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Abstract—We present a distinct longest prefix matching (LPM)
lookup scheme able to achieve exceedingly concise lookup ta-
bles (CoLT), suitable for scalable routers. Based on unified hash
tables for handling both IPv4 and IPv6 simultaneously, CoLT
excels over previous mechanisms in: 1) lower on-chip storage
for lookup tables; 2) simpler table formats to enjoy richer prefix
aggregation and easier implementation; and 3) most importantly,
deemed the only design able to accommodate both IPv4 and IPv6
addresses uniformly and effectively. As its hash tables permit
multiple possible buckets to hold each prefix (following a migra-
tion rule to avoid false positives altogether), CoLT exhibits the
best memory efficiency and can launch parallel search over tables
during every LPM lookup, involving fewer cycles per lookup
when on-chip memory is used to implement hash tables. With 16
(or 32) on-chip SRAM blocks clocked at 500 MHz (achievable in
today’s 65-nm technology), it takes 2 (or 1.6) cycles on average
to complete a lookup, yielding 250 (or 310 ) millions of packets
per second (MPPS) mean throughput. Being hash-oriented, CoLT
well supports incremental table updates, besides its high table
utilization and lookup throughput.

Index Terms—Border gateway routers, hashing functions, IPv4
and IPv6 addressing, longest prefix matching (LPM), next-hop ad-
dresses, prefix expansion and collapsing, routing tables, table load
balancing.

I. INTRODUCTION

I P ADDRESS lookups in routers follow longest prefix
matching (LPM) over their Border Gateway Pro-

tocol (BGP) tables. The address lookups can easily become
performance bottlenecks as table sizes or link data rates in-
crease, necessitating scalable LPM designs for future routers.
Given BGP tables in core routers have expanded at the pace
of 16%–18% annually for the past three years [3], [20] and
40-Gb/s line cards are currently available, scalable and rapid
LPM able to support effective incremental updates is most
desired. Expected 100 Gigabit Ethernet products will only
exacerbate demands on improving on-chip SRAM efficiency to
attain needed LPM throughput.
Currently, IPv4 prefixes dominate the BGP tables of In-

ternet core routers, with up to 340 K prefixes in a table.
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There are relatively fewer IPv6 prefixes (varying from 16 to
64 bits [1], [6]). However, it is envisaged to have large-scale
deployment of IPv6 in the future, with possibly hundreds of
thousands of IPv6 prefixes in a core router. IPv4 and IPv6 are
thus likely to coexist for years to come. While ternary content
addressable memory (TCAM) is fast and adopted commercially
for IPv4 LPM [17], it is expensive to scale and ineffective in
handling incremental table updates unless special mechanisms
are incorporated [29]. With long prefix length, IPv6 renders
TCAM especially unattractive due to a lofty transistor count
(of 16) per TCAM bit.
Various LPM techniques with different data structures and

search methods exist, commonly aiming to either reduce the
number of memory accesses during each lookup [7], [9],
[14], [25] or lower the memory requirement (so as to fit the
routing table into fast on-chip SRAM) [16]. In general, they
are based on either trie structures [7], [9], [14], [25] or prefix
hashing/filtering [5], [10], [16], [28]. Trie-based algorithms
may adopt compressed data structures and/or techniques (like
leaf pushing [7]) to save memory. Unfortunately, prefix table
updates are likely to invoke considerable trie rebuilding under
such algorithms. Lately, shape similarities among different
parts of the trie structure have been exploited [24] to reduce
memory usage markedly, albeit to complicated prefix insertion
upon incremental table updates. A recent study on parallel
IP lookups using multiple SRAM-based pipelines was car-
ried out [11], where a lookup throughput of 7.8 packets per
cycle (PPC) time was achieved with eight pipelines.
Bloom filters [4] and their variants have been proposed for

IP lookups [8], [22], [23]. Parallel hashing for multiple Bloom
filters realized by on-chip memory was considered [8], with one
filter assigned for one prefix length. As the prefix length distri-
bution is rather dynamic, a design with distributed and load-bal-
anced Bloom filters (DLB-BF) was introduced later [23]. How-
ever, DLB-BF calls for specialized hardware support and is sub-
ject to memory inefficiency concerns resulting from its many
small point-like SRAM modules.
With O(1) complexity for query and maintenance operations,

