
Compressed Sharer Tracking and
Relinquishment Coherence for Superior

Directory Efficiency of Chip Multiprocessors

Wei Shu and Nian-Feng Tzeng

Abstract—To lower on-chip SRAM area overhead for chip multiprocessors

(CMPs), this work treats a novel directory design which compresses present-bit

vectors (PVs) by dropping “runs of zeros” commonly existing and lets PVs be

transformed to their variations after sharer relinquishment for hashing alternative

table sets to lift table utilization. Featured with relinquishment coherence and

compressed sharer tracking (ReCoST), the proposed design attains superior

directory efficiency and maintains “exact” directory representations, as a result

of dropping abound long runs of zeros present in PVs. According to full-system

simulation using gem5 for a range of core counts under PARSEC benchmarks,

ReCoST is found to enjoy 3.21� (or 2.64�) more efficiency in directory storage

than conventional bit-tracking directories (or the best directory known so far, called

SCD) for a 64-core CMP under monotasking (or multitasking) workloads while

ensuring execution slowdowns to stay within 2.4 percent (or 3.3 percent).

Index Terms—Chip multi-processors, coherence protocols, directory storage,

hashing keys, multitasking, present-bit vectors

Ç

1 INTRODUCTION

A conventional directory-based chip multiprocessor (CMP) suffers
from excessive directory area overhead when its core count
increases, due to sharer tracking via present-bit vectors (PVs) main-
tained in the last level cache (LLC) of all cores [9]. The PV of each
LLC block in such a CMP has the length equal to the core count,
swiftly raising directory area overhead as the core count grows.
Various techniques have been considered to contain directory stor-
age for scalability improvement. Previous techniques all come at
the expense of limiting the concurrent private caching degree,
impeding performance due to network traffic elevation and/or
increased hardware complexity.

This work pursues a novel directory design for its area over-
head reduction, realized by two orthogonal mechanisms. First,
compressing PVs by dropping long “runs of zeros” commonly
present therein, so that resultant PVs can be kept in a hash-based,
set-associative table, called the sharer pattern table (SPT), with
reduced storage. Second, letting PVs with hashing conflicts be
transformed to their variations after sharer relinquishment for
hashing alternative SPT sets to lift table utilization. The width of
SPT is shrunk to accommodate both compressed PVs and regular
PVs uniformly. One unique feature of our design is that reducible
patterns can still maintain “exact” sharer trackings for low coher-
ent traffic and simple coherent logics. The proposed directory
design is featured with relinquishment coherence and compressed
sharer tracking (ReCoST) to exhibit superior directory efficiency.

Long runs of zeros frequently exist in PVs due chiefly to (1) a
given data block is often accessed by only a fraction of active
threads spawned from a task, limiting the program parallelism
inherently [7], yielding abundant zeros in its associated PV, and (2)
OS thread scheduling is domain-aware and affinity-cognizant (e.g.,

under the Linux kernel [5]). Threads spawned from a task in
sequence are usually assigned to neighboring cores for good execu-
tion performance [8]. Private caches in those scheduled cores may
hold shared data blocks simultaneously, but cores outside the dis-
patched domain never cache the data blocks, giving rise to long
runs of zeros in the PVs. Load balancing also help to keep those
threads of a given task within a domain, as the result of thread
affinity. The insight of PVs likely to possess long runs of zeros sig-
nifies plentiful PV width reduction opportunities to yield reducible
PVs, thus lowering directory area overhead. ReCoST also fits well
to the contemporary multitasked scheduling domain partition
approaches [7], [8], [9], [10], [11], [12], [13], [14] for directory stor-
age overhead reduction.

ReCoST also explores an ingenuitive feature to resolve hashing
conflicts. Upon a conflict, a PV is transformed into its variation by
relinquishing one shared copy, with the corresponding bit in the PV
reset. The PV variation is likely to hash an alternative SPT set. Hence,
ReCoST can attempt multiple candidate sets for a given PV via relin-
quishent coherence support to lift SPT utilization. Thisway avoids an
expensive provision for handling SPT overflows altogether.

ReCoST relies on two salient features to achieve superior direc-
tory storage efficiency, as follows:

^ Leverage the insight of scheduling. OS kernel domain-aware
and affinity-cognizant thread scheduling leads to abundant
long “runs of zeros” that can be dropped for storage over-
head savings while retaining “exact” sharer tracking for
simple coherent logics and low coherent traffic without
broadcasting.

^ Intelligent relinquishment coherence. This distint feature per-
mits our design to hash any PV to multiple SPT sets or
even to avoid taking any SPT entry altogether by encoding
a pattern, thus avoiding overflows.

We employ gem5 [3] with linux kernel to evaluate ReCoST under

PARSEC benchmarks extensively, measuring the results for a range

of core counts under bothmonotasking andmultitasking. Our evalu-

ation confirms that ReCoST under monotasked workloads on 64

cores enjoys 3.21� more directory storage efficiency than conven-

tional bit-map directories while ensuring execution performance

degradation to stay within 2.4 percent. Under multi-tasking work-

loads, simulation results reveal that the average execution slowdown

is no more than 3.3 percent (or 2.3 percent) for equal (or weighted)

core domain partitioning. When compared with the best directory

design known so far (called SCD [15]), ReCoST is 2.64� more direc-

tory storage-efficient. Furthermore, it maintains “exact” sharer track-

ing to enjoy markedly lower invalidation-induced traffic (by a factor

of up to 9.67� reduction for 64 cores) than its earlier inexact directory

compression counterpart, SPACE [19].

