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Subcube Determination in Faulty Hypercubes
Hsing-Lung Chen, Member, IEEE, and Nian-Feng Tzeng, Senior Member, IEEE

Abstract —A hypercube may operate in a gracefully degraded manner, after faults arise, by supporting the execution of parallel
algorithms in smaller fault-free subcubes. In order to reduce execution slowdown in a hypercube with given faults, it is essential to
identify the maximum healthy subcubes in the faulty hypercube because the time for executing a parallel algorithm tends to depend
on the dimension of the assigned subcube. This paper describes an efficient procedure capable of determining all maximum fault-
free subcubes in a faulty hypercube. The procedure is a distributed one, since every healthy node next to a failed component
performs the same procedure independently and concurrently. Based on interesting properties of faulty hypercubes, this procedure
exhibits empirically polynomial time complexity with respect to the system dimension and the number of faults, for a practical range
of dimensions. It compares favorably with prior methods when the number of faults is in the order of the system dimension. This
procedure can deal with node failures and link failures uniformly and equally efficiently.

Index Terms —Faulty hypercubes, prime subcubes, product-of-sums, reconfiguration, sum-of-products, time complexity.

——————————   ✦   ——————————

1 INTRODUCTION

HE binary hypercube is a powerful and cost-effective
topology for interconnecting a large number of com-

puting nodes to constitute a message-passing parallel system
for versatile applications. Hypercube systems have received
considerable attention, and many such machines have been
prototyped [1], [2] or marketed [3], [4], [5]. Most parallel
programs developed for the hypercube can be executed on
various system sizes [6], but they experience certain slow-
downs on a small sized system. The extent of execution
slowdown tends to grow as the system size decreases.

For a large system, the probability of faults arising is
nonnegligible, and, over its mission duration, the system
might involve one or several faults. In order to maintain the
hypercube topology in the presence of faults, researchers
have proposed the addition of spare nodes to hypercube
designs [7], [8]. For these fault-tolerant hypercube designs,
the system size remains unchanged after reconfiguration in
response to an operational failure by replacing the failed
component with a spare.

It is also possible for the hypercube to achieve fault-
tolerance without employing spares by reconfiguring itself
to a smaller sized system after faults occur, following the
graceful degradation strategy. Under this strategy, per-
formance degradation is kept to a minimum if the reconfig-
ured system is a fault-free subcube with the maximum di-
mension possible. Several algorithms have been proposed
for identifying the maximum healthy subcube in a hyper-
cube with faults. In particular, an algorithm for maximum
fault-free subcube identification was introduced by
Ozguner and Aykanat [10]. This algorithm is centralized in
nature, as it has to be run on a single processor (like the

host or resource manager). Another centralized algorithm
was presented in [11], with its time complexity being O(nh2)
for an n-dimensional hypercube with h healthy nodes.

Distributed procedures for locating subcubes in a faulty
hypercube are favorable, when compared with centralized
counterparts, as they are more efficient and may prevent the
host from becoming a bottleneck. A distributed procedure for
finding the sizes of fault-free subcubes was given in [12].
However, the procedure is not guaranteed to always discover
the maximum size of fault-free subcubes, and it doesn’t iden-
tify the addresses of fault-free subcubes (which are needed for
reconfiguration). Other distributed subcube identification al-
gorithms have been developed recently [13] for an n-
dimensional hypercube in which the number of faulty nodes is
bounded above by O(n). Such a heuristic algorithm is executed
by each healthy node, and its time complexity at every in-
volved node in an n-dimensional hypercube with m faulty
nodes is O(n2m2). These algorithms, however, could fail to
identify the maximum fault-free subcube and are unsuitable
for hypercubes with an accumulation of massive faults.