hash tables are popularly employed to accomplish efficient
networking functions, including IP lookups [5], [12], [13], [30].
Based on multiple hash functions, the -left hashing scheme [5]
bounds the maximum number of prefixes mapped into one
hash table. It permits all hashes and memory accesses to be
carried out in parallel for improved lookup performance. Later,
Peacock hashing aims to lower the on-chip memory require-
ment by storing the main hash table off-chip, while maintaining
a hierarchy of relatively small on-chip backup tables to serve
as collision buffers [13]. Its throughput, however, is governed
by off-chip memory characteristics and structure (such as the
latency and the numbers of read ports and banks). Recently, a
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hash-based IP lookup scheme using Bloom and fingerprint fil-
ters has been treated [30] to achieve O(1) pipelined throughput
of table query and maintenance operations, boosting memory
efficiency.
This paper pursues a prefix hash-based LPM scheme ca-

pable of concise lookup table (CoLT) construction for scalable
routers. Central to our CoLT design is on-chip hash tables
indexed using transformed prefixes [16], with a route prefix
enjoying multiple candidate table entries for load balancing to
achieve better table storage efficiency than any earlier LPM
design. Those candidate entries are identified by the prefix
and its round-down versions for possibly accommodating the
prefix. Correct LPM can be ensured if the prefix is migrated
(i.e., stored in an alternative table entry indexed by one of
its round-down versions, as detailed in Section III-B) by a
migration rule. CoLT targets both IPv4 and IPv6 addressing
with high memory efficiency. It is the first unified LPM de-
sign tailored for situations when both IPv4 and IPv6 coexist,
without overprovisioning table width to hold IPv4 prefixes
simply because longer IPv6 prefixes are present at the same
time. This is achieved nicely by using a separate hash table to
keep possible IPv6 prefix portions beyond bit 32, in addition
to the first hash table for all IPv4 prefixes and for the first
32-b portions of all IPv6 prefixes. Given that more deployment
of IPv6 is expected going forward, the coexistence of both IPv4
and IPv6 will continue for years, making this unified CoLT
design particularly attractive for swift IP lookups.
CoLT is shown to arrive at LPM throughput exceeding 310

millions of packets per second (MPPS) if SRAM operates at
500 MHz (common to 65-nm technology [23]). An earlier trie-
based designwith eight SRAMpipelines [11] is claimed to reach
7.8 PPC [11],1 but the design cannot handle incremental updates
efficiently (unlike CoLT). A recent scheme combines the hash
operation and the multibit-trie compressed structure to achieve
scalable LPM lookups [32]. It is evaluated using one FPGA
(Xilinx Virtex-4) board plus four SDRAM chips, incurring a
hardware accelerator.
Key Contributions: CoLT requires substantially less storage

than earlier LPM schemes [5], [7], [31] due to its support of the
following:
• prefix migration among hash buckets, letting a route prefix
installed in one of multiple candidate buckets to alleviate
adverse hash collisions;

• rich prefix aggregation and a simple lookup table format;
• most importantly, unified data structures for both IPv4 and
IPv6 to accommodate prefixes in a memory-efficient way
seamlessly.

The simple CoLT lookup table with prefix aggregation (e.g.,
and aggregated into one entry in Set 1) and prefix migra-

tion (i.e., migrated from Set to Set 0) was demonstrated
in Fig. 3. This rich aggregation lowers the lookup table size,
and prefix migration improves load balancing on table entries
to reduce hash collisions drastically (as can be found in Table I,
where the overflow probability is reduced from 17.59% down

1For comparison, the metric of PPC is used since it is independent of the
SRAM clock rate, which is determined by many complex factors, including
sense amplifiers. Per our experience, SRAM can get a realistic speed up to some
550 MHz under a typical 65-nm LP library (or 650 MHz under a faster 65-nm
G process with larger area and much higher power and leakage, e.g., see [33]).
It may not reach 1.33 GHz assumed in [11].

to 1.6% under the BGP Table of rrc00 and the set capacity of
4). With drastic reduction in the memory requirement, CoLT
lets major lookup data structures fit in on-chip SRAM for high
lookup throughput. The reduction amount is expected to grow
with larger BGP tables and/or more IPv6 prefixes involved
going forward.

