value of Esystem at time t, r be the total number of PeCs and performance
measures to provide metric readings, and Xt be the vector of those r metric readings at
time t. According to Taken’s Delay Embedding Theorem [Sprott 2003], there exists a
function f̂ (Xt) whose behavior in the phase space reflects the behavior of the attractors
in the original time series values yt. Consequently, for given f̂ , a known Xt reveals
system energy consumption at time t, namely, yt. If Xt can be predicted accurately
for future time t (likely based on past metric readings), system energy consumption
at future t can be estimated properly. To this end, it is necessary to find a means for
approximating f̂ .

We introduce the concept of Chaotic Attractor Prediction (CAP) that defines f̂ in
terms of least squares regression of a multivariate local polynomial of degree r. Multi-
variate local regression is a common nonparametric technique for time series approx-
imations. With CAP, we extend this concept to predict the behavior of a chaotic time
series by following the approximation method to take advantage of its polynomial time
complexity while capturing the behavior dynamics of testing systems.
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Let X be an observation (involving r measures of

MP(t + �t) = [MPproc, MPmem, MPhdd, MPboard, MPem]T

for a given server, as described earlier) at some future time t + �t and Xu be a prior
observation (involving r metric readings of MP(u)) at time u for u = t−1, t−2, . . . , t− p.
CAP localizes and addresses the possibility of noise in our observations through kernel
weighting. This process starts with the standard multivariate normal density function
of K(x) = (2π )−

m
2 exp(−‖X‖2/2) (where ‖X‖ is the norm of vector X) for smoothing out

values of a local neighborhood, over which our CAP is defined. Let the bandwidth of
β be a nonnegative number and Kβ(X) equal K(X/β)/β [Fan and Gijbels 1996]. The
function of Kβ serves as a kernel to smooth out noise in our original observations in a
nonparametric manner. It has been shown that β determines the degree of smoothing
produced by the kernel [Fan and Yao 2005]. Selection of a small β value does not ade-
quately address issues of noise, while a too large β value results in excessive bias in the
results and may hide important dynamics of the underlying function f̂ [Turlach 1993].

A preferred choice for β can be computed by: β =
(

4
3p

) 1
5
σ , where σ is the standard

deviation of observed values, estimated via the formula of σ̄ = median(|xi − μ̄|)/0.6745,
with μ̄ being the median of observed values [Bowman and Azzalini 1997].

An approximation for f̂ is defined subsequently in terms of a locally weighted average
[Box et al. 1994; Fan and Gijbels 1996] over the next n observations, based on the
prior p observations of Xt−1, . . . , Xu, . . . , Xt−p (each with r measures, namely, MP(u) =[
MPproc, MPmem, MPhdd, MPboard, MPem

]T , as described earlier):

f̂ (X) =

t+n−1∑
d=t

Op ∗ Kβ(Xd − X)

t+n−1∑
d=t

Kβ(Xd − X)

with Op = (Xt−1, Xt−2, . . . , Xt−p).
The process can be improved by defining a local approximation via applying a trun-

cated Taylor series expansion of f̂ (X) for X at nearby x:

f̂ (X) = f̂ (x) + f̂
′
(x)T (X − x).

The coefficients of the polynomial f̂ are then determined by minimizing
t+n−1∑

d=t

(Xd − a − bT (Xd − x))2 ∗ Kβ(Xd − x). (8)

with respect to a and b, which are estimators to f̂ (x) and f̂ ′(x), respectively. The
predictor generated by solving Equation (8) can be explicitly written, according to [Box
et al. 1994], as

f̂ (x) = 1
n

t+n−1∑
d=t

(s2 − s1 ∗ (x − Xd))2 ∗ Kβ((x − Xd)/β) (9)

with si = 1
n

t+n−1∑
d=t

(x − Xd)i ∗ Kβ((x − Xd)/β), for i = 1 or 2.
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Table V. SPEC CPU2006 Benchmarks Used for Model Calibration

Integer Benchmarks
bzip2 C Compression
mcf C Combinatorial Optimization

omnetpp C++ Discrete Event Simulation
FP Benchmarks

gromacs C/F90 Biochemistry/Molecular Dynamics
cactusADM C/F90 Physics/General Relativity

leslie3d F90 Fluid Dynamics
lbm C Fluid Dynamics

4.2.2. CAP Creation. There are three steps involved in the process of creating a CAP
predictor: (1) creating a training set for the process, (2) using the observations from the
training set to find the appropriate delay embedding using Takens Theorem and then
apply the nearest neighbors algorithm in the embedded set to identify the attractors,
and (3) solving the resulting linear least squares problem that arises from applying
Equation (8) to the attractors using the function expressed by Equation (9).

