
Effective Cost Reduction for Elastic Clouds under
Spot Instance Pricing Through Adaptive

Checkpointing
Itthichok Jangjaimon, Student Member, IEEE, and Nian-Feng Tzeng, Fellow, IEEE

Abstract—Cloud computing users are most concerned about the application turnaround time and the monetary cost involved. For lower
monetary costs, less expensive services, like spot instancesofferedbyAmazon, are oftenmadeavailable, albeit to their relatively frequent
resource unavailability that leads to on-going execution being evicted, thereby undercutting execution performance. Meanwhile,
multithreaded applicationsmay take advantage of elastic resource availability and cost fluctuation inherent to the systems. However, their
potential gains on utilizing spot instances would be contingent upon how they handle resource unavailability, calling for an effective
checkpointing. This work presents design and implementation of our enhanced adaptive incremental checkpointing (EAIC) for
multithreaded applications on the RaaS clouds under spot instance pricing. EAIC model takes into account spot instance revocation
events, besides hardware failures, for fast and accurately predicting the desirable points of time to take checkpoints so as to markedly
reduce the expected job turnaround time and the monetary cost. The experimental results from our established test bed on PARSEC
benchmarks under real spot instance price traces from Amazon EC2 show that EAIC lowers both the application turnaround time
and the monetary cost markedly (by up to 58% and 59%, respectively) in comparison to its recent checkpointing counterpart.

Index Terms—Adaptive checkpointing, delta compression, fault tolerance, incremental checkpointing, Markov models, RaaS clouds,
spot instances

1 INTRODUCTION

CLOUD service providers rent out their computing resources
to clients on-demand as needed, making elastic comput-

ing resources available to the public. With economies of scale,
cloud vendors sell computing resources at competing prices
for different levels. Amazon’s EC2 cloud, for example, offers
(1) guaranteed compute resources always ready to accommo-
date job execution under reserved instance pricing, (2) on-
demand compute resources, which may delay launching job
execution until they are available but on-going execution will
not be aborted, under on-demand pricing, and (3) bidden
compute resources, which abort execution upon price hikes
beyond the bidden amount, under spot instance pricing. Re-
sources acquiredunder (RI) pricinghavehigh-
est availability, while those under (SI) pricing are
least expensive, albeit to reduced availability. While SI pricing
gives clients with chances to rent more compute resources,
checkpointing is highly desired for such compute resources to
boost overall execution performance and productivity [23], due
to their relatively frequent resource unavailability resulting
from revocation, as explored lately. Checkpointing saves the
states of program execution to let it resume execution from the
last checkpoint upon hardware failures or SI revocation.

Cloud systems have been envisioned recently to evolve
toward the Resource-as-a-Service (RaaS) paradigm, where
physical resources (e.g., processors/cores, memory, I/O and
network bandwidth) are rented out separately for a fine-
grained period (e.g., in the order of seconds) each time [4].
The future RaaS cloud differs from current IaaS (Infrastruc-
ture-as-a-Service) clouds, which sell bundles of compute
resources as server-equivalent virtual machines for long
durations (ranging from 5 minutes to hours) at a time. It
offers clients with more flexibility in selecting and packing
hardware resources to better fit job execution needs, permit-
ting the client to acquire a networked multicore system with
the specifiednumber of nodes anddesignated link bandwidth
among them. Users freely setup their software stack, as
opposed to more restricted models like PaaS (Platform-as-
a-Service) and SaaS (Software-as-a-Service).

While multithreaded applications can better utilize hard-
ware resources present in a networked multicore system
by letting application threads run on available cores concur-
rently, it has been observed that such an application run is
more vulnerable to hardware failures [9], [15] since a single
failure occurred at any execution thread terminates the whole
program. This prompts an urgent need for effective check-
pointing, and the checkpointing benefits are expected to rise
on future RaaS clouds [4] with short rental periods, which
result in highly dynamic resource (un)availability.

This work introduces design and implementation of en-
hanced adaptive incremental checkpointing (EAIC), an effec-
tive checkpointing support for multithreaded programs run
on such a networked multicore system (NMS) acquired from
the RaaS cloud under SI pricing for a lower cost, subject to

• The authors are with Center for Advanced Computer Studies, the University
of Louisiana, Lafayette, LA 70503.
E-mail: {ixj0704, tzeng}@cacs.louisiana.edu.

Manuscript received 25 June 2013; revised 06Nov. 2013; accepted 13Nov. 2013.
Date of publication 02 Dec. 2013; date of current version 16 Jan. 2015.
Recommended for acceptance by K. Li.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TC.2013.225

396 IEEE TRANSACTIONS ON COMPUTERS, VOL. 64, NO. 2, FEBRUARY 2015

0018-9340 © 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

more resource unavailability. To lower the program turn-
around time and the monetary cost, EAIC relies on our
developed Markov model, which takes into account SI revo-
cation events, besides hardware failures, for fast prediction
with high accuracy on the desirable points of time for taking
checkpoints. Our model permits to quantify the costs and
expected turnaround times of multithreaded job execution
under a wide range of possible price and resource unavail-
ability ratios. EAIC leverages on the unique characteristics of
SI inRaaS clouds to arrive at effective incremental checkpoint-
ing inmultithreaded applicationswithout kernel patching for
high portability. Experimental results are obtained from our
established testbed, which resembles anNMS rented from the
RaaS cloud, revealing that EAIC yields lower application
turnaround times, smallest aggregate file sizes, and less
monetary costs than its prior counterparts. For PARSEC
benchmarks under 8-month real spot instance price traces
from Amazon EC2, EAIC is observed to shorten the applica-
tion turnaround time by up to 58% and to lower themonetary
cost by up to 59%, able to exhibit outcomes mostly close to
those of the ideal clairvoyant mechanism.

2 RELATED WORK

Checkpointing is aimed originally at fault tolerance for long-
running high performance computing (HPC) jobs [9], [15],
[18], [20], [21]. It is particularly useful for multithreaded and
MPI applications as they involve more hardware compo-
nents, thus subject to higher failure rates. Lately, checkpoint-
ing has been shown to help reduce costs and expected
runtimes on cloud systems under SI pricing [23], adopting
a model based on the probability density function of the
revocation events. However, as will be seen in Section 3.1,
the model in [23] fails to take into account the duration of a
revocation event, assuming unrealistically that the restart
process begins right after the revocation and hence unable
to be applied practically. On the other hand, our new adjusted
Markovmodel takes into account the revocation duration and
yields faster prediction with higher accuracy while involving
low complexity of O(1) in space and time. In general, our
model enables conventional fault-tolerant middlewares
(which rely on failure detection followed by task re-execution,
also common for MapReduce) to handle SI revocations effec-
tively without excessive task re-execution.

Hardware failure in large-scale systems was examined
during 1996-2005 to arrive at the conjecture that a failure
model with exponential distribution (like the Markov model)
was not the best [16]. Recent studies (during 2008-2012),
however, report high accuracy of the Markov model [9],
[15]. We adopt the Markov model in this work, as it allows
for fast predictionwith sufficient accuracy, deemed crucial for
our online checkpointing decision.

Checkpoint files may be taken at the program level [21] or
the system level (e.g., virtual machine snapshots [10], [17]),
and they can be transferred to remote storage in a networked
system to tolerate local failures, leading to multi-level check-
pointing [9], [15], [18]. Given expensive I/O operations to
remote storage, multi-level checkpointing calls for size reduc-
tion, via such techniques as incremental checkpointing [6], [10],
[17], [19], [20] and delta compression [13]. Incremental check-
pointing saves only those memory pages (or VM data chunks

[10], [17]) that are modified over the time interval after the
immediate prior checkpoint. Delta compression further
reduces checkpoint file sizes by differencing file contents.
Asynchronous checkpointing [15] flushes checkpoint files to
persistent storage concurrently with the process execution.
Adaptive checkpointing [21] takes checkpoints at desirable
points of time.