II. BACKGROUND ON HASHING-BASED LPM

A. Prefix Hashing

Hashing prefixes to a flat data structure can achieve fast
lookups, particularly if the hash table is made concise enough
to fit in on-chip SRAM. A hash function usually takes bit strings
of fixed length to produce values over a predetermined range.
To mitigate hash collisions, the -left scheme uses multiple
hash functions to index a hash table that is split into disjoint
parts which together hold the prefixes, with one function for
indexing one part so that a prefix is put in the indexed bucket
with the lightest load [5], [27]. Similarly, multiple candidate
locations in a table for a prefix can be determined by multiple
hash functions, with the prefix put in the favored location (e.g.,
the least loaded one) among those candidates [2].
To deal with prefixes of variable lengths, an early solution

employed multiple (say, ) hash tables, one for each possible
prefix length, to hold a BGP table [28]. It incurred a high cost
for those hash tables. Later, the use of a counting Bloom filter
was pursued [22] (as an approximation filter) to support exact
matches using multiple hash functions keyed by prefixes ob-
tained from controlled prefix expansion (CPE) [26]. CPE trans-
forms prefixes of variable lengths to ones with predetermined
lengths by expanding a given prefix to one with the next longer,
predetermined length. Separately, a hash-based design for LPM,
called Chisel [10], was considered later. Chisel achieves near-
collision-free hashing (with a probability arbitrarily close to 1)
and handles prefixes with variable lengths by collapsing those
with length ( , a permissible length) into prefixes of length ,
before performing “leaf pushing” to expand every such col-
lapsed prefix to multiple prefixes of length (being the next
permissible length longer than ).

B. Prefix Transformation and Table Consolidation

Prefix transformation was first introduced in a superior
storage-efficiency (SUSE) design [16]. Under prefix trans-
formation, a prefix P of length (expressed by )
is treated as a polynomial, , of degree , i.e.,

defined over a Ga-
lois Field GF(2), so that its coefficients are either 0 or 1.
The algebra under GF(2) is modulo 2, namely, the exclu-
sive-or (XOR) operators. Given a primitive generator ,
we have , where is the
quotient and is the remainder. This transformed prefix
representation (TPR) permits us to characteristically differ-
entiate polynomial using and . In other words,
two distinct polynomials
and can be differentiated
by their unique pairs of quotients and remainders, i.e.,

iff [16].
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Fig. 1. CoLT design with a generator polynomial of degree under IPv4.

Given a hash table composed of buckets, it is sufficient
to keep only the quotient in the hash table, indexed by the
remainder for storage savings, where is the degree
of generator . With in Fig. 1, for example, TPR
lets a prefix P/24 (or P/30) yield an 8-b (or a 14-b) quotient and
a 16-b remainder. A hash table comprising 2 sets can then be
indexed by the remainder, with a corresponding quotient (in-
stead of the whole prefix) kept in an entry of the indexed set.
Storing transformed representations of prefixes (instead of
prefixes themselves) reduces the width of table entries, lowering
the overall table storage requirement.
A single set-associative hash table was employed previously

by SUSE to enhance storage efficiency and cut down the
number of hash probes (and tables) for LPM lookups [16]. Pre-
fixes in the routing table are rounded down to designated prefix
lengths (DPL) before employed as keys for the set-associative
hash function. Specifically, any prefix with
under a designated prefix length set, DPL: ,
where denotes a prefix length (also referred to as a tread), is
rounded down to before its hash value is calculated [16]
according to TPR described above.

III. CONCISE LOOKUP TABLE DESIGN

This section introduces a novel hash table-based design for
scalable routers under IPv4 addressing, with its extension to deal
with IPv6 addressing treated in Section V. The CoLT design
enjoys fewer hash overflows and achieves better hash storage
efficiency than its earlier SUSE counterpart [16] due to the ex-
istence of multiple hash buckets for each prefix and rich prefix
aggregation (as stated in key contributions of Section I). Being
the very first to employ unified hash tables for both IPv4 and
IPv6 addressing, CoLT exhibits better memory efficiency than
providing separate hash tables respectively for IPv4 and IPv6,
as described in Section V.

A. CoHa Table and LPM Lookups

As depicted in Fig. 1, one consolidated hash (CoHa) table
is adopted under CoLT to hold all prefixes of possible lengths.
To accommodate a routing table with up to 340 K prefixes
(in large core routers) now, the hash table is assumed to com-
prise 64 K sets (or interchangeably, buckets) for easy
explanation, with each set having four entries to tolerate hash
collisions. Totally, the CoHa table has 256 K entries. An entry

Fig. 2. Pseudocodes for prefix additions and LPMwith respect to prefix P under
CoLT.

