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Abstract—A bufferless network-on-chip (NoC) can deliver high energy efficiency, but such a NoC is subject to growing deflection when
its traffic load rises. This article proposes Deflection Containment (DeC) for the bufferless NoC to address its notorious shortcomings of
excessive deflection for performance improvement and energy savings. With multiple subnetworks bridged by an added link between
two corresponding routers, DeC lets a contending flit in one subnetwork be forwarded to another subnetwork instead of deflected.
Microarchitecture of DeC routers is rectified to shorten the critical path and lift network bandwidth. Its Cadence RTL implementations
with a 15 — nm process are conducted respectively for mesh-based NoCs and torus-based NoCs. Additionally, different sized
DeC-NoCs are evaluated extensively and compared with previous bufferless designs (BLESS and MinBD), uncovering that DeC with
two bridged subnetworks (dubbed DeC2) for 8X8 mesh-based NoCs can lower deflection drastically by some 90 percent and energy
consumption by upto 51 percent under real benchmark traffic loads, in comparison to BLESS. Under various synthetic traffic models
and workloads, 16X16 torus-based DeC2-NoC sustains up to 2.33X loads when compared with its mesh-based counterpart, exhibiting
the same clock rate and taking only negligible more power and area according to our full layout results.

Index Terms—Bufferless network-on-chips (NoCs), routing deflection, flits, interconnects, NoC routers, path diversity

1 INTRODUCTION

As the chip multicore processor (CMP) continues to
upscale its core count, its involved on-chip interconnect
(NoC) may soon dominate overall chip power consumption.
The bufferless NoC has been pursued as a compelling design
alternative for CMPs to lower network power and energy
consumption as a result of removing buffers [4], [5], [6], when
compared with its traditional buffered counterpart [7], [12].
Without buffers, a bufferless router has only pipeline
registers, each of which is able to hold one flit. The operation
of bufferless routers is thus simple: all flits must move for-
ward through the pipeline and be sent out to some output
ports at the end of each cycle. Whenever multiple flits require
the same output port, only one flit (which usually has the
highest priority) is granted, with the remaining contending
flits either deflected to the unclaimed ports [4], [5] or simply
dropped [8]. A dropped flit is retransmitted later to ensure
correctness. In this work, we focus on the bufferless NoC
using deflection routing to resolve resource contention.
Existing bufferless NoCs often suffer from rapidly grow-
ing deflection rates when the load increases. Fig. 1 shows the
packet network latency and the deflection rate of BLESS [5]
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— a state-of-the-art bufferless NoC, under uniform random
traffic in a 16 x 16 mesh-based NoC and a torus-based NoC.
When the network load increases, flit contention intensifies,
hiking the deflection rate by nearly 48 x upon close satura-
tion. High deflection also increases the average latency in
delivering packets, since many flits then take unproductive
extra hops before reaching their destinations. A deflected flit
involves multiple extra cycles to reach its destination. More-
over, those deflected flits consume network bandwidth, pos-
sibly interfering with more flits to further amplify the
deflection rate and easily causing network saturation. Addi-
tionally, high deflection calls for large reorder storage at the
destination end (i.e., MSHR) [4], since flits are transmitted
independently across the network. As a result, energy con-
sumption rises and performance degrades. Therefore, deflec-
tion becomes the key stumbling block toward energy
efficiency and good performance for bufferless NoCs.

In this paper, we propose Deflection Containment for
bufferless NoCs to reach significant energy savings with
commendable performance improvement through curbing
deflection and lowering router complexity, achieved by add-
ing a link to each router for bridging subnetworks (whose
aggregate link width equals a given value, say, 256b). As
depicted in Fig. 2, M (e.g., M = 2) subnetworks are bridged
together at each node to form a bypass ring, which lets a con-
tending flit be forwarded to another subnetwork without
deflection so as to lower the latency penalty and to reduce
bandwidth and energy waste. DeC with M = 2 subnetworks
is denoted by DeC2.

We implement BLESS, MinBD [6], and DeC routers in
Verilog to evaluate power, timing, and area via full synthesis
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Fig. 1. A bufferless NoC suffers from ~48x (or ~45x) more deflection
as the network load approaches saturation under mesh (or torus) sized
16x 16, substantially prolonging latency and lowering its capacity.

using Cadence Encounter RTL Compiler with 15 nm FinFET-
based Open Cell Library [18] (under V;; =0.8V and T =
25°C). Our synthesis implementation for each design
includes logics for route computation, partial permutation
network, port allocation, local ejection and injection, crossbar,
side buffers, and pipeline registers. In addition, we also con-
duct RTL implementation of DeC router microarchitecture
for the torus topology, which improves performance over its
mesh counterpart with wrap-around connections between
pairs of opposite edge routers of a mesh [13], [58], [60].

For comparison, we evaluate NoCs with DeC support
using a modified cycle-accurate simulator [17] under vari-
ous synthetic traffic loads and under instruction traces
obtained from the representative phases of the PARSEC
benchmark suite [61] extensively. Evaluated performance
results of 16 x 16 mesh-based DeC2-NoCs under synthetic
traffic loads are shown to markedly outperform those of
compatible NoCs with BLESS and MinBD support, as a
result of substantial deflection containment. Specifically,
mesh-based DeC2-NoCs under multi-threaded PARSEC
benchmark traffic loads enjoy drastic deflection reduction
and substantial energy savings, in comparison to compati-
ble BLESS and MinBD. Full layout results of 4 x 4, 8 x 8,
and 16 x 16 DeC2-NoCs with the torus topology are con-
ducted under the 15 nm process via Cadence Innovus for
energy and speed comparison against their mesh-based
counterparts. They reveal that a 16 x 16 torus-based DeC2-
NoC sustains up to 2.33x loads across various synthetic
traffic patterns when compared with a mesh-based counter-
part, taking only 2.8 percent more power and 2.6 percent
more area. In contrast to conventional intuition, a torus-
based DeC2-NoC and a compatible mesh-based DeC2-NoC
exhibit the same clock rate, because the on-chip links of the
former never slow down the clock according to our full lay-
out results.

We have made the following contributions.

1. We identify that prior state-of-art bufferless routers
easily lead to considerable deflection, and thus stark
performance degradation, as the network load rises
under both mesh and torus topologies.

2. We propose DeC to reduce power consumption and
improve bufferless NoC performance by curbing
deflection to mitigate the contention penalty and
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lower bandwidth waste using bridged multiple
subnetworks.

3. A parallel port allocator is proposed to shorten the crit-
ical path of a bufferless router by 23 percent (down to
0.17 ns from 0.22 ns), according to our RTL synthesis
using Cadence Encounter RTL Compiler with the
open source NanGate 15 nm process.

4. We evaluate 4 x4, 8 x 8, and 16 x 16 DeC-based
NoCs extensively using our gathered instruction
execution traces and random traffic loads for com-
paring with previous bufferless NoCs.

5. We derive full layouts of 4 x 4, 8 x 8, and 16 x 16
DeC2-NoCs with the torus topology under a 15 nm
process for energy and speed comparison against their
mesh counterparts, discovering a torus-based NoC to
retain the same clock rate despite its larger mean link
length (e.g., 20.2 um versus 15.0 um for the size of
16 x 16).

