IEEE TRANSACTIONS ON COMPUTERS, VOL. 43, NO. 1, JANUARY 1994

23

Efficient Resource Placement in Hypercubes
Using Multiple-Adjacency Codes
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Abstract—While a certain resource in the hypercube may be
shared by cube nodes to lower the cost, multiple copies of a
shared resource often exist in the hypercube to reduce contention,
and thus the potential delay, in fetching any shared copy. It is
desirable that one employs as few resource copies as possible to
ensure that every node is able to reach the resource in a given
number of hops, achieving efficient resource placement. This
placement method also keeps system performance degradation
minimal after one resource copy becomes unavailable due to a
fault.

First, we consider placing multiple copies of a certain resource
in a way that every cube node without the resource is adjacent
to a specified number of resource copies. The use of our devel-
oped perfect and quasiperfect multiple-adjacency codes makes it
possible to arrive at efficient solutions to this placement problem
in a simple and systematic manner for an arbitrary hypercube.
We then deal with the generalized resource placement in the
hypercube such that every node without the resource can reach no
less than a specified number of resource copies in no more than a
certain number of hops, using as few resource copies as possible.
Our placement results yield lowest potential access contention for
a given number of resource copies (i.e., cost), particularly useful
for large-scale hypercubes.

Index Terms—Access contention, Hamming codes, hypercubes,
linear block codes, resource placement, system performance.

[. INTRODUCTION

HE hypercube has become popular recently due to its

cost-effective potential in offering high computation
power needed by various applications. It involves many
processing nodes that work in a cooperative fashion to solve
problems efficiently. A hypercube is known to possess many
attractive properties, including low diameter, easy routing,
efficient support of various algorithms, rich fault tolerance,
and so on [1], [2], [8].

In the hypercube computer, a certain resource might have to
be shared by processing nodes because of two reasons: 1) it is
too expensive to equip every node with a dedicated copy of the
resource, or 2) it might be unnecessary to install at every node
a copy of the resource that is used infrequently. Resources
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range from hardware devices (such as I/O processors, disks,
special-purpose units, etc.) to software modules (such as
library routines, compilers, data files, etc.). The access of a
shared resource tends to involve delay attributed by possible
contention with other access requests and by communication
latency from a node without such a resource to reach a
node with the resource. The first delay component (due to
contention) can be reduced by lowering the number of nodes
that share a copy, whereas the second component is kept small
by minimizing the mean number of hops taken to arrive at a
node with the resource.

Frequently, multiple copies of each type of resource exist
in a hypercube to reduce the delay of shared resource access,
thereby improving system performance. The use of multiple
copies also enhances reliability because the loss of one copy
would not render one type of resource totally unavailable.
Distributing resource copies in a hypercube with an attempt to
optimize system performance measures of interest has been in-
vestigated recently [3]-{5]. Livingston and Stout {3] have stud-
ied the minimum number of resource copies needed to meet
certain specified requirements when distributing the resource
in a hypercube computer. A method has been proposed in [4]
for mapping the I/O processors onto a hypercube such that
each cube node is adjacent to at least one 1/0 processor. More
recently, efficient algorithms for allocating a given number of
resource copies to a hypercube system in an effort to optimize
a defined performance measure have been developed [5].

Most of the prior articles aimed to optimize specified
measures under the situation that every cube node is connected
with only one copy of the resource. Under this situation,
excessive sharing of one resource copy may occur in a large
system because every copy has to support an increasing num-
ber of nodes as the system dimension grows, degrading overall
system performance due to unnecessarily heavy contention,
and thus long access delay. In addition, the loss of one
node (and its associated resources) would make several nodes
redirect their requests destined for the lost node to other
remote nodes. Redirected requests not only take more hops
to reach their destination nodes, but also increase contention
at those nodes, possibly making the access delay of shared
resources significantly larger. In Fig. 1, for example, every
node without the resource is immediately adjacent to a node
with the resource; every copy of the resource serves four
nodes. After one node with a resource copy, say node (111),
loses, three nodes are no longer immediately adjacent to the
resource, and the resource associated with node (000) has
to serve all healthy nodes. (We assume that if a node fails,
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Fig. 1. Three-dimensional hypercube. (Nodes with double circles have one
resource copy each.)

its associated resources, if any, would be lost as well.) As
a result, after a fault arises the hypercube could suffer from
considerable performance degradation simply because of the
increase in access delay.

It might require that every nonresource node be in connec-
tion with multiple copies of each resource in a large-sized
system to prevent any copy from becoming congested or
a bottleneck, ensuring good performance. In this paper, we
consider placing copies of a certain resource in a way that
every node without the resource is adjacent to a specified
number of resource copies, and then that every node without
the resource can reach a specified number of resource copies in
no more than a certain number of hops. This placement method
guarantees the resource to be accessible from every node
within the same number of hops even after certain resource
copies are lost, reducing the potential access contention of
any shared copy. The proposed resource placement strategy
is based on our developed linear block codes, which can be
applied easily to get a placement with any degree of adjacency
in any sized hypercube using as few copies of a resource as
possible. The locations to place resource copies are specified
by the codewords of a linear block code, giving rise to the
best result when a perfect placement exists.

It should be noted that Reddy extended his basic single-
adjacency method to yield 1/O embeddings such that every
node is adjacent to multiple 1/O processors [4]. However, both
extensions of his basic method fail to produce an optimal result
for any cube size that is possibie to have a perfect multiple-
adjacency placement. Furthermore, his extended approaches
become increasingly complicated when the degree of required
adjacency grows. Unlike our investigation, Reddy’s study
requires every node to have multiple adjacency, not just
nonresource nodes.

The rest of this paper is organized as follows. In Section 11,
necessary notations and useful background are given. Section
HI deals with the resource placement in a way that every cube
node without the resource is adjacent to multiple copies of
the resource. The generalized resource placement is treated in
Section IV. Section V concludes this paper.

