IEEE TRANSACTIONS ON COMPUTERS, VOL. 46, NO. 3, MARCH 1997

On-Line Task Migration in Hypercubes
Through Double Disjoint Paths

Hsing-Lung Chen, Member, IEEE Computer Society,
and Nian-Feng Tzeng, Senior Member, IEEE

Abstract —Repeated subcube allocation and deallocation in
hypercubes tend to cause fragmentation, which can be taken care of
by task migration. Earlier task migration dealt with the establishment of
a single path from each participating node for transmitting migrated
information. The time required for migration with single paths is long, if
a large amount of information is moved in hypercubes. This paper
considers speedy task migration in that two disjoint paths are created
between every pair of corresponding nodes for delivering migrated
information simultaneously, reducing the size of data transmitted over
a path. All migration paths selected are pairwise disjoint and contain no
link of active subcubes, so that task migration can be performed
quickly and on-line without interrupting the execution of other jobs. Our
approach could lead to a considerable savings in the migration time for
contemporary hypercube systems, where circuit switching or wormhole
routing is implemented.

Index Terms —Disjoint paths, fragmentation, hypercubes, subcubes,
task migration.

1 INTRODUCTION

SEVERAL independent jobs can be executed simultaneously on a
hypercube system, and each job is assigned one subcube of an
appropriate size when it enters the system. Fragmentation exists in
a hypercube system when no available subcube is large enough to
accommodate an incoming job, even if a sufficient number of free
nodes is present but those nodes are scattered around the system.
It is observed that fragmentation cannot be eliminated without task
migration, a process which relocates active tasks by migrating them
to respective target subcubes so as to create a large enough free
subcube for the incoming job, improving system performance. The
task migration mechanism may also be needed for load balancing
or for “spawning” one copy of a task itself onto an available sub-
cube in certain “fork” situations [1]. Task migration in hypercubes
has been investigated recently [2], [3]. Chen and Shin developed a
task migration method under Gray code subcube allocation [2].
Their method ensures that migration paths between a subcube and
its target subcube are stepwise disjoint, thus implying that the
hypercube employs store-and-forward switching and migration is
carried out by all participating nodes in locked steps synchro-
nously. Chen and Lai [3] presented an algorithm for constructing
parallel edge-disjoint paths between two subcubes for task migra-
tion under circuit switching. Their algorithm finds totally disjoint
paths between nodes in a subcube and their corresponding nodes
in the target subcube, one for each pair of nodes.

The cost of task migration is high and the job on the subcube to
be migrated is suspended before migration takes place. In order to
reduce the duration of job suspension, it is absolutely necessary
that the time spent in migration be shortened. A hypercube system
of the second generation supports either circuit switching (such as

e H.-L. Chen is with the Department of Electronic Engineering, National Taiwan
Institute of Technology, Taipei, Taiwan, Republic of China.

* N.-F. Tzeng is with the Center for Advanced Computer Studies, University of
Southwestern Louisiana, Lafayette, LA 70504. E-mail: tzeng@cacs.usl.edu.

Manuscript received June 15, 1995; revised Apr. 18, 1996.
For information on obtaining reprints of this article, please send e-mail to:
transcom.org, and reference IEEECS Log Number C96101

379

Intel’s iPSC/2 and iPSC/860) or wormhole routing (such as
NCUBE’s n-Cube/2) for efficient message transmission. Task mi-
gration in a hypercube system with circuit switching or wormhole
routing prefers that the migration paths are totally disjoint from a
subcube to its target subcube, because under circuit switching, this
allows a path to be set up successfully between every pair of corre-
sponding nodes, whereas under wormhole routing, this eliminates
message blocking. During migration, the amount of information
transferred from each participating node is often quite large, pos-
sibly involving hundreds of K-bytes or more. Transmitting such a
large amount of information over an established path could be
long. For example, it takes roughly 36ms to deliver a message of
100K bytes over a path in iPSC/2 [4].