2 RELATED WORK

2.1 Directory Field Reduction

Directory storage reduction techniques fall into the following four
categories, outlined in sequence next.

(i) Compressed sharer tracking: A compressed directory structure
makes use of OS Distance-Aware Round-Robin (DARR)
page mapping to achieve sharer tracking exactly [17]. How-
ever, DARR trades hardware complexity for storage effi-
ciency. Inexact tracking allows each present bit or pointer to
denote a cluster of cores, curbing directory storage overhead,
irrespective of the core count. SPACE [19] achieved directory
storage reduction through deduplicating present-bit vectors
by keeping distinct vectors in a separate set-associative table.

� The authors are with the Center for Advanced Computer Studies, University of
Louisiana, Lafayette, LA 70504. E-mail: {wxs0569, tzeng}@louisiana.edu.

Manuscript received 30 Aug. 2016; revised 26 Feb. 2017; accepted 30 Mar. 2017. Date of
publication 24 Apr. 2017; date of current version 16 Oct. 2017.
Recommended for acceptance by R. F. DeMara.
For information on obtaining reprints of this article, please send e-mail to: reprints@ieee.
org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TC.2017.2698043

IEEE TRANSACTIONS ON COMPUTERS, VOL. 66, NO. 11, NOVEMBER 2017 1975

0018-9340� 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

It suffers from inexact representations which often lead to
unnecessarily high invalidation traffic. Imprecise tracking
does not track all cached blocks in the LLC directory pre-
cisely for storage reduction [1], [2], [11].

(ii) Hierarchical directory constructs: Hierarchical directory con-
structs for cache coherence fit naturally to hierarchical
architectures for large multiprocessors [10], but they
impose additional lookups on the critical path, hence hurt-
ing execution performance. The scalable coherence direc-
tory (SCD) [15] follows a virtual hierarchical constructs for
directory storage reduction by using multiple levels of
present-bit vector representations.

(iii) Inherent parallelism restriction: Coherence domain restriction
(CDR) [7] maintains the shared memory notion dynami-
cally per task over a small number of system cores to
bound directory area overhead. In fact, the restriction of
inherent parallelism [7] can benefit our ReCoST, with its
use of narrow SPT to hold reducible PVs for high storage
savings potentially.

(iv) Relaxed memory consistency: A cache coherence design upon
relaxed memory consistency model [13], [14], [15], [16],
[17], [18], dubbed TSO-CC [6], has done away with sharer
tracking. Such a design solely relys on self-invalidation
and detection of potential sharers to satisfy the TSO
memory consistency model lazily. However, TSO-CC
has to maintain block states for proper block self-invali-
dation upon a read miss [6], complicating cache control
logics.

2.2 Hash Collisions/Overflow Handling

A salient feature of ReCoST is the avoided provision of a hash table.
ReCoST has its ingenuity that solves the overflow issue brought
along by hashing. While many known directory structures employ
multiple hash functions to improve table utilization and lower table
overflows (for example, SCD [15] and others [12], [13], [14], [15],
[16], [17], [18], [19]), overflows can never be avoided entirely under
these structures. They usually either involve sharer eviction chains
with potentially excessive latencies or may resort to an expensive
provision for handling hash table overflows, such as fully associa-
tive TCAMs in HaRP [12]. Relying on sharer relinquishment, on the
other hand, ReCoST requires no overflowprovisionwhilemaintain-
ing exact PV (present-bit vector) representations.

3 PROPOSED APPROACH

This work exploits the insights of (1) kernel domain-aware and
affinity-cognizant scheduling for reducing PV width (without
keeping long runs of zeros) and (2) pinning down tasks in parti-
tioned domains for better performance. In addition, relinquish-
ment coherence is followed to boost hash-based SPT utilization in
two aspects under ReCoST: (1) locating alternative SPT sets for a
given PV which is hashed to a full set, and (2) enhancing the chance
of PV reduction by relinquishment coherence.

3.1 Motivation and Insights

3.1.1 Domain-Aware and Affinity-Cognizant Scheduling

CMPs cores are managed by the Linux kernel in a wrapped around
circulary linked-list style. Upon thread spawning, the scheduler is
responsible for finding one target core to run the newly spawned
thread [5]. It is done in a load-balancing fashion, resorting to a local
domain traversal algorithm to check the work queue of each core to
choose the relatively idle core to assign the thread. The load-bal-
ancer usually selects the nearest neighboring core or a core within
the same domain if its workload is under a threshold and bind the
thread to that core [5]. Therefore, threads are commonly assigned
to neighboring cores, within one domain.

From the aforementioned insights of spawn thread scheduling
and binding processes, it is clear that the data blocks of a given
application are never cached by cores outside the assigned domain,
resulting in long runs of zeros in their associated PVs to permit
compressed sharer tracking. Such insights are explored by ReCoST
for the first time to lift cache directory storage efficiency.

Fig. 1. Execution time results for two PARSEC benchmarks executed simulta-
neously on 64 cores, denoted by the ratios of those under domain partitioning
against those without partitioning, where benchmarks are detailed in Table 2.

Fig. 2. CMP with shared directory-based LLC, where A2 and SPT (in bold, solid boxes) are ReCoST-specific.

