
NUDA: Non-Uniform Directory Architecture
for Scalable Chip Multiprocessors

Wei Shu and Nian-Feng Tzeng

Abstract—Chip multiprocessors (CMPs) involve directory storage overhead if

cache coherence is realized via sharer tracking. This work proposes a novel

framework dubbed non-uniform directory architecture (NUDA), by leveraging our

two insights in that the number of “active” directory entries required to stay on chip

is usually small for a short execution time window due to high directory locality, and

that the fraction of interrogated directory entries drops as the core count rises.

Unlike earlier storage overhead reduction techniques that require all cached LLC

blocks to have their directory entries fully on chip, NUDA dynamically buffers only

most active directory vectors (DVs) on chip while keeping DVs of all LLC blocks in

a backing store at low level storage. NUDA attains its superior efficiency via an

inventive criticality-aware replacement policy (CARP) for on-chip buffer

management and effective prefetching to pre-activate vectors (PAVE) for

upcoming coherence interrogations. We have evaluated NUDA by gem5

simulation for 64-core CMPs under PARSEC and SPLASH benchmarks,

demonstrating that CARP and PAVE enhance on-chip directory storage efficiency

significantly. NUDA with a small on-chip buffer for DVs exhibits negligible

performance degradation (to stay within 2.6 percent) compared to a full on-chip

directory, while outperforming its previous counterparts for directory area reduction

when on-chip directory budget is provisioned scarcely for high scalability.

Index Terms—Chip multi-processors, coherence protocols, hash tables,

memory hierarchy, prefetching, sharer tracking directory

Ç

1 INTRODUCTION

CONTEMPORARY large scale chip multiprocessors (CMPs) usually
resort to hardware-oriented cache coherence for easy programma-
bility and good performance. Recent directory reduction methods
[7], [15], [21] commonly lower the on-chip directory capacity to
improve scalability while requiring all cached blocks in cores to
have their directory entries fully on chip. However, such a direc-
tory can yield either poor private cache hit rates due to coherence-
induced invalidations [7], [15] or significant network interference
due to mounted coherence traffic [7], [21].

In this work, we present Non-Uniform Directory Architecture
(NUDA), a novel directory scheme that greatly reduces on-chip
directory storage. Unlike directory compression adopted conven-
tionally, NUDA keeps the directory vectors (i.e., bit-map vectors)
of all LLC blocks in off-chip memory and dynamically “buffering”
the active vectors on chip in a small directory buffer, hence result-
ing in our layered directory resident in the multi-level memory
hierarchy, so named “non-uniform directory architecture”. NUDA
builds upon our two newly observed insights: (1) the number of
required directory entries (DEs) for a short execution time window
is low and (2) the fraction of DEs which are interrogated decreases
as the system scales up.

The first insight stems from the fact that during parallel program
runs, the number of “active” DEs over a short time window is lim-
ited, as demonstrated in Fig. 1a. Active DEs may change from one

time window to the next due to coherence interrogations on differ-
ent LLC blocks. Given a cache block, its directory vector is altered
under three coherence events: private cache misses (i.e., the data
block is shared by a new core, resulting in adding the new sharer to
the corresponding vector), private cache replacements (i.e., result-
ing in the corresponding bits in the vector reset, if the protocol is
non-silent), or private cache write (i.e., with all the vector bits but
the write missed one reset). If a block experiences none of the three
events, its directory entry is inactive. Statically holding those inac-
tive DEs fully on chip unnecessarily elevates chip area overhead.

The second insight results from the fact that the fraction of DEs
that are active over a short time window decreases as the core
count increases. For example, blackscholes in PARSEC benchmark
suite [2] results in the active DEs ratio of 13.8 percent when run on
a 4-core CMP, but the ratio drops to 2.4 percent on a 64-core CMP,
as shown in Fig. 1b. Such increased concentration on active DEs
offers a great opportunity for NUDA to contain the size of on-chip
directory buffer, calling for small on-chip directory area budget in
support of high scalability. Hence, the use of an on-chip directory
buffer to cache only coherence-active DEs makes NUDA particu-
larly attractive for large-scale CMPs.

NUDA keeps the vectors of all LLC blocks in DRAM memory for
precise sharer tracking to avoid excessive directory-induced cache
misses andmountedNoC traffic. Notice that memory storage provi-
sioned for directory vectors is proportional to the LLC size, irrespec-
tive of the memory size. This is in sharp contrast to earlier multi-
level directory approaches targeting shared-memory multiproces-
sors [1], [8], [9], [11], because such an earlier approach requires one
directory entry for each memory block frame (of 64 bytes) statically.
As a result, the earlier approach makes shared-memory multiproc-
essors suffer from the notorious directory memory-scaling problem
as elaborated in Section 2.1. On the other hand, NUDA is designed
for large scale on-chip cache-coherent CMPs to require extremely
low chip directory area budget.

NUDA intelligently promotes vector transfer between on-chip

and off-chip storage to sustain execution performance via two

novel mechanisms. First, NUDA adopts a unique criticality-aware

replacement policy (CARP) to help retain performance-critical

directory vectors on chip, avoiding those vectors from being

evicted undesirably. Second, NUDA reduces the average interro-

gation latency and increases the on-chip directory hit rate by means

of an effective pre-activating vector (PAVE) technique, which pre-

fetches the vectors that are likely to be involved in future directory

interrogations, for sustained execution performance.
We use the gem5-simulated Linux environment [8] to evaluate

NUDA under PARSEC [2] and SPLASH [19] benchmark suites for
64-core CMPs. Evaluation results reveal that NUDA soundly out-
performs previous approaches for on-chip directory storage reduc-
tion when on-chip directory budget is kept fairly scarce for high
system scalability. To sum up, this work makes the following
contributions:

^ We examine directory activities in many-core cache-
coherent CMPs to show strong locality.