Aiming to reduce the application expected turnaround
time, adaptive incremental checkpointing (AIC) was pro-
posed earlier [8] for single-threadedprograms in the networked
multicore system (NMS). AIC incorporates aforementioned
techniques, with such unique features as employing more
aggressive compression specialized for checkpoint files and
exploiting latency variations caused by delta compression to
lower checkpointing overhead. In contrast, ourEAICemploys
the AIC framework for multithreaded programs under the SI
RaaS cloud, exhibiting distinct system characteristics. First,
unavailable events under spot instances have different behav-
ior from hardware failures in NMS, calling for a new model.
Second, an additional metric (monetary costs) is also of major
concern, besides the file sizes and execution times. Third,
while employing idle CPU cores for checkpointing is benefi-
cial underNMS (asdemonstrated recently [8]), there is usually
no unused virtual cores under the cloud environment, given
that the overall cost is proportionally to the total number of
virtual cores leased. Fortunately, our EAIC is so light-weighted
that its checkpointing process can be accommodated by
involved virtual cores meant for task execution without
noticeable performance degradation. Forth, our incremental
checkpointing for multithreaded applications without kernel
patching (for high portability) exhibits unique challenges,
calling for new technical solutions(in sharp contrast to prior
work found in [6], [10], [17], [19], [20]). In Section 5, the
experimental results for RaaS clouds confirm that our new
techniques lead to good performance. Our EAIC will also
benefit other cloud paradigms(IaaS, PaaS, and SaaS) facing
frequent resource revocation (e.g., IaaS under SI pricing [1]).
EAIC concurrent multi-level checkpointing is related to the
asynchronous model developed recently by Sato et al. [15],
with two main differences. First, EAIC is simplified (without
permutation of checkpoint levels) for its fast online decision.
Second, EAIC uniquely embodies SI revocation for clouds.
While Petri et al. studied the virtualization problem from a
cost-profit perspective [11], our EAIC can boost such profits
further.

Several recent virtual machine snapshot implementations
adopt one form of incremental checkpointing, possibly with
application-level checkpointing first, followed by VM disk
incremental checkpointing [10]. Our work is complementary
to that described in [10] as transparent application-level
checkpointing. Separately, redundancy elimination (RE) is
followed in [17] to send only non-redundant VM-image data
chunks over the network.

3 OPPORTUNITIES FOR ADAPTIVE CHECKPOINTING
IN RAAS CLOUDS

In this section, we present themodel and experimental results
exploring the potential of applying adaptive checkpointing
for multithreaded applications in Resource-as-a-Service
(RaaS) cloud systems, which could evolve as a new model

JANGJAIMON AND TZENG: EFFECTIVE COST REDUCTION FOR ELASTIC CLOUDS UNDER SPOT INSTANCE PRICING 397

of buying and selling cloud computing resources [4]. In the
RaaS cloud, providers sell physical resources (rather than
conventional sever-equivalent virtual machines) for a rela-
tively short duration (e.g., in the order of seconds) at a time.
Our adaptive checkpointing will benefit pronouncedly espe-
cially under spot instance purchasing [1] (which represents
the least expensive cost scenario to acquire Amazon’s EC2
cloud resources). We first lay the background for unavailabil-
ity events in cloud systems and develop the adjustedMarkov
model (AMM) that estimates the expected turnaround time of
a running application. The proposedmodel is comparedwith
the previous Yi’s model [23], showing its superior accuracy
with simpler calculation. Next, ourAMMwill be employed to
uncover potential benefits of checkpointing in RaaS clouds.
Finally, we present and discuss the experimental results of
adaptive checkpointing (with delta compression) for multi-
threaded programs.

3.1 Adjusted Markov Model (AMM)
Cloud providers usually offer their customers options to
purchase instances with variable levels of availability and
prices. For example, Amazon customers can purchase
Reserved Instances (RI), where a fixed amount of resources
(e.g., CPU, memory) are always allocated and guaranteed
beforehand. In this case, RI instancesmay still fail in the caseof
underlying hardware failures (albeit to very small likelihood).
For multithreaded applications, such a hardware failure rate
increases with a rising number of resources involved (e.g.,
physical CPU/cores, memory, etc.) because a failure in any of
these resourcesmay terminate all threads. Amazon also offers
Spot Instances (SI), allowing customers to bid for its unused
computational resources (usually with a lower price than that
of RI). The SI price changes dynamically, possibly according
to current market demands [23] or hidden reserved prices [3].
Amazon allocates resources for users whose bids are higher
than the current SI price. However, the resources are revoked
whenever the SI price hikes beyond the user bids. As a lower-
price option, SI exhibitsmore likelihood for a long running job
to be aborted resulting from SI revocation (besides hardware
failures), especially under future RaaS clouds whose physical
resources are sold for a relatively short duration at a time. RI
andSIgiveAmazonusers options to tradeoff performance and
operational costs. Under SI, an application run will be termi-
nated due to resource unavailability caused either by (1) actual
hardware failuresor (2) spotpricehikesabove thebiddenprice,
deemed far more likely than hardware failures. On the other
hand, RI is subject to resource unavailability caused only by
hardware failures. Once an execution run is terminated due
to a hardware failure, a substitute unit will be identified to
replace the failed hardware unit for the terminated execution to
resume its run using the latest checkpoint files. If the execution
is terminated due to SI price hikes, the application run will
resume later on, when RaaS cloud resources become available
as their SI prices drop, utilizing the last checkpoint files on the
newly obtained hardware resources. Effective checkpointing
is thus especially crucial for application execution on RaaS
clouds under SI pricing to minimize the cost involved, given
that resource unavailability is then far more likely.

Next, we detail the model for calculating expected turn-
around times and monetary costs when running multi-
threaded applications under SI or RI. Our analytical results

will later reveal the potential gains (in terms of lower costs
and application turnaround times) via adopting checkpoint-
ing for multithreaded tasks in RaaS cloud systems. Hard-
ware failures in large data centers and clouds are modeled
usually by probability distributions. Recent studies have
revealed that the exponential distribution yields high accu-
racy [9], [15]. In this work, we adopt the exponential distri-
bution with for unavailability to arrive at AMM, which
enjoys fast calculation, where is the rate of events that
terminate application runs due to resource unavailability. In
the case of RI, these events reflect hardware failures, whose
rate increases proportionally to the number physical
resources involved in job execution. For a high-performance
application, this number can be large and is expected to rise
going forward due to the limitation of a single CPU or core
(which tends to become smaller for better energy-efficiency,
thereby requiring a job to run on many nodes; e.g., on 1024
nodes as commonly found in the current production system
[9]). Under SI pricing, on the other hand, resource unavail-
ability which leads to execution abortion is more likely
caused by price hikes, besides relatively rare cases of hard-
ware failures. Given a programwith the base execution time
(i.e., runtime under no unavailability nor checkpointing),

running in the bidding time slot, the state-of-the-art
model for SI revocation predicts the expected turnaround
time of the program, , as [23]:

where is the restart time, and is the probability
density function of revocation occurrence in the time interval
of with user’s bid price and current SI price .
Yi et al. used the model to derive their checkpointing
schemes [23], whose time complexity and space complexity
equal and , respectively, where is the
number of bidding time slots for the learning period at the
beginning (e.g., number of minutes in 112-day learning
period) and is the number of possible SI prices with
granularity of interest (e.g., granularity). Computed
offline, the model assumes a constant restart time , implying
that the next bidding process always starts right after a
revocation. This assumption does not hold true in practical
situations, because the recovery process can be launched
only after the user wins the bid again (i.e., when the SI price
falls below the bid price).

As fast prediction is crucial for EAIC online checkpointing,
it calls for swift checkpoint decisions. To this end,wemodel SI
revocationwith amodified exponential distribution, to arrive
at low complexity of O(1) in time and space. Additionally, our
modelmerges seamlesslywith hardware failuremodeling for
fast calculation. Using the techniques developed earlier [8],
[9], [18] and based on the results of our analysis on the SI
8-month price trace on a production cloud system (studied in
[23]), we devise the adjusted Markov model (AMM), with its
revocation rate, , multiplied by the adjusting factor . The
devised model admits R, the average time duration when SI
price falls below the bid price after revocation. Similar to Yi’s
model, AMMobtains , , and from the learning period. Its

398 IEEE TRANSACTIONS ON COMPUTERS, VOL. 64, NO. 2, FEBRUARY 2015

space complexity equals O(1) since AMM keeps two para-
meters (and), with derived from and the observed
turnaround time. AMMdetails with EAIC checkpointingwill
be presented in Section 4.2.