The communication latency consists of three components: start-
up latency, network latency, and blocking time [5]. It is distance-
insensitive under circuit switching and wormhole routing when
no conflicts occur [4], [5]. If migration paths are totally disjoint, the
communication latency is contributed only by the first two com-
ponents. Start-up latency is the time required to handle the mes-
sage at both the source and destination nodes. Network latency
equals the elapsed time after the head of a message has entered the
network at the source until the tail of the message emerges from
the network at the destination [5]. Network latency is proportional
to the message size, and it tends to dominate for large message
transfers. To transmit a message of 100K bytes in iPSC/2, for ex-
ample, the network latency accounts for 99% of total communica-
tion latency, since start-up latency is about 0.3ms only.

In this work, we investigate speedy task migration in hyper-
cubes supporting circuit switching or wormhole routing, such that
two disjoint paths exist between every pair of corresponding
nodes for delivering migration messages concurrently, reducing
the size of data transmitted over a path. None of the disjoint paths
identified involves any link of active subcubes other than the one
to be migrated. As a result, migration takes place in an on-line
manner where all active jobs proceed without interruption, as
links of their occupied subcubes are not utilized for any migration
paths. To implement our proposed task migration, every node is
assumed to have a dedicated router permitting all-port communi-
cation [6], so that multiple messages can be transmitted simultane-
ously from a node over different paths. It should be noted that job
scheduling has been shown to be more effective than processor
allocation in lowering the mean response time and improving
processor utilization, thus reducing the possibility of fragmenta-
tion [7]. When fragmentation arises, however, task migration is the
way to eliminate it and our approach could give rise to a much
shorter migration interval than that of an earlier single-path mi-
gration technique introduced in [3].

2 NODE MODEL AND RELATED WORK

Let H, denote an n-dimensional hypercube, which consists of 2"
nodes, each labeled by an n-bit string, b, b, , ... b,b,, where bit b,
corresponds to dimension i. A link joins two nodes whose labels
differ in exactly one bit position. All links are bidirectional and full
duplex, i.e., two messages can be transmitted simultaneously in
the opposite directions of any link. A link A(x, y) is said to be along
dimension i if x and y differ in that dimension. Every path between
an arbitrary pair of nodes can be specified uniquely by an ordered
sequence of links, and the length of a path is the number of its
constituent links. A d-dimensional subcube in H, is represented by
a string of n symbols over set {0, 1, *}, where * is a don’t care sym-
bol, such that there are exactly d *'s in the string.

0018-9340/97/$10.00 ©1997 IEEE

380

2.1 Node Model

Each node in H, has a dedicated router so that computation and
communication can be overlapped at each node. The router sup-
ports either circuit switching or wormhole routing, and it has both
external channels for communication among nodes and internal
channels for connection with the local processor/memory [5], [6].
Every external channel is assumed to have a corresponding inter-
nal channel so that the node can send and receive on all its ports
simultaneously, allowing all-port communication. All-port com-
munication is realized in the n-Cube/2 hypercube and may be-
come popular for future systems. With this kind of routers, each
node in H, can handle up to n simultaneous paths, one along a pair
of external input/output channels.

The paths to be set up between two nodes in our migration are
determined explicitly by the source node. This source routing re-
quires every message to carry routing information of the entire
path, because different paths from one node to another node are
established using different routing data. The routing logics are not
identical for source routing and for distributed routing, so if the
system supports only distributed routing, additional hardware
may be needed to realize our migration. When two disjoint paths
exist between any given source-destination pair, each of them
conveys one half of total migrated information, effectively reduc-
ing the network latency by 50%. An analysis of migration time
using double disjoint paths is carried out in Section 5.

2.2 Related Work

An algorithm that constructs 2° disjoint paths for migration be-
tween two d-dimensional subcubes has been introduced in [3]. It
starts with finding a proper bijection function from a subcube to
its target subcube, then determines a set of shortest paths between
a node and its corresponding node in the target subcube according
to a simple rule, and finally selects one path (from the set) that
involves no block link, where a block link refers to a link inside a
block, i.e., an active subcube other than the one to be migrated.