^ We discover such locality intensifies as the core count rises.
^ We develop NUDA as a multi-layer directory architecture

to make it possible to have very low on-chip directory
overhead for superior scalability.

^ NUDA attains effective on-chip directory buffer manage-
ment via novel CARP and PAVE techniques.

^ NUDA is shown to outperform its earlier counterparts for
on-chip area overhead reduction.

The NUDA framework is orthogonal to the plethora of prior
compression-based area overhead reduction techniques, like

� The authors are with Center for Advanced Computer Studies (CACS), University of
Louisiana at Lafayette, Lafayette, LA 70503-2014.
E-mail: {wxs0569, tzeng}@louisiana.edu.

Manuscript received 13 May 2017; revised 3 Nov. 2017; accepted 8 Nov. 2017. Date of
publication 13 Nov. 2017; date of current version 13 Apr. 2018.
(Corresponding author: Wei Shu.)
Recommended for acceptance by R. F. DeMara.
For information on obtaining reprints of this article, please send e-mail to: reprints@ieee.
org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TC.2017.2773061

740 IEEE TRANSACTIONS ON COMPUTERS, VOL. 67, NO. 5, MAY 2018

0018-9340� 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tp://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-9853-3037
https://orcid.org/0000-0002-9853-3037
https://orcid.org/0000-0002-9853-3037
https://orcid.org/0000-0002-9853-3037
https://orcid.org/0000-0002-9853-3037
https://orcid.org/0000-0002-8357-6632
https://orcid.org/0000-0002-8357-6632
https://orcid.org/0000-0002-8357-6632
https://orcid.org/0000-0002-8357-6632
https://orcid.org/0000-0002-8357-6632
mailto:

SPACE [21], SCD [15], and RECODE [16]. Hence, NUDA is readily
applicable to those earlier compression techniques for further on-
chip directory area overhead reduction. As each directory vector
(DV) takes one DE to hold it, this article uses DV and DE
interchangeably.

2 RELATED WORK

This section first discusses how NUDA differs from directory over-
head reduction methods for distributed shared memory (DSM)
systems. Earlier approaches to achieving chip directory area over-
head are then highlighted.

2.1 Memory Directories for DSM Systems

Distributed shared memory (DSM) systems may keep their shared
memory directories either in DRAM, such as Origin [8], DASH [9],
and FLASH [11], or in memory controllers for better performance
[1], [13]. Each memory data block in such a system is associated
with a directory entry. NUDA has no infamous directory memory-
scaling problem the DSM system faces. It differs from the directory
of a DSM system in three distinct aspects. First, NUDA avoids pro-
visioning full directory entries to all LLC blocks on chip for storage
reduction, whereas the DSM system equips every memory block
with its directory information statically. Second, DRAM storage
reserved for holding LLC directory vectors under NUDA is con-
stant, irrespective of the memory size, whereas the directory of a
DSM system grows linearly with its memory size. Third, NUDA
explores the unique insight based on directory access locality, for
effectively transferring sharer vectors across the storage hierarchy.

Multi-Level DSM Directory Design. A multi-level directory
approach has been considered earlier [1], [8], [9], [11], [13] for the
memory directory of DSM systems. It holds DEs of accessed cache
blocks in an on-chip buffer. Each DE held in the buffer includes not
only a directory vector but also the state bits (e.g., 5 bits under the
MESI protocol) plus other control bits needed to manage the on-
chip buffer. In contrast, our NUDA’s on-chip buffer is for holding
only directory vectors, which vastly dominate directory area over-
head, but not the state bits. Every LLC block under NUDA is
equipped with its state bits plus other control bits statically. The
presence of state bits for each LLC block avoids otherwise performance
degradation which will be caused by read misses to an LLC block
whose directory vector is absent from the buffer.

2.2 Directory Area Overhead Reduction

Earlier methods for lowering cache-coherent directory area over-
head generally fall into two classes: directory width reduction and
directory height reduction. The first class of methods deals with
various sharer representations, such as full bit-map [7], coarse-
grained bit-map [8], imprecise bit-map [21], or limited pointers [8],
[15], [16], [21]. The second class of methods mainly explores the

fact that the amount of directory entries should be no more than
the total number of private cache lines [7], [15], and it can be fur-
ther reduced via directory entries encoded [15] or tracking-
avoidance with software modifications [4]. Such further directory
area reduction may either lead to imprecise tracking [21] or involve
invalidating all cached copies for the victimized block [7], [15].
Meanwhile, the tiny directory [17] employs a small pool of entries
to keep the directory elements of selected LLC blocks that experi-
ence high shared accesses. While achieving considerable area over-
head reduction, such a directory limits its scalability to 512 (since it
uses a 64-byte LLC data block to track sharers precisely), and it
incurs one extra core-to-core trip for every interrogation on the
data block converted for sharer tracking. Large-scale CMPs may
avoid full-fledged implementation of cache coherence by domain-
aware coherence [6], [12]. However, it adds hardware for on-the-
fly logical-to-physical core mappings.

Based on relinquishment coherence and compressed sharer
tracking, ReCoST [16] is able to achieve performance close to
that of a full-fledged directory based CMP. However, it still keeps
all sharer patterns non-redundantly in an on-chip table. Being
hardware-light and complementary to ReCoST, NUDA may work
in conjunction with ReCoST to further lift on-chip directory area
efficiency.

To our best knowledge, this is the first work that employs
DRAM to back up the CMP directory for efficient cache coherence,
avoiding excessive directory-induced invalidation and surged net-
work interference.

3 MOTIVATION

NUDA is motivated by the newly discovered two insights: (1) the
number of active DEs is small over a short time window, and (2)
the fraction of interrogated directory entries shrinks as the number
of cores rises. These insights offer a unique opportunity to keep
only a very small number of active DEs on chip. By doing so would
lower directory storage overhead substantially, promising superior
CMP scalability.