In this paper, we present a fast procedure for determin-
ing all maximum healthy subcubes in a faulty hypercube.
This procedure is distributed in that the same algorithm is
carried out by selected healthy nodes independently at the
same time. It exhibits empirically polynomial time com-
plexity with respect to the hypercube dimension and the
number of faults, for hypercube systems with practical
sizes. This is made possible by employing the novel concept
of “reject regions” to eliminate unnecessary searches. For a
given node and a set of faults, we can quickly determine all
reject regions, which consist of those nodes impossible to be
a part of any fault-free subcube containing the given node,
and then arrive at an expression that specifies the collection
of all healthy subcubes containing the given node efficiently
and systematically. The expression so obtained is carefully
manipulated with the aid of two simplification criteria to
derive the addresses of healthy subcubes. This procedure is
readily extended to deal with hypercubes with failed links,
involving the same order of time complexity.
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This paper is organized as follows. Notation and rele-
vant background are provided in Section 2. Section 3 ad-
dresses the methodology of finding subcubes containing a
given node. Our subcube determination procedure is de-
scribed in Section 4, and its extension is presented in Sec-
tion 5. Section 6 concludes the paper.

2 NOTATION AND BACKGROUND

An n-dimensional hypercube, denoted by Hn, consists of 2n

nodes, each of which is labeled by an n-bit binary string, ln-1
ln-2 ... l1l0, with bit li corresponding to dimension i. Two
nodes are connected by a link only if their labels differ in
exactly one bit position. A four-dimensional hypercube is
depicted in Fig. 1. Each subcube in Hn can be uniquely rep-
resented by a string of n symbols over the set {0, 1, *}, called
its address, where * is a don’t care symbol. Specifically, a k-
dimensional subcube has exactly k *s in its address, as it
involves a collection of 2k cube nodes. As an example,
nodes 0001, 0011, 0101, and 0111 in H4 constitute a two-
dimensional subcube addressed by 0**1, or, equivalently,
0*21, where ac denotes c consecutive as.

Let a subcube be represented as a minterm, i.e., product
of Boolean variables, obtained from the address of the sub-
cube by replacing bit position i with bi (or bi ), if position i is
1 (or 0), and then dropping all *s. The operations on sub-
cubes in a hypercube then can be performed elegantly, fol-
lowing a way similar to Boolean algebra. For example, sub-
cube 0**1 is represented by b b3 0 . The union of the three
subcubes, 0**1, 01*0, and 00*0, is given by

b b b b b b b b b b b b b3 0 3 2 0 3 2 0 3 0 3 0 3+ + = + = ,

which is 0*3. As will become clear later, the use of a Boolean
expression to specify the union of subcubes greatly facili-
tates our determination procedure. Note that a null expres-
sion denotes the whole hypercube.

From the expression for a union of subcubes in a hyper-
cube, one can get the addresses of all cube nodes outside the
union of subcubes directly, with the aid of DeMorgan’s
theorem. Consider the union of two subcubes in H4:

b b b b b W3 0 3 2 0+ = .

The collection of all the nodes outside W is expressed by

W b b b b b= + + +3 0 3 2 0d id i ,
which is simplified to b b b3 2 0+ , designating subcubes 1*3

and *0*0, as expected.

3 METHODOLOGY FOR FINDING SUBCUBES
CONTAINING A GIVEN NODE

The methodology introduced here will serve as the basis of
our subcube determination procedure. Faults are assumed
to occur only at cube nodes for easy presentation, with
faulty links treated later on by extending the result. For a
given healthy node in an injured hypercube, it is possible to
systematically identify every fault-free subcube which
contains the given node, by the use of interesting properties
to be described below.

3.1 Basic Properties
Consider H4 with faults at nodes 0001 and 0110, as shown
in Fig. 1. For a given cube node, say 1000, we arrive at im-
mediately two “regions” which can never contribute to any
fault-free subcube containing the given node, with one re-
gion due to one fault. Such a region, called a reject region, is
defined subsequently.

DEFINITION 1. A reject region in a faulty hypercube is the
smallest subcube which contains both a faulty node and the
antipodal node of the given node.

Let ƒ denote the bit operation defined as follows: It
yields 0 (or 1) if the two corresponding bits are “0” (or “1”),
and it is * if the two corresponding bits differ. A reject re-
gion is addressed simply by performing operation ƒ on the
labels of a faulty node and the antipodal node. In Fig. 1, for
example, the antipodal node of a given node 1000 is 0111,
and the two reject regions are 0001 ƒ 0111 = 0**1 and 0110
ƒ 0111 = 011*, as indicated by bold lines. The concept of
reject regions is critical to our methodology, and the prop-
erty that a fault-free subcube involving the given node can
never contain any node inside the reject regions, will be
proved after the next definition.