II. PRELIMINARIES

A. Notations and Background

An n-dimensional hypercube, denoted by @, consists of 27
nodes, each addressed by a unique n-bit identification number.
A link exists between two nodes of @, if and only if their node
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addresses differ in exactly one bit position. A link is said to be
along dimension 4 if it connects two nodes whose addresses
differ in the sth bit (where the least significant bit is referred
to as the Oth bit). Q3 is illustrated in Fig. 1.

Two nodes in a hypercube are said to be adjacent if there
is a link present between them. The distance between any two
cube nodes is the number of bits differing in their addresses.
For example, the distance between nodes (011) and (101) is 2.
The number of hops (i.e., traversals) needed to reach a node
from another equals the distance between the two nodes. A d-
dimensional subcube in @Q,, involves 29 nodes whose addresses
belong to a sequence of n symbols {0, 1, +} in which exactly d
of them are of the symbol * (i.e., the don’t care symbol whose
value can be 0 or 1). The two-dimensional subcube (1++0) in
Q., for example, involves four nodes: (1000), (1010), (1100),
and (1110).

Our resource placement strategy is based on the linear
block code, which is briefly reviewed subsequently. For more
detailed discussion, please refer to [6, ch. 3], [7, chap. 3], or
any textbook on coding theory. A (binary) block code of size
M over bit symbols {0,1} is a set of M binary sequences
of length n called codewords. 1t is often that M equals 2*
for some integer k, and we are interested in this case only,
referred to as an (n,k) code. An (n, k) block code, denoted
by ¥(n, k), can be described concisely using a k X m matrix
G called the generator matrix. For a linear block code, any
codeword is a linear combination of the rows of its associated
generator matrix G. The linear combination is performed by
modulo-2 additions over corresponding bits. Consider a simple
example of a binary lincar code ¥(3,1) with the following
generator matrix:

G=[ 1 1] 1)
This linear code involves totally 2! codewords (as k = 1),
which are the possible linear combinations of the row of the
generator matrix G given above, namely, 000 and 111.

Let W be a subspace, then the set of vectors orthogonal to
W is called the orthogonal complement of W. If W, a subspace
of a vector space of n-tuples, has dimension k (i.c., consisting
of k basis vectors), then the orthogonal complement of W has
dimension n — k [6, p. 41]. The subspace formed by code
U(n, k) has dimension k, so its orthogonal complement has
dimension n — k. Whether or not an n-tuple ¢ is a codeword
of code ¥(n, k) can be checked by using an (n— k) x n matrix
H, called a parity-check matrix of the code. c is a codeword if
and only if it is orthogonal to every row vector of H, namely,
¢-HT = 0, where H7 is the transpose of matrix H. Matrix
H can be constructed as follows: Every row of H is a basis
vector of the orthogonal complement of ¥(n, k). For example,
a parity-check matrix H of the binary code ¥(3,1) with the
generator matrix in (1) is

1 0 1
H:[O 0 1]. o)

Notice that the choice of H is not unique, and any chosen H
satisfies G - HT = 0. This equality is essential and is used
frequently throughout this paper.
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If a parity-check matrix H for a binary code has r rows,
then each column is an r-bit binary number and there are
at most 2" — 1 nonzero columns. The “largest” parity-check
matrix H that can be obtained is r by 2" — 1. In other words,
the columns of this largest parity-check matrix H consist of
all the possible nonzero r-tuples (totally, 2" — 1 of them). The
matrix given in (2) is such a parity-check matrix. This largest
parity-check matrix H is special and, in fact, is the parity-
check matrix of a Hamming code. The generator matrix of a
Hamming code is (2" -~ 1 —r) x (27 — 1). The Hamming
code is a special linear code ¥ (n, k) such that n equals 2" — 1
and k is equal to 2" — 1 — 7. Similar to linear code U(3,1),
codes U(7,4), T(15,11), and ¥(31,26) are examples of the
Hamming codes. One possible parity-check matrix H of the
Hamming code ¥(7,4) is

11011
H=(1 011 o0
011 10

o= O

0
0]. 3)
1

Any linear block code possesses the following basic prop-
erty [7, p. 64]. Note that the minimum distance (i.e., minimum
weight) of a code is the minimum distance between its two
most similar codewords.

Property 1: Let H be a parity-check matrix of a linear code.
The minimum distance of the code is equal to the smallest
number of columns of H that sum to 0.

It is obvious that if no d ~ 1 or fewer columns of H add to
0, the code has a minimum distance of no less than d. For the
parity-check matrix of Hamming code (7, 4) given in (3), as
an example, the minimum distance of the code is no less than
three (necessary to achieve single-error correction) because no
two or fewer columns could sum to 0, as all the columns of
H are nonzero and no two of them are alike.

B. Resource Placement Overview

The problem of placing a certain resource with multiple
identical copies, say ¢ copies, at nodes in Q,, is to find the set
of nodes where these £ copies are located such that a measure
of interest is optimized.

1) 11O Processors Allocation: Reddy [4] considered allo-
cating 1/0 processors (the resource) to cube nodes in a way
that every node is adjacent to at least one 1/Q processor. A
perfect allocation results if and only if every cube node is
adjacent to exactly one I/O processor. A perfect allocation
is shown to exist in only some cubes, namely, only for Q,,
with n = 2" — 1. Since the Hamming codes are known to
be perfect codes [6], [7], a perfect allocation is obtained by
placing the I/O processors at Q,, nodes with addresses being
the codewords of Hamming code ¥(n, k). An example perfect
allocation for Q3 is illustrated in Fig. 1, where the two resource
copies are placed at the codewords of Hamming code U(3,1)
defined by (1).