1976 IEEE TRANSACTIONS ON COMPUTERS, VOL. 66, NO. 11, NOVEMBER 2017

3.1.2 Multitasking and Execution Domain Partitioning

With a growing core count, CMPs may run multiple tasks at the
same time (under multitasking) routinely. Under multitasking
runs, it has been found that binding those tasks statically to cores or
restricting the program execution domain [7] results in perform-
nance speedups, because those binded threads of a task tend to
enjoy plentiful hot hits in private caches and in TLBs and to suffer
less from communication interference over the interconnect [7].
The results we observed reinforce that pinning separate tasks to
partitioned core domains is generally advantageous, as shown in
Fig. 1 for two concurrent banchmarks run on 64 cores. When the
spawned 64 threads of each benchmark are pinned to one domain
with 32 cores statically, an execution performance gain is evident
to range from 4.9 to 21 percent over the unpinned scenario (where
128 spawned threads of two benchmarks share 64 cores). This task
pindown by binding threads to core domains naturally yields abun-
dant reducible PVs.

Note that reducible occupancy never reaches 100 percent. This
is because OS kernel and housekeeping threads (e.g., PID sched-
uler, kthread, load-balancer, thread synchronizer, etc.) typically
involve all cores, thereby yielding non-reducible PVs for the data
blocks and instruction blocks of those threads. The directory thus
should efficiently accommodate both reducible PVs and non-
reducible PVs flexibly.

3.2 Proposed LLC Directory Structure

The overall LLC construct of a CMP with n cores is shown in Fig. 2,
where each core has private caches and one slice of shared LLC.
The set-associative SPT is fragmented into n slices. Each LLC cache
block has a pointer, which points to one SPT entry if the type bit ¼
“1”, as depicted in Fig. 3a. The pointer field contains up to two core
IDs, if its type bit ¼ “0”. One slice of the Access Array (A2) is
included in each core for enhancing hashing efficiency.

3.2.1 Reducible SPT

ReCoST employs one single function for hashing a PV to one SPT set.
SPT entries are structured to accommodate both reducible PVs and
regular (non-reducible) PVs efficiently, with their format depicted in
Fig. 3c. Each entry contains four fields: Type, PV Fraction (PVF), Posi-
tion, and Counter. An entry can be available for a reducible PV (RPV)
or a non-reducible PV,which takes an entry pair. Under the reduction
factor, g, equal to 2, the length of an RPV is n/2 for a CMP with n
cores. The starting position of the run of zeros for a stored RPVis
recorded in its associated Position field. Counter field keeps track of
the number of LLC data blocks which refer to this PV. In case the
counter reaches its largest representable value, no additional LLC
block may point to its associated PV any more, resorting to relin-
quishment coherence to search for another candidate set. An entry is
released and becomes availablewhen the associated counter equals 0.

Note that a PV is deemed wrap-around when specifying a run
of zeros. The two examples shown in Fig. 3c have their runs of

eight (8) zeros starting respectively at the positions of 3 and 10, for
n ¼ 16. Upon an insertion operation, a PV is transformed to an
RPV by dropping a run of n/2 zeros to enter an available entry in
the set hashed by the PV.

A regular PV takes up two entries, which are from separate sets
in the same SPT slice (resident to a core, see Fig. 3c) for better access
performance, with the head entry in a set, say Set SH, identified by
hashing the PV, and the tail entry in another set chosen randomly
from {ST j T ¼ Hþ1, Hþ2, . . .}. The head entry collapses both Posi-
tion and Counter fields to serve as a pointer for storing the displace-
ment of its paired tail entry. The tail entry combines both Position
and Counter fields to serve as a counter, as illustrated in Fig. 3c.

3.2.2 Access Array for Hashing Enhancement

ReCoST adopts a hinge-like fashion to flexibly associate patterns
with SPT sets through an access array (A2), as illustrated in Fig. 3b.
This fashion achieves exceedingly high SPT utilization. Like SPT,
A2 is sliced and distributed across all cores, for high scalability and
avoiding a potential performance bottleneck.

Access Array (A2) elements are initialized with nil. Every entry
is set to point to one SPT entry when hashing a PV to its corre-
sponding A2 entry in the first time. Every entry is reset if its corre-
sponding SPT set is freed. Let T and a be the total number of
entries and the set associated degree for SPT, respectively, then
SPT has L ¼ T/a sets. In practice, the size of A2 is chosen to be a
prime number, R, which is larger than L (the number of sets in
SPT), permitting dynmaically assigning sets to PVs. Such dynamic
assignment greately enhanced SPT utilization. A2 takes negligible
storage (dlgLeR bits in total) and can involve more than L elements
inexpensively to result in nearly full SPT utilization. By choosing
R > L is a cost-effective way to (1) lower the probability of exces-
sive conflict misses and (2) drop the mean number of PVs mapping
to each set. It naturally makes coherent inquiries spread more
evenly for better performance than what would otherwise be when
PVs are hashed to reference SPT sets directly.

The use of A2 does not lengthen read miss latencies and is off
critical path of PV read operations, because the data blocks
required by read misses that causing the associated PV bit altered
can be furnished to those cores without waiting for the resulted
SPT pointer change. This ensures the job execution slowdown on
CMP with the ReCoST directory construct is usually negligible as
detailed in Section 4.3.