To prop our insights, we have collected evaluation results via
the gem5-simulated Linux environment, in which various multi-
threaded PARSEC [2] and SPLASH [19] benchmarks are executed
for a range of core counts. A two-level inclusive cache hierarchy
(i.e., L1 and LLC) under the MESI coherence protocol is adopted.
CMP cores are organized as meshed-NoC topologies, with each
core assigned with one thread. Details of the simulated environ-
ment are provided in Section 5.

For easy description, the coverage (b) of a directory design is
defined as the number of DEs provisioned over the number of aggre-
gate private cache lines. The coverage of b ¼ 1:0 signifies that each
private cache line (be an instruction or data line in our two-level
cache hierarchy detailed in Table 2) is provisionedwith one DE.

3.1 Locality of DE Accesses

The maximum number of active DEs over a short time window
(e.g., 1000 cycles) stays very low for the range of core counts shown
in Fig. 1a, where the number of DEs with directory coverage under
b ¼ 1:0 is also shown. The normalized results of active DE counts
against that under b ¼ 1:0 are depicted in Fig. 1b. As an example,
in a 2-core system with each core holding a 64 KB private cache, its
directory contains 2� ð64 KB=64BÞ ¼ 2K entries for b ¼ 1:0. How-
ever, when executing X264, it is found that only 644 entries are
interrogated within the given time window (of 1K cycles), resulting
in the active DE ratio of 32.2 percent. For a 64-core system, less than
one thousand DEs are interrogated, signifying the active DEs to
account for only 1.2 percent of the DE count under b ¼ 1:0. Other
benchmarks all exhibit limited percentages of active DEs, as
depicted in Fig. 1b. The maximum percentage of active DEs is

Fig. 1. (a) Maximum number of distinct DEs interrogated in a 1K-cycle time win-
dow, with the DE count under b ¼ 1.0 shown, where b represents the coverage
fraction. (b) Active DE fraction of various core counts, measured by the number of
distinct DEs over the DE count under b ¼ 1.0.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 67, NO. 5, MAY 2018 741

below 6.2 percent (under canneal) for a 64-core CMP and is less
than 33 percent (under X264) for a 2-core system.

Locality of DE accesses is also observed for longer time win-
dows of 3K cycles and 10K cycles, as demonstrated in Fig. 2, where
the results are averaged over multiple runs of each benchmark exe-
cuted on the conventional 64-core CMP. The numbers creep up
when the time window extends for a given benchmark, as
expected. Nonetheless, they are far smaller than the total number
of private cache lines in the CMP, even for the time window of 10K
cycles. It thus suffices to hold on chip, those DEs interrogated for
coherence enforcement (called “active DEs”) in a short time win-
dow, with any other DE fulfilled from the backing store possibly in
a few hundred cycles.

Our observed insight of directory locality may result from three
facts. First, the multi-threaded runs are for single-tasking so that
all concurrent threads of a task share the same data in their work-
ing sets within a short time window, with shared variables con-
tained in a few cache blocks, thus involving a few DEs, irrespective
of the number of sharers. Second, during typical task execution, a
significant portion of data blocks is used privately without multi-
ple sharers [4]. Hence, over an execution time window, most cache
blocks are not involved in coherent events. Given a cache block, its
directory vector is altered under one of the three coherent events:
private cache miss (i.e., the data block is shared by a new core,
resulting in its vector adding the new sharer), private cache
replacement (i.e., resulting in resetting the corresponding bit in the
vector, if the protocol is non-silent), or private cache write (i.e.,
with all but one bit corresponding to the write-missed core-reset).
On the other hand, read/write hits to private blocks in any core
involve no DE interrogation. Third, various cache placing/replac-
ing policies [10] and OS locality explorations [14] all aim to
improve private cache hit rates, thereby lowering the number of
directory interrogation instances.

3.2 Decline Trend

The active DE fraction exhibits a decline trend when the system
scales, as shown in Fig. 1b. Although the number of directory
entries required to track all private cache lines grows linearly with
the core count (as well-known previously [7], [15], [18]), the ratio of
active DEs, in fact, drops monotonically as the core count rises. The
most drastic decrease happens to x264, where its ratio drops from
32 percent for 2 cores to 1.6 percent for 64 cores. This is mainly
because the aggregate private cache size of a 64-core CMP increases
(by a factor of 32) while the number of referenced LLC lines rises
much slowly. In a short execution time window, cores tend to
share/synchronize a small set of data blocks, concentrating associ-
ated interrogations on a limited number of DEs. Additionally, each
DV for a larger core count is longer, able to track more sharers and
hence, making the ratio in decline.

Another reason is caused by an increase in the mean latency of
communication for a larger NoC. The increased latencies prolong
the read/write and replacement operations on private caches, low-
ering the number of data blocks referred within the given time

window. Further communication latency hikes can result, if the
home of a data block happens to reside in a farther LLC tile while
its sharers are close to each other [6], [12]. NUDA exploits this
trend for chip directory area overhead reduction.

4 DESIGN AND IMPLEMENTATION DETAILS

Fig. 3 illustrates our proposed NUDA architecture for a many-core
CMP. Every LLC block under NUDA is equipped with its state bits
plus other control bits statically. A small on-chip directory vector
(DV) buffer is incorporated. A full-fledged backing store is provi-
sioned in memory, with each store entry designated statically for
one DV of a corresponding LLC block.

Advantages. In Fig. 3, the DVs which dominate storage overhead
are resided in main memory instead of precious on-chip real estate.
They will be brought to the on-chip DV buffer dynamically accord-
ing to the coherence need. Such hierarchical design comes with
other advantages. First, precise sharer-tracking can be achieved
since a backing store is provisioned in memory to hold all LLC
DVs. Second, privately cached data are tracked fully and explicitly.
This is in contrast to prior work that requires switching between
core pointers and vectors [15], [16], [18], [21] or using a software-
managed mechanism [4] that triggers exceptions. Third, each DV is
in one whole piece. Although breaking a DV into pieces as prior
designs [15], [17] permits directory compression, but it may yield
performance degradation which causing by lengthened directory
interrogations.