The training set for the predictor is constructed from a consolidated time series cre-
ated by executing the SPEC CPU2006 [Henning 2006] benchmarks listed in Table V on
target systems. The benchmarks were selected using two criteria: sufficient coverage of
the functional units in the processor and reasonable applicability to the problem space.
Components of the processor affect the thermal envelope in different ways [Kumar
et al. 2008]. This issue is addressed by balancing the benchmark selection between
integer and floating point benchmarks in the SPEC CPU2006 benchmark suite. Sec-
ond, the benchmarks were selected from the suite based upon fit into the problem
space. Each benchmark represents an application typical of the problems solved on
high-performance application servers.

Each benchmark in the calibration set was executed with a sampling interval of
t = 5 seconds. The observations from each time interval were consolidated on this
time interval using two methods: arithmetic mean (average) and geometric mean.
Trial models were constructed using each method and a statistical analysis of variance
indicated that time series generated from the geometric mean produced the best fit to
the collected data.

4.2.3. Time Complexity. The time complexity of creating a predictor is governed by the
third step in the process. The task of reconstructing the state space by delay embedding
is linear in time as one must make up to d passes through the observations, under the
embedding dimension of d. Thus, the time required is O(dn), where n is the number of
future observations. Then, it becomes a matter of applying a naive form of kth nearest
neighbors algorithm to identify the points in the attractors. This step involves finding
the squared distance of all the points in the nearest analogs in the Takens set and then
sorting the result to determine the d-nearest neighbors. This step takes O(n log n+ n).
The high cost of computing the linear least squares solution in the third step is avoided
by using the explicit expression given in Equation (9). The time complexity of computing
this expression can be shown to be O(n ∗ n), with O(n) due to computing si, for i = 1
or 2. As a result, the time complexity for establishing a CAP predictor equals O(n2).
It should be noted that the construction of a CAP predictor is done only once for a
given server, irrespective of applications executed on the server. Such construction is
based on past PeC observations (totally, p of them) to predict the future PeC readings.
As p grows (with more past PeC observations involved), the time complexity of CAP
increases linearly, as can be obtained in Equation (8). The actual computation time
results under different n and p values for our CAP code implemented using MATLAB
are provided in the next section.
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Fig. 3. CAP time complexity versus no. of future observations.

Fig. 4. CAP time complexity versus no. of past observations.

5. EVALUATION AND RESULTS

Experiments were carried out to evaluate the performance of the CAP power models
built for approximating dynamic system solutions. The first experiment aimed to con-
firm the time complexity of CAP. Making use of MATLAB, our CAP code was executed
on the two servers specified in Table VI. As the execution times on both servers provide
the same trend, only those collected from the SUN Fire 2200 server (AMD Opteron)
are demonstrated here. The code execution time results versus n (the number of future
observations) is illustrated in Figure 3, where the result curve confirms CAP time com-
plexity in O(n2). Separately, the CAP execution time as a function of p (the number of
past observations) on the SUN Fire server is shown in Figure 4, where the time indeed
is linear with respect to p, as claimed earlier in our time complexity subsection. In
practice, a moderate p (of, say, 100) and a small n (of, say, 5) may be chosen under CAP
for high accuracy and very low time complexity in real-time applications. The results
of distant future (corresponding to a larger n) can be predicted by a stepwise process,
with each step predicting the near future outcomes (using n = 5).
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Fig. 5. Hardware test setup.