3.3 Relinquishment Coherence

Under high SPT occupancy, a new PV is likely to hash to an
SPT set with its entries all taken, suffering from a conflict miss.
To deal with conflict misses and boost SPT utilization, ReCoST
employs relinquishment coherence for identifying other candi-
date sets which have available entries. A PV hashes variations
of its undersets to locate multiple candidate sets. Additionally,
relinquishment coherence can transform non-reducible PVs to
reducible ones by appropriately dropping certain existing

Fig. 3. (a) LLC directory format. (b) Hashing present-bit vector (P) of data block Db for SPT insertion, with table entry format shown in (c).

IEEE TRANSACTIONS ON COMPUTERS, VOL. 66, NO. 11, NOVEMBER 2017 1977

sharer(s), before they are stored in SPT to lift storage utiliza-
tion. This hashing overflow handling represents a unique and
desirable feature for ReCoST, because it eliminates the need of
a table provision (like extra fully-associative entries or a larger
table that needs rehashing all patterns in existence) for dealing
with table overflows.

ReCoST utilizes the same hash function keyed with variations
of a PV at hand to hash alternative candidate sets. Given a PV, say
P, let the variation of P obtained by setting the nonzero bit at the
ith position (with the leftmost bit as position 0) in P to “0” be
denoted by P1ð� NZiÞ. Hashing P1ð� NZiÞ is to yield one candi-
date set, which is likely to be different from the set determined by
hashing P. If there are b nonzero bits in P, as many as b-1 addi-
tional candidate sets can then be identified via hashing P1ð� NZiÞ
for 0� i < n. Given a resulting PV (with Core 6 being the new
sharer, denoted by NZ6) under a 16-core CMP, P ¼ 0010 0110 0100
0000, for example, three additional candidate sets are identified
by hashing P1ð� NZ2Þ ¼ 0000 0110 0100 0000; P1ð� NZ5Þ ¼ 0010
0010 0100 0000, and P1ð� NZ9Þ ¼ 0010 0110 0000 0000, besides the
fully-occupied set identified by hashing P itself. If insertion such
variation to candidate sets succeed, the corresponding data block
cached in L1 of core i is invalidated.

During application execution, it is observed that shared data sets
of a multi-threaded application are cached privately within
domains and often involved cores in an order of increasing (or
decreasing) IDs. Hence, the farthest non-zero bit in a run of “1” usu-
ally has held the associated block in its L1 for the longest time,
among all cores that cache the block. Relinquishing the block from
the private cache of that “farthest away” core is likely a desirable
choice. In addition, choosing the target core for relinquishment in
this way avoids “data thrashing”. Given P ¼ 0111 1110 0011 0010
(with the readmiss originated from Core 6, where Core 0 is denoted
by the leftmost bit), the first alternative candidate set explored is
given by the hash key of P1ð� NZ2Þ ¼ 0011 1110 0011 0010, pro-
vided that P and P1ð� NZ2Þ are hashed to different elements of A2.
The next alternative candidate set, if required, will be determined
by¼ P1ð� NZ3Þ ¼ 0111 1110 0011 0000.

4 EVALUATION AND RESULTS

Simulation evaluation has been conducted to assess ReCoST for
core counts n ¼ 64 using the PARSEC benchmark suite [3], with
performance results compared with those of its conventional coun-
terpart. ReCoST is also compared with earlier coherence directory
organizations, namely, SCD (in terms of storage efficiency) [15]
and SPACE (in terms of traffic and storage efficiency) [19].

4.1 Evaluation Methodology

Design Modeling. We use gem5 [3], an event-driven simulator, to
model our proposed ReCoST directory-based design. The simula-
tor runs in the full system mode, employing the Linux kernel 2.6,
for evaluating CMPs with up to 64 nodes that execute benchmarks
concurrently. The evaluation parameters assumed are listed in
Table 1.

Workloads. We scale PARSEC [4] benchmarks blackscholes (BL),
bodytrack (BT), canneal (CA), dedup (DU), ferret (FR), fluidani-
mate (FL), freqmine (FQ), streamcluster (SC), swaptions (SW), vips
(VP) and x264 inputset from simsmall to simlarge accordingly for
measuring our directory design. Every benchmark was set to
spwan 64 threads for 64-core CMPs.

All workloads (except vips) were run on the X86 Out-of-Order
cores, with vips on the ALPHA In-Order cores due to incomplete
dependency in X86 diskimage. Six benchmarks (i.e., DU, x264, FA,
BL, FA, BT) were selected to compose 7 mixes of workloads (listed
along Fig. 7’s X-axis and shown in the rightmost 8 bars), each com-
prising 2 benchmarks with similar ROI values. Every workload
mix involves 128 threads (with 64 for every benchmark).

Baseline Configuration. We model conventional directory config-
uration as our baseline, in which each LLC block is associated with
its home directory that tracks sharers using a present-bit vector,
with its size equal to the core count. As LLC is distributed across
64 nodes, the home directory is also distributed accordingly. An L1
read miss or replacement invokes a message to request the data in
its home LLC block, with a data reply sent back to the requesting
core. This baseline configuration exhibits ideal performance but
involves the largest directory storage than its counterparts.