For evaluation, we simulate 10,000 samples of AMM
and Yi’s model by distributing those samples over 8-month
period for Yi’s real price traces of 42 type instances (i.e.,

; see [23] for full
details) of the Amazon EC2 spot instance. For each sample,
themodel learns the price traces for a given period andmakes
a prediction for the expected turnaround time of the running
program, with the prediction error calculated from the
observed turnaround time of actual program execution after
that point. For Yi’s model, we resort to their 28-day, 56-day,
84-day, and 112-day learning periods (as required, see [23])
and presented the best results among all. For AMM, on the
other hand, the 1-day learning period is sufficient.

Figs. 1-3 demonstrate prediction errors of the AMMmodel
(unfilled bars) and Yi’s model (filled bars) for 10-minute
(10Min), 1-hour (1Hr), and 10-hour (10Hr) program runs on
42 ITs (i.e., instance types). The AMMmodel is seen to lower
prediction errors substantially in comparison to Yi’s model

across all ITs for awide range of program execution durations
examined. On an average, AMM yields 2.1x, 3.4x, 6x reduc-
tion in prediction errors when compared with Yi’s model [23]
for 10Min, 1Hr, and 10Hr program runs, respectively. The
reduction gap increases with longer execution since more
chances then exist for revocation, and each revocation under
the Yi’s model is assumed to have a constant restart time
inappropriately. For most ITs, AMM consistently exhibits
acceptable prediction errors, staying within 20%.

3.2 Checkpointing in RaaS Cloud Computing
This section employs AMM to uncover potential benefits of
checkpointing in RaaS clouds. Generally, the occurrence of
resource unavailability is far more likely under SI than under
RI. To quantify the rate of resource unavailability under SI,we
designate the unavailable factor (UF) as the ratio of resource
unavailability under SI pricing to that under RI pricing. Let
the Price Factor (PF) of SI refer to the ratio of the SI average
price to the mean RI price. It is then expected that applica-
tions run under SI pricing with

and face unavailable events
100 times more in comparison to run under RI pricing and

Fig. 1. Model prediction error for 10-minute program (10Min).

Fig. 2. Model prediction error for 1-hour program (1Hr).

Fig. 3. Model prediction error for 10-hour program (10Hr).

JANGJAIMON AND TZENG: EFFECTIVE COST REDUCTION FOR ELASTIC CLOUDS UNDER SPOT INSTANCE PRICING 399

involve one half of the costs. Without checkpointing, termi-
nated programs must restart from the beginning once hard-
ware resources become available. With checkpointing, the
aborted application runs resume execution from their latest
checkpoints.

Given resource unavailable parameters of UF and PF, we
use our AMM to predict the application expected runtimes
under RI and SI. Our first performance metric of interest is
the normalized expected turnaround time (), defined as

, where is the expected runtime from Markov
model, and equals the application runtime in the absence of
resource unavailability. The second metric is the normalized
monetary cost to finish executing the job, which is the total cost
normalized by the cost of running the same job for seconds
under RI without unavailability. In the following results, we
assume the base hardware failure rate, , to be (i.e.,
once in 4 months), which stands in the same magnitude as
observed in current data centers [9], [15]. In the case of
checkpointing, the system profiles are taken from those of
the Coastal cluster at Lawrence Livermore National Labora-
tory (LLNL) [9]. Given a failure rate under RI (which equals
the resource unavailable rate), the unavailable rate under its SI
counterpart is obtained bymultiplying it with UF. The check-
pointing results are calculated from our AMM augmented
with the static multi-level checkpointing model (dubbed the
Moody Model) available to the public [9]. These settings
represent multi-level checkpointing systems for high perfor-
mance applications. The application profiles for results dem-
onstrated inFig. 4 arebasedonblackscholes, one ofour target
benchmarks. Results for other benchmarks canbe obtained in a
similarway and are omitted due to space limitation. The system
size isdefinedas thenumberof nodesused for application runs.
In general, more running threads or MPI processes require
larger system sizes to yield desirable efficiency [9], [14]. How-
ever, the speedup generally is not linear and a larger system is
subject to a higher unavailable rate since one physical failure
aborts the whole program.

Fig. 4 illustrates normalized costs and of RI and SI
under and , for the system
size ranging from1 to 1000.UF is selected to equal 100 and 300
to reflect the fact that SI is far more likely to experience
resource unavailability due to spot price hikes on the RaaS
cloud, when compared with its RI counterpart that is subject
to only rare physical failures. PF ranges are chosen by in-
specting possible values from Amazon EC2 price pages [1].
Results in Fig. 4a show that SI has potentials to lower total
running costs for the system size up to 10 nodes (for)
and beyond (for) under , when

compared to RI, because the smaller costs under SI outweigh
higher chances of resource unavailability. If unavailability
becomes 3 times more common with under SI,
however, a lower cost results for a small size (up to 3 under

and up to 10 under , in comparison to its
RI counterpart. This is chiefly because the chance of resource
unavailability under SI then jumps, likely towipe out the gain
from the lower price of SI sooner.

Meanwhile, accompanying execution time outcomes ver-
sus the system size are depicted in Fig. 4b, where PF is
irrelevant under SI and thus only one single curve exists for
each UF value under SI. With and the system size
equal to 10, SI has a larger amount than its RI counter-
part (by some30%), as thepricepaid for its lower cost incurred
(by some 35% reduction with and some 84% reduc-
tion with) shown in Fig. 4a. In general, an inter-
esting tradeoff between the cost and the execution time is
observed under SI versus under RI. SI saves costs with
prolonged execution times, suitable for non-real-time and
cost-conscious applications. If the system size grows, SI may
become inferior in both the cost and the metrics (e.g.,
with some 30 nodes even under and),
since unavailability then grows large enough to negate any
potential gain from lower SI pricing, given that each termi-
nated run has to restart from the beginning of its execution in
the absence of checkpointing. Hence, checkpointing is indis-
pensable for moderate and large systems to address frequent
unavailability.We include the results of RI and SIwith known
multi-level checkpointing (called Moody Model [9]) in Fig. 4
for comparison.

Fig. 4a illustrates that SI with Moody checkpointing enjoys
substantial cost reduction for a wide range of system sizes (up
to 100), when compared to its RI counterpart, as contrasted
between the dashed curve with filled triangles and the solid
curve with hollow triangles. Meanwhile, the execution time
results () of SI and ofRIwithMoody checkpointing stand
close to one another for the system size up to 10, where SI
begins to see its values shoot up when the size rises
further, as demonstrated by the dashed curve with filled
triangles in Fig. 4b. Checkpointing benefits both SI and RI in
terms of the two performance metrics when compared with
theirnon-checkpointingcounterparts.Ascanbe found inFig. 4,
both cost and amounts are lower for all systemsizeswith
checkpointing than without checkpointing. TheMoodymodel
is of static non-compressionmulti-level checkpointing, with its
results included in Fig. 4.Next,we illustratemotivation for our
enhanced adaptive checkpointing algorithm called EAIC,
which will be shown to outperform Moody in Section 5.

Fig. 4. Normalized cost and under RI and SI pricing with and without Moody checkpointing for different UF, PF, and system sizes.

400 IEEE TRANSACTIONS ON COMPUTERS, VOL. 64, NO. 2, FEBRUARY 2015

3.3 Adaptive Checkpointing in Multithreaded
Applications

As outlined in Section 2, checkpointing to remote storage is
expensive but necessary for desirable reliability and execution
performance. As the file size affects the remote checkpoint
latency crucially, several size reduction techniques have been
considered, with incremental checkpointing and delta com-
pression widely treated [12], [13], [21]. To further reduce
checkpointing overheads, our EAIC takes checkpoints adap-
tively, dictated by the expected compressed file size (delta
size) and compression time (delta latency), which vary
dynamically in the course of job execution. While some
single-threaded applications have been found to exhibit high
dynamicity regarding their delta latency anddelta size during
execution [8], we wonder if multithreaded applications hold
similar dynamicity in latency and size. To this end, we profile
seven (7) target applications selected from the PARSEC 3.0
benchmark suite [5] (listed in Table 1). Details about selecting
these benchmarks are given in Section 5.1. The profiling
process and motivating results are outlined next.