Design Issues. NUDA faces three design issues critical to NUDA
performance: (1) locating DEs in the backing store straightfor-
wardly, (2) managing the DV buffer efficiently, and (3) prefetching
DVs from the backing store appropriately.

4.1 On-Chip Buffer Management

It is critical to manage the buffer effectively for its scalability. For a
given size, the buffer has a hit rate governed by such factors as the
replacement policy and set-associativity (i.e., 16 for our current DV
buffer design), among others. This work focuses on DV manage-
ment and investigates a novel DV buffer replacement policy. It
aims to keep as many active DVs in the on-chip buffer as possible
according to DV criticality.

Fig. 4a depicts the DV buffer allocation policy upon two differ-
ent state transitions, from an exclusive (E) or modified (M) state to
a shared (S) state. Notice that each LLC block is statically associ-
ated with its state bits, in order to permit fast protocol reactions
(e.g., fulfilling read miss requests from private caches) without
interrogating the backing store. Fig. 4b illustrates the DV buffer
line format, which involves four fields: tag, ever-written (EW) flag,

Fig. 2. Mean number of DEs interrogated within different time windows for 64
cores, where benchmarks along the X-axis are denoted by their abbreviations
listed in Section 5.2.

Fig. 3. Proposed NUDA architecture for inclusive cache hierarchy, with the full
directory vectors of LLC (shown by the dashed box) kept in the backing store.

742 IEEE TRANSACTIONS ON COMPUTERS, VOL. 67, NO. 5, MAY 2018

LRU control, and bit-map DV. The buffer entries are 16-way set-
associative, with every entry tagged by its corresponding LLC line
number ðLLÞ.

DV Buffer Entry Allocation. Any DV denoting just a single sharer
(i.e., in an E or M state) will not be allocated in the buffer. Instead,
buffer entry allocation takes place when an LLC block exhibits its
state transition from E or M State to S State. This means that any
DV of the LLC line that is cached first time by a core is not allocated
in the DV buffer. The affected DV in the backing store is written
through, in order to track this first privately caching situation.
Once a later coherent event from another core happens to the LLC
line, its associated DV will be fetched from the backing store and
then kept in the on-chip DV buffer, for accelerating subsequent
directory interrogations.

This allocation method has two advantages. First, during pro-
gram execution, those memory blocks cached only for private use
[4], [17] require no on-chip DVs for them. Second, if a block is for
private use, its DV is never interrogated by other cores. Our alloca-
tion strategy is preferred over employing encoded core pointers
[15] and software-assisted tracking-avoidance approaches [4].

4.2 Criticality-Aware Replacement Policy (CARP)

To take criticality into consideration in DV buffer replacement,
NUDA pursues a Criticality-Aware Replacement Policy (CARP) by
identifying two categories of critical DVs: sharing-intensive and
Read-After-Write (RAW) types. Sharing-intensive DVs are those
frequently referred ones, and replacing them is likely to be fol-
lowed soon by calls for their returns on chip. Hence, this type of
DV is desired to be kept in the on-chip buffer. The LRU field, which
is refreshed upon every interrogation that caused by a read/write
miss, suffices to signify their activeness for them to stay on chip.

A DV that is interrogated due to a write miss will refresh its
LRU field as well. In addition, the EW flag is raised to mark this
ever-written (EW) history as shown in Fig. 4b, aiming to record the
Read-After-Write (RAW) sequence. As the second critical type,
RAW criticality is captured by the EW flag to prevent the entry
from being evicted undesirably in a predefined time span. For a
modified block with its DV not held on chip, the latest block owner
can be identified only after its DV is brought from the backing store
into the buffer. The read miss is subject to a prolonged latency
because of the critical RAW sequence, which could be translated to
performance degradation, since the read miss typically is on the
critical path. The EW flag is reset periodically to purge out the stale
write history, so that its associated DV entry can be replaced later
by another critical DV. A suitable reset period for the EW bits is
design-specific and is affected by the system size.

Selecting the replaced entry in a DV set starts with checking the
EW flag to exclude those vectors which are potentially under criti-
cal RAW sequences. The victim is then selected according to the
LRU fields of the remaining entries in the set. In an extremely rare
situation for the 16-way set in our evaluation, if all entries in the set
have their EW flags set, the victim is determined by the LRU field
of all entries in the set.

The replaced DVs are temporarily stored in the write back
buffer in memory controllers aside with other data blocks, and
they are written back to backing store when the buffer is flushed. If
later DV interrogations hit DVs in the buffer, they are served
directly from the memory write buffer. A DV read request is
treated as a memory read request, albeit with a different target
address at the backing store that is a reserved DRAM region.

4.3 Prefetching for Pre-Activating Vectors (PAVE)

During program execution, active DVs may vary from one time
window to the next, calling for prefetching DVs appropriately to
boost the on-chip DV hit rate. Our proposed pre-activating vectors
(PAVE) module predicts potential DVs to be required for future
coherence. When a read/write miss interrogates a missing DV, the
DV is fetched from the backing store, followed by prefetching DVs
anticipated in future coherence interrogations.

Unlike data prefetching, PAVE must deal with the DV accesses
of all threads globally in the CMP, as illustrated in Fig. 5. Thread t1
accesses to memory blocks a and aþ d during the first given time
window, and then to blocks aþ 3d and aþ 5d in the next time win-
dow, where d is the block size. Likewise, Threads t2; t3, and t4
access their respective sequences of memory blocks. Such memory
block access sequences widely exist and provide an indication for
PAVE to prefetch DVs anticipated by execution of all threads.