The allocation of I/O processors in QQ, for n # 27 — 1
is also considered in [4]. Let n’ be the largest value that is
less than n and equal to 2" — 1. The allocation for Q. is
obtained by viewing Q,, as a union of 2"~ n/-dimensional
subcubes and by arriving at a perfect allocation in each of
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Fig. 2. Possible placement of 22 resource copies in Q4. (Nodes with double
circles have one resource copy each. Some links are omitted intentionally for
clarity.)

the subcubes individually. For example, an allocation for Q,
is derived by finding a perfect allocation for each of the two
three-dimensional subcubes, as depicted in Fig. 2.

2) Resource Allocation: Efficient algorithms for optimal or
near-optimal resource allocation in hypercubes have been
developed recently by Chiu and Raghavendra [5]. The perfor-
mance measure of resource allocation to be optimized is the
resource diameter, defined as the maximum resource distance
among all the cube nodes, where the resource distance of a
node is the minimum number of hops from the node to a node
equipped with a copy of the resource. An allocation with the
resource diameter minimized is highly desirable, as such an
allocation tends to result in better mean response time because
of fewer hops and thus less traffic involved.

The hierarchical allocation strategy proposed in [5] for
placing 2* copies of a resource in Qn is equivalent to finding
an optimal partition of the given system parameters n and k.
Specifically, the strategy searches for a partition of n into [
components, ny,ng, -, 0y (i€, n = ny +ny + --- + n),
and a partition of & into ! components, ki ke, --- ki (e,
k =ki+ ks + -+ k), such that the summation of all the
resource diameters, d;.1 < ¢ < [, is minimized, where d; is
the resource diameter of the allocation of the sth partitioned
component pair (n;, k;) according to a perfect code (such as
the Hamming code and the Golay code [6, chap. 5.8], [7, chap.
5.3]) or a basic strategy stated subsequently.

The basic strategy of placing 2* resource copies in @, is as
follows [S]: Q,, is first partitioned into 2¥~! subcubes, each
with dimension n — k + 1; and then two copies of the resource
are placed in each (n — k + 1)-dimensional subcube at any two
opposite corners, say at locations (00 - - - 0) and (11---1). Fig.
2 illustrates a possible placement of 22 resource copies in @y,
following the basic strategy. It is shown [5] that a placement
resulting from the basic strategy has the resource diameter of
[(ni — ki +1)/2].

If a partitioned component pair (n,,k;) agrees with the
parameters of a perfect code, a codeword of the perfect code
indicates the node to which a resource copy is attached, and
the resource diameter d; is fixed (to 1 for the Hamming code,
and to 3 for the Golay code); otherwise, the basic strategy is
followed, and d; equals |(n; — k; + 1) /2].

III. MULTIPLE-ADJACENCY RESOURCE PLACEMENT

Placing multiple copies of a resource in a way that every
cube node is guaranteed to have access to one and only
one resource copy within a resource diameter tends to suffer
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from considerable performance degradation after a copy is
lost, because the resource diameter then increases and a
longer response time results. In a large system, it might be
desirable to have every node adjacent to multiple resource
copies (rather than one single copy) so as to ensure good
performance. In a 15-dimensional hypercube, for example,
if every node is adjacent to one single copy of a resource
(say, the 1/O processor), then every resource copy is shared
by 16 nodes [following the Hamming code ¥(15,11) perfect
allocation] and totally 21! copies of the resource are needed.
The throughput of such a large system may be compromised
by insufficient I/O bandwidth, and more /O processors should
be incorporated into the system to overcome this potential
I/O limitation. From the performance standpoint, it seems
interesting and important to consider the placement of a
resource in a way that every node is assured to get access
to multiple resource copies within a specified number of
hops. Such a resource placement guarantees that the resource
diameter of the placement remains unchanged even in the
absence of one resource copy.

In the following, we discuss the linear block code-based
resource placement strategy, which ensures every cube node
without the resource is adajcent to a given number of resource
copies.

A. Perfect Placement

Definition 1: A hypercube is said to have a j-adjacency
perfect placement if it is possible to place the resource copies
in the hypercube such that 1) each node without the resource is
adjacent to exactly j copies of the resource, and 2) the number
of resource copies involved is minimum.

The necessary condition for hypercube @, to have a j-
adjacency perfect placement is provided in the following
lemma.

Lemma 1: Q, has a j-adjacency perfect placement only if
n is equal to j(2" — 1) for an integer 7.

Proof: Each node in @, is adjacent to n nodes, one
along each dimension. If the number of resource copies
involved is minimized, then no resource copies will be placed
at neighboring nodes. Assuming that there are y resource
copies in total, the mean adjacency of a nonresource node
is then given by y x n/(2" — y), which equals j (since
every nonresource node is adjacent to exactly j copies of
the resource). The preceding result leads to y = 2"/(n/j +
1). Therefore, when a j-adjacency perfect placement exists,
(n/j + 1) should divide 2" (as y is an integer), implying that
(n/j+1) has to be a power of 2. As a result, (n/j +1) equals
2" for some integer 7, yielding n = j(2" — 1). O

According to Lemma 1, a 2-adjacency perfect placement
exists in Q, for n = 2,6,14,30, and so on. A 2-adjacency
perfect placement for Q7 is shown in Fig. 3. Naturally, one
would wonder if a j-adjacency perfect placement always exists
in Qn, for any n = j(2" — 1). In fact, the condition of
n = j(2" — 1) is also sufficient for @, to have a j-adjacency
perfect placement, and a systematic procedure is obtained next
to arrive at such a placement.
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Fig. 3. A 2-adjacency perfect placement in Q2. (Nodes with double circles
have one resource copy each.)