It should be noted that since RaaS is deemed as a future
cloud service unavailable yet from existing providers [4], we
have established a testbed with networked multicore nodes,
which resemble physical resources possibly purchased by
clients fromRaaS clouds,with dedicatedCPU cores,memory,
disk space and I/O capacity, and networked link bandwidth.
The established testbed permits our investigation into EAIC
on networked multicore systems, expected to be made avail-
able from RaaS clouds.

The profile starts by running benchmarks on our testbed
for 30 seconds, atwhich the first full checkpoint is taken. After
that, the corresponding metrics of delta compression are
measured at every execution second during 60-second run-
ning interval. To measure the pure delta latency and delta
size, we halt the job execution until each delta compression is
finished. Fig. 5 illustrates the results of benchmark delta
latency and delta size normalized by their corresponding
means over the profiling interval, where only those of three
benchmarks (i.e., BS, FR, and SC) are included for clarity.
Results in Fig. 5 reveal that wide swings indeed exist for the
delta latency/size over time, favoring adaptive checkpoint-
ing. For example, FR exhibits 80% (or 19%) reduction in its
delta latency (or delta size) if its checkpoint is taken at the
second, instead of the second. On the other hand, BS delta
latency and delta size are almost constant. FR and BS are two
extreme cases among our 7 target benchmarks, in terms of

their latency and size fluctuations over time. Our EAIC aims
to choose most desirable checkpoint times effectively based
on real-time prediction of such delta latency and delta size
during job execution.

4 TOWARD EFFICIENT CHECKPOINTING IN CLOUDS

4.1 AIC Overview
Our EAIC is the enhanced version of the previous AIC [8],
which consists of multiple components orchestrating an
effective checkpointing mechanism. It is built upon the
Berkeley Lab Checkpoint/Restart (BLCR) library [7]. Once
an application compiled with the AIC library is in execution,
AIC will be awaken periodically to make checkpoint deci-
sions, based on the optimal checkpoint interval calculated
using the AIC Markov model. Such a multi-level checkpoint-
ing model requires to predict current checkpoint costs in-
volved (e.g., delta latency and delta size, if delta compression
is to be executed for a fast remote checkpoint). Without
profiling requirements, AIC accomplishes its cost prediction
by means of Stepwise Regression and Online Gradient Descent
Algorithm. Being a multi-level checkpointing scheme, AIC
takes its first-level checkpoint by performing an incremental
checkpoint to its local disk. AIC accelerates the higher-level
checkpoint (which commonly involves sending files over
a slow network) by applying special page-aligned delta
compression between consecutive checkpoint files before
sending them out. These operations are performed by a
separate process (i.e., checkpointing process) so as to let the
application process continue its execution without suspen-
sion (arriving at concurrent/asynchronous checkpointing). The
checkpointing process may be run at a dedicated CPU core
(which also accommodates checkpointing processes of all
other applications running within the same node, with one
such process for each application), or at any core which also
executes application processes (without involving any extra
CPU core to hold down the monetary cost). We evaluate
those two alternatives in Section 5.3.

4.2 EAIC Adjusted Markov Model
This section describes the new adjusted Markov model
(AMM) for EAIC adaptive checkpointing that incorporates
both hardware failures and spot instance revocation events.
As presented in Section 3.1, AMM enjoys significantly lower
prediction errors than previous models.

Our EAIC model handles SI revocation and three failure
levels () with two checkpoint types (and), as
illustrated in Fig. 6, where is the time to do actual work, is
the checkpoint time of failure level , is the recovery time
from , and is the average time since SI revocation until the
price falls below the user bid again. The transition edge
represents the possible events. In the multi-level model, the
checkpoint with level can recover all the failures with level

. Once recovered from the hardware failures (say, at State
or), the program must rerun any unsafe work (say, at

State or). For SI revocation (at State), we assume
that no hardware failure occurs since there is no SI hardware
allocated. Once the user wins bidding again, the worst case is
assumed to follow where the program must be recovered
from the highest-level checkpoint (i.e.,). In practice, the

TABLE 1
Target PARSEC Applications

JANGJAIMON AND TZENG: EFFECTIVE COST REDUCTION FOR ELASTIC CLOUDS UNDER SPOT INSTANCE PRICING 401

system may opportunistically employ a lower-level check-
point. The AMM adjusting factor makes it possible to add SI
states (State) to the AIC model [8] while retaining high
accuracy.

4.3 Incremental Checkpointing for Multithreaded
Applications

Incremental checkpointing has been introduced for years to
handle writing-only dirty pages effectively, with three imple-
mentation types, each with its benefits and drawbacks. The
first type is to keep track of modified pages inside the kernel
[6], [20]. It incurs low overhead but requires a patch for each
kernel release, hindering its usability. The second type avoids
modifying the kernel source by introducing a kernel library
which clears the write bits and inspects dirty bits in page
tables [19]. However, this method alters the kernel definition
of write bits, possibly causing incompatibility in the future.
The third type provides the library that uses mprotect

function to write-protect pages and to collect the dirty page
by the library itself once the program tries to write the page,
triggering a page fault event [12], [21]. It incurs overhead in
invoking the signal handler but does notmodify or expect any
definition of kernel data structures. We follow this last im-
plementation type for high compatibility and portability.

Despite its long existence, the mprotectmethod has never
been made to support multithreaded applications yet. The
main challenge lies in the C/C++ signal handler limitation,
which allows only asynchronous-safe functions (async-safe for
short) to be called inside. This makes it impossible to have a
straightforward way for updating the shared dirty page list
inside the page fault handler, because there is no thread
synchronization function that is async-safe! We worked
around this problem efficiently by introducing one EAIC
supporting thread (ST), to handle updating dirty page list and
tomake checkpoint decisions.Note that the page fault event is

synchronous, meaning that the event will be delivered to the
thread that causes it. To update the dirty page list, we allocated
one shared POSIX pipe for computing thread (CT) to inform ST
of any dirty page arrival. This method is based on the fact that
read and write functions (used for reads andwrites in the
shared pipe) are both async-safe and thread-safe. In addition,
one barrier is added inside the checkpoint kernel module to
drain all remaining dirty page information within the pipe
during the checkpoint process, thereby allowing to selectively
write only dirty pages to the checkpoint file. Such an extra
barrier incursminor overhead asmanybarriers already exist in
BLCR to ensure its correctness. Low overhead of EAIC will be
confirmed by measured results given in Section 5.2.

4.4 EAIC Enhancement for RaaS Clouds
Given hardware resources purchased from the RaaS cloud
under SI pricing are expected to causemore systemvariability
than a dedicatedmulti-core system, EAICmust adapt quickly
to frequent system changes.Webriefly outline EAIC enhance-
ments incorporated in our implementation. First, EAIC reacts
to network dynamicity by opportunistic network bandwidth
measurement with Exponential Smoothing for better accuracy.
Second, EAIC may selectively skip delta compression in the
case where doing so increases the total checkpoint latency.
Third, EAIC may send checkpoint files early during the
stepwise regression period, at the beginning of execution
when EAIC takes a few checkpoints (samples) to create its
prediction model. In the case of high unavailable rates or a
short execution time, adequate samplesmust be sent out even
before the prediction model is established.

5 PERFORMANCE EVALUATION

In this section, we first evaluate the performance of EAIC on
the real testbed by comparing it with (1) its static counterpart,
(2) its basic versionwithout cloudenhancement [8], and (3) the
Moodymodel [9] (recent staticmulti-level checkpointing). All
checkpointing methods are based on the Markov model and
are implemented on our experimental testbed, aimed to
resemble acquiring resources from RaaS clouds. The experi-
mental results reveal that our EAIC outperforms its counter-
parts with respect to , the aggregate file size, and the
monetary cost.

Next, we compare EAIC against various checkpointing
policies developed recently for spot instance byYi et al. in [23].Fig. 6. EAIC adjusted Markov model for spot instance.

Fig. 5. Normalizeddelta latencyanddelta size of threePARSECbenchmarks obtainedusingour test bedwhen taking thenext (incremental) checkpoint
at different points of time over a 60-second interval. The outcomes are normalized over respective benchmark’s latency/size means in the interval.