ReCoST Latency Model and Configuration. An LLC block with the
core pointer format is subject to a latency of 2 cycles for pointer
encoding/decoding. If the directory field of an LLC block points to a
local SPT entry, the latency of such SPT slice interrogation is 2 cycles,
with 2 additional cycles required to get the paired entry in the same
slice for a non-reducible PV. On the other hand, interrogation for the
block pointer referring to a remote SPT slice involves an extra latency
of one round-trip over the NoC plus associated traffic due to
request/reply control messages. The upper bound of the total num-
ber of date blocks F ¼ 64� 64 KB=64B ¼ 216. Let SPT with F
entries be referred to as 100 percent coverage of L1 data blocks in all
cores together. In general, SPT can be sized with ��-coverage, for �� �
100%, to involve (���F) entries. SPT entries are set-associative, with
each set pointed by an A2 element, as shown in Fig. 3b. A2 is aug-
mented by a factor of r (meaning the number of A2 entries ¼ r�(the
number of SPT sets)) for better SPT utilization. Overall storage taken
by both SPT and A2 combined is listed in Table 2. In our evaluation,
we gather and compare the performance results of ReCoST under
two coverage levels, ��¼ 100% and ��¼ 75%.

TABLE 1
Parameters of the Evaluation System

Core 3 GHz, X86 Out-of-Order; 3 GHz,
ALPHA In-Order (explained in Section 4.1), 64 cores

L1 (Private) 32 KB I-Cache, 64 KB D-Cache, 2-way, 2-cycle
latency, pseudo_LRU

L2 (Shared LLC) 4 MB/core, fully shared, 64 tiles 16-way,
14-cycle latency

Protocol MESI, LLC inclusive, non-silent eviction
NoC 8�8 mesh, 2-cycle link latency
Memory 3 GB, 200-cycle latency

TABLE 2
A2 and SPT Cofiguration

Parameter �� ¼ 100% �� ¼ 75%
SPT sets (L) 4,043 3,011
SPT associativity (a) 16 16
bits/SPT entry 46 46
A2 entries (R) 4,919 3,761
Aug. factor (r) 1.22 1.24
bits/A2 entry 12 12
total 368 KB 276 KB

Fig. 4. Reducible occupancy in SPT for 64 cores under multitasking with threads
pinned to cores.

1978 IEEE TRANSACTIONS ON COMPUTERS, VOL. 66, NO. 11, NOVEMBER 2017

4.2 Comparative Evaluation

Reducible Occupancy. Reducible occupancy is defined as the ratio of
the number of reducible PVs to the total number of taken SPT
entries. Reducible PVs during multitasking runs dominate those
held in SPT, as illustrated in Fig. 4, where �� equals 100 percent.
Mean reducible occupancy over seven mixes of two benchmark
codes examined reaches 82 percent. The outcomes of reducible PVs
under monotasking can be found in [16].

Reducible occupancy under both monotasking and multitask-
ing is expected to increase as CMPs scale up, since limited applica-
tion parallelism and domain-aware OS scheduling will restrict the
sharers of a given LLC data block, irrespective of the core count.
However, reducible occupancy cannot reach 100 percent since
application threads always co-exist with OS kernel (e.g., kthread,
loadbalance, synchronization API etc., for hardware resource man-
agement) that typically involve all cores, thus yielding non-reduc-
ible PVs for those data blocks and instruction blocks pertinent to
the kernel threads.

4.2.1 Storage Overhead

ReCoST storage overhead is calculated under �� ¼ 100%. A2 takes
negligible storage (< 7.5 KB) to improve SPT utilization resulting
from better hash distribution, and total storage taken by A2 is
accounted for by lowering the number of SPT sets down from
4,096 to 4,043 under 100 percent coverage. Other parameters of A2

and SPT can be referred to Table 2.
Directory storage overhead is qualtified by the ratio of directory

bits per block to the block size for a range of core counts, with its
amounts listed in Table 3. As can be seen, directory storage over-
head for ReCoST is low, ranging from 2.9 percent for 16 cores to
6.5 percent for 1,024 cores. Storage overhead amounts for the earlier
2-D SCD configuration [15] are included in Table 3 for comparison.
ReCoST enjoys storage efficiency by more than 2.64 � (or 2.43 �Þ
over its SCD counterpart (which is about twice as efficient as the
hierarchical directory, see [15]) for 64 cores (or 1,024 cores). When
compared with its baseline counterpart, ReCoST enjoys 3.21�more
storage efficiency for 64 cores and 30:9� more efficiency for 1,024
cores.

It should be noted that ReCoST achieves far better storage effi-
ciency than SCD, despite that its every PV access involves simply
one or two direct SPT entry fetch(es) using a SPT pointer or plus
the pointer to its paired entry as opposed to 52 concurrent fetches
to interrogate 52 candidate entries in the tag Zcache under SCD.

Besides, ReCoST is found to exhibit negligible execution slowdown
with respect to its baseline.

ReCoST exhibits a slighterly smaller mean footprint per PV held
in SPT than its SPACE counterpart while have a much better execu-
tion time than SPACE. Total storage overhead of SPACE versus
that of ReCoST is listed in the last column of Table 3, revealing that
ReCoST exhibits higher storage efficiency as the core count rises (to
1.23 � for n ¼ 1024). Moreover, SPACE holding PVs inexactly rep-
resented often overwhelm directory induced coherent traffic signif-
icantly, as will be explained in the next section.