2 RELATED WORK

2.1 Bufferless Network-on-Chips (NoCs)

The bufferless NoC (BLESS) was first proposed in 2009 [5]
with the aim of eliminating the expensive buffers in conven-
tional buffered NoCs. The bufferless NoC is advantageous
over the buffered NoC for several reasons. First of all, due to
the absence of buffers, it reduces the router area and power
consumption significantly. Second, a bufferless NoC has
much simpler control. Both injection and ejection are deter-
mined locally. Injection is granted merely based on the avail-
ability of the input link. The flit reaching its destination is
removed from the network upon winning arbitration. Third,
the bufferless NoC involves no flow control so that its routers
do not need to maintain and exchange credits with their
neighbors. At every cycle, flits do not wait in the upstream
buffers when contention occurs. They are simply deflected to
a neighboring node to resolve contention. Lastly, a bufferless
NoC can deliver similar performance as its buffered counter-
part, albeit enjoying extraordinary simplicity. Prior work
has attempted at enhancing the bufferless NoC in different
domains, as outlined below.

o Router Complexity Reduction

CHIPPER [9] consolidates arbitration and switch allocation
into a single stage with a partial permutation network,
replacing the expensive crossbar employed by BLESS [5].
Based on CHIPPER, MinBD [6] added a centralized buffer in
each bufferless router to temporarily hold contended flits to
reduce the contention penalty. Meanwhile, deflection rout-
ing is adopted in a hierarchical ring network [46], [47]. All of
them suffer from degraded performance due to limited path
diversity, resulting from few routing combinations in the
partial permutation network [5], [6] or a limited number of
ports [46], [47]. Hence, they are unappealing, especially for
high-throughput applications, such as Convolutional Neural
Networks and GPGPU.

o Congestion Control

Buffered NoCs often use credits to provide in-network back-
pressure between neighboring routers. Flits can be stored in
buffers when the downstream routers are congested, provid-
ing multiple cycles of slack to steer flits away from the
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congested area. On the contrary, a bufferless NoC has no in-
network backpressure in the absence of credits. However,
congestion in such a NoC can quickly propagate back to the
source node, triggering end-to-end backpressure (despite its
absence of in-network backpressure). The cache/memory
controller will then stop issuing new requests to alleviate con-
gestion in the bufferless NoC.

Source throttling in bufferless NoCs is explored thor-
oughly when the metrics of interest exceeds a threshold
value [19], [20], [21], [48], [49], [50], [51], [52], by throttling
new injection. CFC [19] throttles the injection based on buffer
availability at the destination. Later, Sun [20] extends CFC
by dynamically adjusting the credit amount assigned to each
core for further performance improvement. Daya [49] and
Nychis [50] perform throttling based on the starvation rate
(i.e., the inability of injecting new packets). Chang [48] and
Nychis [50] identify that applications respond differently to
source throttling, with the former throttling the application
with higher network intensity based on misses per thousand
instructions and the latter throttling the application with
fewer instructions per flit.

o Other Prior Work

Instead of deflection, flits can be dropped upon losing arbi-
tration to resolve contention. Retransmitting dropped flits is
triggered to ensure correctness, which often incurs a long
latency and a higher buffer requirement at the source node
as flits need to be retained until successful delivery.
SCARAB [8] utilizes MSHRs at intermediate nodes to buffer
in-flight flits opportunistically when the ejection port is idle,
to avoid an increase in the processor side buffering require-
ment. Also, a dedicated circuit-switched network is utilized
to trigger retransmission from the source. Carpool [53] ena-
bles multicast in a bufferless NoC through adaptively fork-
ing multiple cast flit replica and opportunistically merging
the hotspot flits to reduce network contention.

2.2 Multiple On-Chip Networks

Multiple on-chip networks have been adopted in silicon
prototypes mainly to isolate different message classes for
deadlock-freeness and quality of service, as evidenced in
OpenPiton [54], Xeon Phi [55], SCORPIO [41], Tilera [24],
TRIPS [26], and RAW [25]. Meanwhile, research effort on
optimizing different traffic classes in multiple on-chip net-
works has been made to achieve better performance and
lower power consumption [23], [28], [32], [33], [34], [35],
[36], [37], [38].

e  Multiple Buffered NoCs

Earlier studies [33], [34], [38] categorize packets into critical
and non-critical ones, letting them transferred in two sepa-
rated networks in order to optimize power consumption.
They employ dynamic voltage frequency scaling (DVFS) to
slow down the non-critical network with lower voltage
and frequency to save energy. Usually, critical packets are
transferred through the regular network with low latencies,
whereas non-critical packets are transferred in the network
with low power. They differ in terms of identifying the criti-
cality of a packet. Specifically, Deja Vu switching [33] consid-
ers control packet as critical and data packets as non-critical,
with the non-critical network being circuit-switched to

compensate the penalty of DVFS. Flores [34] considers short
packets to be critical and long packets as non-critical. NoC-
NoC [38] treats data which are needed right away as critical
and other data as non-critical.

Flit-reservation flow control [32] uses a separate network
to reserve buffers and channels prior to the arrival of a data
packet. Mishra [28] uses two separate networks to carry two
different types of applications—a high bandwidth, low fre-
quency network for bandwidth-sensitive applications and
another low latency, high frequency network for latency-sen-
sitive applications. Natalie [37] explores the underutilized
resources existing on the silicon interposer, which forms a
separate network for carrying memory traffic.

A multiple-network design is also amiable in power gating
for energy savings, since individual subnets can be power-
gated without compromising full connectivity [23]. In addi-
tion, multiple networks provide opportunities for traffic par-
titioning [35] and load balancing [36], and fault-tolerance [30].

o Buffered NoCs With Auxiliary Bufferless Network

Ordered NoC [39], Runahead [40], and SCORPIO [41] aid a
light-weighted bufferless NoC on top of a regular buffered
NoC. Like SCORPIO [41], Ordered NoC [39] utilizes a sepa-
rate bufferless network with fix latency, to maintain global
ordering on top of an unordered buffered network'. In addi-
tion, Runahead [40] uses a bufferless NoC to speed up the
delivery of latency-critical packets, with the bufferless NoC
being lossy such that flits will be dropped in the presence of
contention (i.e., without retransmission).

2.3 Summary

Most of previous work investigated into multiple buffered
NoCs, with multiple bufferless NoCs yet to be explored.
Recently, a few attempts at pursuing multiple on-chip net-
works in the bufferless domain have been made [39], [40],
[41]. Unlike our DeC, the bufferless NoCs which have been
pursued earlier are considered to be auxiliary ones and can-
not be used standalone. In contrast, our DeC employs multi-
ple independent subnetworks to resolve deflection, which is
a notorious issue in the bufferless NoC, as discussed in
detail next.

3 DEeC DESIGN

The major issue of a bufferless NoC is its potentially exces-
sive deflection when the load rises [22]. To reduce deflection,
our DeC partitions a network into multiple subnetworks
(with aggregated data path width of multiple subnetworks
equal to that of the network without partition) which are
bridged with bypass channels to contain deflection as a
result of increased path diversity.