of the CoHa table consists of four fields: 1) a 1-b field to record
if the entry holds a canonical after prefix transformation
(for ) or a signature after prefix migration (detailed in
Section III-B); 2) a 5-b indictor to specify the tread length of
the prefixes (ranging from P/8 to P/32) stored in the entry; 3) a
16-b canonical or a signature; 4) an 8-b map to record path
aggregation based on the values of round-off bits. Note that a
prefix is viewed as “migrated”when stored in an alternative (i.e.,
a colonial) table entry.
A new prefix is inserted in the CoHa table, after the prefix
with is rounded down to the nearest, shorter

tread and then corresponding and of
a P/32, comprising concatenated with 0’s, are
calculated, as listed in the “Add Route” pseudocode of Fig. 2.2

Each table entry holds a “(tread) length indicator” for plus

2Henceforth, for simplicity with respect to the context of hashing, we will use
the shorthand notation of to denote that the input to a hash function, P/32,
is derived by concatenating with 0’s.
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Fig. 3. Example CoHa table and NHA contents after admitting nine given pre-
fixes, with migrated from Set to its colony Set 0.

its rounded off bits, encoded by a round-off bitmap
of bits that enables route prefix aggregation to lower
storage. Clearly, the procedure for adding a prefix is straight-
forward, provided that the bucket indexed by still has a
free entry. When a route is withdrawn, its associated entry in
the hash table is identified in the same way as an insertion; the
identified entry then sets its availability bit.
Once a new entry is added to the hash table, the next-hop

data of the entry is then registered in next-hop storage
(off-chip RAM, as indicated in Fig. 1), which is disasso-
ciated from the hash table (following several earlier LPM
designs [10], [22], [23]). Under CoLT, all prefixes that lead
to the same rounded-down prefix can be stored in the same
hash table entry inside the bucket indexed by obtained
from the rounded-down prefix, attaining exceptional prefix
aggregation for concise lookup tables. Each CoHa table
entry is associated with one NHA map, which signifies one

-level binary trie whose leaves record NHA
data of all prefixes aggregated in the CoHa table entry, under
the designated prefix length set of DPL: ,
with . NHA map storage can be off-chip commodity
SRAM devices, unlike the CoHa table implemented by on-chip
SRAM for high lookup throughput. In the example design
of Fig. 1, each NHA entry denotes a three-level binary trie,
involving the fixed format of , where each
(for ) specifies one NHA. The initial value of the
binary trie is “– – – – – – – –,” representing the default NHA.
Once a prefix with its NHA being “ ” is rounded down with
the round-off bits of “10” before aggregated into a CoHa table
entry, its corresponding NHA map is set to “– – – – – –.”
For the example of Fig. 3, seven of nine prefixes map to the
same four-way bucket (i.e., Set ) in the CoHa table, following
TPR under . Among those
nine prefixes, , and are aggregated in one
CoHa table entry of the bucket, with its 16-b field storing the
quotient of . , and take other
entries, and would have to require a separate entry in

the same bucket, causing an overflow. If is allowed to
round down to , which may index alternative
buckets (e.g., Set 0) for the prefix, an overflow is avoided.
In this case, a digest (rather than ) of is stored in the
16-b field of the CoHa entry, signifying the result of migration
(when a prefix is held in an alternative set indexed by one
of its round-down prefixes , as detailed in Section III-B).
Meanwhile, and are aggregated in one entry of
Set 1, as illustrated in Fig. 3. This is a distinct advantage in
attained prefix aggregation over the earlier SUSE design [16].
Those aggregated prefixes stored in one table entry are used
to establish their corresponding next-hop address (NHA) map,
which contains a fixed format to permit direct accesses to NHA
information (without search) after an LPM lookup match.
With effective aggregation under CoLT, the total number of
hash table entries can be smaller than the number of prefixes
in the BGT table while achieving an extremely low spillover
probability, as will be demonstrated in Section IV.
The purpose of migration is to avoid situations that otherwise

could overflow indexed buckets, by allowing multiple candidate
buckets per prefix to achieve far better table utilization. It is not
meant for balancing the load over hash buckets since storing a
given prefix in any one of the candidate buckets has no effect on
lookup performance or accuracy. For CoLT with ,
the lookup of each arrival packet requires to index hash table
entries (using its destination IP address plus all round-down ver-
sions of the address) before choosing the one with the longest
length among those indexed entries, constituting the LPM res-
olution and involving the operational time complexity of O(1).
Search over those indexed entries in the CoHa table can be done
in parallel if multiple memory blocks are employed to construct
the table. Inherent to the nature of hash tables, the design sup-
ports incremental table updates effectively, well amenable to fu-
ture routers whose table dynamics are expected to rise continu-
ously. Note that prefixes of different lengths after being rounded
down may turn into the same key to the hash function. If a new
prefix is hashed to candidate sets that are all full, an overflow
happens, and the prefix is then stored in a separate overflow set
(like the victim cache) or TCAM.