A linear block code satisfying the property that each non-
codeword is adjacent to exactly j codewords serves as the
basis of our placement procedure. The codewords of this code
specify the locations where the resource copies should be
placed. Let this block code be referred to as a j-adjacency
perfect code, then the parity-check matrix H of the j-adjacency
perfect code for Q, with n = j(2" — 1) is composed of j
cascade copies of all the possible nonzero r-tuples. Since the
parity-check matrix of Hamming code ¥(2" — 1,2" — 1 ~ )
comprises (one copy of) all the possible nonzero r-tuples
(totally, 2" — 1 columns, as described in Section II), the
parity-check matrix H of the j-adjacency perfect code can
be represented as

H=[H, H, --H,], “

where Hy, is the parity-check matrix of Hamming code ¥ (2" —
1.2" — 1 — r). With H obtained, we can derive the generator
matrix of the desired code, G, using the equality G - HT =
0.H is an » x n matrix, and G is an (n — ) X n matrix.
In fact, the j-adjacency perfect code is the linear block code
Y(n.n — 7).

To give an example, consider the case of a 2-adjacency
perfect code for Q,,n = 6. The parity-check matrix of the
perfect code, according to (4), can be put in the form

H:[l()ll()l

01 101 1| )

where the first three columns are all the possible nonzero 2-
tuples [and constitute the parity-check matrix of Hamming
code ¥(3,1), see (2)], and the remaining three columns are
another copy of all nonzero 2-tuples. The generator matrix of
the code with parity-check matrix H is a (6 — 2) x 6 matrix:

111000
10 0100
G—()lOOlO
110001

Since all the codewords of this code ar: obtained from linear
combinations of the four rows of G, we have the locations
000000, 111000, 100100, 010010, 110001, 011100, 101010,
001001, 110110, 010101, 100011, 001110, 000111, 011011,
101101, and 111111, at which resource copies should be
placed, as depicted in Fig. 4. This placement result satisfies
that every node without the resource is adjacent to exactly
two copies of the resource.

The linear code so constructed remains to be shown that
each noncodeword is adjacent to exactly j codewords and no
two codewords are adjacent. The following lemma reveals this
fact, and its proof is given in the Appendix.
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Fig. 4. A 2-adjacency perfect placement in Qg. (Nodes with double circles have one resource copy each.
Some links are omitted intentionally for clarity.)

Lemma 2: For any linear block code with parity-check ma-
trix H, each noncodeword is adjacent to exactly j codewords
and no two codewords are adjacent.

Since resource copies are never placed at two neighboring
nodes and each node without the resource is adjacent to exactly
J tesource copies following a j-adjacency perfect code (from
Lemma 2), the number of resource copies involved cannot be
less and it is minimum. From this fact together with Lemma
1, we immediately arrive at the next theorem.

Theorem 1: A j-adjacency perfect placement exists in Qn
if and only if n is equal to j(2" — 1) for an integer 7.

The number of resource copies neceded to achieve a 7-
adjacency perfect placement in Q,, with n = Jj2"—1)is
& = 2777 [because the linear code dictating such a placement

is ¥(n,n—r)], and £ cannot be reduced, leading to an optimal
result. The ratio of the number of nodes with the resource to the
number of nodes without the resource in Q,, equals 1: (2" —1).

A perfect placement, when it exists, is optimal, but it is
present only for a few cube sizes. For most of the cases, perfect
placements cannot be obtained. Fortunately, we may arrive
systematically at a quasiperfect placement for any cube size.

B. Quasiperfect Placement

Definition 2: A hypercube is said to have a j-adjacency
quasiperfect placement if it is possible to place the resource
copies in the hypercube such that 1) each node without the
resource is adjacent to at least j copies of the resouce, and 2)
as few resource copies as possible are involved.




The number of resource copies to be placed is assumed
to be a power of 2. In the subsequent discussion on the
quasiperfect placement, we focus our attention on the cases
where a specified adjacency is accomplished using £ copies of
the resource such that £ is the smallest power of 2.

Again, a linear block code is to be derived whose codewords
specify the locations where the resource copies are placed.
The parity-check matrix H, of a code for a j-adjacency
quasiperfect placement can be constructed from the parity-
check matrix H of a code for a j-adjacency perfect placement
described earlier. Specifically, H, of a code for a j-adjacency
quasiperfect placement in Q,,n # j(2" — 1), is derived from
H of a code for a j -adjacency perfect placement in Q,,,
such that n, is the largest integer less than n and satisfies
n, = j(2" — 1) for an integer r. After H is constructed
according to (4), we get Hy as follows:

Hq = [H CO Cl Cn—np—l]v (6)

where C;,0 < i < n—mny—1, is the ith (modn,) column of
H, with column O being the leftmost column. Because H is
an r X n, matrix, Hy is an 7 X n matrix. The generator matrix
G, corresponding to H, can be solved from the relationship
G, - Hf = 0, giving rise to an (n — r) X n matrix. The code
for a quasiperfect placement in Q,, with n # j(2"—1) is again
U(n,n — r), which contains 2"~" codewords.

As an example, let us derive H, for a 2-adjacency quasi-
perfect placement in Q7. In this case, n, = 6, and H for Q¢
is given in (5), leading to

1 0 1 1]
H, = 1 0]
where the last column is a repetition of the first column. Its
generator matrix is

M 110 0 0 0
1001000
Gy=10 100100
1100010

L1 0 0 0 0 0 11

This code includes 32 codewords, which determine the loca-
tions where resource copies are placed in Q7. Among those
96 cube nodes without involving the resource, 64 of them are
adjacent to two resource copies each, and the rest are adjacent
to three resource copies each. Interestingly, the ratio of the
number of nodes with the resource to the number of nodes
without the resource equals 1:3, which is the same as the ratio
of the 2-adjacency perfect placement in Qg discussed earlier.
This is because the code for Q, is always ¥(n,n — 7), no
matter whether n equals 5(2" — 1) or not.