Table VI. Server Configurations for Evaluation

Sun Fire 2200 Dell PowerEdge R610
CPU 2 AMD Opteron 2 Intel Xeon (Nehalem) 5500
CPU L2 cache 2×2MB 4MB
Memory 8GB 9GB
Internal disk 2060GB 500GB
Network 2×1000Mbps 1x1000Mbps
Video On-board NVIDA Quadro FX4600
Height 1 rack unit 1 rack unit

Table VII. SPEC CPU2006 benchmarks used for evaluation

Integer Benchmark
Astar C++ Path Finding

Gobmk C Artificial Intelligence: Go
FP Benchmarks
Gamess F90 Quantum chemical computations
Zeusmp F90 Computational Fluid Dynamics

5.1. Evaluation Environment

The operating system used in our test servers is OpenSolaris (namely, Solaris 11). Eval-
uation results are collected from the system baseboard controller using the IPMI inter-
face via the OpenSolaris ipmitool utility. Processor performance counters are collected
on a system-wide basis by means of cpustat, iostat, and ipmitool utilities in Open-
Solaris. Of these, iostat and ipmitool are available across all UNIX-based operating
systems commonly employed by data centers, while cpustat is an OpenSolaris-specific
utility (which is being ported to Linux).

Four benchmarks from the SPEC CPU2006 benchmark suite were used for the evalu-
ation purpose, as listed in Table VII), and they are different from those employed earlier
for CAP creation (as listed in Table V). It is noted that selection of benchmarks for both
calibration and evaluation were selected to sufficiently exercise processor, cache, and
memory again per the decision criteria in Phansalkar et al. [2007], with the additional
criterion of selecting workloads more common to server environments. As illustrated in
Table VIII (per results from Phansalkar et al. [2007]), the mix of instructions exercises
the key components of processor, memory, and cache in the dynamic system that we
model with CAP. In addition, the four benchmarks used in our evaluation represent
the type of high-utilization workloads in server environments per typical industry use
of the SPEC CPU2006 benchmark suite [Cisco Systems 2010].

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 3, Article 15, Publication date: September 2012.



15:18 A. W. Lewis et al.

Table VIII. Branch and Memory Access Patters of Evaluation
Benchmarks

Benchmark Inst Count Branches Loads Stores
(Billions)

astar 1,200 15.57% 40.34% 13.75%
gamess 5,189 7.45% 45.87% 12.98%
gobmk 1,603 19.51% 29.72% 15.25%
zeusmp 1,566 4.05% 36.22% 11.98%

Fig. 6. Root Mean Square Error (RMSE) for different values of p.

The benchmarks were executed on the two servers specified in Table VI, with perfor-
mance metrics gathered during the course of execution. Power consumed is measured
by a WattsUP power meter [Electronic Educational Devices, Inc. 2006], connected be-
tween the AC Main and the server under test (SUT). The power meter measures the
total and average wattage, voltage, and amperage over the run of a workload. The in-
ternal memory of the power meter is cleared at the start of each run and the measures
collected during the runs are downloaded (after execution completion) from meter’s
internal memory into a spreadsheet. Current flow on different voltage domains in the
server is measured using an Agilent MSO6014A oscilloscope, with one Agilent 1146A
current probe per server power domain (12v, 5v, and 3.3v). This data was collected from
the oscilloscope at the end of each benchmark execution on a server and then stored in
a spreadsheet on the test host. The apparatus is shown in Figure 5.

5.2. Results

While the number of measures per observation (r) is fixed for a given server in our
evaluation (equal to 14 for the Sun Fire server and to 19 for Dell PowerEdge server),
the CAP prediction time and accuracy depend on p (the number of past observations)
and n (the number of future observations), as stated in Section 4.2.2. In our evaluation,
the CAP prediction error rates of various benchmark codes for a range of p under
a given n were gathered, as demonstrated in Figure 6, where n equals 5. It can be
seen from the figure that the error rates are fairly small (and stay almost unchanged)
when p is within 100 to 200, but they rise considerably when p drops to 50 or below.
In subsequent figures, the prediction results of CAP include only those for n = 5 and
p = 100. Each benchmark was executed to collect the first p = 100 points on the
attractor, at which point the next n=5 points were used to compute the estimated
power for the t, t + 1, . . . , t + 5 energy estimates in each time cycle.
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Fig. 7. Actual power results versus predicted results for AMD Opteron.