DEFINITION 2. A prime subcube with respect to a given node, say
D, is a fault-free subcube which involves D but is not con-
tained entirely in any other fault-free subcube involving D.

Note that the prime subcube is defined with respect to a
given node, and prime subcubes with respect to different
nodes could be of different sizes. No proper subcube of a
prime subcube can be a candidate largest subcube, so our
attention is limited to only prime subcubes.

THEOREM 1. A prime subcube contains no node inside reject
regions.

PROOF. Consider an n-dimensional hypercube Hn, in which
node X is faulty. Without loss of generality, suppose

Fig. 1. A four-dimensional hypercube, H4. (Some links are omitted for clarity, and reject regions are shown by bold lines).



CHEN AND TZENG:  SUBCUBE DETERMINATION IN FAULTY HYPERCUBES 873

that the labels of node X and the given node are 0n-i1i

and 0n, respectively. The reject region involving node

X is then *n-i1i. Assume that a node in a prime sub-

cube, say node Y, is inside reject region *n-i1i. It will be
illustrated that this assumption leads to a contradic-
tion.

Without loss of generality, the label of node Y

(which belongs to *n-i1i) is chosen to be 0n-j1j, with j ≥
i. The smallest subcube involving both the given node

and node Y can be easily shown to be 0n-j*j, which
contains the faulty node X. Since the given node and
node Y are also contained in a prime subcube (from
Definition 2 and the above assumption), say PS, sub-

cube 0n-j*j, being the smallest subcube which involves
the same two nodes, must be contained in prime sub-
cube PS. As a result, PS involves faulty node X (for X

Œ 0n-j*j), contradicting definition of a prime subcube.�

THEOREM 2. A node outside all reject regions is contained in at
least one prime subcube.

PROOF. (By contradiction.) Consider a given node in an n-
dimensional faulty hypercube. Assume that a node
outside all reject regions, say node A, is not contained
in any prime subcube. Without loss of generality,
suppose that the labels of node A and the given node

are 0i1n-i and 0n, respectively. Then, the smallest sub-
cube involving both node A and the given node is ad-

dressed by 0i*n-i.

It can be argued that subcube 0i*n-i must involve at

least one faulty node in the following. If 0i*n-i involves
no faulty node, then consider the two cases:

1) There is no larger fault-free subcube containing the
whole 0i*n-i, or

2) There is one such subcube.

In case 1), 0i*n-i itself is a prime subcube (as it is fault-
free and involves the given node, from Definition 2).

In case 2), a larger subcube containing 0i*n-i is a prime
subcube. For either case, node A, which belongs to

0i*n-i, is contained in a prime subcube, violating our

above assumption. Thus, 0i*n-i contains at least one
faulty node, say node X.

Without loss of generality, suppose that the label of

node X is 0j1n-j, with j ≥ i. The reject region involving

faulty node X is easily shown to be addressed by *j1n-j,

which obviously contains node A (whose label is 0i1n-i).
This is a contradiction, because node A should be out-
side all reject regions. �

It can be seen that any cube node outside the two reject
regions shown in Fig. 1 is contained in at least one of the
three prime subcubes: *0*0, **00, and 1*3. Theorems 1 and 2
reveal interesting properties of a faulty hypercube, and they
make it possible to partition all the cube nodes into two
disjoint sets with respect to a given node: the union of all
reject regions and the union of all prime subcubes, denoted,
respectively, by R and P. As a result, the fact that knowing
R can directly get P holds valid for any faulty hypercube,
and it is the fundamental idea behind our methodology.
From the labels of all faulty nodes and a given node, we
may quickly obtain the addresses of all reject regions
(simply by performing the ƒ operations defined earlier). A
reject region which lies completely inside another reject
region is then removed to avoid redundancy. Each reject
region left after removing redundancy is represented by a
minterm. Expression R is the summation of all minterms or,
equivalently, is given in the form of sum-of-products. From
R, we immediately arrive at P R= , which is in the form of
product-of-sums (from DeMorgan’s theorem). What re-
mains to be solved now is to identify the largest subcube
from P, since P contains all the prime subcubes (which are
fault-free and contain the given node). To this end, we con-
vert P from its product-of-sums form into a sum-of-
products equivalence, which is then searched for the short-
est product terms (i.e., minterms), because such a term cor-
responds to a largest subcube.