PAVE History Table. PAVE faces a unique issue in prefetching
DVs from the backing store, since the LLC line number to which a
given memory block resides, is not known by the memory control-
ler. With set-associative LLCs, PAVE must know the way number
of an LLC set to which the memory block is mapped, so as to pre-
fetch its corresponding DV properly in the backing store through
address translation performed in a memory controller. To this end,
PAVE employs a hash table to keep the recent LLC line number
allocation history.

As depicted in Fig. 6, each memory controller is equipped with
one PAVE hash table and a collection of queues to serve as the pre-
fetching buffer. Every entry of the hash table tracks a sequence of
blocks existing in the LLC. It includes a tag filed, a block address
present-bit vector (V-bit) to mark the memory blocks that have

Fig. 4. (a) DV buffer allocation, and (b) proposed DV buffer entry format, where EW
and LRU fields are for replacement decisions and the LRU field is refreshed upon
read/write misses.

Fig. 5. Example memory block access patterns by 4 threads, with d denoting the
block size (i.e., 64 bytes typically).

Fig. 6. Memory block access history table kept in each memory controller for
PAVE. Each history table entry includes a tag field, an 8-bit presence field, and
eight way-fields, where the tag field keeps the first 39 bits of the 48-bit physical
address, aligned at (8�64) for the cache block size of 64 bytes.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 67, NO. 5, MAY 2018 743

been accessed by the memory controller, and V way-fields to indi-
cate the way numbers in LLC sets. Each way-field takes log2a bits,
if the LLC is a-way set-associative.

History Recording. PAVE conducts history recording whenever a
memory block is requested due to an LLC miss, as demonstrated
in Fig. 6. Upon receiving the request for a missing block (u), say
Block aa, the memory controller handles the memory block access
and records this access in the PAVE history table (v), hashed with
the key of PP ¼ aa½47 : 9�. The LLC controller provides the way num-
ber (i.e., 2, as stated in u, based on the LLC block mapping policy)
in the LLC set for Block aa. Any block access within the eight conse-
cutive memory blocks recorded in the same table entry. Their pre-
sences are encoded by the present-bit vector. Likewise, the block
access patterns of the other three threads shown in Fig. 5 are
recorded respectively by three history table entries in Fig. 6.

The PAVE history table records the recent history of memory
block accesses during thread execution. It addresses the unique
need of the LLC line number (LL) in PAVE, by letting every entry
track both the memory blocks fetched and their corresponding
way numbers after brought into LLC. There are relatively few
entries (say, 128) in the history table, which is the basis to enable
PAVE for effective DV prefetching from the backing store.

Vector Pre-Activation. When a DV under interrogation is not in
the DV buffer, the buffer initiates an access to the DV from the
backing store through a memory controller as marked by u in
Fig. 7. Meanwhile, PAVE prefetching is triggered and carried out
by the same memory controller. Prefetching is based on the mem-
ory block access history recorded in the PAVE hash table at the
entry hashed by PP ½47 : 9�.

Given the DV of LLC line number L (obtained using Set m and
Way 3 shown in Fig. 7) is not on chip, a request is created by a
memory controller for fetching the DV from the backing store.
Simultaneously, the PAVE history table is checked by hashing
PP ½47 : 9�. If any subsequent block exists in LLC, its way number
will be employed to generate a prefetching DV request, as denoted
byv in Fig. 7. The DV requests are kept in prefetching queues and
all prefetching queues together constitute the prefetch buffer, as
depicted in Fig. 7. Each element in the prefetch buffer contains two
fields, one for the determined prefetch address of a DV and the
other for storing the DV from the backing store.

The requests are placed in the prefetching queues determined
by the last q bits of the tag stored in the hit hash table entry, if the
prefetch buffer consists of 2q queues. Each memory controller then
issues prefetching to the addresses specified by the head elements
of all non-empty queues at a time, as shown by w in Fig. 7. Multi-
ple DV prefetch requests are issued at the same time for supporting
multiple threads coherence execution. The prefetching results are
stored in their corresponding queue entries, as shown byx.

When an interrogated DV is not in the DV buffer, it is checked
in the prefetch buffer that the DV might be resided. If the DV is
ready in the prefetch queue, it is promoted to the DV buffer in sup-
port of future directory interrogation.

It is expected that PAVE delivers better performance for a larger
prefetch buffer size. Further, higher performance results if more
queues are involved in the prefetch buffer of a given size, because
fewer threads are then to share a prefetch queue. The evaluation
results of PAVE are given in Section 6.

5 EVALUATION METHODOLOGY

We evaluate our proposed NUDA under the inclusive cache hierar-
chy, presenting evaluation results on the storage efficiency of
NUDA and on the impacts of CARP and PAVE under various pre-
fetch buffer sizes.

5.1 Directory Organizations

We compare NUDA against representative prior directory area
reduction designs, including Sparse [7], SPACE [21], and SCD [15].
We evaluate all the designs across a range of on-chip directory area
budget, with their results normalized with respect to that of the
conventional full bit-mapped (FBM) directory, in which each LLC
block is associated with one DV statically. For meaningful compari-
son, NUDA (including history tables and prefetch queues) and its
prior counterpart are allocated with exactly identical on-chip direc-
tory area budget. Area budget signifies the numbers of directory
elements for Sparse and SCD, and it dictates the sharer pattern
table entry count for SPACE. The configuration of prior counter-
part is partially listed in Table 1.

5.2 Simulation Setup and Workloads

We perform full system simulation using the cycle-accurate simu-
lator of gem5 [3] to model a 64-core CMP. Table 2 lists the key sys-
tem configuration parameters. We select ten applications from the
PARSEC benchmark suite [2], i.e., blackscholes (BLK), bodytrack
(BDY), canneal (CNL), dedup (DDP), ferret (FRT), fluidanimate

Fig. 7. DV transfer with effective prefetching by a memory controller, realized
through the PAVE history table.