It is to be noted that the placement so constructed for Q7
requires the same number of resource copies (32 copies) as
does that obtained by Reddy [4] (where the resource is the I/O
processor) using a somewhat complicated enumeration method
or an overlapping method. The two prior methods, however,
are not generally applicable as our systematic technique in
two aspects: 1) they can apply to @, with n limited only to
2" — 1 for an integer r, and 2) they become more complex
as the degree of resource adjacency increases. In contrast, our

IEEE TRANSACTIONS ON COMPUTERS, VOL. 43, NO. 1, JANUARY 1994

technique can be applied universally to obtain a placement
with any degree of adjacency in any sized hypercube, while
keeping the number of resource copies involved ¢ (which is
a power of 2) minimum.

In the following, we show that a j-adjacency quasiperfect
placement in @, according to the linear code ¥(n,n — r)
with the parity-check matrix given by (6) requires the fewest
resource copies. Such a placement needs 2"~ resource copies,
and r is the largest integer satisfying j(2" — 1) < n. Since r
is the largest integer such that j(2" — 1) < n and j(2" — 1)
is not equal to n, we have n < j(2"*! — 1), which implies
n/(2"T1—1) < j. If the number of resource copies is 2" ",
the average adjacency for nodes without the resource equals

(2" xn)/@r —2v " Y =a/27H - 1) < 4,

indicating that there is at least one node without the resource
that would be adjacent to less than j resource copies. As
a result, the minimum number of resource copies required
to achieve j-adjacency quasiperfect placement is £ = 2""
(because ¢ is restricted to a power of 2). This means that
our quasiperfect placement uses the fewest possible resource
copies.

Since the parity-check matrix Hy of the linear block code
U(n,n — r) given in (6) contains H, it is straightforward
to prove that each noncodeword is adjacent to at least j
codewords and the minimum distance of the code is 2, by
following the same arguments as provided in the proof of
Lemma 2. A placement in @, obtained according to the
preceding strategy thus meets the j-adjacency quasiperfect
requirement using the fewest possible resource copies, as
indicated by the next theorem.

Theorem 2: For any linear block code with parity-check
matrix H,, each noncodeword is adjacent to at least j code-
words with the total number of codewords kept minimum.

The preceding treatment of quasiperfect placements assumes
that the number of resource copies involved is a power of 2. If
a placement is allowed to take any number of resource copies,
it becomes extremely difficult, if not impossible, to derive the
most efficient quasiperfect placement for any given n and j.
A necessary condition on the minimum number of resource
copies (not necessarily a power of 2), denoted by cpin, can be
obtained easily according to the inequality

(cmin X n)/(zn - cmin) Z j7

yielding cpmin > (§ X 2™)/(5 +n). The sufficient condition on
Cmin is unknown, and how to place a resource that takes Cmin
copies systematically is still an open problem. Our solution
for the quasiperfect placement requires Y((j x 2"*)/(j + n))
resource copies, where T(z) is the smallest power of 2 integer
greater than or equal to z. The gap between YT((7 x 2)/(j +

n)) and (5 x 2"™)/(j + n) is clearly dependent on n and j.

IV. GENERALIZED RESOURCE PLACEMENT

This section investigates the generalized resource placement
where every node in @, can reach at least j copies, j > 2,
of a resource in no more than h hops, & > 1. A placement of
this sort ensures that the resource diameter remains unchanged
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Fig. 5. One-dimensional “bulky hypercube,” in which a supernode is Q5.

even after (j — 1) resource copies become unavailable, reduc-
ing potential performance degradation. Our goal is to find such
a placement that uses as few resource copies as possible. This
is accomplished by making use of the j-adjacency perfect code
developed earlier.

A. Approach

We may envision @, as a “bulky hypercube” with dimen-
sion o (denoted by BQ,) such that every node of the bulky
hypercube, called a supernode, is a subcube with dimension
" n—a and every link between two neighboring supernodes in
BQ,, represents 2"~ parallel links between the corresponding
nodes in the two supernodes. For example, Q3 shown in Fig.
1 can be envisioned as BQ., whose every node is a two-
dimensional subcube and every link represents four parallel
links, as depicted in Fig. 5. To obtain a generalized resource
placement, we apply the j-adjacency perfect code to BQ,.
For the j-adjacency perfect code to exist, a should be equal
to j(2" — 1) for some integer r (from Theorem 1).

A certain number of resource copies are placed inside
each BQ, supernode whose address is a codeword of the
chosen j-adjacency perfect code. Let the supernode involving
resource copies be denoted by SN-, and the supernode
without resource copies be denoted by SN™. Since perfect
code ¥(a,a — r) is used for placing the resource copies
in BQ,, totally there are 2*~" SN>’s. The way of placing
resource copies is identical in each supernode SN, and
different placement techniques require different numbers of
resource copies. We choose to place resource copies in every
SN- in a hierarchical fashion, as explained subsequently.

The supernode SN=- (which is a cube with dimension
n~—a) is viewed as composed of 2%1 subcubes with dimension
n—a—>61, and each of the subcubes is a supernode with respect
to SN>, called SN;. Similarly, an SN in turn is considered
to be composed of 2% subcubes with dimension n—a—§ 1—09,
and each of the subcubes is a supernode SN, with respect to
this SNy, and so on. More specifically, SN is divided into [
levels, | > 1, by partitioning the number n — « into ! positive
integers, 61,62,---,6;, such that n — v = 8; + 63 + - - + 6.
At any level y,1 < y < I, there are 2% supernodes SNy’s
within a supernode SN,,_;. If each supernode SN, is treated
as an “entity” (i.e., a node), these 2°v supernodes form a 6,-
dimensional cube at level y. Resource copies are placed in the
6y-dimensional cube according to a Hamming code strategy
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Supernode SN

Level 1

Level 2

Fig. 6. Following 2 Hamming code strategy and a basic strategy to place
resource copies respectively in levels 1 and 2 of the partitioned SN2, (A
node with resource is denoted by a double cycle. A critical node has the
symbol “C ” next to it.)

or a basic strategy proposed by Chiu and Raghavendra [5]
(explained in Section II). To allow the use of a Hamming
code strategy at level y, the partition of n — « has to satisfy
6y = 2" — 1, for an integer r. Fig. 6 illustrates an example
where SN = is divided into two levels, with a Hamming code
strategy and a basic strategy followed respectively to place
resource copies in the first and the second levels.