3.2 Generating Sum-of-Products Equivalence
The expression for P may be converted into its sum-of-
products equivalence by using the distributive law: x(y + z)
(a + b) = xy(a + b) + xz(a + b). In the course of the conversion
process, terms comprising the products of minterms
(denoted by Mi) and maxterms (which refer to sum terms,
denoted by Si), are normally created and called the
“genterms” (standing for generalized terms, denoted by Gi).
The conversion process often involves lots of unnecessary
effort due to generating undesirable minterms or the same
minterms redundantly, unless care is taken to simplify the
process. Consider a given node 110011 in H6 with four
faults: 010011, 101111, 100101, and 110110. Expression P for
the given node is easily found to be

P b b b b b b b b b= + + + + +5 4 3 2 4 2 1 2 0d id id i .        (1)

This expression is converted into its sum-of-products
equivalence by applying the distributive law alone without
simplification, as depicted in Fig. 2, where the result is the
collection of the subcubes addressed by minterms given in
the bottom level. In the first level of the conversion process,
the distributive law is applied to sum term ( )b b b4 3 2+ + ,
yielding three genterms, each due to one variable in the
sum term, as indicated by an arrow with the variable
shown next to it. It should be noted that all variables with
subscript i in any expression P appear in the form of bi or bi

exclusively; it is impossible to have bi and bi  coexisting in P
for any i, due to the way of calculating the addresses of re-
ject regions.
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Our goal for simplification is to prevent any unnecessary
genterms from being created in the conversion process so
that the minterms produced at the end all correspond to
distinct subcubes, involving much less effort. The following
simplification rules are useful:

1) Gi + GiGj = Gi, and
2) b S b or b S bj i j j i j= =( ) , if sum term Si contains variable

bj (or bj ).

Rule 1) indicates that genterm GiGj should be removed.
Rule 2) allows unnecessary sum term Si to be eliminated,
and, from this rule, one may easily arrive at the equation
given below, after applying the distributive law to sum
term (bj + bk), provided that bj is in sum term Sp but bk is not,
bk is in sum term Sq but bj is not, and neither bj nor bk is in
sum term Sr:

b b S S S b S S b S Sj k p q r j q r k p r+ = +e j .

This result implies that when the distributive law is applied
to a sum term in a genterm, a variable in the sum term
causes any other sum term containing the same variable to
be discarded from the genterm produced due to the vari-
able. In the above equation, for example, variable bj pro-
duces genterm bjSqSr, which involves no Sp as the variable is
contained in Sp. This result is an essential criterion for
eliminating unnecessary sum terms in produced genterms
during a conversion process, referred to as criterion I.

Using Rule 1), the above equation is further simplified to
b S S b S Sj q r k p r+ ¢ , where ¢Sp  is sum term Sp excluding variable

bj, because genterm bjbkSr, which is contained in bkSpSr, will

be produced when the distributive law is applied to Sq of

genterm bjSqSr (since bk Œ Sq). This reveals another impor-
tant simplification criterion: After a genterm is created due
to a variable in a sum term, this variable will be dropped
from all genterms produced due to other variables in the
same sum term, referred to as criterion II.

Making use of the above two simplification criteria, we
obtain the conversion result of expression P (for H6, given
earlier), as shown in Fig. 3, where the set of variables to be
discarded from a produced genterm is also given. In the
first level of the conversion process, genterm b b b b5 4 2 0( )+  is

produced due to variable b4 because sum term ( )b b b4 2 1+ +

is discarded (for it contains variable b4), and genterm

b b b b b b5 3 2 1 2 0( )( )+ +  is produced after b4 is dropped from
sum term ( )b b b4 2 1+ + . Note that, if a genterm to be pro-
duced contains a sum term which consists of only dis-
carded variables, the genterm is removed altogether. The
conversion process, with the aid of the two simplification
criteria, produces only distinct subcubes (see Fig. 3), saving
lots of effort, and the set of distinct subcubes is identical to
that depicted in Fig. 2 after unnecessary subcubes (which
correspond to marked minterms) are removed.

An algorithm for generating the sum-of-products (SOP)
equivalence of a given product-of-sums expression P is
provided below, where a stack is employed to keep gen-
terms produced during conversion. The stack holds only
expression P, initially, and SOP starts with an empty set.
After the algorithm ends, all minterms produced will be
stored in SOP, which is then scanned to find the shortest
ones.