3.1 Design Approach

DeC aims to reduce the deflection rate through exploring
increased network path diversity. Fig. 2 illustrates the overall
DeC structure, which consists of M identical subnetworks
(e.g., M = 2). The data path of each subnetwork is narrower,

1. Although directory-based coherence can work atop an unordered
network, many Snoopy coherence relies on an ordered interconnect to
ensure correctness, such as ARM AMBA [42], AXI Coherence Extensions
[43], AMD Hypertransport [44], and Intel Quickpath Interconnect [45].
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Fig. 2. DeC involving multiple sub-networks (left), which are bridged with
a bypass ring at each node (right). Each DeC router comprises multiple
physical sub-routers (e.g., M= 2, as shown).

equal to 1/M of that of the network with one subnetwork. Sub-
networks are bridged together at every node to constitute a
bypass ring with uni-directional channels (referred to as the
“bypass channels”). A contending flit in one subnetwork,
which would otherwise be deflected, can then be forwarded
via the bypass ring to another subnetwork at the same node. It
allows the contending flit to explore the path diversity and
compete for the desired port in another subnetwork with only
one extra cycle latency (instead of multiple extra cycles upon
deflection). The other flits follow regular deflection routing.

The network interface (NI) is very crucial as it determines
the serialization latency for delivering a complete packet.
Storing flits into a single injection queue may lead to well-
known head-of-line blocking in the presence of multiple sub-
networks. Also, subnetwork selection directly affects the net-
work load balance. In DeC, as shown in Fig. 2, a node is
connected to M subnetworks, each of which has a dedicated
NI injection queue with its size equal to 1/M of that of the
single network counterpart. Since a flit size in DeC is 1/M of
that of its single network counterpart, the maximum number
of entries in a split queue equals that in the NI injection
queue of its counterpart. Multiple queues effectively over-
come occurrence of head-of-line blocking without adding
significant hardware complexity. Moreover, DeC adaptively
selects the subnetwork with a low load to accommodate new
flits for improving the load balance.

3.2 Advantages

e  More Paths, Less Deflection

The deflection rate of a bufferless NoC largely depends on
the network load and path diversity. When a network has
more independent channels, the probability of contention
reduces. Although a high-radix topology such as flattened
butterfly [10], dragonfly [11], or MECS [27], exhibits lofty
path diversity, all of them often come with steep hardware
complexity, because such a topology calls for a large “full
crossbar” at each constituent router which scales quadrati-
cally with respect to the number of ports. On the other hand,
bridged multiple subnetworks can elevate path diversity
without resorting to a large crossbar in each node, curbing
hardware complexity.

o Contention Penalty Mitigation
When contention occurs in bufferless NoCs, a deflected flit
may move further away from its destination, causing
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Fig. 3. DeC can effectively avoid deflection by forwarding a contending
flit (e.g., f1) to another subnetwork via the bypass channel.

performance degradation and power waste. Fig. 3 shows a
typical case when deflection occurs in a mesh-based buffer-
less NoC. Assume both f; and f; destine to Router 3, and fj
has a higher priority. As contention occurs at Router 0, it
takes 3 hops (3 x P cycles) to delivery f; if it is deflected,
where P denotes the number of pipeline stages. In contrast,
DeC sends the conflicting flit f; to another subnetwork
through the bypass ring so that it can contend for the desired
port again with only a single cycle delay (via traversing
through the bypass link). The overall latency for delivering
f1in this way is only P + 2 cycles, with one cycle for travers-
ing through the bypass link and one cycle for arbitrating the
output port in the other subnetwork. Under a 2-stage pipe-
lined router with one cycle link latency (i.e., P = 3), DeC
then mitigates the contention penalty by 4 cycles.

o [mprove Link Utilization and Load Balance

Network bandwidth is a premium on-chip resource. An
increase in the working data set size requires moving more
data from off-chip storage to higher level of private and
shared cache through NoCs. Multi-threading becomes very
common to explore thread-level parallelism provided by
underlying hardware in the shared memory semantics, at
the cost of increased traffic in the on-chip network due to
synchronization and coherence. Future super scalar process-
ors with high memory level parallelism will likely to put
even more pressure to the on-chip communication channel.

Many recent chips utilize wide channels to lift up band-
width and improve on-chip network performance, given that
5 to 13 levels of metal in the current technology provide abun-
dant wiring resources [56]. NoC with a wide channel is very
efficient for transferring long packet, such as response pack-
ets of a read request or write-back with data payload, since
injecting a packet then involves fewer flits. However, it often
exhibits poor link utilization when transferring short control
packets, as short packets may not utilize the entire link.

By partitioning a network into multiple independent
physical subnetworks, DeC is able to use link more effi-
ciently, leading to a better link utilization and increased
throughput. Also, injecting new flits adaptively according to
the network load, DeC always picks the least loaded subnet-
work to accommodate the new flit, preventing unbalanced
load distribution among subnetworks. Last but not least, the
existence of a bypass channel at each node establishes a tun-
nel to divert flits from a heavy-loaded subnetwork to a light-
loaded subnetwork, further improving load balance and
avoiding congestion.
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4 ROUTER MICROARCHITECTURE

Several bufferless NoC designs have been proposed, each of
which addresses different issues. For example, BLESS [5]
performs best-effort deflection routing. CHIPPER [4] reduces
the router complexity, and MinBD [6] lowers the deflection
rate based on CHIPPER. We adopt the previous design —
BLESS, which provides the best performance among all
known designs, as the baseline. Compared with BLESS, DeC
achieves better performance and much lower power con-
sumption through containing deflection and shortening the
critical path.

4.1 Baseline Bufferless NoC — BLESS

In BLESS, flits are transmitted across the network indepen-
dently. Each flit needs to carry a header that contains routing
information and is sent through dedicated links. At the first
stage, all incoming flits pass through a sorting network to
determine their ranking. At the second stage, port allocation
is performed sequentially for flits in a descending order of
their ranking. When two flits contend for the same port,
BLESS simply deflects the one with lower priority. Finally, a
crossbar is used to send out flits according to port allocation
results.

BLESS enforces a strict priority rule (i.e., Oldest-First) to
make routing decisions, requiring all flits in a router to be
fully sorted and allocating ports sequentially in the priority
order to resolve contention. Two pitfalls implicate the
design. First, full sort incurs high hardware complexity, as it
often requires using a 3-stage permutation network. Second,
sequential port allocation can lead to a long critical path in a
router [4]. Especially, when the load is low, it is prohibitively
expensive for strict enforcement of the priority rule. Inspired
by [4], DeC relaxes the constraint by ensuring only the high-
est priority flit to obtain its requested port first, and it then
performs parallel port allocation to resolve the sequential
dependence during port allocation, as will be stated next.

4.2 DeC Overall Operation

The DeC router requires only relatively modest changes to
support deflection containment and resolve the aforemen-
tioned issues. Fig. 4 shows the proposed DeC router micro-
architecture, which has a two-stage pipeline. In the first
stage, it uses conventional X-Y routing logics for the mesh
network [13] to calculate the desired ports for all incoming
flits, which are then sent to a sorting network to determine

their priorities. The DeC router for torus-based NoCs fol-
lows lowest hop count considering the wrap-around con-
nections between pairs of opposite edge routers. This is the
only difference in comparison to a mesh-based NoC router.
At the end of the first pipeline stage, the flit on the top chan-
nel possesses the highest priority. At the second stage, port
allocation is performed in parallel. One of the contending
flits is sent to Bypass port, instead of being deflected, such
that it can contend for the desired port again after one cycle
(via traversing the bypass ring) in another subnetwork.
Then, one local-destined flit is selected and ejected from the
network. The injection is granted as long as there is an avail-
able channel. When all channels in a router are occupied,
injection is throttled. A throttled flit simply waits in its NI
queue, attempting its injection again in the next cycle. Flits
are finally directed to their allocated ports over a crossbar.