B. Analysis

The resource diameter is 1 (meaning that each node can have
access to a resource copy in no more than one hop) at the level
to which a Hamming code strategy is applied. Conversely, if
a basic strategy is applied to level y, the resource diameter
at that level is not fixed and is dependent on the number of
locations at which the resource copies are placed, namely, the
resource diameter = | (6, — ¢, +1)/2], where the total number
of locations involving resource copies is 2°v. Let d, represent
the resource diameter at level y, then a partition on n — a is
said to be feasible if d) + dy + --- + d; is equal to h — 1.
Only the feasible partition is of our concern (because it tends
to involve fewer resource copies than other partitions).

In the following, we examine the nodes in SN ™’s and the
nodes in SN-’s separately to see if they meet the requirement
that each of them gains access to at least j resource copies in
no more than h hops, for a feasible partition in the supernode
SN-. First, let us consider a node inside any supernode SN™.
The node can reach j SN-’s in exactly one hop (as a j-
adjacency perfect code is used). Since a feasible partition
is followed in every supernode SN-, every node inside a
supernode SN can get access to at least one resource copy
in no more than & — 1 hops (as at least one copy is placed in
an SN-). As a result, every node inside SN~ can reach at
least j resource copies in no more than A hops.

Next, a node inside any supernode SN - is considered. The
resource diameter of SN- is A — 1 (for only the feasible
partition of SN is concerned). There is at least one node
X € SN° such that X takes h — 1 hops to reach a resource




30

copy inside SN 2. A node of this type is referred to as a critical
node. In Fig. 6, for example, critical nodes are marked and
each of them takes two (= h — 1) hops to reach one resource
copy. A critical node X in one supernode SN > cannot reach
any resource copy outside this supernode in A hops or less
because 1) resource copies are placed in every supernode SN 2
in the same way, and 2) X takes h— 1 hops to reach a resource
copy inside this supernode, which is not adjacent to any other
supernode SN2 (recall that supernode SN- addresses are
the codewords of a j-adjacency perfect code, whose minimum
distance is exactly 2). As a result, to evaluate the number of
resource copies reachable from X in no more than A hops, we
need to consider the resource copies only inside the supernode
SN2 where X resides. Conversely, a noncritical node may
reach a resource copy inside another supernode SN 2 in h
hops or less. For example, the noncritical node (10100) in
Fig. 6 can reach the resource copy at node (11100) inside
another SN (whose distance is 2 from the supernode SN >
shown in Fig. 6; such a supernode always exists following the
property of the j-adjacency perfect code) in three (= k) hops.
It is readily shown that a noncritical node O can get access to
at least j resource copies in h hops or less, as follows. Node O
may reach at least one resource copy (say, a node O') inside
SN2 in no more than h — 2 hops, and from node O’,j — 1
other nodes with resource (i.e., the corresponding nodes in the
(j — 1) SN>’s which are adjacent to the supernode SN-
where nodes O and O’ reside) can be reached in two hops
(as a result of the j-adjacency perfect code). Therefore, O
can have access to at least 1 + (j — 1) resource copies in
no more than (h — 2) + 2 hops. Noncritical nodes thus meet
our placement requirement. What remains to be considered is
whether critical nodes satisfy the placement requirement. The
number of resource copies reachable from a critical node in
no more than A hops will be derived subsequently. To meet
our placement goal, we search for the feasible partition that
requires a minimum number of resource copies to satisfy that
a critical node reaches no less than j resource copies in no
more than h hops. Such a partition could lead to a desirable
placement.

As mentioned earlier, a partition produces 6,-dimensional
cubes at level y. Suppose that each Qs has 2% locations
placed with the resource following either a Hamming code
or a basic strategy, giving rise to the resource diameter of
d,. A critical node X € supernode SN > takes di,da,- -,
and d; hops (which amount to h — 1 hops), respectively, in
level 1, level 2, - - -, and level ! to reach a resource copy. Let
SN, (X) denote the node SN, which contains critical node
X in Qs, . In Fig. 6, for example, SN;(X = 10101) represents
node (101) in level 1. Let f,(X) and g,(X) be the numbers
of such nodes SN,’s € Qs, that involve resouce copies and
are reachable from SN, (X)), for a critical node X, in exactly
d, hops and dy + 1 hops, respectively. It is observed that
fy(X) and g,(X) are identical for any critical node X € Qs,
(because either a Hamming code or a basic strategy is followed
in level ). For simplicity, f,(X) and g,(X) are denoted by
fy and gy, respectively. The expressions for fy and g, are
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provided in the following lemmas, whose proofs can be found
in the Appendix. These results are essential for us to determine
if a feasible partition satisfies our placement goal.

Lemma 3: If a placement in Qs, is obtained following a
Hamming code strategy, fy, = 1 and g, = (6, — 1)/2.

Lemma 4: When a basic strategy is followed in Qs, to
have 2% locations placed with the resource, then f, = 1
and g, = ¢y, if 6, — ¢, + 1 is odd; otherwise, f, = 2 and
gy = 2(cy — 1).

With f, and g, given in Lemma 3 or 4 for each level
y,1 < y < I, we immediately get the next theorem, which
reveals the number of resource copies reachable from a critical
node in SN2, for a given placement in the supernode SN=-.