Algorithm A: (generate a sum-of-products equivalence):

While (the stack is not empty)
     {

Pop a genterm Gi from the stack;
If (Gi has no sum terms)

Append Gi to SOP;
else {

Apply the distributive law to the first sum
               term of Gi;

Simplify the genterms produced using
               simplification criteria;

Push all genterms after simplification into

Fig. 2. Converting expression P into its sum-of-product equivalence. (Distinct minterms are numbered in the order of generation, with unnecessary
minterms marked.)
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               the stack.
      }

     }

Since expression P specifies all subcubes containing a
given node and the two simplification criteria remove only
unnecessary subcubes, Algorithm A is ensured to generate
all prime subcubes with respect to the given node. It is then
needed to investigate time complexity involved in Algo-
rithm A, i.e., the time complexity of finding the shortest
minterm from P. Unfortunately, the problem of finding the
shortest minterm from P is NP-complete in general, as
stated in the next theorem, whose proof can be found in the
Appendix.

THEOREM 3. The shortest minterm determination (SMD) prob-
lem is NP-complete: Given a product-of-sums expression P
for a faulty Hn, and a positive integer k £ n, determine if
there is a minterm of length k or less, such that the min-
term contains at least one variable in each sum term of P.

While finding the largest prime subcube (i.e., shortest
minterm) with respect to a given node in Hn is exponen-
tially complex in terms of n in general, it is possible to de-
vise an algorithm with polynomial time complexity for this
problem, provided that n is restricted to a practical range,
say n £ 20. This algorithm always finds the largest prime
subcubes quickly by treating only promising genterms.

3.3 An Efficient Algorithm
The complexity of Algorithm A can often be reduced con-
siderably by incorporating the greedy strategy as well as
the “branch and bound” technique for identifying shortest
minterms from a given P. A variable is said to “cover” a
sum term if the variable belongs to the sum term. In order
to arrive at the shortest minterm as soon as possible, the
distributive law is not applied to an arbitrary constituent
sum term (of a genterm Gi), but rather to a sum term which
contains the variable covering the largest number of sum
terms (in Gi). This causes a genterm consisting of fewest
sum terms to be produced, and the genterm so produced is
very likely to contain the shortest minterm. A solution is
thus searched in a greedy manner this way.

To this end, Gi is scanned to identify a sum term con-
taining the variable with the largest coverage (if there is a
tie, a random one is chosen), and all the variables in the

identified sum term are then rearranged in decreasing de-
grees of coverage. Consider expression P given in (1) as an
example. Variable b2  has the largest coverage, and sum
term ( )b b b4 3 2+ +  is rearranged into ( )b b b2 4 3+ +  before the
distributive law is applied to it. The rearranged sum term is
then placed ahead of the remaining sum terms, as illus-
trated in Fig. 4. In order to probe the genterm involving a
solution as soon as possible, the genterms produced from a
rearranged sum term are pushed to a stack in such an order
that the genterm due to the variable with the smallest cov-
erage is first, followed by that due to the variable with the
next smallest coverage, and so on. This ensures that the first
minterm probed is a shortest or near shortest one.

In addition, the shortest minterm obtained so far can
serve as a bound to prevent longer minterms from being
generated, avoiding unnecessary probes. The bound is
compared with the number of variables existing in front of
the first sum term (to which the distributive law is to be
applied), called the leading length. For example, the leading
length of the genterm at the top of Fig. 4 is 1, as there is
only one variable (i.e., b5) in front of sum terms. It is guar-
anteed to obtain all shortest minterms after every promis-
ing genterm is treated. The described greedy strategy and
the branch-and-bound technique are incorporated in the
subsequent algorithm. All shortest minterms produced so
far are kept in set s_minterm_set, which is reset to ∆ ini-
tially and whenever a shorter minterm is found.