4.3 Parallel Port Allocator

BLESS allocates ports to flits sequentially (i.e., one by oneina
strict priority order), causing a long critical path, as illus-
trated in Fig. 5a. On the contrary, port allocation in DeC takes
place in parallel, as depicted in Fig. 5b. According to our RTL
synthesis using Cadence Encounter RTL Compiler with
15-nm FInFET-based Open Cell Library [18], DeC reduces
the critical path of port allocator from 148 ps to 26 ps. Port
allocations in each channel is done in two steps, as illustrated
in Fig. 5c and described below.

STEP 1: Grant All Non-Conflicting Requests. Based on the
desired port request of each flit (req), DeC grants the pre-
ferred port if it does not incur contention with other flits.
When flit; contends for the same port with another flit, port
allocation is performed in parallel in STEP 2.

STEP 2: Contending Flits Claim Ports Based on the Availabil-
ity. Based on the remaining port requests (req’) and available
ports, DeC uses a simple Lookup Table to determine the allo-
cated port. Specifically, req” tells each port allocator how
many flits in lower channels failed to obtain the requested
ports in STEP 1. Then, DeC performs port allocation in paral-
lel in a predefined order as {Bypass, North, South, East, West}?
from the available ports, where the first available port is given
to the flit at the lower channel index. Finally, the allocated
port is selected, depending on whether it causes any conten-
tionin STEP 1.

2. No local destined contention is resolved in the parallel port alloca-
tor, and it will be handled by the ejector, as described in Section 4.5.
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Example. Consider five flits with their desired destination
ports of {flity — West, flit; — East, flity — North,
flits — East, flity, — East}. In STEP 1, West port is
allocated to flity, if flit, has the highest priority. Also,
flity can take North port since it leads to no contention.
The unallocated ports after STEP 1 are {Bypass, South,
East}. Port allocation in STEP 2 takes place in parallel.
flit, takes Bypass port, since a flit in the lower channel
(i.e., flity) has found a port in STEP 1. flit; takes the
second available port — South, knowing that Bypass
port has been taken by flit; as it fails to find a port in
STEP 1. Likewise, flity takes the third available port —
East. Hence, final port allocation for all flits is: { flit) «—
West, flity «<— Bypass, flity «— North, flity «— South,
flity — FEast}. Note that flit;, which would otherwise
be deflected, takes the sub-optimal port of Bypass.

4.4 Flits Prioritization

DeC prioritizes flits from four neighboring routers, without
considering any bypassed flit. This reduces the hardware
cost and prevents a bypassed flit from interfering with others
in the corresponding subnetwork. The newly injected local
flit always has the lowest priority.

Since DeC chooses only the highest priority flit for the top
most channel, a 2-stage partial permutation network based
on Bitonic sorting [14] suffices, with each of its permutation
blocks (i.e., those with arrows in Fig. 4) either passing
or swapping two flits according to their time stamps. The
remaining flits are partially sorted.

4.5 Ejection and Injection
To form a bypass ring at every node, DeC requires each router
to have an additional Bypass port. The direct way of adding a
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port leads to a significant hardware cost hike, since the com-
plexity of a crossbar scales quadratically with respect to the
port count. To avoid this hike, local ejection and injection are
handled separately in order to avoid complicating the cross-
bar. At each cycle, a locally destined flit is removed from the
ejector. The injection is granted as long as there is at least one
unoccupied channel in the router of the corresponding sub-
network. When multiple subnetworks have unoccupied chan-
nels, DeC picks the one with the lowest load to improve load
balancing. Handling ejection prior to injection is likely to
reduce injection throttling and improve throughput when a
router is heavily loaded.

4.6 Router Microarchitecture Design Tradeoffs

The DeC router trades some accuracy for simplicity and par-
allelism, as a result of two aspects. First, partial sorting may
cause some high priority flits to experience longer network
latencies. Second, port allocation is oblivious to flits” prefer-
ences, except for the highest priority flit. However, a net per-
formance gain is still observed, resulting from the following
reasons.

1. The probability of contention is reduced significantly
since multiple subnetworks increase path diversity.

2. Contention penalty is mitigated due to the existence
of the bypass ring. A contending flit is likely to claim
its desired port in another subnetwork with only one
extra cycle delay.

3. Critical path reduction allows routers to operate at a
higher frequency that lifts DeC bandwidth.

4. The routing decision of a torus-based router follows
the X-Y routing mechanism and considers the flit des-
tination to determine the forwarding direction (left or
right, up or down) for performance improvement
and energy savings.

5 EVALUATION METHODOLOGY

The proposed DeC is evaluated using a modified cycle-
accurate simulator [17]. Our simulator faithfully models a
directory-based (i.e., MOESI) coherence protocol. We also
model a perfect shared L2 cache to stress the network such
that all L1 misses hit in their destination L2 slices. For mult-
threaded simulation for NoC evaluation, we use the gem5
simulator [62] to obtain execution traces and associated
coherence traffic when running PARSEC benchmark appli-
cations [61] on multi-core systems. With each core running
an instance, every simulation continues until every core has
retired 20M instructions (when the results are found to reach
steady states). Each synthetic simulation runs for 20M cycles
as well. We ensure that NoCs are stressed enough before col-
lecting the statistics. Table 1 lists the key parameters of our
evaluation.

We implement BLESS, MinBD, and DeC routers in Verilog
to evaluate power, timing, and area via full synthesis using
Cadence Encounter RTL Compiler with 15 nm FinFET-based
Open Cell Library [18] (under Vy; = 0.8V and T = 25°C).
Since dynamic power consumption occurs whenever a com-
ponent is toggled (e.g., to read from /write to a register), we
fully track the switching activity of each major component in
a router during simulation. The statistics are then employed
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TABLE 1
Key Parameter Used in Our Evaluation

Coherence Protocol MOESI

Processor OO0 CPU, 128-entry instruction window
L1 Cache 64KB per core, 4-way set associative,

64B block size, 2-cycle latency, 16 MSHRs
L2 Cache Perfected and shared LLC (S-NUCA) [29]
Network Topology Mesh and Torus
Benchmark Data packet = 64B, control packet = 16B
Synthetic Traffic 50% Data packets and 50% control packets

to calculate the real toggling rate to obtain the final dynamic
power of the network. The overall power is simply the sum
of static and dynamic power components. Our full RTL syn-
thesis for each router design includes logics for route compu-
tation, partial permutation network, port allocation, local
ejection and injection, crossbar, side buffers, and pipeline
registers. The pipeline registers are clock-gated for reducing
the dynamic power of the clock. We observe ~58 percent of
power reduction after applying clock gating at the expense
of ~14.2 percent of area increase for each design.