B. Improving Hash Table Storage Efficiency

As depicted in Fig. 1, the CoHa table holds the transformed
representations of prefixes to reduce the total table size.
The CoHa table can be made more effective by permitting
more than one candidate bucket for a given rounded-down
prefix. It is achieved by employing a distinguished “transitive
property” pertaining to prefixes—namely, for any prefix

is a prefix of for all , arriving at CoLT. Due
to the transitive property of prefixes and the fact that the LPM
search algorithm of Fig. 2 looks for all tread lengths, a route
prefix , can be stored in any one of the
candidate sets indexed by round-down P (i.e.,
under DPL: ). We call the additional
buckets identified by , for all , the “colonies” (or
colonial buckets, colonial sets) for . With colonies likely to
exist in the CoHa table for a prefix, the likelihood of the prefix
unable to find an available entry drops dramatically, yielding
very high table storage efficiency.
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In Fig. 3, prefix is initially
rounded down to before mapped
to Set , causing an overflow. However, it is subsequently
migrated to Set 0, as shown in the figure. In fact, prefix
can be installed in any one of the hash buckets indexed
by Hash , under DPL of

. Due to the nature of LPM and P/8
being a prefix of P/12 (which in turn is a prefix of P/16 and
so on), the parallel search algorithm of Fig. 2 performed with
respect to all DPL tread lengths never reports a false negative
(i.e., mismatch), provided that is installed in one of its
colonies.
Lemma 1: Given any prefix of , denoted by for
, storing in any one of the hash buckets indexed by Hash
(P/32 for P equal to concatenatedwith s) will not
cause false negatives on , provided that all those indexed
buckets are searched during lookups.
Lemma 2: In general, the suffix appended to (to form

the hash key) in Lemma 1 can be any constant string ,
as long as the same suffix is used consistently during adding
routes and LPM lookups.
This way increases the capacity of a bucket and the degree

of tolerating hash collisions from 4 to , making the CoLT
behave like an set-associative design under ideal conditions
to enjoy exceeding storage efficiency. This property also suits
for LPM well because most prefixes in a routing table are of
length 24 or larger.
To take advantage of transitive prefixes, we need to handle

the transformed canonical prefix carefully. Because an in-
stalled route prefix P is identified by its and , but the
hash index is not explicitly stored in the CoHa table, P
can no longer be accurately located by and when P
moves to its colonies (say, from the bucket indexed by to
that by ). Fortunately, this issue can be dealt with using the
digest of P obtained according to the remainder under the target
colony of P, plus and , as follows. Consider the prefix

, which can be expressed by

under the (primitive) generator polynomial of
. Since the polynomial context is understood, we shall

drop the variable from the preceding expression henceforth
for clarity. As demonstrated by Fig. 4, when the bucket indexed
by is full, CoLT checks if the bucket for P/16 (following the
transitive property for P/24) has room to host P/24, utilizing

If is stored in the bucket indexed by no longer
correctly identify the original prefix P/24 during lookups. Math-
ematically, we want a digest stored in the bucket indexed by
instead, such that , and the di-
gest stored therein indicates P/24. The above equation means

, if it is divided by and is moved
to the right-hand side (under modulo 2 operations). As a result,
after migrating P/24 to the bucket indexed by , the (mi-
gration) bit of the table entry is turned on, with the length field
set to 24, as shown in Figs. 1 and 4. It signifies that the entry

Fig. 4. Example of LPM with respect to migrated prefixes in CoHa table.

keeps the digest of a P/24 prefix as a result of migration. For the
migrated entry to match with P/24 during lookups, every desti-
nation IP address and all its round-down prefixes following the
DPL treads need to calculate their ’s and ’s for search.
As an example, IP address 192.168.1.100 leads to search using

and . Thus, inspecting the bucket indexed
by discovers that a migrated P/24 entry exists. It calls for
validating if ( ,
involving simple XOR (addition) operations under GF(2). Since
every lookup calculates and for all DPL treads (see
LPM in Fig. 2), , and are thus available for fast val-
idation. Clearly, if is 0, we
have equal to , a lookup match with P/24.3

Clearly, CoLT performance is dictated by the chosen DPL
set, calling for simple examination of the routing tables to guide
DPL selection. It may follow a simple heuristic aiming to ensure
that distinct prefixes between two consecutive treads are abun-
dant. For example, with the current tread of , the next
tread is selected from candidates in such that
the number of unique prefixes (after rounded down to ) is max-
imal. The heuristic works as long as the hashing function gives
reasonably uniform distributions on unique keys, a prerequisite
for the hashing function.