Let N denote the set {n — 1, ..., 1, 0}. For any subcube S and inte-
ger i € N, S[i] indicates the ith bit of the address of S. Bit
b represents the complement of b and is defined only for b = 0 or
1. Suppose subcubes S and T are the source and target subcubes,
respectively. Let D(S) ={ie N: S[i]=*}, D(T) ={ie N: T[i] = *},
I(S, T) = {i e N : S[i] = T[i]}, and C(S,T) ={i e N : S{i} = T[i]},
which mean that S and T have don’t care bits at D(S) and D(T),
respectively; S and T are bitwise identical at I(S, T), and they are
complemental of each other at C(S, T). The four sets I(S, T), C(S, T),
D(S) — D(T), and D(T) — D(S) are pairwise disjoint, and their union
is N. |D(S) — D(T)] is always equal to | D(T) — D(S)], which de-
notes the number of elements in set D(T) — D(S).

An isomorphism from S to T is a bijection from nodes of S to
nodes of T such that two nodes in S are adjacent if and only if their
images in T are adjacent. Chen and Lai defined an isomorphism f
from S to T [3] such that for any node u in S, the address of its
image f(u) in T is determined as follows:

uli] forallieI(S,T)

T[i] forallieC(S,T)u(D(S)-D(T))
ufi] forall i e D(T)-D(S)and ulo ™
U[i] forall i e D(T)-D(S)and u[a

f(u)i] = ERICE ()]

0] =Tl 0]

where « is any arbitrary but fixed bijective function from D(S) -
D(T) to D(T)-D(S) and o is its inverse. This isomorphism yields
that the Hamming distance between any node u in S and its image
f(u) in T is exactly |C(S, T)] + |D(S) — D(T)]. It is clear from this
isomorphism that C(u, f(u)) is the union of three disjoint subsets:

IEEE TRANSACTIONS ON COMPUTERS, VOL. 46, NO. 3, MARCH 1997

D,(SJu) u D(TJu) U C(S, T), where D(S|u) = {i € D(S)
f(u)[i]} and D(TJu) = {i € D(T) : uli] = f(u)[il}.

DEFINITION 1. A Hamming path between u € S and f(u) € T is regular,
if, on the path from u to f(u), all links along the dimensions in
D(TJu) u C(S, T) precede all links along the dimensions in
D(Su).

It has been proved in [3] that any two regular paths with different
source nodes are totally disjoint. An algorithm was given to choose
one regular path from each node u in S to its image f(u) in T as the
migration path, which avoids all block links. Since all the migra-
tion paths are regular paths with different source nodes, they are
pairwise totally disjoint.

Sufi] #

3 PERTINENT ISOMORPHISMS AND PATH PROPERTIES

Consider task migration from a subcube (say S) to its target sub-
cube (say T). Here, the target subcube is assumed to be predeter-
mined, depending on the processor allocation strategy used, the
locations of busy subcubes, the size of the requested subcube, etc.,
and it is known to our migration procedure. In order to identify
two sets of pairwise disjoint paths from S to T such that no path
involves block links, proper isomorphisms have to be devised first.

3.1 Pertinent Isomorphisms
In addition to isomorphism f described in Section 2.2, two new
isomorphisms are needed for our speedy migration: One is from S
to T, called isomorphism g, and the other is from T to T, called
isomorphism h. Isomorphism g is defined such that for a node u in
S, its image g(u) in T satisfies
u[i] foralliel(S,T)
T[i] foralliecC(S,T)u(D(S)-
g(uli] = ufi] forall i e D(T)-D(S
u[i] forallieD(T)-D(S

D(T))
and u[a i]— T[ofl(i)] (
andu[oc |]¢T[a |]

1

— =

where « is any arbitrary but fixed bijective function from D(S) —
D(T) to D(T) — D(S) and o is its inverse, as defined earlier. It is
readily observed that g is indeed an isomorphism from S to T such
that for all i € D(T) — D(S), g(u)[i] # u[i] if and only if g(u)[c"(i)] #
ufec(i)]. In addition, C(u, g(u)), which equals {i € N : u[i] = g(U)[il},
is the union of three disjoint subsets, i.e.,

C(u, g(u)) = (S, T) U D,(S| u) L D,(T| u)

where Dy(S|u) = {i € D(S) : u[i] # g(u)[i]} and D(TJu) = {i € D(T) : u[i]
g(u)[i]}. From the second situation of (1), we have, for any node u
in S, ke D(S|u) if and only if a(k) € D(T]u), since D(S|u) < D(S) -
D(T), which is mapped to D(T) — D(S) by bijective function c.
DEFINITION 2. A Hamming path between u € S and g(u) € T is aggres-

sive, if on the path from u to g(u), all links along the dimensions

in D(T]u) precede all links along the dimensions in C(S, T) U

D,(S|u).