6 RESULTS

In this section, we compare our mesh-based DeC with BLESS
[5] and MinBD [6] in terms of performance metrics for 4 x 4,
8 x 8, and 16 x 16 NoCs, where BLESS is the most well-
known bufferless design and MinBD is the most recent opti-
mization. Performance metrics of interest include the deflec-
tion rate, flit latency, NoC throughput, and speedups. We
faithfully modeled BLESS and MinBD based on what were
described in their original papers. BLESS contains a 3-stage
permutation network to prioritize the incoming flits and port
allocation strictly honors flit ranking. MinBD performs dual-
ejection at each hop and every router is furnished with one
side buffer. The flit can stay in the side buffer for at most 2
cycles and we allow at most one flit to be reinjected from the
side buffer at each cycle. DeCs with 1, 2, and 4 subnetworks
are denoted as DeC1, DeC2, and DeC4, respectively.3 In this
result section, we assume a two-subnetwork setup, unless
specified otherwise, as DeC2 provides more balanced trade-
offs, to be outlined in Section 6.3.

In addition, we derive full layouts of 4 x 4, 8 x 8, and
16 x 16 DeC-NoCs with the torus topology using Cadence
Encounter RTL Compiler under a 15 nm process and Cadence
Innovus for energy and speed comparison against their
mesh-based counterparts. Layout and comparative results
are detailed in Section 6.5.

6.1 Under Real Trace Workloads

For multi-programmed simulation, we use the normalized
speedup (denoted by the ratio of instructions per cycle (IPC)
of an application when running under DeC (or MinBD) to

that of the same application when running under the base-
line bufferless network — BLESS.

3. We assume that aggregate link width for transferring data pay-
loads equals 32 bytes for BLESS, MinBD, and DeC. Each flit carries a
header, which is transferred on a separate link. The header size is 4 bytes
for DeC and BLESS, and 3 bytes for MinBD (which does not require to
carry the timestamp along with each data packet). Each subnetwork of
DeC2 and DeC4 contains a 4-byte link for transferring the header.

We randomly construct 16 multithreaded workloads out of
6 applications from PARSEC benchmark suite [61]. Each real
workload involves 16 (or 64) program instances executed on
the 16 (or 64) nodes of 4 x 4 (or 8 x 8) mesh-based NoC. Each
node contains a core, private L1, and a slice of the shared LLC
to realize static non-uniform cache architecture (S-NUCA)
[29]. Workloads are categorized as being Low and High,
based on resultant network traffic intensity measured by
MPKI (miss per kilo instructions). Fig. 6 shows the deflection
count (per injected flit), latency, and speedup results of work-
load applications from the benchmark suite under DeC2 (i.e.,
DeC with two subnetworks). It illustrates the results of two
representative applications with Low and High traffic loads
for each NoC size. The measured traffic load of each scenario
is given by the rightmost bar in its respective deflection count
bar group. Shown latency and speedup results are normal-
ized with respect to those of BLESS ( = 1.0). The results of
MinBD are also included in Fig. 6 for comparison.

From the figure, DeC2 is seen to reduce the deflection
count (per flit) drastically, when compared with BLESS. In
particular, it makes 8 x 8 NoC achieve some 90 percent
deflection reduction under Low and High traffic loads (both
exceeding 0.11 packet per cycle per node). For 4 x 4 NoC,
DeC2 yields 85 percent deflection reduction under High load
(of 0.08 packet per cycle per node). Drastic deflection reduc-
tion often translates to substantially lower latencies, espe-
cially for High load where DeC2 drops mean latency by 80
and 78 percent respectively for 4 x 4 and 8 x 8 NoCs. This
confirms our DeC design goal of cutting down deflection to
accelerate packet delivery in NoCs, thus improving execu-
tion performance as evidenced in Fig. 6. DeC2 speeds up exe-
cution under High load impressively by 21 and 8.3 percent
for 8 x 8 and 4 x 4 NoCs, respectively, in comparison to
BLESS. Instead of deflecting flits upon conflicts at a router,
MinBD pushes a conflicted flit into the side-buffer of the
router (if possible) for latency reduction. As can be seen in
Fig. 6, however, MinBD yields latency reduction only under
vary light network traffic (e.g., 4 x 4 NoC with Low network
load). In fact, it slows down execution for 8 x 8 NoC under
both Load and High loads (where deflection counts are far
higher than those of DeC2 and BLESS). DeC2 outperforms
BLESS and MinBD consistently under real benchmark traces,
and its gains widen for heavier traffic loads.

o  Energy and Power Efficiency
Fig. 7 depicts NoC energy breakdowns of each design under
multi-threaded PARSEC traces in 4 x 4 and 8 x 8 mesh-
based NoCs. For fair comparison, all designs are operated
under the slowest clocks of MinBD. The figure reveals that
DeC2 lowers energy consumption markedly when com-
pared with BLESS, respectively by 21 and 47 percent for Low
and High loads under 4 x 4 NoC, whereas energy consump-
tion is reduced respectively by 29 and 51 percent for Low
and High loads under 8 x 8 NoC. In general, a larger NoC
size yields more energy consumption reduction by DeC2 for
real traffic workloads, because packet delivery then takes
higher energy so that better room for energy reduction exists.
MinBD also attains commendable energy reduction
when compared with BLESS, as a result of adding a side
buffer (Sidebuf) to curb deflection and of substituting a
crossbar (Xbar) with a partial permutation network (PN) [6].
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Fig. 6. Deflection count (per flit), latency, and speedup results of multi-threaded PARSEC benchmark workloads in 4 x 4 and 8 x 8 mesh-based
NoCs, with the network load (in packet/cycle/node) included in the deflection count chart and every result for latency and speedup normalized to that

of BLESS (= 1.0).

Nonetheless, DeC2 still reduces mean energy consumption by
20 percent (or 30 percent) for 4 x 4 (or 8 x 8) NoC in compari-
son to MinBD. The energy savings mainly results from signifi-
cant deflection reduction. While clock gating is adopted to
reduce clocking energy, pipeline registers still account for
more than 50 percent of overall energy in every design. It is
thus evident that buffers are not only expensive but also
power-hungry, advantaging bufferless routers. Besides pipe-
line registers, the 3-stage full PN consumes substantial energy
in BLESS as well. For MinBD, the additional side buffer and
logics for redirecting and injecting flits are the second-largest
energy consumer, taking ~10 percent of total energy in all
workload categories. For DeC2, the crossbar consumes some
14 percent (or 20 percent) of overall energy in the Low (or
High) multi-threaded workload for both network sizes,
whereas the additional stage for supporting local injection
and ejection takes about 7.4 percent (or 4.5 percent) of energy
in the Low (or High) multi-threaded workload under both
NoCs. Fig. 7 signifies that DeC is always far more energy-
efficient than its BLESS and MinBD counterparts.

6.2 Under Synthetic Traffic Loads

In addition to evaluation under real application traces, we
also measure DeC with different subnetwork configurations
(i.e., DeC1, DeC2, and DeC4) to gauge its sensitivity to the
number of subnetworks under uniform random traffic. This
measure sheds light on its general characteristics across a
wide range of network demands: from near-zero to satura-
tion loads. From the measured results shown in Fig. 8, we
arrive at following observations.