TABLE 1
Directory Configurations Parameters

DV length Control field Major augmented logics

NUDA 64 bits 1-bit EW;
15-bit LRU;
22-bit tag

PAVE assisted directory
prefetching in memory
controller

Sparse 64 bits 15-bit LRU;
22-bit tag

Invalidation-based precise
tracking

SPACE 64 bits 20-bit counter Pattern table pointer for
each LLC line; imprecise
tracking

SCD 8 bits 15-bit LRU;
21-bit Tag;
4-bit index;
2-bit type

2-D root-leave hierarchy;
invalidation-based precise
tracking

TABLE 2
System Configuration Parameters

Processor x86-64, 64 out-of-order cores, 3 GHz
Private I/D L1 $ 32 KB, 2-way, Pseudo-LRU, 2-cycle latency
Shared L2 $ 2 MB per core, 16-way, Pseudo-LRU, inclusive,

16-cycle latency
Cache block size 64 bytes
Network 8�8 2D mesh, VC router, X-Y routing, 2-cycle

per hop latency, 32-byte link
Coherence Protocol Directory-based MESI
Memory DDR3-1600, 4 GB

744 IEEE TRANSACTIONS ON COMPUTERS, VOL. 67, NO. 5, MAY 2018

(FLU), freqmine (FRQ), streamcluster (STR), swaptions (SWP) and
X264, and four applications from the SPLASH benchmark suite
[19], i.e., FFT, FMM, ocean_ncp (OCN), and radix (RDX), for multi-
threaded execution. Each application spawns 64 threads, with each
thread mapped to one core.

6 RESULTS AND DISCUSSION

To ease explanation, NUDA with the on-chip directory area cover-
age of b is denoted by NUDA� b. We evaluate NUDAwith a range
of b from 1 to 1/32, to examine its performance for various cover-
age levels. It is found that NUDA-b exhibits no performance degra-
dation for b � 1=8, when compared to the conventional FBM (full
bit-mapped) directory. With b shrinks from 1/16 to 1/32, NUDA
starts to degrade its performance gradually (usually within 3�5
percent slowdowns). Those coverage levels coincide with the frac-
tions of active directory elements, as discussed in Section 3. In this
article, we demonstrate NUDA performance results under
b ¼ 1=16 and 1=32, which signify fairly scarce on-chip directory
area budget. The results shown in subsequent figures are normal-
ized with respect to that of FBM, and they confirm that NUDA
indeed is subject to negligible performance degradation even
under fairly low coverage. We illustrate evaluation results of
NUDA under b ¼ 1=16 subsequently.

6.1 Benefit Potentials of CARP

The mean fraction of directory entries initiating the RAW sequence
(which will be marked by the EW bit, see Fig. 4b) is depicted in
Fig. 8a. It reveals that on an average of 33 percent of the total direc-
tory entries are RAW-critical, to possibly prolong later read misses.
Therefore, it is beneficial to keep RAW-critical entries on chip,
avoiding detrimental DV replacement. Comparative performance
results of NUDA with and without CARP (which follows only the
na€ıve LRU-based replacement policy) for b ¼ 1=16 are shown in
Fig. 8b. They clearly demonstrate themarked gains of CARP by con-
taining performance slowdowns up to 15� (from 5.0 percent down
to 0.33 percent for SWP). While its counterpart (without CARP)
suffers from moderate performance degradation (5.2 percent on an
average), NUDA cuts mean performance degradation down to
2.0 percent). Without CARP, FLU has the highest performance
degradation (of 7.1 percent), possibly because it involves frequent
synchronization operations [2]. With CARP to track potential RAW

sequences, NUDA lowers the performance degradation of FLU
down to 2.0 percent. Note that for b ¼ 1=32, the performance gain
due to CARP is expected to expand. CARP indeed offers substantial
performance benefits to NUDA, indispensable for improving
directory efficiency. All following results for NUDA are with its
CARP enabled.

6.2 Impacts of PAVE

The impacts of PAVE on the overall performance of NUDA are
evaluated under various prefetch buffer sizes, with PAVE-x denot-
ing x prefetch entries in every memory controller for 64-core
CMPs. The x entries are organized into x/4 queues, with prefetch
addresses indicated by queue head elements issued by a memory
controller at a time. When the buffer size grows, the number of
queues involved rises accordingly so that fewer threads are to
share a given queue for higher performance.

The runtime ratio results of NUDA-1/16 under various pre-

fetching buffer sizes for NUDA-1/16 are demonstrated in Fig. 9.

The outcomes when no prefetching exists are also included for

comparison. NUDA without PAVE shows noticeable runtime

increases (by 3.9 percent on an average). With PAVE-16, NUDA

experiences performance improvement, with its runtime ratios

drop by various degrees for the benchmarks evaluated (by up to

2.5 percent for RDX). Further, PAVE-32 boosts NUDA performance

markedly in many benchmarks. For example, it shrinks the run-

time slowdown to 2.2 percent (or 2.0 percent) for FLU (or DDP)

from 5.8 percent (or 5.3 percent) when no prefetching exists. Over-

all, PAVE-32 cuts the runtime by 2.0 percent on an average for all

benchmarks examined, when compared to the situation without

PAVE. Further expanding the prefetch buffer size to PAVE-64

benefits a few benchmarks modestly (e.g., OCN and RDX by some

1.3 percent) but has little improvement for most benchmarks. As a

result, PAVE-32 is adequate for NUDA, and it is chosen as the

appropriate prefetch buffer size for our following evaluation.
Execution performance is expected to be correlated tightly with

the hit rate to the DV buffer. Even with very scarce on-chip budget,
NUDA-1/16 exhibits respectable hit rates (that exceed 60 percent)
for seven benchmarks even without PAVE, as demonstrated in
Fig. 10. The mean hit rate over all benchmarks without PAVE actu-
ally stands at 58.4 percent, signifying that directory interrogations
indeed concentrate on hot directory entries. This result validates
our insight that the small number of active directory entries is usu-
ally small within a short time window. The mean hit rate across all
benchmarks under PAVE-16 rises to exceed 65 percent, yielding
the runtime slowdowns of most benchmarks to shrink noticeably
as shown in Fig. 10. PAVE-32 makes the mean hit rate rise beyond
73 percent, as can be found in Fig. 10, so that all but three bench-
marks (i.e., BDY, FRQ, OCN) have their runtimes extended by less
than 3 percent, as can be found in Fig. 9.