Isomorphism h is defined such that the image of anode vin T,

h(v), is in T and satisfies

h(v)[i] = {v[] forall i e D(T) - D(S) @

v[i] for the remaining i.

It is obvious that for any node u in S, g(u) = h(f(u)).

3.2 Properties of Paths

Essential properties of aggressive paths and regular paths (specified
in Definition 1) are characterized below. These properties serve as
the basis of identifying two disjoint paths between every pair of

IEEE TRANSACTIONS ON COMPUTERS, VOL. 46, NO. 3, MARCH 1997

g(u)

u and w differ in Dg (Tlu)

(a)

Fig. 1. Constructing two disjoint paths from u to g(u).

corresponding nodes. Their proofs are omitted here and can be

found in [8].

LEMMA 1. Let u and v be any two nodes in S. An aggressive path from u
to g(u) and any aggressive path from v to g(v) are totally disjoint.

LEMMA 2. Let u and v be any two nodes in S and D,(S|u) # &. A regu-
lar path from u to f(u) and an aggressive path from v to g(v) are
totally disjoint.

LEMMA 3. Let u and v be any two nodes in T. Any pair of paths which
traverse links along the dimensions in D(T) — D(S) following the
same sequence, one from u to h(u) and the other from v to h(v), are
totally disjoint.

LEMMA 4. Let u be any node in S and D,(S|u) # &. No regular path
from u to f(u) traverses any link in T.

LEMMA 5. Let u be any node in S. No aggressive path from u to g(u)
traverses any link in T.

LEMMA 6. Let u and v be any two nodes in S and D(S|u) # &. If the
addresses of nodes u and u’ differ in exactly D(T) — D(S), then a
Hamming path from u to u” and any aggressive path from v to
g(v) are totally disjoint.

4 SPEEDY TASK MIGRATION

With the properties of paths under isomorphisms f, g, and h char-
acterized, we now discuss how to establish two totally disjoint
paths from each node in S to its corresponding node in target sub-
cube T, such that the paths involve no block links. Unlike the paths
considered in [3], where all the paths created between S and T are
shortest, our paths established are not necessarily shortest and are
likely of unequal length. This poses no problem in the communi-
cation latency under circuit switching or wormhole routing. In
fact, it has been found that the communication latency is nearly
independent of the path length under circuit switching or worm-
hole routing, even for a message of just 1K bytes [5]. For a large
message (as in the case of task migration), this would be more the
case because the start-up latency then accounts for an even smaller
fraction of the communication latency.

A path from node u to node u’ is represented by A(u, u’). An al-
gorithm for finding a Hamming path between two nodes so as to
avoid all block links has been described in [3]. This algorithm,
called HAMMING-PATH, takes two nodes and a set of blocks (Z)
in H, as inputs, and determines a Hamming path between the two
nodes, with the time complexity of O(n’|Z]). The algorithm is
employed in our procedure of establishing two disjoint paths
between every pair of corresponding nodes. In the following,
our procedure is outlined for the situation of |C(S, T)] =0 or
I1C(S, T)] = 2 first, because it is slightly different for the situation
of |C(S,)] =1.

381

X
h(flu))
= g(u)
Sflw)
wand x differ in DyTlu) LI C(S, T)
(b)

4.1 Situation |[C(S, T)|=0or |C(S, T)|=>2

Under isomorphism f, a node u in S satisfies either D(S|u) # & or
D,(Slu) = &. A node u € S with D(S]u) # & and a node v € S with
D,(S]v) = @ follow different steps to construct two disjoint paths,
as discussed separately below.