402 IEEE TRANSACTIONS ON COMPUTERS, VOL. 64, NO. 2, FEBRUARY 2015

In contrast to EAIC, Yi’s schemes are based on the probability
density function. We evaluate EAIC and Yi’s schemes via the
instrumentationprocess drivenby 8-month real price traces of
42 types of Amazon EC2 spot instances [23]. The evaluation
results reveal significant reduction in both the execution time
and monetary cost.

5.1 Experimental Setup
The testbed for EAIC performance evaluation contains a
cluster of Dell PowerEdge R610 nodes, with two quad-core
Xeon E5530 processors running at 2.4 GHz and having an
8-MB shared last-level cache per processor. Each testbed
contains 32 GB of physical memory and one 7200-RPM SATA
disk. Running CentOS 5.5 64-bit with 2.6.18 kernel, cluster
nodes are connected by a Gigabit switch. The testbed permits
four possible types ofmulti-level checkpointing implemented
as libraries for comparison:

Moody: periodically taking full checkpoints without del-
ta compression. The checkpoint interval is calculated
using the Moody multi-level model [9].
SIC (Static Incremental checkpointing with Compres-
sion): periodically taking incremental checkpoints, with
delta compression performed between two successive
checkpoints. The static EAIC model is used to calcu-
late its checkpoint interval. SIC represents the static
asynchronous checkpointing [15] equipped with delta
compression.
AIC: Basic AIC without cloud enhancement [8].
EAIC: our enhanced checkpointing mechanism.

Both Moody and SIC require average checkpoint latency
information beforehand to calculate their optimal checkpoint
intervals, while AIC and EAIC predicts such information
online during job execution. Delta compression and remote
checkpointing under SIC, AIC, and EAIC are conducted on a
separate process to avoid impacting application execution. A
cluster node performs level-2 () checkpoints by pushing
(possibly compressed) files to thememory of its partner node,
which is another cluster node pre-assigned deterministically.
In addition, a Lustre file system (version 2.1.3) has been set up
as level-3 () checkpoint storage with 90 MB/s aggregate
write bandwidth. Our testbed reflects a leased large-scale
system with fixed bandwidth per node. If the system
expands (e.g., with more compute nodes), total bandwidth
to the Lustre system grows accordingly; otherwise, the Lustre
system soon becomes excessively congested, rendering EAIC
more beneficial due to its better file size reduction.

Our target applications include seven (7) benchmarks from
the PARSEC 3.0 suite, which represents workloads for multi-
threaded programs with various emerging applications [5],
likely to be widely use in future RaaS clouds. We select our
targets among PARSEC benchmarks that have been ported to
OpenSolaris previously in [14], reflecting their high usability.
The facesim benchmark is dropped since it fails to include a
large input size needed for evaluation. When running
PARSEC benchmarks, option may be set to indicate the
minimum number of threads spawned for execution. Table 1
lists the exact number of threads created under a given
option for each benchmark, and the number is application-
dependent since it is based on how the program partitions
problem space [14]. The benchmarks are compiled with one
of four checkpointing libraries (Moody, SIC, AIC, EAIC)

separately for comparison, so that they would take check-
points either statically or adaptively on-the-fly during bench-
mark execution. For each checkpoint taken, we measured
incremental checkpoint latency, delta latency, delta size, and
time to transfer data to partner node and to Lustre (for and

checkpoints). With them, the performance metrics of inter-
est can then be calculated.

5.2 EAIC Failure-Free Overhead
We first set the base execution time as the benchmark execution
time without any failure or unavailability and in the absence
of checkpointing overhead (i.e., without any checkpointing).
This amount reflects the best-case runtime of the application.
Fig. 7 depicts the base execution times of target benchmarks
under different options when running on one node of our
testbed cluster. As increases, the benchmark spawns more
threads to speed up its execution. As uncovered in Fig. 7,
performance gains tend to level off for > under one node.

Fig. 8 plots EAIC overhead, defined as the percentage of
benchmark execution time increases under EAIC in the
absence of hardware failure and resource unavailability,
when compared with their base execution times, for various

options. It shows that EAIC overhead is fairly low (always
below 2.2%) for five benchmarks (i.e., BS, BT, FR, SC, SW). On
the other hand, CN and FA exhibit relatively higher EAIC
overheads (bounded by 6% and 10% respectively for CN and
FA at). Given that no failure is present, this overhead is
due to the EAIC supporting thread and its signal handler,
with its amounts likely to rise graduallywhen increases, as a
result of intensifying thread-related overhead activities (e.g.,
barriers or pipes).

5.3 EAIC Performance under Experimental Testbed
In this section, we compare EAIC against previous check-
pointing schemes that are also based on the Markov model.
We first present the results of EAIC and Moody with and
without extra dedicated CPU cores, discussing their benefits
and costs on cloud systems. We then compare EAIC with
other schemes.

Here, our performance metrics of interest include the
normalized expected turnaround time () (defined in Section
3.2), the aggregate file size (AFS), and the averagemonetary cost
per application run (). While reflects the expected
execution time, AFS indicates the mean size of the aggregate
file sent to storage, consuming extra space and bandwidth
which are usually charged separately under cloud systems
(e.g., for S3 storage and for

Fig. 7. Base execution time of target benchmarks under different
PARSEC options.

JANGJAIMON AND TZENG: EFFECTIVE COST REDUCTION FOR ELASTIC CLOUDS UNDER SPOT INSTANCE PRICING 403

transferring data to other machines across availability zones
[1]). Hence, it is desirable to keep and AFS as low as
possible (with lower-bounded by 1.0). and AFS
outcomes are calculated from corresponding checkpointing
models (i.e., the AMM model given in Section 4.2 for EAIC
andothermodels presented earlier [8], [9]). Themonetary cost
per application run, , are calculated by

where is the application base execution time, is the price
for SIAmazonEC2, is the price for S3 Storage, and (or)
equals the number of seconds in one hour (or month). Since
checkpoint files can be discarded once the application is
completed, AFS extra space is needed only during the time
span of application execution (and thus its cost is calculated as
the pro-rated monthly charge). The term inside the parenthe-
sis pair denotes the cost per second.Whenmultiplying it with
the actual runtime (in second), we obtain the monetary cost
per application run. In this section, we match the price of SI
Amazon EC2 with our testbed machine type, yielding

. The storage cost is assumed to equal that
of S3 storage (which provides the similar function and reli-
ability to our Lustre system), at . Given the
future RaaS cloud tends to revoke resources in fine time-
granularity (e.g., in the order of seconds [3]) and to spawn
more threads due to the limitation of a single core, we assume
a relatively high unavailable rate of to capture both
RI and SI pricing scenarios. The hardware failure type break-
downs are assumed to equal those observed in the Coastal
system at LLNL [8].

We evaluate EAIC under three running parameters, ,
Sharing Factor (SF), and , with defined as the number of
cluster nodes (allocatedbyRaaS) currently participating in job
execution. SF is the number of application instances launched
on each cluster node, while is the PARSEC option, which
indicates the number of running threads of each application
instance.

We first study how sensitive the dedicated extra core is to
checkpointing performance. In networkedmulticore systems,
idle cores usually exist and using them is encouraging for
increased resource utilization [8]. However, cloud systems
charge according to the number of virtual cores leased, with
more cores incurring a higher cost. As a result, having dedi-
cated (extra) cores for checkpointing may nullify potential
benefits even if quicker execution completion is resulted. If the

checkpointing task is light-weighted enough (like our EAIC),
those cores employed for regular thread execution may also
accommodate the checkpointing thread(s) without compro-
mising regular thread performance.

outcomes as a function of are illustrated in Fig. 9 for
EAIC and Moody with and without any extra core for check-
pointing for the BS benchmark under ,
and . In Figs. 9-12, we leave out some outliers
for clarity. Note that EAIC and EAIC_EC (indicating EAIC
with an extra core for checkpointing) both apply concurrent
checkpointing; while EAIC_EC pins all checkpointing pro-
cesses to the dedicated extra core, EAIC lets the checkpointing
processes run freely on application cores. Both EAIC and
EAIC_EC have the same number of application cores (i.e., 7),
where application threads run freely on those. Fig. 9 shows
that the outcomes of EAIC and EAIC_EC are closed,
and in some cases, EAIC even yields lower despite the
fact that it involves fewer cores (e.g., 7 cores versus 8 cores).
This counter-intuitive phenomenon is likely due to cache
misses, since the checkpointing processes under EAIC have
chances to run on the same cores as the computing threads,
lowering cache misses, whereas EAIC_EC experiences plen-
tiful cache misses on the dedicated core for the checkpointing
thread. Given similar performance levels under EAIC and
EAIC_EC, we conclude that EAIC checkpointing is light-
weighted and hence, it needs no extra cores and can be
accommodated by original cores provisioned for application
threads without compromising their execution performance.
On the other hand, Moody_EC yields noticeably lower
thanMoody, signifying thatMoody is not light-weighted and
hence enjoys faster execution with an extra core. Next, we
focus onhowconcurrent incremental checkpointing anddelta
compression applied in EAIC, AIC, and SIC improve
and AFS. Comparative discussion between EAIC, SIC, and
AIC will be given later.