Algorithm B: (find all shortest minterms):

Reset s_minterm_set; s_minterm_length := dimension + 1;
/* length of the shortest minterm obtained so far */
While (the stack is not empty)
     {
       Pop a genterm Gi from the stack;
       Simplify Gi using the two simplification criteria;
       If (the leading length of Gi £ s_minterm_length)

{
  if (Gi has no sum term)
     {
           if (the leading length of Gi <
                 s_minterm_length)

{
          Reset s_minterm_set;
          s_minterm_length := the (leading)

Fig. 3. Converting expression P with the aid of simplification criteria.
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                                                               length of Gi;
          Add Gi to s_minterm_set;
}

          else
          Add Gi to s_minterm_set;

     }
else
     {
          if (the leading length of Gi < s_minterm_length)

{
Select a variable with the largest cover-

  age in Gi and rearrange a sum term
  which contains the  selected variable;
  Place the rearranged sum term ahead of
  the remaining sum terms;
  Apply the distributive law to the first
  (i.e., rearranged) sum term;
  Push genterms produced into the stack,
  according to the reverse order of the

                  sequence at which they are produced.
}

     }
}

     }

It should be noted that, since Gi is simplified immedi-
ately after it is popped from the stack, the genterms pro-
duced after applying the distributive law are pushed into
the stack without simplification. This is correct, because
minterms are created at the bottom level of probes, and no
minterm requires simplification. The time complexity of
Algorithm B is estimated in the following. For an n-
dimensional hypercube with m faulty nodes, a sum term in
any Gi contains no more than n variables, and the length of
Gi is less than or equal to n * m. It is easy to derive that sim-
plifying Gi requires time O(nm), as does selecting a variable
with the largest coverage. Rearranging a sum term takes
O(n log2 n). Unless m is very small, n * m is greater than
n *log2 n. As a result, time taken to treat a genterm popped
from the stack equals O(nm) in general

The overall complexity of this algorithm depends on the
number of genterms created. Extensive simulation has been
carried out to examine the number of genterms involved for
every possible m in a given Hn and find out the worst case
m. For each m, a sufficient number of fault patterns are pro-
duced using a random number generator and the average
number of genterms is collected in an attempt to reflect the
situation that faults happen randomly. As listed in Table 1,
the row of genterms indicates the largest mean numbers of
genterms produced among all possible ms for Hn, with n =
5, 10, 15, and 20 (it is beyond our computation power to

investigate larger systems). The m value which leads to the
largest number of genterms for each Hn is given in the next
row. It can readily be observed that the number of genterms
produced in the worst case scenario is bounded by n * m,
for n up to 20. Algorithm B thus exhibits total time com-
plexity O(n2m2). It is faster than the methods described in
[10], [11] when m is of O(n). This algorithm is exact, able to
find all shortest minterms.

TABLE 1
THE MEAN NUMBER OF GENTERMS INVOLVED

IN THE WORST CASE SCENARIO

Dimension (n) 5 10 15 20
Genterms 4 7 232 3,209
Faults (m) 3 3 59 568

4 SUBCUBE DETERMINATION

Algorithm B identifies every largest fault-free subcube which
contains a given node efficiently. All maximum fault-free
subcubes in a faulty hypercube can be determined fast us-
ing this algorithm, if an appropriate set of healthy nodes,
referred to as candidate nodes, is selected and considered as
given nodes. It should be noted that, if all healthy nodes are
chosen as candidate nodes, the maximum healthy subcubes
still can be obtained, but the overall time complexity in-
volved will become unnecessarily high.

4.1 Candidate Nodes
The set of candidate nodes is chosen to be F = {node x|
node x is healthy and immediately adjacent to a faulty
node}. The largest subcubes with respect to each candidate
node are identified by Algorithm B, and the (global) maxi-
mum fault-free subcubes in the faulty hypercube can be
determined from all the largest subcubes so identified, as
stated in the next theorem.

THEOREM 4. Every maximum fault-free subcube belongs to the
set of the largest subcubes derived using Algorithm B for
each node in F.

PROOF. Suppose that the set of the largest subcubes so de-
rived does not contain a maximum fault-free subcube,
say BM. This means that BM contains no candidate
node in F. Consequently, all the neighbors of every
node in BM are fault-free, suggesting that a healthy
subcube of the same size as BM exists next to BM. The
two adjacent subcubes form a larger fault-free sub-
cube, and, thus, BM is not maximum, a contradiction.
This completes the proof. �

For an n-dimensional hypercube with m faults, there are
no more than n * m candidate nodes in F. Since Algorithm B

Fig. 4. Converting expression P by Algorithm B.
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takes O(n2m2) for each candidate node in Hn, n £ 20, overall
time complexity amounts to O(n3m3). This subcube deter-
mination involves polynomial time complexity for practical
hypercube systems.