4.2.2 Coherence-Induced Traffic

To better understand how coherent-induced traffic and execution
slowdown are resulted from inexact tracking, we obtained total
coherence-induced traffic and execution time respectively under
SPACE and under ReCoST for 64 cores. Table 4 lists the ratio of the
coherent-induced message count under SPACE to that under
ReCoST. All benchmarks are seen to exhibit significant coherernt
message reduction (by a factor up to 9.67� for 64 cores), which trans-
forms to various execution efficiency gains (up to 3.45�) when com-
paired with those under SPACE. This is mainly due to inexact sharer
tracking under SPACE that leads to considerable coherent traffic (for
invalidation) unnecessarily. The inexact tracking degree worsens as
execution progresses when more and more bits of sharing patterns
are set to “1”, elevating excessive invalidation-induced messages for
long execution. In extreme cases, patterns with all nonzero bits exist
and they require broadcasting to all cores upon invalidation, yielding
coherent traffic surge (to 9.67� for vips (VP)). This excessive coherent
traffic interferswith other traffic, resulting inmarked execution slow-
downs (by up to 3.45�when compairedwith ReCoST).

In contrast, ReCoST always tracks sharers exactly, with SPT
entries reclaimed and reused more efficiently. A conflicting PV
either is hashed to an alternative candidate set after sharer relin-
quishment, or falls back to the core pointer format so as to avoid
the use of any SPT entry. ReCoST heightens the entry reusable
probability, while keeping the coherence-induced message count
low. Because of its salient exact tracking feature, ReCoST

TABLE 4
Coherent Traffic and Execution Time Ratios
of SPACE versus ReCoST Under 64 Cores

Bench-mark Coherent
Messages

Exec.
Time

Bench-
mark

Coherent
Messages

Exec.
Time

BL 1.18� 1.19� FQ 2.94� 1.77�
BT 1.76� 1.88� SC 1.39� 1.19�
CA 1.66� 1.24� SW 4.29� 2.7�
DU 1.40� 1.74� VP 9.67� 3.45�
FR 3.25� 2.13� x264 1.88� 1.62�
FA 1.63� 1.55� Mean 2.27� 1.86�

TABLE 3
Directory Storage Overhead Under 100 Percent Coverage

Cores ReCoST
storage

SCD
storage

SCD versus.
ReCoST

Baseline versus.
ReCoST

SPACE versus.
ReCoST

16 2.9% 10.3% 3.55� 1.41� �1.00�
64 4.2% 11.1% 2.64� 3.21� 1.02�
256 4.9% 12.5% 2.55� 10.4� 1.08�
1,024 6.5% 15.8% 2.43� 30.9� 1.23�

Fig. 5. Normalized execution times (w.r.t. those of the baseline) under monotask-
ing for 64 cores under �� ¼ 100 and 75 percent.

Fig. 6. Normalized NoC message breakdowns (w.r.t. those of the baseline shown
in the rightmost bar of each workload) under monotasking for 64 cores, with �� ¼
100% (or 75 percent) denoted in the leftmost (or middle) bar of each workload.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 66, NO. 11, NOVEMBER 2017 1979

maintians execution efficiency far better than SPACE (by an aver-
age of 1.86 �), as can be observed in Table 4.

4.3 ReCoST Performance

4.3.1 Monotasking Performance

Execution Time. The execution time results of monotasking for 64
cores under two �� values (100 and 75 percent) are depicted inside
the left box of Fig. 5. It is clear that the ReCoST directory with �� ¼
100% has negligible execution time degradation (by less than
1.3 percent) except canneal and swaptions. Canneal is known to
have non-deterministic simulation input characteristics inherently,
since its parallelization granularity is fine, its input data set is
unbounded, and its data sharing rate is high [4]. Swaptions is likely
to have its shared data stay in private caches very long, and any
promotion for reducible PVs could prematurely relinquish active
data blocks in private caches to cause slight performance degrada-
tion. If the SPT size is reduced by 25 percent (�� ¼ 75%), execution
time slowdowns are within 4.5 percent for all benchmarks, signify-
ing high directory storage efficiency that renders execution perfor-
mance insensitive to the SPT size.

Interestingly, three benchmarks (ferret, streamcluster, and x264)
enjoy faster execution (by 2.1, 4.7, and 2.6 percent, respectively; see
Fig. 5) under ReCoST than under its baseline counterpart for �� ¼
100%. They appear to benefit from relinquishment coherence,
which relinquishes “oldest” sharers and may help the L1 replace-
ment policy. Furthermore, these three benchmarks may not require
their cached blocks in L1 to stay very long, so that preinvalidating
L1 cached blocks heuristically under relinquishment coherence can
help the L1 replacement policy through checking consecutive mul-
tiple cores, causing their overall execution time drop slightly when
compared with those of the baseline.

NoC Traffic Results. Message count breakdowns is depicted in
Fig. 6. All the benchmarks examined by our simulation exibit negli-
gible traffic overhead, with the worst case of extra NoC traffic
under ReCoST contained within 15 percent for �� ¼ 100% (DU).
Extra traffic is due to relinquishment trials, slightly heightening
coherent traffic, when SPT table utilization is high. This insiginifi-
cant traffic overhead is in sharp contrast to that under SPACE,
where the amount of invalidation and ack messages can be up to
9.67 � higher (from Table 4), due to its inexact tracking.

Benchmarks with lighter sharing and coarser parallelism usu-
ally exhibit lower traffic overhead. Benchmarks possesses high
sharing and fine granularity (CA), experiencing more traffic over-
head, due to excessive request_control messages.