Figs. 10a and 10b compare outcomes of EAIC, SIC,
AIC, and Moody for BS and SC benchmarks under ,

, and . For clarity, we include the
results of Moody and AIC only for

. Among 7 target benchmarks, BS (or SC)
exhibits the upper (or the lower) bound on reduction
yielded byEAIC over that ofMoody (i.e., 4% to 40%). This fact
reveals that EAIC benefits outweigh its overhead stated in
Section 5.2 under practical circumstances. The results also
show the effects of SF and on the value. With larger

and SF, resource contention inside computing nodes

Fig. 8. EAIC overheads (presented as the percentage of base execution
time) under failure-free scenario with different options.

Fig. 9. of BS benchmark under EAIC and Moody with and without
extra cores (EC) for different and SF values ().

404 IEEE TRANSACTIONS ON COMPUTERS, VOL. 64, NO. 2, FEBRUARY 2015

(e.g., cache, memory, and I/O) rises, leading to bigger .
However, we note that indicates how much higher the
expected execution time will be above its base execution time
(without any unavailable event). results in Fig. 10 are
normalized by their base execution times with corresponding
PARSEC options (as illustrated in Fig. 7). As the base
execution time of BS is longer at than at ,
the expected execution time of BS is still shorter at than
at .

TheAFS results are affected by markedly, as illustrated in
Fig. 11, where those under EAIC, SIC, AIC, and Moody
checkpointing are included for the same range of . Again,
BS (or SC) represents the upper (or the lower) bound for AFS
reduction due to EAIC when compared with Moody. BS is
seen to achieve AFS reduction by up to 88% (i.e., 8.3 x
reduction). A larger SF leads to increased AFS since more
checkpoint files are then sent over. On the other hand, a larger
decreases theAFS of every target benchmarkmonotonically

because of the following reasons. First, a multithreaded

application generates only one file (based onworkingmemory
contents) per checkpoint, regardless of the number of
threads, since all threads share the same memory address
space. Second, each target application takes up a similar
memory footprint, irrespective of its number of threads
involved, as desired for a scalable multithreaded program.
Apart from thread-specific information (such as register con-
tents and thread-execution status information of each thread),
the size of working data space is almost identical. Lastly, as
the base execution time at a large is short (see Fig. 7), the
course of benchmark execution involves only a small number
for checkpointing instances, requiring to send out a few files
in total.

Fig. 12 illustrates the monetary cost per application run,
where EAIC is seen to save the BS (or SC) execution cost by up
to 40% (or by). The total cost is dominated by the
execution time, since the relative prices of S3 storage is
currently far smaller (see Eq. 2). If the cloud starts to charge
for the use of data bandwidth from EC2 to the storage

Fig. 11. Aggregate file size of (a) the best, (b) the worst, and (c) the average benchmarks under EAIC, SIC, AIC, and Moody.

Fig. 12. Monetary costs per application run of (a) the best, (b) the worst, and (c) the average benchmarks under EAIC, SIC, AIC, and Moody.

Fig. 10. of (a) the best, (b) the worst, and (c) the average benchmarks under EAIC, SIC, AIC, and Moody for different and SF values ().

JANGJAIMON AND TZENG: EFFECTIVE COST REDUCTION FOR ELASTIC CLOUDS UNDER SPOT INSTANCE PRICING 405

(e.g., when storage is located away from the Amazon un-
availability zones [1] for more reliability), the AFS size could
markedly affect the overall cost.

While not shown in this article, a larger (the number of
nodes) leads to higher , bigger AFS, and a loftier cost,
causedbymore resource contention at remote storage (i.e., the
Lustre system).With the advantage of concurrent incremental
checkpointing and delta compression clearly demonstrated,
we next compare EAIC and SIC. As can be seen in Figs. 10a
and 11a, limited differences exist for the results of benchmark
BS under EAIC (denoted by solid curves) and under SIC
(denoted by dotted curves). It can be explained using the
profile depicted in Fig. 5, where the BS delta time and delta
size are almost constant. As a result, adaptive checkpointing
has negligible advantages over its static counterpart. Now, let
us consider SC, which has a stair-like variation (see Fig. 5).
EAIC makes use of such dynamicity to achieve marked AFS
reduction in comparison to SIC (e.g., up to 38% at).
Given its largest fluctuations over time among our 7 bench-
marks, FR is expected to outperform under EAIC, yielding
further reduction in (orAFS) byup to 6% (or 84%)when
comparedwith those under SIC. Since the results of FR under
SIC leave limited room for improvement (with no more than
13% improvementpossible at), EAIC thus exhibits a low

reduction level as expected. In fact, EAIC manages to
reduce by almost one half of that possible while yield-
ing significant AFS reduction (more than reduction) over
SIC. Given dominates the monetary cost, EAIC yields
limited cost reduction over SIC (by up to 4%), albeit being
consistently the lowest.

Next, we compare EAIC with AIC, the previous adaptive
mechanism aiming for the networked multicore system [8].
AIC results for () are
presented in Figs. 10-12, revealing that EAIC yields lower

than AIC and the reduction gap grows with a larger
(up to 31% for FR). As detailed in Section 4.4, EAIC does
selectively delta compression and early checkpoint transfer to
enjoy big reduction for a large (i.e., high resource
contention and short execution time). There is little difference
in AFS under EAIC and AIC, indicating negligible space
overhead due to AIC cloud enhancement. On the other hand,
themonetary cost is reduced byAIC greatly (by up to 31% for
FR), mainly due to reduction.

In conclusion, EAIC can greatly improve (up to
40%), AFS (up to), and the monetary cost (up to 40%),
over other Markov-model checkpointing schemes examined.
As a result, we compare only EAICperformancewith those of
Yi’s schemes in next evaluation driven by Amazon EC2 spot
instance price traces.

5.4 Instrumentation Evaluation Setup
We evaluate our proposed checkpointing scheme for 42 spot
instance types (ITs) of Amazon EC2 via an instrumentation
process. The 8-month real price traces collected by Yi et al. for
evaluating their checkpointing policies earlier [23] are
adopted to drive our instrumentation evaluation, with four
checkpointing schemes examined:

EAIC: our adaptive checkpointing mechanism;
A (SI adaptive checkpointing): making a checkpoint
decision based on the probability density function (PDF)
of SI revocation occurrence;

C (current-price-based adaptive checkpointing): making
a checkpoint decision based on PDF of SI revocation
occurrence of the current SI price;
IDEAL: the ideal checkpointing scheme, which check-
points right before each SI revocation with the size
reduction technique incorporated. Apart from informa-
tion about revocation times, IDEAL is assumed to know
the dynamic delta file size beforehand. While not attain-
able in practice, IDEAL serves as the baseline.

While other checkpointing schemes were considered in
Yi’s article [23], they are inferior to the two schemes (i.e., A and
C) examinedhere formost ITs. Specifically,Aprevails in 13 ITs,
andC in 26 ITs among 42 ITs [23]. Similarly, Yi’s other adaptive
schemes mentioned in [22] were outperformed by A and C
under the sevenbenchmarks listed inTable1and, thus, theyare
not included for comparison either.Hereinafter, the termof “Yi
schemes” refers to Schemes A and C described in [23]. Every
trace keeps one SI price perminute, as the price may change in
each minute, yielding the SI price granularity in minute.