Case a): D(S|u) =<

In this case, let w be the node which differs from u in exactly
D (T]u). A Hamming path from u to w and another from g(u) to w
are determined by HAMMING-PATH, so that they avoid all
blocks. Concatenating these two paths yields an aggressive path
from u to g(u), because on the resultant path, all links along the
dimensions in D (T]u) (which refer to those on path A(u, w)) precede
all links along the remaining dimensions, as depicted in Fig. 1a. The
resultant path apparently contains no block link. Next, a Ham-
ming path from u to x and another from f(u) to x are created by
HAMMING-PATH, where x is the node which differs from u in
exactly D(T]u) u C(S, T). Concatenating the two paths results in a
regular path from u to f(u), based on Definition 1. According to
Lemma 2, the constructed aggressive path and regular path are
totally disjoint.

Since two disjoint paths between any pair of corresponding
nodes, say hodes u and g(u), are to be determined, the path from u
to f(u) has to be extended from f(u) to g(u), giving rise to another
disjoint path from u to g(u). This is done by making use of isomor-
phism h. For anode z in T, let A(z, h(z)) be a Hamming path (which
is surely within target subcube T) following an arbitrary, but fixed
dimension sequence. Now, every node z in T follows the same
fixed dimension sequence to create a path A(z, h(z)), so all these
created paths are totally disjoint, based on Lemma 3. Concate-
nating regular path A'(u, f(u)) and A(f(u), h(f(u))) leads to a path
A(u, h(f(u))) from u and g(u), as shown in Fig. 1b. The resulting path
is totally disjoint with the aggressive path A(u, g(u)), according to
Lemmas 4 and 5, and it obviously contains no block link.

Case b): D(S|v) =9

From the first two situations of isomorphisms f and g, we have
D(S|v) = D,(S1v) because under these situations, f(v)[i] and g(v)[i]
are assigned identical values. Based on the last three situations of
(1), IDy(SIV)] is found equal to |[D(T]v)]. Since D(S]v) = &,
ID,(SIV)] = 0 = |D(TIV)I, suggesting C(v, g(v)) = C(S, T) ac-
cording to the expression for C(v, g(v)). If |C(S, T)] =0, thenv =
g(v) and there is no migration path needed for v. We therefore
consider only |C(S, T)] = 2 subsequently.

Letk € C(S, T), and w be the node connected to g(v) by link k. A
path from v to w is determined by HAMMING-PATH, and the
path is concatenated with A(w, g(v)) to yield a path from v to g(v),
which is an aggressive path, according to Definition 2, because
D (T]v) = &. This aggressive path evidently contains no block link.
Similarly, a path from g(v) to x is constructed by HAMMING-
PATH, where x is the node that is connected to v by link k. Con-
catenating A(v, x) and the constructed path A(g(v), x) yields an
aggressive path from v to g(v), and this aggressive path clearly

382

000

010%%x

LJ

100%5

M3

110%**

IEEE TRANSACTIONS ON COMPUTERS, VOL. 46, NO. 3, MARCH 1997

001

™

0] 1%%*

e

107 %%

1171%%*

Fig. 2. Migration paths fromlS = 00210** to T = 1*0*00. (Some links in Hg are omitted for clarity. The two paths from node J to its corresponding

node g(J) are denoted by J " and J".)

involves no block link. The two aggressive paths are not the same
(for JC(S, T)] = 2), and they are totally disjoint because they both
are Hamming paths with one traversing link k last whereas the
other traversing link k first. Further, all aggressive paths so con-
structed are pairwise totally disjoint, based on Lemmas 1, 2, 3, 4,
and 5. We thus arrive at the next theorem.

THEOREM 1. Under |C(S, T)] =0or |C(S, T)] = 2, two totally disjoint
paths exist between every node in S and its corresponding node in
T, and they contain no block link. In addition, all the paths be-
tween S and T are pairwise disjoint.

Under this situation, every node in S determines its two dis-
joint migration paths independently and concurrently. A node in
Case a) calls HAMMING-PATH four times and makes use of iso-
morphism h once to decide its two paths, giving rise to the same
time complexity as that of HAMMING-PATH, i.e., O’ |E]). A
node in Case b) requires lower time complexity, as it calls HAM-
MING-PATH only twice to determine its two paths.