First, when the offered load is low (< 0.1), the deflection
count is almost zero, with each packet then likely to take the
shortest path (see Fig. 8a). The average latency in Fig. 8b is
dominated by the serialization latency (due to injecting those
constituent flits of a packet in sequence) and near-zero load
latency. The latency of DeC2 is then slightly lower than those
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Fig. 7. Network energy breakdowns under PARSEC benchmark traces,
with results all normalized against those of BLESS under 4 x 4 and 8 x 8
mesh-based NoCs.

of BLESS and MinBD since contention rarely occurs. If the
offered load rises, the deflection counts of BLESS and MinBD
increase promptly (see Fig. 8a), whereas DeC2 only encoun-
ters moderate hikes. DeC2 reduces the latency markedly
when compared with BLESS (or MinBD) at the workload
that nearly saturates BLESS (or MinBD).

Second, DeC2 has marginal improvement in throughput
over BLESS and MinBD prior to their respective saturation
loads (see Fig. 8c). However, DeC2 saturates at a much
higher load than BLESS and MinBD, as it offers far better
path diversity and load balance. Since DeC2 is less likely to
exhibit contention, its new flit injection is less likely to fail,
boosting up its throughput. In addition, an extra port at each
node of DeC2 naturally enjoys higher bandwidth, improving
NoC throughput.

Overall, DeC2 exhibits prominent gains on all metrics of
interest and outperforms both MinBD and BLESS. Specifi-
cally, when compared to BLESS (or MinBD), DeC2 achieves
mean reduction of 68 percent (or 77 percent) in the deflec-
tion count right before saturation, to yield substantial
latency reduction accordingly.

6.2.1 Sensitivity to the Number of Subnetworks

DeC2 with two subnetworks achieves significant energy
savings and performance gains, from Figs. 6 and 7. It is yet
to unveil if more or fewer subnetworks with equivalent
aggregated link width (of 256b) are preferred for DeC-based
NoCs. To this end, results of two other variations: DeC1 and
DeC4, which have respectively one subnetwork and four
subnetworks, are included in Fig. 8. Two observations are
made from the figure.

First, compared with BLESS and MinBD, DeC1, DeC2,
and DeC4 enjoy far smaller deflection rates when workloads
are below the saturation point of MinBD. DeC4 has the low-
est deflection rate among all DeC variations. This confirms
the fact that more subnetworks provide higher path diver-
sity to better curb deflection.

Second, when the load is low, deflection reduction does not
yield proportionally shortened latencies as the latency then is
dominated by both the serialization latency and the distance
between the source and the destination. In this case, the
degree of contention is effectively alleviated by the bypass
link. On the other hand, when the load increases, DeC1 satu-
rates quickly due to limited path diversity. Although DeC4
saturates at a slightly higher load, it reduces deflection only
by 4.0 percent, compared with DeC2. Meanwhile, DeC4
suffers from slightly lower throughput than DeC2 due to its
doubled overhead in carrying the flit header (see Fig. 8c).
Hence, DeC2 is preferred, to serve as our DeC representative
design for comparison with its counterparts subsequently.
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6.3 Scalability

We adopt uniform random trafficin 8 x 8 and 16 x 16 mesh-
based NoCs to study how the latency and the deflection
count vary as the NoC size rises, with all network parameters
held identical to those for evaluating the 4 x 4 NoC. The
results for DeC2, MinBD and BLESS are delineated in Fig. 9,
where DeC2 is demonstrated to outperform consistently for
large sizes. Compared with MinBD in an 8 x 8 (or a 16 x 16)
NoC, DeC2 reduces the deflection count by 4.8 (or 6.9) at the
workload that nearly saturates MinBD (i.e., at the offered
load of 0.13 (or 0.06)), exhibiting substantial latency gaps
accordingly. Similar trends exist when comparing DeC2
with BLESSin 8 x 8 and 16 x 16 NoCs. Hence, DeC2 is a scal-
able solution, able to reach a larger gap in deflection reduc-
tion as the size rises.

6.4 Hardware Complexity

In order to evaluate area and timing results of different
router designs accurately, we implement BLESS, MinBD,
and DeC routers in Verilog and synthesize them via Cadence
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form random traffic under 8 x 8 and 16 x 16 mesh-based NoCs equipped
with DeC2.

Encounter RTL Compiler with 15-nm FinFET-based Open
Cell Library [18]. The RTL implementation results are sum-
marized in Table 2, with those of DeC2 routers for both
mesh-based and torus-based NoCs listed.

Timing. the long critical path of BLESS router is mainly
caused by the first pipeline stage where a 3-stage permutation
network is used to fully sort 4 incoming flits from neighbor-
ing routers. MinBD has the longest critical path due to three
additional components in the first pipeline stage: dual-
ejection, redirection of a flit to the side buffer, and reinjection
of the flit back to the network. As DeC only uses a 2-stage par-
tial permutation network in its first pipeline stage, the critical
path is dictated by its second pipeline stage. Although DeC
adds 44 ps latency overhead for local injection and ejection
(as shown in Fig. 4), given that DeC reduces the latency of
port allocator from 148 ps to 26 ps, DeC reduces the critical
path markedly when compared with BLESS and MinBD,
leading to its timing of 0.17 ns. This signifies the critical path
reduction of 23 percent (from 0.22 ns) for BLESS, and of more
pronounced reduction for MinBD (from 0.26 ns). Interest-
ingly, the DeC2 router for torus-based NoCs takes only negli-
gibly more area than that for mesh-based NoCs with its
timing kept unchanged.

Area. DeC reduces the complexity of one single sub-router
by some 42 percent in comparison to that of the BLESS router.
As each DeC2 router contains two subrouters, it takes more
area than a BLESS router. Although MinBD has the smallest
area, it operates at a much slower clock rate than BLESS and
DeC. The hardware cost of DeC stems from two reasons. First,
since each flit needs to carry a header containing necessary
information (along a separate control path) to make a routing
decision, an extra control path is required for each subnet-
work (when compared to a single network with the same link
width and one single control path). Second, an additional
bypass port exists to bridge subnetworks, establishing a
bypass ring for deflection containment. However, as the frac-
tion of chip’s transistors to become dark silicon increases in
the future, the chip area is considered to be relatively less
essential than energy consumption [1]. Harvested energy
may be reapplied to further improve performance. Since

TABLE 2
RTL Implementation Results of a Single
Router Under a 15-nm Process

BLESS MINBD DeC2 (mesh) DeC2 (torus)
Timing (1s) 0.22 0.26 0.17 0.17
Area (um) 12386 12386 14285 14352
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TABLE 3
Overall Hardware Cost Comparison of Various Sized Torus- and Mesh-Based DeC2-NoCs, Implemented
Under a 15-nm Process (via Cadence Encounter RTL Compiler and Cadence Innovus)
Item Torus 4 x 4 Torus-8 x 8 Torus-16 x 16 Mesh-4 x 4 Mesh-8 x 8 Mesh-16 x 16
Time (ns) 0.17 0.17 0.17 0.17 0.17 0.17
Leakage power (1 W) 8.14E+03 3.27E404 1.31E+05 7.01E+03 3.06E404 1.27E405
Internal power (W) 2.97E+05 1.20E+06 4.81E+06 2.48E+05 1.13E+06 4.67E+06
Net power (1 W) 1.92E405 7.74E+05 3.08E+06 1.59E+05 7.17E+05 3.01E+06
Dynamic power (1 W) 4.89E+05 1.98E+4-06 7.89E+06 4.06E+05 1.85E4-06 7.67E+06
Total power (LW) 4.97E405 2.01E406 8.02E+06 4.13E405 1.88E+06 7.80E+06
Core dimension (pm?) 570 x 566 1141 x 1136 2283 x 2268 530 x 528 1105 x 1101 2250 x 2242

DeC2 cuts down the deflection count and latency significantly
(from Figs. 8 and 9), its increased area overhead is warranted
and reasonable.