Theorem 3: Let f and g be the numbers of such nodes
(e SN?) that involve resource copies and are reachable from
any critical node X in exactly h —1(= E;zl d,) hops and in
exactly h hops, respectively, then

1 i
le_[fy and Q=Zgy
y=1 y=1

The expression for f is clear because 1) X has to take
dy, hops in level y, forall 1 < y < [, to reach a resource
copy in exactly h — 1 hops, and 2) in level y, the number of
nodes that involve resource copies and are reachable from X
in exactly d, hops is f,. The expression for g results directly
from the fact that X must take d, + 1 hops in one and only
one level y, and takes d; hops in level ¢ for the remaining
levels, to reach a resource copy in exactly h hops. In Fig. 6,
for instance, fi = 1,g1 = 1, fo» = 2, and g = 0, yielding
f =2and g = 2. The two (= f) resource copies reachable
from a critical node, say (10101), in two hops are those at
nodes (11100) and (11111). Likewise, the two (= g) resource
copies reachable from the same critical node in three hops are
those at nodes (00000) and (00011).

!

II =

i=lyi#y

C. Algorithm

To meet our placement requirement, any feasible partition of
n—a that results in f+g less than j is discarded. The desirable
placement is obtained by searching possible a’s and partitions
of n— a for the result that requires the least amount of resource
copies. Formally, our generalized placement strategy is given
as follows.

1) For a given set of n,j, and h, select a j-adjacency
perfect code to determine the locations of supernodes
SN>’s.

2) Asupernode SN > is partitioned into several levels, with
resource copies placed in each subcube formed at a level
according to either a Hamming code or a basic strategy.
Only feasible partitions are considered.

3) Find the partition using the fewest resource copies.

4) Repeat 1)-3) above for every possible j-adjacency per-
fect code to search for the desirable placement.

Since the perfect codes (i.e., the j-adjacency perfect codes
and the Hamming codes) exist only in a few instances for
practical values of n and j. the number of possible placements
is quite limited and the search is fairly efficient. The desirable
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placement is not necessarily unique. Consider the case of
n = 16,5 = 6, and h = 3 as an example. The only available
6-adjacency perfect code is ¥(6, 5) in this case (as the possible
a =6(2" — 1), < n, is solely 6), and each supernode SN2
is a ten-dimensional cube. We have the following possible
placements in every SN°,

1) Hamming code ¥(3,1) for each subcube at the first
level, and Hamming code ¥(7,4) for each subcube at
the second level.

2) Hamming code ¥(3,1) for each subcube at the first
level, and a basic strategy using 27 resource copies for
cach subcube Q7 at the second level, where « satisfies
[(7—v+1)/2] =2 -1 (since only feasible partitions
are of our concern and d; is 1).

3) Hamming code V¥(7,4) for each subcube at the first
level, and a basic strategy using 27 resource copies for
each subcube Q3 at the second level, where ~ satisfies
[B-v+1))/2] =2-1.

4) A basic strategy using 27 resource copies for each Q.
where v satisfies [(10 — vy +1)/2| = 2.

It is clear that placement 1) needs 2% resource copies per
SN°> and yields f+g = 1+ (1+3); placement 2) needs 217
resource copies per SN with the smallest v = 5; placement
3) needs 2**7 resource copies per SN with the smallest
% = 1; and placement 4) needs 27 resource copies per SN
with the smallest v = 6. Placement 1) should be discarded,
as f+ g =5 < j. Placement 2) for v = 5 is a desirable
placement, as it takes 28 resource copies per SN and leads
to f+g = 14(1+5) > j. In this case, placement 3) for y = 2
and placement 4) for v = 6 are also desirable placements.

In general, a Hamming code strategy utilizes resource copies
more efficiently than a basic strategy, so a placement with
as many levels following the Hamming code strategy as
possible tends to require fewer resource copies; this type
of placement is desirable, provided that it yields f + g no
less than j. It should be noted that any placement obtained
from interchanging two levels of a desirable placement is also
a desirable one. As an instance, placing resource copies in
every SN = of the preceding example as follows is a desirable
placement: A basic strategy using 25 resource copies for each
subcube Q)7 at the first level and Hamming code ¥(3,1)
for each subcube at the second level, as it is attained by
interchanging the two levels of placement 2.

V. CONCLUSION

We have investigated the efficient placement of resource
copies in a hypercube such that the resource diameter remains
unchanged even after resource copies become unavilable,
lowering access contention to ensure good performance. The
use of j-adjacency perfect codes enables the placement of
resource copies in a simple and uniform way that guarantees
every cube node without the resource to be adjacent to exactly
J resource copies. Multiple-adjacency perfect placements exist
in hypercubes with a few selected sizes. For other cube
sizes where perfect placements are unattainable, j-adjacency
quasiperfect codes are developed to help arrive at the resource
placement satisfying that every node without the resource is
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adjacent to at least j resource copies, using as few resource
copies as possible.

The j-adjacency perfect code is applied to a generalized
resource placement problem where every cube node gets
access 1o at least j resource copies in no more than a specified
number of hops. This generalized placement problem is solved
by searching for the most efficient placement that meets our
placement requirement. The resource placements we obtained
appear interesting and are particularly useful for a large-scale
hypercube computer to improve its performance and reliability.

APPENDIX

Proof of Lemma 2: Let e, denote an n-tuple with all
positions being 0 except the zth position (note that the first
position is leftmost). For example, e; = [0100---00]. If
codeword u; is adjacent to a noncodeword v, then, there exists
e;, (where i; is the position of the bit differing between u;
and v) such that

u t+e, =v

(recall that the addition is in mod 2). Since u; is a codeword,
satisfying

u, -HT =0,
we have
v-HTz(u1+eil)-HT=u1 -HT-i—el-l -HT
=€, 'HT.

It is easy to show that e;, - HT is nothing but the i;th
column of H. According to the method for constructing
H, exactly j columns in H are identical. Suppose that the
i1th, 2oth, - -, and ¢;th columns of H are identical columns,
then e;, -HT e;, -H7,--., and e;, - HT are all equal, since
they are nothing but the i;th column, the ipth column, -- -,
and the ¢;th column of H, respectively. Thus, we have

e, H =e;, H =-..=e¢, -H =v.HT.
Adding v - HT to each preceding expression, we get
(vte,) H =(v+e,) H =..
=(v+v)-HT,

.:(V_‘.eij).HT

which is equal to 0, as (v + v) yields an all-zero n-tuple.
From the preceding equation, it is clear that there are at least
J codewords, namely, v+e;,,v+e;,, -, and v +e;,, which
are adjacent to any noncodeword v.