NUDA involves DV transfer between on-chip LLC and the
backing store, consuming memory bandwidth. For a quantitative
measure, bandwidth utilization for b ¼ 1=16 under NUDA with
different prefetching configurations is plotted in Fig. 12. In general,

Fig. 8. (a) Mean RAW ratio of on-chip directory. (b) Normalized execution time of NUDA-1/16 for different configurations w.r.t. that of FBM.

Fig. 9. Execution time ratio with PAVE under various prefetching buffer sizes for
NUDA-1/16.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 67, NO. 5, MAY 2018 745

normalized memory bandwidth utilization increases as the num-
ber of prefetch requests grows (i.e., for more prefetch buffer
queues). Without PAVE, NUDA contains its average extra band-
width utilization within 1.3 percent, with the largest utilization rise
by up to 6.7 percent (for BDY), since BDY possibly having the larg-
est active DE fraction to involve the biggest memory bandwidth
overhead. Several other sharing-intensive benchmarks, such as
CNL, FLU, FRQ, and SWP, increase bandwidth consumption by
1.2 to 4.5 percent. The sharing degrees of CNL, FLU, and SWP are
relatively higher as stated earlier [2] and so do their directory activ-
ity as shown in Fig. 1b.

It can be seen in Fig. 11 that PAVE-32 tends to have markedly
lower memory bandwidth utilization than PAVE-64 for four of the
benchmarks (i.e., BDY, CNL, DDP, and FRT). Meanwhile, those
four benchmarks under PAVE-64 have insignificant reduction in
their normalized runtimes when compared with those under
PAVE-32, as demonstrated in Fig. 9. This indicates that PAVE-32 is
more cost-effective, because aggressive prefetching can hike band-
width utilization (up to 14.0 percent for BDY) without noticeably
lowering runtimes. Subsequent NUDA evaluation results for com-
paring with those of prior directory storage reduction techniques
are gathered under the prefetch buffer sized at PAVE-32.

6.3 Comparative Outcomes

The prior designs of SCD [15], SPACE [21], and Sparse [7] are
found to exhibit limited performance degradation when the on-
chip directory area is richly provisioned, i.e., with the coverage
level of b � 1=2, under which NUDA presents negligible perfor-
mance degradation. As the coverage level drops for a large core
count, however, prior designs suffer from marked performance
degradation while NUDA still retains performance. Our compari-
son here focuses on very scarce directory area budget (under
b ¼ 1=16 or even b ¼ 1=32) for high CMP scalability.

The normalized performance outcomes of Sparse, SCD, SPACE,
and NUDA for b ¼ 1=16 are illustrated in Fig. 12, where on-chip
directory area budget for NUDA is kept exactly identical to those
for Sparse, SCD, and SPACE. In addition, the outcomes of NUDA
under b ¼ 1=32 are also included for comparison. It is observed
that NUDA incurs negligible (or limited) performance degradation
for a (or an extremely) scarce on-chip directory area of b ¼ 1=16 (or
1/32), as compared to the conventional FBM design, which pro-
vides each LLC block with a DV statically to track all privately
cached contents precisely on chip. While achieving the best

execution performance possible, FBM exceedingly over-provisions
its on-chip directory and hence limits its scalability. In sharp
contrast, NUDA-1/16 and NUDA-1/32 budget only 6.7 and
3.3 percent as much directory area, respectively, and yet exhibit
just 2.1 and 5.9 percent execution slowdowns, on an average, when
compared with its FBM counterpart.

NUDA is seen in Fig. 12 to contain execution slowdowns far
better than Sparse, SPACE, and SCD for all benchmarks examined,
under b ¼ 1=16. For example, Sparse, SPACE, and SCD then
degrade mean execution performance by 3:2�; 2:2�; and 1:9�,
respectively, as opposed to only 2.1 percent for NUDA-1/16.
Hence, NUDA lowers the mean execution slowdowns by 3:7� (or
1:9�) in comparison to SCD (or SPACE) under the scarce directory
area of b ¼ 1=16.

NUDA has the largest gains in slowdown restraints for swap-
tions, with NUDA-1/16 yielding the gains of 5:9�, 4:0�, and 2:7�
when compared respectively with Sparse, SPACE, and SCD. The
reasons are two-fold. First, swaptions often involves repetitive
accesses to the privately-cached “coherence-active” data blocks.
Under Sparse and SCD, the directory elements of those active LLC
blocks may be evicted prematurely, to cause substantial execution
slowdowns. Second, threads of swaptions frequently compete for
shared lock variables to enter the critical section but the directory
elements of those lock variables (without CARP to track their RAW
sequences) can be evicted prematurely, to extend the execution
times significantly. On the other hand, NUDA always keeps DVs
of such synchronization-related data blocks on chip to achieve fast
execution.

7 CONCLUSION

We have investigated the non-uniform directory architecture
(NUDA) framework, aiming at CMP scalability improvement by
drastically reducing on-chip directory area ratio. NUDA employs a
multi-level directory configuration in CMP, equipping a small on-
chip buffer to keep only “active” directory vectors (DVs) for sus-
tained execution performance. It employs a full-fledged backing
store in a low storage level to hold all LLC’s DVs and relies on
novel CARP (criticality-aware replacement policy) and PAVE (pre-
activating vectors) to effectively manage DV transfer between the
DV buffer and the backing store. Evaluation results reveal that
NUDA experiences negligible performance degradation under a
scarcely provisioned on-chip directory area, when compared with
the one that provisions every LLC with an on-chip DV statically for
best possible performance. NUDA is also shown to outperform ear-
lier compression-based techniques for on-chip directory area
reduction, especially if directory area budget is held very low for
high scalability.