6.5 Torus-Based NoCs With DeC Support

DeC is readily applicable to torus-based NoCs for perfor-
mance improvement and energy savings. With is bisection
bandwidth doubled in comparison to its mesh counterpart
[13], the torus has the potential for exhibiting higher offered
loads, especially advantageous to bufferless NoCs. Albeit to
its potential benefits, bufferless torus-based NoCs have
never been explores, possibly due to intuitive concerns of (1)
more complex routing control at each router as stated in
Section 4.2 and (2) larger layout areas involved to slow down
operating frequencies due to longer worst link length.

o Router Implementation & Post-Synthesis Full Layouts

We develop the torus-based NoC router of DeC2 and imple-
ment it in Verilog synthesis via Cadence Encounter RTL
Compiler with a 15-nm process [18]. We also accomplish
post-synthesis full layouts of 4 x 4, 8 x 8, and 16 x 16 torus-
based DeC2-NoCs via Cadence Innovus. In contrast to con-
ventional intuitions, our RTL implementation of the torus-
based router reveals its fastest possible timing of 0.17ns,
which is identical to that of the mesh-based DeC2 router, as
listed in Table 2. The full layout timing and other related
details we obtained by post-synthesis via Cadence Innovus
are summarized in Table 3. When compared with their
mesh-based counterparts, the torus-based DeC2-NoCs enjoy
identical fastest possible timing.

Timing. All sized tori (4 x 4, 8 x 8, 16 x 16) successfully
synthesized for the clock period of 0.17 ns, which is the fast-
est possible timing of a single DeC2 router for mesh- and
torus-based NoCs (see Table 2). The synthesized outcomes
indicate that tori with the dimension up to 16 x 16 (which is
the largest synthesizable size under our Cadence license) for
15-nm FinFET is not the limiting factor on the clock fre-
quency, avoiding torus-based NoCs from suffering from
slower clocking due to longer worst link length therein.

Area. After placement and routing with Cadence Innovus
under 70 percent density for the design, the core area is
almost of a square shape. The core area increases propor-
tionally as the torus size rises. For example, the core area of
the 16 x 16 torus is 4x (or 16x) that of the 8 x 8 (or 4 x 4)
torus, as listed in Table 3. The torus takes slightly more area
than its compatible mesh, whose routers along the edges
are less complex. For example, a 16x16 torus-based DeC2-
NoC takes 2.6 percent (i.e., 2283 x 2268 versus 2250 x 2242)
more area than its mesh-based counterpart.

Power. Dynamic power values in Table 3 represent the sum
of internal power and net power (i.e., power loss in the wire).
In general, net power accounts for ~38 percent and internal
power for ~60 percent, with the remaining ~2 percent due to
leakage power. Separetely, due to its more complex edge
routers, the torus DeC2-NoC consumes more power as com-
pared to its mesh counterpart, but the gap shrinks as the size
rises. For example, the 16 x 16 torus-based NoC consumes
2.8 percent more power (i.e., 8.02E + 06 vs. 7.80E + 06), as
opposed to 6.7 percent for the size of 8 x 8, than its mesh-
based counterpart.

o Performance Under Real Execution Traffic Workloads
The deflection count and latency results measured using 16
multi-threaded workloads from the PARSEC benchmark
suite are illustrated in Fig. 10. Each real workload contains 16
(or 64) instances of execution traces to independently drive
all cores of 4 x 4 (8 x 8) NoC for evaluation. From the figure,
the deflection count (per flit) is 50 percent (or 4 percent) less
under the torus than under the mesh for 8 x 8 NoC with Low
(or High) traffic, resulting in latency reduction by 12 percent
(or 20 percent) under the torus due to an increase in its bisec-
tion bandwidth. Although the deflection counts for Low traf-
fic load under 4 x 4 NoC is extremely small (of 0.02),
noticeable latency reduction (by 28 percent) results from the
torus. Speedup improvement under torus-based NoC as
compared to that under its mesh-based counterpart for Low
(or High) traffic in 4 x 4 NoC and 8 x 8 NoC are 0.1 percent
(or 1.1 percent) and 0.6 percent (or 2.7 percent), respectively.
Note that DeC2 exhibits limited speedups for 4 x 4 and
8 x 8 torus-based NoCs (over their mesh-based counter-
parts) due to the fact that network traffic loads under real
execution traces are rather light (always < 0.153 packet per
cycle per node, as illustrated in the deflection count chart in
Fig. 10); under such light loads, both NoC topologies have
similar execution times for a given benchmark application,
as confirmed also by the throughput results (over a wide
range of NoC loads) depicted in Fig. 13 for synthetic work-
loads discussed next.

e Performance Evaluation Under Synthetic Workloads

Three different traffic types of synthetic workloads are consid-
ered in evaluating a range of torus-based DeC2- NoCs, includ-
ing uniformly random (UR) traffic, Tornado (TR) traffic, and
Bit Complement (BC) traffic [13], [59]. Under BC traffic, the
destination address is the bit-wise inversion of the source
address (i.e., di =~ s;), whereas the digits of the destination
address under TR traffic are computed from the digits of the
source address (i.e., dy = sy + (k—1)/2 mod k, with digits
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being radix k-numbers). A uniform random process chooses
the destination address under UR traffic. Workloads of each
traffic type generated for evaluation vary from near-zero to
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the maximum capacity of DeC2-NoCs, which is close to 0.67
packet/cycle/node, irrespective of the NoC size. NOCulator
[17], [47], [57], an open-source cycle-accurate network-on-
chip simulator, is employed to evaluate NoCs sized 4 x 4,
8 x 8, and 16 x 16, with the results illustrated in Figs. 11, 12,
and 13.

The latency curves in Fig. 11 reveal that under a low
offered load (denoted as B), say B < 0.05, all injected packets
in both torus-based and mesh-based DeC2-NoCs likely take
the shortest path due to then almost deflection-freeness for
any size and traffic pattern (see Fig. 12), giving rise to the min-
imum latency in a respective NoC. Naturally, the minimum
latency NoC is noticeably smaller in a torus-based NoC than
in a compatible mesh-based NoC especially when its size is
large. If B rises, deflection counts under mesh-based NoCs
increase quickly as uncovered in Fig. 12, whereas torus-based
NoCs only encounter moderate deflection count hikes.
According to Fig. 11, the 16 x 16 torus-based DeC2-NoC
under BC, TR, and UR traffic patterns saturates respectively
on 3 > 0.15, B > 0.20, and B > 0.30, whereas its mesh-based
counterpart saturates respectively on > 0.05, § > 0.10, and
B > 0.15. As aresult, the 16 x 16 torus-based NoC can sustain
up to 2.33 x (= (J2+ 52 + 5%)/3) loads than a mesh-based
counterpart over the three synthetic traffic types. Likewise,
8 x 8and 4 x 4 torus-based NoCs can sustain far higher loads
than their compatible mesh-based NoCs. Interestingly, the
4 x 4 torus-based DeC2-NoC never saturates, able to sustain
the maximum network load. Given that every packet injected
into a bufferless NoC always reaches its destination, the
maximum throughput of such a NoC equals its sustained
injection rate.
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According to Fig. 11, the torus-based DeC2-NoCs
markedly reduce the latency amounts under all three traffic
types, especially under UR and BC and for the size of 16 x 16,
when compared with their compatible mesh-based NoCs.
Fig. 13 plots the throughput results of torus- and mesh-based
NoCs for the three synthetic traffic types. The figure reveals
that saturated throughputs of 16 x 16 DeC2-NoC under UR
and BC are substantially larger for the torus-based NoC than
for its mesh-based counterpart.