4.3.2 Multitasking Performance

Multitasked applications exhibit better performance when
pinned onto separate domains of cores, as explained in earlier
sections. Normalized execution time results for multitasking
workloads of 64 cores are depicted in Fig. 7. They reveal that the
ReCoST directory with �� ¼ 100% experiences negligible execu-
tion time degradation (by less than 2.5 percent) for all workload
mixes except that of FA þ BT, which faces some 3.3 percent deg-
radation. In contrast, the workload of BL þ x264 enjoys an exe-
cution speedup (of some 2 percent) likely due to (1) better cache
block replacement (by considering multiple neighboring cores)
and (2) constructive invaliddation of private cache blocks, that
result from relinquishment coherence as stated in Section 4.3.1.
When the coverage level drops to 75 percent, the execution time
of a given workload mix tends to grow, since fewer SPT entries
then cause more relinquishment coherence traffic that lengthens
its execution.

Execution performance is correlated to PV reducible occupancy
depicted in Fig. 4. The execution results of FA þ BT are worst
among all workload mixes shown in Fig. 7, with its reducible occu-
pancy (of 76 percent) lower than the average (of 86 percent),
according to Fig. 4. This is due to the reason that both FA and BT
employ and heavily invoke the same synchronization primitive
codes [4]. Hence, LLC blocks that hold such primitive codes are
likely to have non-reducible PVs as they are referred by cores in
both domains, rendering low reducible occupancy in SPT. On the
other hand, the mix of BL þ x264 exhibits the best execution perfor-
mance for �� ¼ 100%, with its reducible occupancy topped at
93 percent from Fig. 4.

The breakdowns of NoC traffic are depicted in Fig. 8, where the
results are normalized shown in the rightmost bar of each work-
load. It is apparent the total traffic increases are negligible under
the coverage level of 100 percent, except for the mix of DU þ x264
with a rise of some 8 percent. If the SPT size is shrinked to �� ¼ 75%,
traffic overhead is still contained except for the mix of BTþBL to

Fig. 8. Normalized NoC message breakdowns (w.r.t. those of the baseline shown
in the rightmost bar of each workload mix) under mutitasking with equal domain
partitioning for 64 cores, with �� ¼ 100% (or 75 percent) denoted in the leftmost (or
middle) bar of each workload.

Fig. 9. Normalized execution results (w.r.t. those of the baseline) under monotask-
ing for 16 cores and �� ¼ 100%.

Fig. 10. Normalized execution results (w.r.t. those of the baseline) under multitask-
ing for 16 cores and �� ¼ 100% (or 75 percent).

Fig. 7. Normalized execution times (w.r.t. those of the baseline) under multitasking
for 64 cores.

1980 IEEE TRANSACTIONS ON COMPUTERS, VOL. 66, NO. 11, NOVEMBER 2017

exhibit a noticeable surge (of 21 percent) due mostly to Request
_Control and Control messages caused by relinquishment coher-
ence. This is because data blocks under such a workload mix typi-
cally stay long in private caches, and any invalidation to those
cached blocks caused by relinquishment coherence prematurely is
to prompt extra access misses on those blocks subsequently,
involving Request_Control and Control messages.

4.3.3 Scalability Consideration

ReCoST benefitsmore to CMPswith larger core counts, due to higher
chances of long runs of zeros existing in PVs for storage efficiency
improvement. If the core count is low, storage overhead incurred for
pairing two SPT entries for holding one regular PV outweighs the
limited potential savings due to reducible PVs, negatively impacting
storage efficiency. Limited storage savings for a small CMP (e.g.,
with 16 or fewer cores) result from then scarce reducible PVs since
PARSEC benchmarks have adequate sharing and fine-grained paral-
lelism on such a CMP [4]. Meanwhile, directory access latency and
traffic penalties inherent to ReCoST are then translated to more
noticeable execution slowdowns (up to 18 percent for 16 cores), as
demonstrated in Fig. 9. ReCoST can be noticeably inferior to those of
its baseline counterpart in terms of execution performance for 16
cores, unlike what are depicted in Fig. 4, where the execution results
of 64 cores are found to suffer from little slowdowns. ReCoST is
clearly better suitable for a larger core count, exhibiting high scalabil-
ity. In the case of multitasking, ReCoST again has lighter execution
slowdowns for 64 cores than for 16 cores, as evidenced by contrasting
Fig. 4with Fig. 9.While slowdown ratios for 16 coreswith 100 percent
coverage under multitasking shown in Fig. 10 are up to 7.8 percent
(or 13.9 percent under �� ¼ 75%), the ratios are dropped down to no
more than 3.8 percent (or 4.2 percent) for 64 cores as depicted in
Fig. 7. ReCoST exhibits good scalability undermultitasking.

Although not evaluated, ReCoST with its core count higher than
64 is expected to have even less performance degradation while
delivering further improved storage efficiency. Under a larger
reduction factor (say, g ¼ 4 or larger), ReCoST fragments every PV
into g equal pieces, as outlined in Section 3.4, to effectively support
large-scale coherence. It benefits from the naturally restrained data
sharing degree, due to not only the inherent parallism, but also the
fine-grained domain-aware scheduling, which motivates this work.