Performancemetrics of interest are (1) job turnaround time
(definedas the elapsed time since the job starts until itfinishes,
including all SI revocations and checkpoint-restart over-
heads), and (2) the monetary cost per application run. Target
benchmarks employed for evaluation are those seven PAR-
SEC applications (see Table 1). Without loss of generality in
utilizing the 8-month real SI price traces to acquire resources
for benchmark execution, we assume one single user’s bid price
per instance type throughout benchmark execution, set it to be
the “median of the SI price range” recorded in the traces (like
[23]). More details about price selection can be found in [2]. In
order to cover SI price fluctuation over traces, ten initial time
points were chosen randomly for a given trace, with each
point specifying one subtrace to start at the initial time point
for deciding resource availability during benchmark execu-
tion by means of an instrumentation evaluation process. Our
instrumentation evaluation is detailed next.

For EAIC, instrumentation evaluation starts by obtaining
(SI revocation rate), (AMM adjusted parameter), and (the
average time duration when SI price falls below the bid price
after revocation) per subtrace (specified by one randomly
chosen initial time point) from a 1-day learning period. These
parameters are employed by EAIC to determine resource
availability during actual benchmark execution on our testbed
based on the associated subtrace for collecting its checkpoint-
ing data (i.e., the execution turnaround time and the monetary
cost).

By contrast, Yi schemes require the probability distribution
of SI revocation, obtained through one 28-day to 112-day
learning period per subtrace. Note that probability distribu-
tion information of SI revocation calls for a much longer
learning period than EAIC (which needs just 1-day learning).
Yi schemes also require the average checkpoint latency
beforehand, and such latency information is measured on
our testbed. Once the probability distribution and checkpoint
latency are determined per subtrace, Yi schemes are instru-
mented by the subtrace for resource availability over bench-
mark execution. As the baseline case, IDEAL employs both
dynamic checkpointing latencies (obtained by EAIC) and the
future prices (given in the associated subtrace) beforehand,
enabling it to checkpoint right before SI revocation with the
lowest checkpoint latency ideally.

406 IEEE TRANSACTIONS ON COMPUTERS, VOL. 64, NO. 2, FEBRUARY 2015

Given that PARSEC benchmarks complete their execution
in a few hundred seconds (shown in Fig. 7), our instrumenta-
tion process repeatedly executes every benchmark many
times (say 10 times) in order to make the total execution time
of each benchmark in hours necessary for Yi schemes (which
aimed at long-execution applications) and for adequate use of
its associated subtrace to determine resource availability. It
should be noted that hardware failure information is not
included in the traces, and hence, our instrumentation evalu-
ation did not consider hardware failures (which occur rarely).
Under current practice, Amazon spot instance charges the
user by its determined SI price (not user bid price) hourly. In
the case of revocation,Amazondoes not charge the last partial
hour. We adopt this pricing practice when calculating the
monetary cost. For each instance type and its corresponding
price trace, the collected turnaround time and the monetary
cost per application run are the averaged amounts of those
obtained following 10 subtraces defined by the 10 trace initial
time points chosen randomly.

5.5 Evaluation Results
Instrumentation evaluation has been conducted for all 42
Amazon EC2 instance types, with a representative result set
demonstrated in Fig. 13, where mean turnaround times and
monetary costs of EAIC, Yi schemes (A andC), and IDEAL for
all target benchmarks under Amazon EC2 Instance Type 34
(IT34 for short) are included. EAIC is seen to enjoy shorter
turnaround times(with up to 25% reduction) and smaller
monetary costs (lowered by up to 20%) than Yi schemes.
Furthermore, EAICperforms close to IDEAL (within 3.2%) for
all benchmarks, attaining nearly the best outcomes possible.

As might be expected, EAIC exhibits various degrees of
performance gains (in the mean turnaround time and the

monetary cost) over its Yi counterparts under different ITs.
While Fig. 13 shows a representative result set (under IT 25),
the performance gain potential of EAIC can be noticeably
higher, as depicted in Fig. 14,where EAIC is observed to enjoy
up to 37% (or 34%) reduction in the turnaround time (or
monetary cost) when compared with Yi counterparts for FA
benchmark under IT 28. At the same time, EAICmaintains its
performance results within 5% of those of IDEAL under such
an IT.

Fig. 15 depicts the reduction amounts of performance
metrics for EAIC over Scheme C (the most prevailing scheme
known so far [23]) under each benchmark on every IT. The
results are ordered along the y-axis by the growing turn-
around time reduction amount for Benchmark FA. For such a
benchmark, EAIC has the 3rd smallest (or the largest) reduc-
tion in the turnaround time under IT 36 (or IT 28), enjoying
some 5% (or 58%) reduction in the turnaround time. Corre-
spondingly, EAIC yields a decrease in the monetary cost by
some 5% (or 33%) under IT 36 (or IT 28) for the benchmark.
Overall, EAIC achieves turnaround time (or monetary cost)
reduction in the range of 0% to 58% (or 0% to 59%). EAIC is
seen to attain reduction more commonly and by larger
amounts in the turnaround time (for nearly 95% of the total
294 cases, which involve 42 ITs and 7 benchmarks) than in the
monetary cost. Such smaller monetary gains and fewer cases
for cost reduction are due directly to the fact that Amazon
does not charge for the last partial hour upon revoking SI
execution. Therefore, the cost under EAICmay be identical to
that under Yi Scheme C, even though EAIC shortens the
application turnaround times. When compared with Scheme
A (not shown in thefigure), EAICalso reduces the turnaround
time and the monetary cost markedly (by up to 45% and 34%,
respectively).

Fig. 14. Turnaround time and monetary cost per application run of seven benchmarks on Instance Type (IT) 25.

Fig. 13. Turnaround time and monetary cost per application run of seven benchmarks under EAIC, Yi schemes (A and C), and ideal checkpointing
(IDEAL) for Instance Type (IT) 34.

JANGJAIMON AND TZENG: EFFECTIVE COST REDUCTION FOR ELASTIC CLOUDS UNDER SPOT INSTANCE PRICING 407

In general, EAIC exhibits largermetric reduction on bench-
markswith a longer base execution time (e.g., FA, BS, and SC)
due to their higher chance of SI revocation to better benefit
from effective checkpointing. A larger reduction gap is
observed for the IT with more fluctuation in pricing. Under
such a circumstance, EAIC indeedmay reduce the application
turnaround time and the monetary cost significantly when
compared with previous schemes.

6 CONCLUSION

This paper has presented an efficient adaptive multi-level
checkpointing scheme (dubbed EAIC, enhanced adaptive
incremental checkpointing) for multithreaded applications
run on networked multicore systems acquired from the en-
visioned future RaaS (Resource-as-a-Service) cloud [4] under
spot instance (SI) pricing. We have developed the adjusted
Markov model (AMM), which accommodates SI revocations
and hardware failures to yield higher accuracy with lower
complexity in space and time than the previous well-known
model. According to our feasibility analysis, multi-level
checkpointing may reduce cost and expected runtime of
multithreaded applications under both fixed and bidden
cloud pricing (e.g., Reserved Instances and Spot Instances).
The nature of fluctuations in checkpointing overhead metrics
commonly existing in the course of execution, as observed in
our target multithreaded applications, reveals rich opportu-
nities for adaptive checkpointing to lower overhead, as
exploited by our EAIC. The design and implementation
details of EAIC are provided, with highlights on cloud en-
hancement for adaptive checkpointing. With EAIC support,
multithreaded applications enjoy shorter execution turn-
around times, substantially reduced aggregate checkpoint
file sizes, and lower monetary costs than under previous
Markov-model checkpointing schemes, according to our ex-
perimental results. In addition, our instrumentation evaluation
driven by real price traces of Amazon EC2 spot instances
confirms that EAIC can substantially reduce application
turnaround times and monetary costs under spot instances,
exhibiting near-ideal outcomes. EAIC is thus particularly
beneficial for future cloud systems. It will also benefit other
cloud paradigms (like IaaS) facing frequent resource revoca-
tion (e.g., SI pricing).

ACKNOWLEDGMENT

This work was supported in part by the U.S. National Science
Foundation under Award Number: CCF-0916451.