Overall, torus-based NoCs exhibit prominent gains on
all performance metrics of interest in comparison to their
mesh-based counterparts. They are so achieved without
compromising the clock rate, in contrast to common intu-
itions and making them especially advantageous to buffer-
less NoCs.

6.6 Putlt All Together

DeC reduces contention occurrences by employing multiple
independent subnetworks to increase path diversity. As a
result, the average hop count for each packet delivery is
reduced. Further, when contention cannot be avoided, its
adverse impact can be mitigated due to the existence of a
bypass ring. The flit, which is otherwise deflected, can be sent
to the corresponding router in another subnet and then con-
tend for the destined port with only a single extra cycle delay
(instead of multiple extra cycles upon deflection). Finally,
critical path reduction allows routers to operate at a higher
frequency, boosting network bandwidth. Hence, DeC can
attain superior power efficiency and performance improve-
ment, rendering the network to saturate at much higher
loads, as a result of substantial deflection containment.
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7 DISCUSSION

7.1 Deadlocks and Livelocks

For a fair comparison with BLESS, we did not use any flow
control in DeC. Like earlier work [4], infinite reassembly buf-
fers at the destination end are assumed to avoid potential
network level deadlocks for both BLESS and DeC. However,
the Retransmit-Once protocol [4] can be easily applied to
both designs to arrive at more realistic reassembly buffer siz-
ing. As the oldest flit always takes the desired port, DeC can
also ensure livelock freeness (i.e., end-to-end delivery guar-
antee) and protocol level deadlock-freeness (i.e., replies
always to reach their destinations).

7.2 Wormhole Routing

Since flits are routed independently across the NoC, BLESS
requires each flit to carry a header. WORM-BLESS [5] uses
wormhole routing in a bufferless NoC so that it requires
only the first flit of a packet to carry a header for setting up
the path. All subsequent flits simply follow the path cre-
ated by the head flit. However, WORM-BLESS is less
appealing than BLESS in that it incurs more deflection and
thus lower performance. The reason is that if the head flit
of a packet is deflected, all its subsequent flits will be
deflected as well since they follow the head flit. We have
developed the DeC2 router that operates under wormhole
routing. Each link of the developed router completely
drops its additional wires that are to carry full header
information (including flit sequence number, the source
and the destination node IDs, time stamp, etc.), so that its
link width is reduced to exactly the flit size. Packet trans-
mission over the NoC built with such DeC2 routers uses
the very first flit to carry full header information for the
wormhole control path setup, and the payload flits of a
packet follow the head flit.

Under wormhole routing, a deflected header flit leads to
all its payload flits to be deflected in a router over subsequent
cycles, no matter whether the preferred port is available or not
during those cycles. Hence, wormhole routing is subject to
lower flexibility in port selection at a router, reducing the
NoC offered load. In addition, the wormhole router has to
“truncated” on-going packet transmission at a port that is
required by a newly arrived high priority packet (to avoid
the livelocks, as stated earlier [5]). Our developed wormhole
router for DeC2 is provisioned with packet truncation. Each
packet truncation, however, adds one extra header flit (which
heightens the load) to the NoC, further degrading its perfor-
mance. We have evaluated DeC2 built by our developed
router with wormhole support, confirming its inferior perfor-
mance. For the packet payload of 64 bytes and the flit size of
16 bytes under uniform random traffic, 4 x 4 (or 8 x 8) mesh-
based wormhole DeC2-NoC is found to reach the maximum
traffic load that approaches saturation at 0.2 (or 0.07) packet/
cycle/node (not shown). In comparison, the near saturation
traffic loads of compatible mesh-based DeC2-NoCs without
wormhole routing stay far higher at 0.55 and 0.34 (from
Figs. 8 and 9). Similarly, 4 x 4 (or 8 x 8) torus-based worm-
hole DeC2-NoC has the maximum traffic load equal to 0.3 (or
0.14) packet/cycle/node according to our evaluation (not
shown), markedly lower than those achieved without worm-
hole routing (see Fig. 11).
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7.3 Power Gating

The network may be underutilized if its load is low. Low net-
work utilization wastes significant static energy. Fortunately,
in DeC, the router in a lightly loaded subnetwork can be
power-gated to reduce power consumption. Since subnet-
works are bridged to get a bypass ring in each node, turning
off one subnetwork still retains partial deflection contain-
ment ability without compromising full connectivity. How-
ever, there are two challenges to be addressed. First, since
the deflection rate of bufferless NoC is closely coupled with
path diversity and bypass links, disabling a subnetwork may
lead to performance reduction if the network load rises. Sec-
ond, unlike buffered NoCs, in which flits can stay in local
buffers when a connected router is inactive, a bufferless NoC
cannot hold flits. In such a scenario, the deflection rate may
increase. Using techniques to wake up a router early, such as
look-ahead routing [16], or waking up the downstream
router as long as the destination of L1 miss is known [15],
may be necessary to hide the wakeup latency and reduce
deflection. This is left for future exploration.

8 CONCLUSION

While bufferless NoC is a promising technique to reduce
power consumption and the hardware cost, its high de-
flection leads to severe performance degradation and power
waste. We have proposed Deflection Containment for buffer-
less NoCs to improve performance and save energy by
employing multiple subnetworks. DeC incorporates a bypass
channel in each router of one subnet-work to bridge to the
corresponding router in another subnetwork. A flit can be
“bypassed” from the router where contention occurs to the
bridged router of another subnetwork, instead of being
deflected away in order to curb deflection. This permits a con-
tending flit to compete for the desired port again with only a
single cycle delay, rather than multiple cycles upon deflec-
tion. With a relaxed prioritization constraint, port allocation
is performed in parallel for all incoming flits, significantly
shortening the critical path and markedly improving net-
work bandwidth. Our proposed DeC design is readily appli-
cable to both mesh-based NoCs and torus-based NoCs. We
have evaluated resultant mesh- and torus-based DeC2-NoCs
extensively using both (1) multi-threaded PARSEC bench-
mark traffic traces gathered using gemb for the sizes of 4 x 4
and 8 x 8 and (2) various synthetic traffic loads for sizes equal
to 4x 4,8 x8, and 16 x 16. Evaluation outcomes confirm
that DeC2 leads to substantial deflection containment (by
some 90 percent) under real benchmark traffic trace loads for
8 x 8 mesh-based NoCs, reducing mean energy consumption
by up to 51 percent, when compared with BLESS. In addition,
the evaluation results under various synthetic traffic loads
reveal that a 16 x 16 torus-based DeC2-NoC can sustain up
to 2.33x loads in comparison to its mesh-based counterpart,
taking only 2.8 percent more power and 2.6 percent more
area based on their full layouts under the 15 nm process.
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