C. Avoiding Ambiguity

The method detailed above is effective in balancing load dis-
tributions across the CoHa table by moving prefixes across hash
buckets, with their digests kept in target entries. However, am-
biguity could result, as discussed next.
Consider a route prefix of . Without load balancing

via migration, is stored (with
its kept) in the bucket indexed by . If is subse-
quently moved to a colony bucket (determined by a shorter
prefix , for and ), with the digest of

stored in Bucket . Our concern
here is whether the lookup of an arrival IP address may falsely
match Prefix stored in Buckets . To facilitate subse-
quent discussion, let us assume that is a 32-b route. The
bucket indexed by can be any colony indexed by a shorter
prefix . The ambiguity problem is ex-
plained as follows.
1) . For a shorter thread

, Colony is obtained by finding
the remainder , where refers to
the leading -bit prefix. Let denote the trailing

3When the CoHa table is sized properly to involve buckets, there is
no alias to , the index for the colony. Hence, the digest may comprise solely

and of the original prefix P/24.
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-bit suffix of . The polynomial representation
of can thus be expressed by .

2) Given an input IP address , the lookup
algorithm searches for buckets indexed by all treads, as
stated in Fig. 2.

3) If any ambiguity occurs, must result in the
same index and passed validation of the stored signature
for , signifying equal to 0.

To ensure that the digest is sufficient in uniquely character-
izing a moved prefix, the next rule is followed upon prefix mi-
gration, with its proof given in the Appendix.
Migration Rule: Given and a of degree

), a prefix , rounded down to the nearest tread
for , is allowed to migrate to its colony indexed by

round-down prefix , , provided that .
The impact of the prefix migration rule on table

storage efficiency is generally very light. Given
and a degree-16 , for

example, the rule means that prefixes P/32 may not migrate
to sets indexed by P/12 and P/8, but migration opportunities
are still abundant making use of , and .
Similarly, P/28 only lose one candidate set indexed by P/8.
This negligible impact due to the migration rule was confirmed
by our study using the real-world routing tables. Furthermore,
by design, more treads can be selected carefully and added to
DPL such that the opportunity for migration grows.

D. Next-Hop Accesses

Unlike the CoHa table (which is on the critical path dictating
the LPM lookup throughput), next-hop storage is fetched by hit
information via indexing directly without search. The current
CoLT architecture keeps a simple design where the access to
off-chip NHA storage is targeted, involving always one RAM
access per lookup and thus rendering the off-chip NHA storage
size not essential. We place little emphasis on engineering the
NHA part for perfection in this paper, as common to recent
LPM designs [10], [22], [23]. Nevertheless, it is easy to de-
vise a simple solution, such as one with base pointers aided by
bitmaps (or offset counters), similar to Lulea [7] and others [31],
for packing NHAs into a compact data structure, should NHA
storage conservation be necessary.
Given the LPM rate of hundreds of MPPS is desired, CoLT

can employ multiple banks of such today’s commodity memory
as Cypress’s QDR®II SRAMs (clocked up to 550 MHz [33])
to hold NHA information. With such a QDR®II SRAM, four
data beats are pumped to its output ports at both the rising and
the falling edges of each clock in two consecutive cycles, signi-
fying that one request can be accepted by the SRAM per two cy-
cles. As a result, NHA storage implemented by such SRAM de-
vices supports 275 M accesses/second per device. Given CoLT
makes targeted accesses to NHA (without search), two such
SRAMdevices permit up to 550M accesses per second, keeping
pace with the CoHa table’s lookup rate.

IV. EMPIRICAL EVALUATION

Empirical evaluation of the CoLT architecture and compar-
ison to other methods are made by using real (IPv4) routing

TABLE I
LOAD DISTRIBUTIONS FOR ROUTING TABLES UNDER COLT
WITH 64 K 4 ENTRIES (AMOUNTING TO 7.5 Mb), GIVEN

AND NUMBER OF PREFIXES.
RESULTS WITH MIGRATION ARE LISTED IN NEXT SHADED COLUMNS

tables collected for public use [3], [20]. Due to space limita-
tions, we demonstrate results for only a few large routing tables.
However, the outcomes of all tables available in [3] and [20]
dated between 2002 and 2011 follow the same trends, consis-
tent with those illustrated in this section. CoLT achieves a bal-
anced hashing load distribution, high lookup performance, and
exceeding memory efficiency due to small storage for concise
lookup tables with simple and unified formats.