5 CONCLUSION

This work has investigated an efficient on-chip CMP directory
design that is featured with relinquishment coherence and com-
pressed sharer tracking (ReCoST) for superior directory storage
efficiency. By dropping long runs of zeros in present-bit vectors
(PVs) and storing distinct PVs in a hash-based, set-associative
sharer pattern table (SPT), directory storage overhead is reduced.
Relinquishment coherence is adopted to boost SPT utilization
while ensuring exact sharer tracking. ReCoST for a CMP with 64
cores is 3.21 � more storage-efficient than the conventional bit-
tracking directory while ensuring negligible execution perfor-
mance slowdowns under all PARSEC benchmarks examined for
both monotasking and multitasking workloads. Compared with its
earlier directory compression counterpart called SPACE [19],
ReCoST achieves substantial reduction in invalidation-induced
traffic (by a factor up to 9.67 � for 64 cores) due to its lower NoC
message count. It is 2.64 �more directory storage-efficient than the
best previous directory design known as 2-D SCD [15], exhibiting
superior storage efficiency.

ACKNOWLEDGMENTS

This work was supported in part by US National Science Founda-
tion under Award Number: CCF-1423302.

REFERENCES

[1] M. Acacio, J. Gonz�alez, J. Garc�ıa, and J. Duato, “A new scalable directory
architecture for large-scale multiprocessors,” in Proc. 7th Int. Symp. High-
Performance Comput. Archit., Jan. 2001, pp. 97–106.

[2] A. Agarwal, et al., “An evaluation of directory schemes for cache
coherence,” in Proc. 15th Int. Symp. Comput. Archit., May.1988, pp. 280–289.

[3] N. Binkert, et al., “The gem5 simulator.” ACM SIGARCH Comput. Archit.
News, vol. 39, no. 2, pp. 1–7, 2011.

[4] C. Bienia, et al., “The PARSEC benchmark suite: Characterization and
architectural implications.” in Proc. 17th Int. Conf. Parallel Archit. Compila-
tion Techn., 2008, pp. 72–81.

[5] D. P. Bovet and M. Cesati, Understanding Linux Kernel, 3rd ed. Springfield,
MO, USA: O0Reilly, 2005, ch. 7, pp. 258–260.

[6] M. Elver and V. Nagarajan, “TSO-CC: Consistency directed cache coher-
ence for TSO,” in Proc. IEEE 20th Int. Symp. High Performance Comput.
Archit., Feb. 2014, pp. 165–176.

[7] Y. Fu, T. M. Nguyen, and D. Wentzlaff, “Coherence domain restriction on
large scale systems,” in Proc. 48th ACM/IEEE Int. Symp. Microarchitecture,
Dec. 2015, pp. 686–698.

[8] B. Lepers, V. Qu�ema, and A. Fedorova “Thread and memory placement on
NUMA systems: Asymmetry matters,” in Proc. USENIX Annu. Tech. Conf.,
Jul. 2015, pp. 277–289.

[9] M. Martin, M. Hill, and D. Sorin, “Why on-chip cache coherence is here to
stay,” Commun. ACM, vol. 55, pp. 78–89, Jul. 2012.

[10] M. Marty and M. Hill, “Virtual hierarchies,” IEEE Micro, vol. 28, no. 1,
pp. 99–109, Jan. 2008.

[11] S. Mukherjee and M. Hill, “An evaluation of directory protocols for
medium-scale shared-memory multiprocessors,” in Proc. 8th Int. Conf.
Supercomputing, Jul. 1994, pp. 64–74.

[12] F. Pong and N.-F. Tzeng, “HaRP: Rapid packet classification via hashing
round-down prefixes,” IEEE Trans. Parallel Distrib. Syst., vol. 22, no. 7,
pp. 1105–1119, Jul. 2011.

[13] A. Ros and S. Kaxiras, “Racer: TSO consistency via race detection,” in Proc.
49th IEEE/ACM Int. Symp. Microarchitecture, Oct. 2016, pp. 1–13.

[14] A. Ros and M. Acacio, “DASC-DIR: A low-overhead coherence directory
for many-core processors,” J. Supercomputing, vol. 71, no. 3, pp. 781–807,
Mar. 2015.

[15] D. Sanchez and C. Kozyrakis, “SCD: A scalable coherence directory with
flexible sharer set encoding,” in Proc. IEEE 18th Int. Symp. High Performance
Comput. Archit., Feb. 2012, pp. 1–12.

[16] W. Shu and N. Tzeng, “Relinquishment coherence for enhancing directory
efficiency in chip multiprocessors,” in Proc. 34th IEEE Int. Conf. Comput.
Des., Oct. 2016, pp. 372–375.

[17] R. Simoni and M. Horowitz, “Dynamic pointer allocation for scalable cache
coherence directories,” in Proc. Int. Symp. Shared Memory Multiprocessing,
Apr. 1991, pp. 72–81.

[18] X. Yu, et al., “Tardis 2.0: Optimized time traveling coherence for relaxed
consistency models,” in Proc. 25th Int. Conf. Parallel Archit. Compilation
Techn., 2016 , pp. 261–274.

[19] H. Zhao, A. Shriraman, and S. Dwarkadas, “SPACE: Sharing pattern-based
directory coherence for multicore scalability,” in Proc. 19th Int. Conf. Parallel
Archit. Compilation Techn., Oct. 2010, pp. 135–146.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 66, NO. 11, NOVEMBER 2017 1981

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