ACKNOWLEDGMENT

The authors wish to thank Xiyue Xiang for his constructive discus-
sion. This work was supported in part by National Science Founda-
tion with Award Numbers: CCF-1423302 and CNS-1527051.

Fig. 10. On-chip directory hit rates under various prefetching buffer sizes for
NUDA-1/16. Fig. 12. Normalized execution times of NUDA and its earlier counterparts with

respect to those of FBM, with the coverage of Sparse, SCD, and SPACE all equal
to 1/16.

Fig. 11. Normalized memory bandwidth utilization for NUDA-1/16.

746 IEEE TRANSACTIONS ON COMPUTERS, VOL. 67, NO. 5, MAY 2018

REFERENCES

[1] M. E. Acacio, J. Gonzalez, J. M. Garcia, and J. Duato, “A two-level directory
architecture for highly scalable cc-NUMA multiprocessors,” IEEE Trans.
Parallel Distrib. Syst., vol. 16, no. 1, pp. 67–79, Jan. 2005.

[2] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The PARSEC benchmark suite:
Characterization and architectural implications,” in Proc. 17th Int. Conf. Par-
allel Archit. Compilation Techn., Oct. 2008, pp. 72–81.

[3] N. Binkert, et al., “The gem5 simulator,” ACM SIGARCH Comput. Archit.
News, vol. 39, pp. 1–7, 2011.

[4] B. Cuesta, A. Ros, M. E. Gomez, A. Robles, and J. F. Duato, “Increasing
the effectiveness of directory caches by deactivating coherence for private
memory blocks,” in Proc. 38th Int. Symp. Comput. Archit., Jun. 2011, pp. 93–
104.

[5] N. Eisley, L.-S. Peh, and L. Shang, “In-network cache coherence,” in Proc.
39th IEEE/ACM Int. Symp. Microarchit., Dec. 2006, pp. 321–332.

[6] Y. Fu, T. M. Nguyen, and D. Wentzlaff, “Coherence domain restriction on
large scale systems,” in Proc. 48th ACM/IEEE Int. Symp. Microarchit.,
Dec. 2015, pp. 686–698.

[7] A. Gupta, et al., “Reducing memory and traffic requirements for scalable
directory-based cache coherence schemes,” in Proc. Int. Conf. Parallel
Process., 1990, pp. 312–321.

[8] J. Laudon andD. Lenoski, “The SGI Origin: A ccNUMAhighly scalable serv-
er,” in Proc. 24th Annu. Int. Symp. Comput. Archit., Jun. 1997, pp. 241–251.

[9] D. Lenoski, et al., “The Stanford DASH multiprocessor,” IEEE Comput.,
vol. 25, no. 3, pp. 63–79, Mar. 1992.

[10] A. Jain and C. Lin, “Back to the future: Leveraging Belady’s algorithm for
improved cache replacement,” in Proc. 43rd Int. Symp. Comput. Archit.,
2016, pp. 78–89.

[11] J. Kuskin, et al., “The Stanford FLASH multiprocessor,” in Proc. Int. Symp.
Comput. Archit., 1994, pp. 302–313.

[12] M. Marty and M. Hill, “Virtual hierarchies,” IEEE Micro, Vol. 28, no. 1,
pp. 99–109, Jan. 2008.

[13] M. Michael and A. K. Nanda, “Design and performance of directory caches
for scalable shared memory multiprocessors,” in Proc. IEEE 5th Int. Symp.
High Performance Comput. Archit., Jan. 1999, pp. 142–151.

[14] J. Philbin, et al., “Thread scheduling for cache locality,” in Proc. 7th Int.
Conf. Archit. Support Programming Languages Operating Syst., Oct. 1996,
pp. 60–71.

[15] D. Sanchez and C. Kozyrakis, “SCD: A scalable coherence directory with
flexible sharer set encoding,” in Proc. IEEE 18th Int. Symp. High Performance
Comput. Archit., Feb. 2012, pp. 1–12.

[16] W. Shu and N. Tzeng, “Superior directory efficiency via relinquishment
coherence and compressed sharer tracking for chip multiprocessors,” IEEE
Trans. Comput., vol. 66, no. 11, pp. 1975–1981, Nov. 2017.

[17] S. Shukla and M. Chaudhuri, “Tiny directory, efficient shared memory
in many-core systems with ultra-low-overhead coherence tracking,”
in Proc. IEEE 23th Int. Symp. High Performance Comput. Archit., Feb. 2017,
pp. 205–216.

[18] D. J. Sorin, M. D. Hill, and D. A. Wood, A Primer on Memory Consistency
and Cache Coherence. San Rafael, CA, USA: Morgan and Claypool, 2011,
pp. 161–163.

[19] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta, “The SPLASH-2
programs: Characterization and methodological considerations,” in Proc.
22nd Int. Symp. Comput. Archit., Jun. 1995, pp. 24–36.

[20] G. Zhang, W. Horn, and D. Sanchez, “Exploiting commutativity to reduce
the cost of updates to shared data in cache-coherent systems,” in Proc.
IEEE/ACM Int. Symp. Microarchit., Dec. 2015, pp. 13–25.

[21] H. Zhao, et al., “SPACE: Sharing pattern-based directory coherence for
multicore scalability,” in Proc. 19th Int. Conf. Parallel Archit. Compilation
Tech., Oct. 2010, pp. 135–146.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 67, NO. 5, MAY 2018 747

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