The predicted power consumption results of CAP during the execution of Astar and
Zeusmp on a HyperTransport-based server are demonstrated in Figures 7(a) and 7(c).
The predicted values are seen to track closely to the measured readings (obtained
using the WattsUP power meter and indicated by solid curves), with the error rate
ranging between 0.9% and 1.6%. For comparison, the predicted power consumption
outcomes during the execution of same selected benchmarks under AR(1) are depicted
in Figures 7(b) and 7(d), where details of AR(1) can be found in Appendix. As expected,
AR(1) exhibits poor outcomes over any given short execution window, with maximum
errors ranging from 7.9% to 9.3%, despite that the prediction error over the whole
execution period may be less. CAP enjoys much better prediction behavior than its
linear regressive counterpart.

The predicted power consumption results under CAP over the benchmark execution
period for the QPL-based server (Dell PowerEdge) are demonstrated in Figures 8(a) and
8(c), where the actual power consumption amounts obtained by the WattsUP meter are
shown by solid curves. Again, CAP is seen to exhibit impressive performance, tracking
the actual amounts closely, with the error rate ranging between 1.0% and 3.3%. The root
mean square errors for CAP remain within small values. In contrast, AR(1) suffers from
poor prediction behavior, as can be discovered in Figures 8(b) and 8(d), where outcomes
of same benchmarks executed on the Dell PowerEdge server are depicted. It yields the
maximum error up to 20.8% (or 20.6%) for the Astar (or Zeusmp) benchmark.
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Fig. 8. Actual power results versus predicted results for an Intel Nehalem server.

Table IX. Model errors for CAP (under n = 5, p = 100, r = 14),
AR(1), MARS, and EWMA on AMD Opteron server

CAP AR
Avg Max Avg Max

Benchmark Err % Err % RMSE Err % Err % RMSE
Astar 0.9% 5.5% 0.72 3.1% 8.9% 2.26

Gamess 1.0% 6.8% 2.06 2.2% 9.3% 2.06
Gobmk 1.6% 5.9% 2.30 1.7% 9.0% 2.30
Zeusmp 1.0% 5.6% 2.14 2.8% 8.1% 2.14

MARS EWMA
Avg Max Avg Max

Benchmark Err % Err % RMSE Err % Err % RMSE
Astar 2.5% 9.3% 2.12 1.2% 7.9% 2.40

Gamess 3.0% 9.7% 2.44 1.1% 7.8% 1.42
Gobmk 3.0% 9.1% 2.36 1.0% 6.9% 2.30
Zeusmp 2.8% 7.9% 2.34 1.8% 9.2% 2.01

5.3. Further Discussion

Table IX (or X) compares the errors of evaluation benchmarks for the server with
the HyperTransport (or QPL) structure, under four different prediction mechanisms:
CAP, AR, MARS, and EWMA. Details of AR, MARS, and EWMA predictors can be
found in Appendix. Large errors exhibited by AR, MARS, and EWMA overwhelm the
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Table X.
Model errors for CAP (under n = 5, p = 100, r = 19), AR,
MARS, and EWMA predictors on Intel Nehalem server

CAP AR
Avg Max Avg Max

Benchmark Err % Err % RMSE Err % Err % RMSE
Astar 1.1% 20.8% 1.83 5.9% 28.5% 4.94

Gamess 1.0% 14.8% 1.54 5.6% 44.3% 5.54
Gobmk 1.0% 21.5% 2.13 5.3% 27.8% 4.83
Zeusmp 3.3% 20.6% 3.31 7.7% 31.8% 7.24

MARS EWMA
Avg Max Avg Max

Benchmark Err % Err % RMSE Err % Err % RMSE
Astar 5.4% 28.0% 4.97 3.7% 32.4% 2.98