A. Hash Load Distribution Aided by Migration

Table I displays the load distribution outcomes of the CoHa
table under BGP tables of rrc00, rrc01, and rrc14, each with
more than 340 K prefixes when obtained in January 2011. The
results are shown to demonstrate the effectiveness of CoLT’s
migration for handling hash overflows under large BGP tables.
The column of load refers to the number of taken entries
of a bucket in the CoHa table. Two sets of results, in terms
of the percentage of buckets (out of 64 K total buckets) each
with occupied entries, are listed for every prefix table, one for
the basic hash scheme and the other involving hash entry mi-
gration. Clearly, the load distributions can be quite unbalanced
without migration. With transitive prefix migration to move en-
tries from congested buckets to lightly loaded ones, CoLT ar-
rives at a balanced hash table with utilization as high as 72.9%.
Totally, there are about 1000 overflows (for each table), able
to be overcome by a spillover TCAM (as adopted by earlier
designs [10], [16], [23]).
DPL Selection to Better Load Distribution: It is expected

that more even hashing distribution and fewer overflows can
be achieved by selecting more suitable DPL treads. Consider

, which is a revision of the
DPL used to produce the results of Table I. As contains
one fewer tread and has wider stides, two conflicting effects
arise: more aggregation due to wider strides and less migra-
tion due to fewer colonies for a given prefix. More aggrega-
tion reduces the CoHa table load (to accommodate more pre-
fixes without overflows), whereas less migration hurts load bal-
ancing (to cause overflows sooner). With and the same
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TABLE II
COLT LOOKUP PERFORMANCE (IN CYCLES) UNDER RRC00

table size as specified in Fig. 1, for example, the CoHa table has
lower utilization of 51% under rrc00.
Based on prefix transitivity, CoLT permits supplementary

treads to be added to the DPL set freely for more prefix migra-
tion opportunities, provided that buckets indexed by the added
threads are also searched during LPM lookup (see Lemma 1).
This way of activating treads adaptively is deemed as a unique
feature of CoLT, able to cut down overflows considerably. As
an example, adding an extra tread of 16 to lowers the
number of overflow down to 1, under the largest BGP table,
rrc00, at the expense of eight hash probes per LPM lookup (in
contrast to seven probes under ). All results reported in
the rest of this article are based on for greater
prefix migration during table installation.

B. Lookup Performance

Our measurements of lookup performance are done by sim-
ulating the CoLT design under realistic hardware configura-
tions. Specifically, the CoLT table is assumed to be realized by
on-chip SRAM blocks, which allow parallel issues of eight

(i.e., ) hash probes. Furthermore, a memory block was
assumed to be 120 bits ( b, see Fig. 1) wide so that all
four elements in a bucket can be reported at once. Each LPM
lookup thus involves an access of bits totally from
the CoHa table. Because packet traces for those these prefix ta-
bles are not available to the public, we conducted evaluation by
randomly choosing an address and/or a prefix from the prefix
table to generate lookup addresses. When the tests were gener-
ated from a prefix table, e.g., selecting prefix P/16 (denoted by
a1.a2.0.0) from the table, test IP addresses were obtained by re-
placing don’t-care bits (i.e., 0.0 in P/16) with arbitrary bit strings
a3.a4 to yield a1.a2.a3.a4. Thus, for each given prefix in the
studied routing tables, a number of IP lookup addresses would
find their LPM results to be the given prefix. Totally, hundreds
of millions of lookup packets were generated for evaluation.
Table II depicts lookup performance by CoLT under rrc00

for different configurations, where the hash buckets are inter-
leaved in the memory blocks, i.e., Bucket is in the th
line of the ( modulo ) block. Results for single-port and
dual-port SRAM are listed separately. For single-port SRAMs,
conflicting accesses to the same block must be serialized, with
the worst case taking eight cycles to fetch all needed contents.
On the other hand, accesses to different modules are served con-
currently. As the number of SRAM blocks increases, the av-
erage number of cycles per LPM lookup dwindles. On average,
it takes 2 (or 1.6) cycles to complete a lookup under 16 (or
32) blocks. With today’s technology, on-chip SRAM can clock
at 500 MHz (as stated in [23] and well adopted in industry),