4.2 Determination Procedure
The proposed approach lends itself perfectly to distributed
determination by making every candidate node execute
Algorithm B individually with respect to the node itself. It
is assumed that the set of faulty nodes is identified in a
distributed manner by the fault-free nodes, following the
diagnostic algorithm introduced by Armstrong and Gray
[14]. After fault diagnosis is done, every healthy node
knows whether or not it is adjacent to a faulty node and
should participate in subcube determination. The address
of a faulty node is broadcast by a neighboring healthy node
to all nodes, and only the candidate nodes keep such in-
formation. (Broadcasting in a faulty hypercube can be done
efficiently according to the technique introduced by Lee
and Hayes [15].)

On receiving the addresses of all faulty nodes, each can-
didate node finds the largest subcubes containing the node
itself using Algorithm B. The addresses of the found sub-
cubes are then sent to a designated node, at which all
maximum fault-free subcubes are identified. It is clear that
this determination procedure has the time complexity of
O(n2m2) on each candidate node.

Two other distributed subcube identification algorithms
have been proposed [13], and they both require the same
time complexity as ours at a participating node. Unlike our
procedure, however, those two algorithms may fail to
identify the maximum fault-free subcube and are carried
out by all healthy nodes, not just a small fraction of them.
On the other hand, if Algorithm B probes only the first
minterm (instead of exhausting all promising genterms),
our proposed procedure can locate the maximum fault-free
subcube with probability 99.9 percent, which slightly ex-
ceeds what is attainable by the better one of the two prior
distributed algorithms, for m < n, because it is found from
our simulation that 99.9 percent of the first minterms identi-
fied by Algorithm B are indeed shortest ones, provided that
the number of faults m is less than the system dimension n.
In this situation, our procedure requires time complexity
O(nm2), since the total number of genterms produced is
always no more than m, as P involves at most m sum terms
and the distributive law is applied to only the leftmost vari-
able of a sum term. Consequently, our procedure not only
needs lower time complexity than the two prior distributed
algorithms (which require O(n2m2)) at each participating
node, but also involves much fewer participants (i.e., no
more than n * m).

5 EXTENSION TO INCLUDING FAILED LINKS

Our fast subcube determination algorithm is extended to
handle a hypercube in which both nodes and links could
fail. Like a faulty node, a failed link makes several nodes
become candidate nodes, based on which the largest fault-
free subcubes are identified. Since a link connects two
nodes, if both nodes connected by a failed link are healthy,

an arbitrary one of the two nodes is selected as the node to
dictate candidate nodes for the algorithm; otherwise, no
node is selected (because the effect of the failed link is then
considered by a faulty node to which the link connects). A
selected node results in all its adjacent healthy nodes as
candidate nodes.

All candidate nodes (whether due to faulty nodes or
failed links) are treated uniformly by the algorithm, i.e.,
they are employed to determine reject regions. For each
candidate node, the reject region due to a failed node is
calculated in the same way as before (see Definition 1), but
the reject region due to a failed link is to be defined next.
Let a “preferred node” be the one of the two nodes con-
nected by a failed link, such that it has a larger Hamming
distance with respect to the candidate node (where the
Hamming distance between a pair of nodes is the number
of bits differing in the corresponding bits of the two node
labels). The reject region due to the failed link is the small-
est subcube which contains both a preferred node and the
antipodal node of the candidate node, as will be proved in
the subsequent theorem. Such a node is called a preferred
node because it is closer to the antipodal node of the candi-
date node than the other node connected by the same link,
and thus leads to a smaller reject region being created (this,
in effect, signifies that the extent of size degradation is less
due to a failed link than due to a faulty node).

THEOREM 5. A prime subcube contains no node inside any reject
region involving both a preferred node and the antipodal
node of a candidate node.

PROOF. Consider an n-dimensional hypercube, in which a
link fails and node X1 is the preferred node due to the
failed link. Without loss of generality, suppose that

the labels of node X1 and the candidate node are 0n-i1i

and 0n, respectively. The reject region containing node

X1 is then *n-i1i. Let X0 be the other node connected by

the failed link. The labels of nodes X0 and X1 differ in
exactly one bit, and the differing bit must be in the
rightmost i positions (since the candidate node is 0n,

to which node X0 is closer). The label of node X0 is

chosen 0n-i+11i-1 for convenience. Assume that a node
in a prime subcube, say node Y, is inside reject region

*n-i1i. This assumption will be shown to result in a
contradiction.