Gamess 4.7% 33.0% 4.58 1.8% 27.3% 2.19
Gobmk 4.1% 27.9% 4.73 3.9% 28.4% 2.73
Zeusmp 11.6% 32.2% 8.91 5.0% 31.3% 2.81

advantages gained from their simplicity. The table results indicate the limitations en-
tailed by using a linear technique, such as AR time series, to predict dynamic system
behavior; similar issues exist for piecewise and moving average techniques, such as
MARS and EWMA. Earlier attempts were made to address this issue by incorporat-
ing corrective mechanisms in combination with these predictors. An example attempt
employed machine learning to monitor misprediction, with recalibration invoked when
required [Coskun et al. 2008]. CAP eliminates the need for any corrective mechanism
by directly addressing the system dynamics, thereby avoiding wide drifts in prediction
experienced by other prediction techniques.

The model developed in this article is valid for any dual-core/dual-processor system
using NUMA memory access connected in a point-to-point manner using the Hyper-
Transport or the QPL structures. However, it can be scaled to quad-core dual processors
based on those two structures. One would expect to see a slight difference or variation
in power prediction due to a greater or less affect of die temperatures on the other per-
formance measures. Under a dual-core quad-processor server, for example, additional
regression variables would be incorporated in Eproc, giving rise to more performance
measures (i.e., a larger r). Similarly, more PeCs related to cache misses would then be
involved in Emem. The solution approach of CAP remains exactly identical, except for a
larger r in its prediction computation.

The experimental validation of CAP reveals opportunities for further investigation.
CAP has been validated for NUMA-based servers, built on AMD Operton processors
and Intel Xeon processors with Nehalem architecture; it requires validation on other
architectures, like NVIDA GPU processors and IBM Cell BE processors. Further stud-
ies on the power and thermal envelope of multichip server systems, which involve
network traffic and off-chip synchronization traffic, is required to understand their
contributions to the system thermal envelope.

6. CONCLUSION

A fast and accurate model for energy consumption and thermal envelope in a server
is critical to understanding and solving the power management challenges unique in
dense servers. In this article, we have introduced a comprehensive model of energy
consumption by servers as a continuous system of differential equations. The model
measures energy input to the system as a function of the work done for completing
tasks being gauged and the residual thermal energy given off by the system as a
result. Traffic on the system bus, misses in the L2 cache, CPU temperatures, and
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ambient temperatures are combined together to create a model, which can be employed
to manage the processor thermal envelope.

The model serves as a predictive tool by approximating observed performance metrics
in a discrete time series for estimating future metrics, and thus corresponding energy
consumption amounts. It was found through experimental validation that commonly
used techniques of regressive time series forecasting, while attractive because of their
simplicity, inadequately capture the nonlinear and chaotic dynamics of metric readings
for typical server systems. Therefore, a chaotic time series approximation for runtime
power consumption is adopted to arrive at Chaotic Attractor Prediction (CAP), which
exhibits polynomial time complexity. Our proposed model is the first step towards
building solutions for power and thermal management in data centers usually housing
many servers.

APPENDIX

This appendix describes three regression-based prediction models: a linear AR(1) model
[Box et al. 1994], a MARS model [Friedman 1991], and an EWMA model. Each model
is an approximations to the dynamic system in Equation (4), following regressive com-
binations of five energy contributors to a server, as given in Equation (7) [Lewis et al.
2008].

The same datasets used to generate the chaotic model were used to create the AR(1)
model. Two methods were considered for consolidation: arithmetic mean (average) and
geometric mean. Trial models were constructed using each method and a statistical
analysis of variance was performed to determine which model generated the best fit
to the collected data with a time interval t = 5 seconds. Note that the statistical
coefficients need to be computed only once using some benchmarks, for a given server
architecture. The coefficients obtained can then be provided through either the system
firmware or the operating system kernel for use in the server executing any application.

Under linear auto-regression, energy consumed by the processor for the AMD server,
EAMD

proc as defined by Equation (5), is a linear combination of MP AMD
proc measures (stated

in Section 4.1) as [Lewis et al. 2008]:

EAMD
proc ≈ 0.49 ∗ TC0 + 0.50 ∗ TC1 + 0.01 ∗ HT1.