An example of this situation is demonstrated in Fig. 2, where S
= 0010**, T = 1*0*00, and all the remaining nodes in H, are block
nodes as enclosed by dashed lines. In this example, C(S, T) = {5, 3},
D(S) — D(T) = {1, 0}, and D(T) — D(S) = {4, 2}. Let mapping o be
defined as: o(0) = 2 and (1) = 4, and the dimension sequence for
specifying A(z, h(z)) from every node z in T be 2, 4 (i.e., it takes
dimension 2 first, followed by dimension 4). Node u = 001011 be-

longs to Case a), as f(u) = 100000 and D(S|u) = {1, 0} # &. For this
node, g(u) = 110100, D(TJu) = &, D(S]u) = {1, 0}, and D(T]u) =
{4, 2}. Node w = 011111 differs from u in exactly D (T Ju), and the
two paths derived by HAMMING-PATH are 001011 — 001111 —
011111 and 110100 — 110101 — 110111 — 111111 — 011111. Con-
catenating the two paths yields an aggressive path between u and
g(u). Next, node x = 100011 differs from u in exactly D(T Ju) UC(S, T).
The two paths A(u, x) and A(f(u), x) obtained by HAMMING-
PATH are concatenated, together with path A(f(u), h(f(u))) to get
another disjoint path 001011 — 101011 — 100011 — 100001 —
100000 — 100100 — 110100. The two migration paths between u
and g(u) are indicated by J' and J* in Fig. 2.

On the other hand, node v = 001000 belongs to Case b), as f(v) =
110100 and D(S]v) = &. This node exhibits g(v) = 100000, D(T]v)
= {4, 2}, D(S|v) = @, and D(T]v) = &. The two aggressive paths
between v and g(v) are 001000 — 000000 — 100000 and 001000 —
101000 — 100000, as marked by L and L? in Fig. 2. All the migra-
tion paths between S and T are given in the figure, and they in-
deed are totally disjoint and contain no block link.

4.2 Situation |[C(S, T)| =1

For any node u in S, either D(S|u) # @ or D(SJu) = & holds. A
node u satisfying D,(S]u) # & follows the same way as above for
Case a) to establish an aggressive path between u and g(u). For a
node v with D(S]v) = &, according to the argument given in Case b),

IEEE TRANSACTIONS ON COMPUTERS, VOL. 46, NO. 3, MARCH 1997

we have C(v, g(v)) = C(S, T), which means that v is adjacent to its
corresponding node g(v) in T, as | C(S, T)] = 1. A single-link path
thus exists between v and g(v). Next, a second migration path from
every node in S has to be determined. A node u with D(S]u) # &
can decide a regular path from u to f(u) based on the steps de-
scribed in prior Case a). Unlike Case a) where an arbitrary dimen-
sion sequence is proper for creating path A(f(u), h(f(u))), however,
this situation requires that the dimension sequence be decided by
a specific node before the regular path can be extended from f(u) to
g(u) as stated earlier to generate the second disjoint path. Specific
nodes are those nodes q satisfying D(S|q) = &. The following de-
tails how such a node q decides the dimension sequence. Let y =
ID(S) nD(T)] and B = |D(S) - D(T)| = ID(T) — D(S)]. S can be
partitioned into 2’ 8-dimensional subcubes along those dimensions
in D(S) N D(T). Consider any S-dimensional subcube so parti-
tioned, say B. Obviously, there is exactly one node, say g, in B such
that D(S|q) = &, i.e., D(T]q) = D(T) — D(S). Node q is a specific
node, which decides the dimension sequence for all the nodes
inside B. There are 2" specific nodes totally in S. Let C(S, T) = {k},
then node g and g(q) is connected by link k. If a second path exists
from q to g(q), it must start with a link other than k.

Consider a node in B, say node (p # q), and the aggressive path
from p (recall that each node in S determined an aggressive path
individually). If node w is the last intermediate node on the ag-
gressive path between p and g(p) and if the link between w and
g(p) is not k, node g can have a second migration path formed by
concatenating the subpath (determined by HAMMING-PATH)
which traverses all dimensions in D (T]p), link k, and the subpath
which traverses (in any sequence) all dimensions in D (T|p). The
dimension sequence used by the last subpath has to be broadcast
(by q) to all the other 2° — 1 nodes in B, so that all second migration
paths from B would follow the identical (sub)sequence, ensuring
that they are pairwise disjoint. The reason for the second migra-
tion path A(q, g(g)) so constructed to be disjoint with others lies in
that its first constituent subpath is a subpath of a regular path,
which is disjoint with other regular paths, and which is disjoint
with any aggressive path according to Lemma 6.