Without loss of generality, let the label of node Y

(Œ *n-i1i) be 0n-j1j, with j ≥ i. The smallest subcube in-

volving both the candidate node and node Y is 0n-j*j,

which obviously contains node X0 and the preferred

node X1, implying that 0n-j*j contains the failed link.
Since the candidate node and node Y are also in-
volved in a prime subcube (from Definition 2 and the

above assumption), say PS, subcube 0n-j*j, being the
smallest subcube which contain the same two nodes,
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must be contained in prime subcube PS. As a result,
PS involves the failed link, in contradiction to the
definition of a prime subcube (see Definition 2). �

The preferred node is chosen based on a candidate node
and is different from one candidate node to another. While
a preferred node is fault-free, it serves to determine a region
which is excluded from being a part of any prime subcube,
just like a faulty node.

With reject regions due to failed nodes and links decided
for a candidate node, one can immediately arrive at expres-
sion P, from which all largest fault-free subcubes are
quickly identified using Algorithm B. Any maximum fault-
free subcube in the faulty hypercube must belong to the set
of the largest subcubes derived from all candidate nodes, as
can be shown in a way similar to the proof of Theorem 4.
For Hn, in which the amount of failed nodes and links com-
bined is m, the number of candidate nodes involved in de-
termining all maximum fault-free subcubes remains
bounded by O(nm), and the time complexity at each candi-
date node is O(n2m2) as before, provided n £ 20.

6 CONCLUSIONS

A fast procedure has been introduced for determining all
maximum fault-free subcubes in a faulty hypercube. From
interesting properties of faulty hypercubes, an expression P,
which specifies all healthy subcubes containing a given
node, is attainable directly, excluding reject regions from
consideration to reduce search space. While identifying all
largest subcubes specified by P is NP-complete in general,
an efficient algorithm with the greedy strategy and the
branch-and-bound technique incorporated has been deter-
mined experimentally to exhibit polynomial time complex-
ity with respect to the number of faults (m) and the system
dimension (n) for a practical range of n, i.e., n £ 20. Our
procedure selects no more than n * m healthy nodes as can-
didate nodes, to which the efficient algorithm is applied
individually to determine all largest prime subcubes. The
time complexity at each candidate node is O(n2m2), which is
lower than those of the algorithms described in [10], [11] if
m is of O(n). The procedure is suitable for a hypercube with
arbitrary node/link failures. With its low time complexity,
this subcube determination procedure could be useful for
systems designed to operate in a gracefully degraded man-
ner after faults occur.

APPENDIX

Proof of Theorem 3

PROOF. A minterm is formed by taking exactly one variable
from each sum term of P. The SMD problem is to find
a smallest subset of variables such that every sum
term of P contains at least one variable in the subset.

The “minimum cover” problem is known to be NP-
complete [9]:.

Given a collection C of subsets of a finite set S, and a
positive integer k £ |C|. Does C contain a cover of
size k or less for S, i.e., a subset C¢ Ã C with |C¢| £ k,
such that every element of S belongs to at least one

member of C¢?
To prove this theorem, it is sufficient to transform

the minimum cover problem into the SMD problem.
The transformation is defined as follows: An element
in the finite set S is mapped to one sum term of P, and
element ci Œ C equals {x|x Œ S and x is mapped to a
sum term which contains the variable with index i}.
Considering expression P given in (1) as an example,
if Sp and Sq are mapped, respectively, to ( )b b b4 3 2+ +

and ( )b b b4 2 1+ + , then element c4 in C consists of {Sp,

Sq}, since they both contain variable b4.
Under this transformation, the minimum cover

problem is to determine if there is a subset of C such
that the subset is of size no more than k, and every
element of S belongs to (i.e., every sum term of P
contains) at least one member of (i.e., one variable in)
the subset, which is equivalent to the SMD problem.
Therefore, any solution to the SMD problem can be
trivially transformed into the solution for the mini-
mum cover problem. This establishes the NP-
completeness of the SMD problem. �
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