For the Intel server, its energy consumption by the processor, EIntel
proc , is a function of

MPIntel
proc (detailed in Section 4.1), leading to its estimated energy as follows:

EIntel
proc ≈ 2.29 ∗ TC0 + 0.03 ∗ TC1 + 0.52 ∗ QPLC .

In a similar fashion, energy consumed by the memory subsystem in the AMD server,
EAMD

mem , is a function of MP AMD
mem , yielding

EAMD
mem ≈ 0.01 ∗ HT2 + 0.003 ∗ CM0 + 0.003 ∗ CM1 + 0.014 ∗ CM2 + 0.01 ∗ CM3.

Energy consumption for the memory subsystem in the Intel server, EIntel
mem , is a function

of MPIntel
mem , giving rise to

EIntel
mem ≈ 0.52 ∗ QPLIO + 0.35 ∗ CM0 + 0.31 ∗ CM1.

Energy consumed as a result of disk activities in the AMD server (or the Intel server)
is a function of MP AMD

hdd (or MPIntel
hdd ), arriving at

EAMD
hdd ≈ 0.014 ∗ Dr + 0.007 ∗ Dw

and

EIntel
hdd ≈ 0.01 ∗ Dr + 0.01 ∗ Dw.
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Energy consumed by the board in the AMD server is a function of MP AMD
board , whose

components are added in a linearly weighted fashion to derive EAMD
board (or EIntel

board), as
follows:

EAMD
board ≈ 0.101 + 0.81 ∗ TA0 + 0.62 ∗ TA1

and

EIntel
board ≈ 2.53 + 0.03 ∗ TA0 + 0.01 ∗ TA1 + 0.01 ∗ TA2 .

Finally, energy consumed by electromechanical elements in the AMD server, EAMD
em ,

is a linear function of MP AMD
em , leading to

EAMD
em ≈ 0.001 ∗ FC + 0.001 ∗ FM.

Similarly, energy consumption attributed to electromechanical elements in the Intel
server, EIntel

em , equals

EIntel
em ≈ 4.85 ∗ FC + 6.61 ∗ FM2a + 3.92 ∗ FM2b + 0.28 ∗ FM3a + 0.52 ∗ FM3b

+ 0.01 ∗ FM4a + 0.01 ∗ FM4b + 0.78 ∗ FM5a + 0.61 ∗ FM5b.

Total energy consumption for the AMD server (or the Intel server) under AR(1)
equals the summation of above five consumption contributors [Lewis et al. 2008].

The models for AMD and Intel severs reveal the issues of adopting linear regres-
sion to obtain individual component contribution. Consider the Intel processor as an
example. The coefficients for temperature sensors are significantly larger than those
for the workload-related PeCs, with those coefficients apparently overbalancing the re-
maining model components. This fact is quite nonintuitive, as one would like to derive
certain physical interpretation on each constant to understand the behavior of its asso-
ciated model component. In addition, other processor models have negative coefficients
for similar model components, making linear regression deemed unsuitable for such
modeling [Bertran et al. 2010; McCullough et al. 2011].

The MARS predictor used in our evaluation was created using the consolidated data
set employed to establish the CAP and the AR(1) predictors. It was generated by means
of the ARESlab toolkit [Jekabsons 2010], and the resulting set of splines served as a
predictive tool, as described in Section 5. Note that ARESlab is a MATLAB toolkit
for building piecewise-linear and piecewise-cubic MARS regression models. The toolkit
was adopted to build a piece-wise cubic model using the same consolidated training set
employed for creating the AR and the CAP models. The toolkit output is a structure
that defines the basis functions and associated coefficients of Equation (1) given in
Section 2 to approximate system dynamics.

The EWMA predictor used in our evaluation was also created using the consolidated
dataset employed to established CAP, AR(1), and MARS predictors. The predictor was
generated using an Exponentially Weighted Moving Average using the recurrence
relation of

S1 = Y1

St = αYt−1 + (1 − α))St−1, t > 1,

where Yt is an observation of the power consumed at time t, St is the value of the
weighted average at time t, and α is a coefficient representing the weighting decrease
degree, for 0 ≤ α ≤ 1.
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