On receiving this broadcast dimension sequence, every node u
in B can decide its path A(f(u), h(f(u))), thereby the second migra-
tion path. In order to let node g know whether or not its second
migration path exists, every node (other than g) in B sends a mes-
sage to g indicating if its aggressive path constructed traverses link
k last. This is done in a distributed manner, and node q in the
worst scenario checks all the (2 — 1) messages received, taking
time O(2%). Compared with the previous situation, the situation of
IC(S, T)| = 1 requires additional time complexity of receiving (2° - 1)
messages and examining them at each specific node. If =0 or
every aggressive path from B traverses link k last, the second mi-
gration path between g and (g(q)) is absent. The next theorem fol-
lows immediately.

THEOREM 2. Under JC(S, T)] = 1, two totally disjoint paths exist be-
tween every node in S and its corresponding node in T, and they
contain no block link, provided that not every aggressive path from
B traverses link k last, for all B’s. In addition, all the paths be-
tween S and T are pairwise disjoint.

5 MIGRATION TIME ANALYSIS

The speedup resulting from the use of double disjoint paths for
task migration in hypercubes with circuit switching or wormhole
routing is analyzed. Our time analysis is based on the following
assumptions about the communication model:

1) every cube link is full duplex, i.e., two messages can simul-
taneously travel along the link in opposite directions;
2) a router can send and receive messages on all its ports con-

383

currently, known as the all-port communication mode [6];
and

3) there is no blocking time or queuing delay for each path,
since all the migration paths are pairwise disjoint.

Let M, B, and P be the message length, the channel bandwidth,
and the path length between the source (S) and the target (T), re-
spectively. Assume that |C(S, T)| = {and | D(S)-D(T)| = B.

5.1 Under Circuit Switching

When each source node sends a message through only one path
(i.e., a regular path) to its corresponding destination node, the
network latency is expressed by (M./B)P + M/B, where M, is the
length of the control message transmitted to establish the circuit
and P = { + 3. During task migration, M, << M and hence P has a
negligible effect on the network latency. As a result, the network
latency can be approximated by M/B using only one path. On the
other hand, when two disjoint paths are used between every cor-
responding node pair for migration and each path is assumed to
transmit one half of the message, the network latency becomes
(M/B)P + M/(2B), where P equals ¢ + 2f3, which is the length of
the longest paths between S and T. If (M./B)P is ignored, the net-
work latency is approximately M/(2B). Since the communication
latency is equal to the start-up latency plus the network latency
and the start-up latency is in the order of hundreds of usec, much
smaller than the network latency for a long message (for example,
it takes about 36 ms to transmit a message of 100K bytes over a
path in iPSC/2 [4], while its start-up latency is about 300 usec), our
speedy task migration yields a reduction in the communication
latency by almost 50%. Under this switching technique, time over-
head is involved to split a large message into two smaller ones
(and possibly assemble them at the receiving node), but it is not
expected to be high. The time of migration through double disjoint
paths will thus be considerably shorter.

5.2 Under Wormhole Routing

If a message is transmitted over one path to its destination, the
network latency is given by (L/B)P + M/B, where L, is the length
of each flit and P equals { + . For L; << M, a typical situation for
task migration, the path length P will not affect the network la-
tency noticeably, provided that there is no link contention. When
two disjoint paths are used for migration between each node pair,
the network latency is given by (L/B)P + M/(2B), where P equals
¢ + 2. Again, the term of (L/B)P and the start-up latency can be
ignored for large message transmission (for example, the transmis-
sion time of 100K bytes over a path in n-Cube/2 is about 50 ms and
its start-up latency is about 150 usec). Without involving extra time
overhead for splitting/Zassembling messages under this routing,
the proposed speedy task migration hence leads to a speedup fac-
tor of roughly 2.