Let us assume that a noncodeword v is adjacent to j + 1 or
more codewords. That is, there exist j + 1 or more codewords

uj, U, -, Wy, w > j, such that
v=u t+e, =uste;,=":--
=uy +e;,, HFERFE e F (A1)
Since uy, uy,---, and u,, are all codewords, they satisfy
u - H =u, H =... =y, -H  =0.
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From the following result
(uy+e;,)-H =u; -HT + e, ‘HT = ¢, -HT
and (Al), we have
€;, -HT =€, -HT = =€;, -HT.

This equation implies that there are w > j equivalent columns
in H (as e;,, - HT is the inth column of H, forall 1 <m <
w). According to the construction of H, however, there are
only j equivalent columns in H. This contradiction results
from our assumption that a noncodeword is adjacent to j + 1
or more codewords.

The j-adjacency perfect code is a linear block code, and it
can be easily shown according to Property 1 that the minimum
distance of a j-adjacency perfect code, 7 > 2, constructed from
(4) is exactly 2, because 1) there are two columns alike in H
and they sum to 0, and 2) the smallest number of columns that
sum to 0 is two, as the columns of H are all nonzero. The
lemma thus follows. O

Proof of Lemma 3: The resource diameter d, is 1, and
every noncodeword is adjacent to exactly one codeword.
Thus, every noncodeword can reach exactly one codeword in
dy = 1 hop. @, involves 2% SN,’s, whose locations equal
to codewords have resource copies placed. Since a critical
node can never be in an SN, involving resource copies and
must belong to an SN, situated at a noncodeword location,
we have f, = 1.

Let the Hamming code used be ¥(§,,k). Recall that the
parity-check matrix H of ¥(,,k) consists of all nonzero
(8, — k)-tuples as its columns. If e, is an (6, — k)-tuple with
all positions 0 except the zth position, then e, - HT is equal
to the zth column of H. Consider a noncodeword v. Suppose
that v can reach a codeword u in one hop along dimension ¢,
that is, v + €; = u and u - HY = 0.

There are &, total columns in H, and any given column,
say column i, is the sum (in mod 2) of two other columns. In
H given by (3), for example, the first column is the sum of
the second and third columns. In addition, the first column is
the sum of the fourth and seventh columns, and also the sum
of the fifth and sixth columns. In general, with respect to any
given column, say column ¢, in H, all the remaining oy — 1
columns can be grouped into (6, — 1)/2 pairs, each of whose
sum is equal to column 7, namely,

e,-~HT=ez} 'HT+ez§-HT=ez§ -HT

H = =e, HT

+ e,z
2 (6y—1)/2

+ e, -HT.
(6y—1)/2

where e.1 -HT and e -HT,1 < B < (8, —1)/2, are pair
columns. Adding v-HT to each of the preceding expressions,
we get

vte) H =(v+e, +e;) HT
1 1
=(v+e21+ezz)-HT:-~-
2 2

:(v-ﬁ—ez(x )~HT:0,

e,
sy—1)/2 Fsy—1)/2
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because of (v + e;) = u, a codeword. This indicates that any
noncodeword v can reach at least (8, — 1)/2 codewords in
two hops.

Suppose that there exists another codeword, say (v + ey +
€,2), that can be reached from v in two hops. Since the set of
{ei,e.1,e.2,e.1,e., ~,ezzéy_l)/z,ez(zéy_mz} contains all
possible e;’s, e, should be one of them. Without loss
of generality, we assume that e,1 = e,1. The codeword
(V + eyt + ey2) is thus equal to (v + e, + e,z2), which
is two hops away from the codeword (v + e, + ezf), a
contradiction (since the distance between two codewords of a
Hamming code is no less than three). A noncodeword thereby
can reach exactly (6, — 1)/2 codewords in dy + 1 = 2 hops.
This completes the proof of the lemma. 0

Proof of Lemma 4: The basic strategy treats (s, as a
collection of 2¢+~1 (6, — ¢, + 1)-dimensional subcubes, and
places resource copies at two opposite corners of every sub-
cube, giving rise to the resource diameter of dy = [(6y —cy +
1)/2). A critical node, say X, must belong to an SN, that is
d, hops away from an SN, with resource in Qs, - Consider
any (8, — ¢y + 1)-dimensional subcube (where each node is
an SN,). If §, — ¢, + 1 is odd (see Fig. 2 for an example of
8, — cy +1 = 3), an SN, involving X, denoted by SN, (X),
in the subcube can reach one of the two SN,’s involving the
resource in dy hops, and reach the other SNy (of the two)
involving the resource in dy + 1 hops (since each subcube
contains two SN,’s with resource). Furthermore, any SN,
with resource is adjacent to exactly ¢, —1 SN,’s with resource
at the corresponding locations in other subcubes, which can be
reached in d, hops plus on hop. SN, (X) thus can reach one
SN, with resource in d, hops and 1 + (¢, — 1) SN,’s with
resource in dy + 1 hops. As a result, fy = 1 and gy = ¢,
when 6, — ¢y + 1 is odd.

Next, consider a (&, — ¢, + 1)-dimensional subcube, with
(8, — ¢y + 1) being even. An SN, (X) can reach both SNy’s
with resource inside the subcube in exactly dy hops. Since
every SN, with resource is adjacent to exactly (cy — 1) SN,’s
with resource in other subcubes, SNy (X) can have access to
2(cy — 1) SN,’s with resource in dy + 1 hops. The lemma is
thus proved. O
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