REFERENCES

[1] Amazon Web Services, “Amazon EC2 Pricing and Instance Pur-
chaseOptions,” http://aws.amazon.com/ec2/pricing/, accessed in
May 2013.

[2] A. Andrzejak, D. Kondo, and S. Yi, “Decision Model for Cloud
Computing under SLA Constraints,” Proc. 3rd IEEE Int’l Symp.
Modeling, Analysis & Simulation of Computer and Telecomm. Systems
(MASCOTS), pp. 257-266, 2010.

[3] O.A. Ben-Yehuda, M. Ben-Yehuda, A. Schuster, and D. Tsafrir,
“DeconstructingAmazonEC2 Spot Instance Pricing,”Proc. 3rd IEEE
Int’l Conf. Cloud Computing Technology and Science (CloudCom),
pp. 236-243, July 2010.

[4] O.A. Ben-Yehuda, M. Ben-Yehuda, A. Schuster, and D. Tsafrir,
“The Resource-as-a-Service (RaaS) Cloud,” Proc. 4th USENIX
Workshop Hot Topics in Cloud Computing (HotCloud’12), pp. 12-12,
June 2012.

[5] C. Bienia, S. Kumar, J.P. Singh, and K. Li, “The PARSEC Benchmark
Suite: Characterization and Architectural Implications,” Proc. 17th
Int’l Conf. Parallel Architectures and Compilation Techniques (PACT),
pp. 72-81, Oct. 2008.

[6] R. Gioiosa, J.C. Sancho, S. Jiang, and F. Petrini, “Transparent,
Incremental Checkpointing at Kernel Level: A Foundation for Fault
Tolerance for Parallel Computers,” Proc. IEEE/ACM Int’l Conf. High
Performance Computing, Networking, Storage, and Analysis (SC’05),
pp. 9-23, Nov. 2005.

[7] P.H. Hargrove and J.C. Duell, “Berkeley Lab Checkpoint/Restart
(BLCR) for Linux Clusters,” J. Physics: Conf. Series, vol. 46, pp. 494-
499, June 2006.

[8] I. Jangjaimon and N.-F. Tzeng, “Adaptive Incremental Checkpoint-
ing viaDeltaCompression forNetworkedMulticore Systems,”Proc.
IEEE Int’l Parallel & Distributed Processing Symp. (IPDPS), pp. 7-18,
May 2013.

[9] A. Moody, G. Bronevetsky, K. Mohror, and B.R. de Supinski,
“Design, Modeling, and Evaluation of a Scalable Multi-Level
Checkpointing System,” Proc. IEEE/ACM Int’l Conf. High Perfor-
mance Computing, Networking, Storage and Analysis (SC), pp. 1-11,
Nov. 2010.

[10] B. Nicolae and F. Cappello, “BlobCR: Efficient Checkpoint-Restart
for HPC Applications on IaaS Clouds Using Virtual Disk Image
Snapshots,” Proc. IEEE/ACM Int’l Conf. High Performance Computing,
Networking, Storage and Analysis (SC), pp. 1-12, Nov. 2011.

[11] I. Petri, O.F. Rana, Y. Regzui, and G.C. Silaghi, “Risk Assessment in
Service Provider Communities,” LNCS: Economics of Grids, Clouds,
Systems, and Services, vol. 7150, pp. 135-147, 2012.

[12] J.S. Plank, M. Beck, G. Kingsley, and K. Li, “Libckpt: Transparent
Checkpointing under Unix,” Proc. USENIX Ann. Technical Conf.,
pp. 213-224, Jan. 1995.

Fig. 15. Reduction percentage of turnaround time and monetary cost of 42 instance types obtained from the log, with their results illustrated in the
increasing order of the FA turnaround time reduction amount along the y-axis.

408 IEEE TRANSACTIONS ON COMPUTERS, VOL. 64, NO. 2, FEBRUARY 2015

[13] J.S. Plank, J. Xu, and R.H.B. Netzer, “Compressed Differences: An
Algorithm for Fast Incremental Checkpointing,” Univ. of Tennessee,
Technical Report CS-95-302, Aug. 1995.

[14] K.K. Pusukuri, R. Gupta, and L.N. Bhuyan, “Thread Reinforcer:
Dynamically Determining Number of Threads via OS Level Moni-
toring,” Proc. IEEE Intl’ Symp. Workload Characterization (IISWC),
pp. 116-125, Nov. 2011.

[15] K. Sato et al., “Design andModeling of a Non-Blocking Checkpoint-
ingSystem,”Proc. IEEE/ACMInt’l Conf.HighPerformanceComputing,
Networking, Storage and Analysis (SC), pp. 1-10, Nov. 2012.

[16] B. Schroeder and G.A. Gibson, “A Large-Scale Study of Failures in
High-Performance Computing Systems,” IEEE Trans. Dependable
and Secure Computing, vol. 7, pp. 337-350, Oct. 2010.

[17] C.P. Tang, T.Y. Wong, and P.P.C. Lee, “CloudVS: Enabling Version
Control for Virtual Machines in an Open-Source Cloud under
Commodity Settings,” Proc. IEEE Network Operations and Manage-
ment Symp. (NOMS), pp. 188-195, Apr. 2012.

[18] N.H. Vaidya, “A Case for Two-Level Recovery Schemes,” IEEE
Trans. Computers, vol. 47, no. 6, pp. 656-666, June 1998.

[19] M. Vasavada et al., “Comparing Different Approaches for Incremen-
tal Checkpointing: The Showdown,” Proc. Linux Symp., pp. 69-80,
June 2011.

[20] C. Wang, F. Mueller, C. Engelmann, and S.L. Scott, “Hybrid Check-
pointing for MPI Jobs in HPC Environments,” Proc. 16th IEEE Int’l
Conf. Parallel and Distributed Systems, pp. 524-533, Dec. 2010.

[21] S. Yi, J. Heo, Y. Cho, and J.Hong, “Adaptive Page-Level Incremental
Checkpointing Based on Expected Recovery Time,” Proc. ACM
Symp. Applied Computing (SAC), pp. 1472-1476, Apr. 2006.

[22] S. Yi, D. Kondo, and A. Andrzejak, “Reducing Costs of Spot
Instances via Checkpointing in the Amazon Elastic Compute
Cloud,” Proc. 3rd IEEE Int’l Conf. Cloud Computing (CLOUD),
pp. 236-243, July 2010.

[23] S. Yi, D. Kondo, and A. Andrzejak, “Monetary Cost-Aware
Checkpointing and Migration on Amazon Cloud Spot Instances,”
IEEE Trans. Service Computing, vol. 5, pp. 512-524, Nov. 2012.

Itthichok Jangjaimon received the BE degree in
computer engineering from Kasetsart University,
Bangkok, Thailand, in 2004, and the MS degree
in computer science from the University of Louisi-
ana, Lafayette, in 2008. From 2004 to 2006, he
worked on Grid infrastructure establishment at
Thai National Grid Center (TNGC), Thailand. He
was also a visiting researcher at National Institute
of Advanced Industrial Science and Technology
(AIST), Japan, in 2004. Currently, he is a PhD
candidate at Center for Advanced Computer

Studies (CACS), the University of Louisiana, Lafayette. His research
interests include peer-to-peer systems, cloud computing, and distributed
systems.

Nain-Feng Tzeng (M’86-SM’92-F’10) has been
with Center for Advanced Computer Studies,
the University of Louisiana, Lafayette, since
1987. His current research interest is in the areas
of computer communications and networks, high-
performance computer systems, and parallel and
distributed processing. He was on the editorial
board of the IEEE Transactions on Computers,
1994-1998, and on the editorial board of the IEEE
TransactionsonParallel andDistributedSystems,
1998-2001, and was elected to chair the Tech-

nical Committee on Distributed Processing, the IEEE Computer
Society, from 1999 to 2002. He is the recipient of the outstanding paper
award of the 10th International Conference on Distributed Computing
Systems, May 1990, and received the University Foundation Distin-
guished Professor Award in 1997.

▽ For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

JANGJAIMON AND TZENG: EFFECTIVE COST REDUCTION FOR ELASTIC CLOUDS UNDER SPOT INSTANCE PRICING 409