6 CONCLUDING REMARKS

Task migration by employing two disjoint paths between every
pair of corresponding nodes has been introduced. This approach
aims at reducing the migration time in hypercubes supporting
circuit switching or wormhole routing. As the amount of informa-
tion to be transferred is often huge and the migration duration for
such a hypercube is dictated chiefly by network latency, which is
proportional to the message size, utilizing double migration paths
can reduce communication latency by almost 50% if the router
permits all-port communication because each path then delivers
only one half of total migrated information. This is made possible
by taking advantage of the fact that under circuit switching and
wormhole routing, communication latency is insensitive to path
length, so migration paths identified can be of unequal length
while maintaining same efficiency.

384

Our procedure for determining migration paths can be carried
out at each participating node in a distributed manner, taking an
identical order of time complexity as that required by the earlier
single-path migration technique [3], except for one situation where
message exchanges are necessary. All migration paths selected are
pairwise disjoint and contain no block link. This procedure is ap-
plicable to any fragmented hypercube system, and it identifies two
migration paths from each participating node, if they exist, or oth-
erwise, tells the absence of the second migration path.

We have implemented this proposed on-line migration ap-
proach on the Intel iPSC/860 machine with the feature of source
routing equipped to allow for specifying the routing path of a
message at the originating node. Our implementation results con-
firm the advantage of proposed speedy task migration, even with
the overhead (of reassembling the two halves of the message at the
destination) taken into consideration. If the migration file is of 4M
bytes, for example, our speedy migration gives rise to an im-
provement of roughly 35% in the migration time when compared
with migration using one single path.

It is worth mentioning that speedy task migration could be-
come more attractive for the future system where the start-up la-
tency is lowered drastically; for instance, the recently announced
n-Cube/3 is claimed to have a start-up latency of only 5 usec, in
sharp contrast to 150 usec for the n-Cube/2. As a result, the use of
double disjoint paths for transmitting even a moderate amount of
information in such hypercubes would be advantageous.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 46, NO. 3, MARCH 1997

ACKNOWLEDGMENTS

Hsing-Lung Chen’s research was supported by the National Sci-
ence Council of the Republic of China under Contract NSC83-
0408-E011-001. Nian-Feng Tzeng’s research was supported in part
by the U.S. National Science Foundation under Grants MIP-
9201308 and CCR-9300075 and by the State of Louisiana under
Contract LEQSF(1994-96)-RD-A-39. A preliminary version of this
paper was presented at the 23rd International Conference on Par-
allel Processing, August 1994,

REFERENCES

[1] T. Schwederski, H.J. Siegel, and T.L. Casavant, “Task Migration
Transfers in Multistage Cube Based Parallel Systems,” Proc. 1989
Int’l Conf. Parallel Processing, vol. I, pp. 296-305, Aug. 1989.

[2] M.S. Chen and K.G. Shin, “Task Migration in Hypercube Multi-
processors,” Proc. 16th Int’l Symp. Computer Architecture, pp. 105-
111, May 1989.

[3] G.-l. Chen and T.-H. Lai, “Constructing Parallel Paths Between
Two Subcubes,” IEEE Trans. Computers, vol. 41, no. 1, pp. 118-123,
Jan. 1992.

[4] O. Frieder et al., “Experimentation with Hypercube Database
Engines,” IEEE Micro, pp. 42-56, Feb. 1992.

[5] L.M. Ni and P.K. McKinley, “A Survey of Wormhole Routing
Techniques in Direct Networks,” Computer, vol. 26, no. 2, pp. 62-
76, Feb. 1993.

[6] P.K. McKinley and C. Trefftz, “Efficient Broadcast in All-Port
Wormhole-Routing Hypercubes,” Proc. 1993 Int’l Conf. Parallel
Processing, vol. 11, pp. 288-291, Aug. 1993.

[7]1 P. Krueger, T.-H. Lai, and V.A. Dixit-Radiya, “Job Scheduling Is
More Important that Processor Allocation for Hypercube Com-
puters,” IEEE Trans. Parallel and Distributed Systems, vol. 5, no. 5,
pp. 488-497, May 1994,

[8] N.-F. Tzeng and H.-L. Chen, “On-Line Task Migration in Hyper-
cubes Through Double Disjoint Paths,” Technical Report TR-95-8-3,
Center for Advanced Computer Studies, Univ. of Southwestern
Louisiana, 1995.