yielding a lookup rate of 250 (or 310 ) MPPS, adequate to sup-
port 16 10-G links practically. In the worst case, CoLT takes
7 (or 6) cycles for a lookup under 16 (or 32) blocks, exhibiting
a lookup rate of 71 (or 83 ) MPPS.
Note that the foregoing analysis is solely from the perspective

of serializing LPM requests. In practice, requests can be sched-
uled from multiple interfaces to realize the maximum lookup
bandwidth offered by the exemplary memory system. Given a
scheduler to harmonize multiple requests in every cycle, the de-
sign with memory blocks can serve requests from multiple
interfaces simultaneously. For example, CoLT with eight inter-
faces and with 16 SRAM blocks of total 7.5 Mb may deliver
one lookup per cycle on average, which means a sustainable
500-MPPS rate for an ideal implementation.
Table II also shows lookup performance for dual-port

SRAMs to reflect the impact of memory collisions. While
dual-port SRAMs may tolerate single structural collisions to
reach higher lookup throughput, they can be unfortunately
twice as large as their single-port counterparts. Hence, their
deployment should be carefully evaluated.

C. Comparison and Discussion

This section compares CoLT to three other best representative
methods under the largest BGP table, rrc00.
1) Result Comparison: -left hashing [5] employs CPE [26],

which expands prefix to the next longer tread
(with and ). Under CPE, every tread
length is associated with a hash table of multiple segments,
each fetched using a separate hash function [5]. To add a
route prefix, -left CPE starts with finding a free entry in
the first segment; upon collisions, it percolates the prefix to
the next segments in order. The prefix is installed in a free
bucket of the smallest numbered segment. We implemented
-left CPE hashing for evaluation, with the following details:
1) is used, involving eight
hash tables, which are four-way set-associative; 2) a spillover
TCAM with the capacity of one hundred entries exists to keep
overflows is assumed; 3) the hash table for prefixes (after
CPE) of length equal to is sized by a dilation factor , i.e.,
has ( number of prefixes ) entries; and 4) each hash table
is evenly divided into segments, governed by independent
hash functions. It is found from our implemented evaluation
that at least three hash functions are needed to contain over-
flows, calling for a total of 24 memory blocks to
permit full parallel hash probes simultaneously. As a result,
-left CPE hashing takes 12.8 Mb of memory to realize its
hash lookup tables, representing some 70% larger storage than
provisioned for CoLT (7.5 Mb).
CoLT is also compared to the Lulea tries [7] and the Tree

Bitmap scheme [31] with compressed trie data structures, which
need to pack data objects (e.g., trie/tree nodes) in consecutive
memory locations for lowering memory overhead caused by
pointers. With such a rigid data structure at the cost of diffi-
culty in supporting incremental updates, nevertheless the Lulea
trie (or Tree Bitmap) still takes 13.8 Mb (or 10.7 Mb) to accom-
modate the rrc00 table (with their NHA storage also excluded
for fair comparison). Under CoLT, the CoHa lookup table is
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Fig. 5. Growth in prefix tables and corresponding CoHa hash table size to contain overflows.

provisioned with 7.5 Mb on-chip SRAM (with 3.6 Mb actu-
ally taken). Hence, CoLT calls for much smaller storage for its
lookup table than its Lulea trie and Tree Bitmap counterparts.
2) Further Discussion: From an engineering perspective,

CoLT is easier to be made effective by changing the DPL set
adaptively for different prefix distributions while keeping the
same uniform CoHa table structure as demonstrated in Fig. 1.
Treads can also be turned on dynamically (to act like adding
them to the DPL set) for better load balancing. Conversely,
-left hashing cannot be made as uniform and storage-efficient
as CoLT across various routing tables.
For a small single-port SRAM, the overhead area of its con-

trol logics, address decoders, and sense amplifiers dominates
(taking up 85% for a 64 64-b SRAM) even under 65-nm tech-
nology, with the overhead area to rise further under 40 nm and/or
multiport memory modules. Therefore, the design with a simple
and regular structure comprising a small number of large SRAM
modules (like CoLT) is far more area-efficient than its -left
hashing counterpart, which involves many small SRAM units
of different sizes. The simple CoHa table structure also leads
to fast and straightforward memory management, unlike com-
plex management expected for the Lulea and the Tree Bitmap
schemes. Being hash-based to incur O(1) time for adding or
deleting a route, CoLT well supports incremental route updates,
in sharp contrast to any trie-oriented scheme.

D. Scalability

The number of hash probes per lookup under CoLT is a con-
stant, equal to the number of DPL treads and able to be com-
pleted in no more than 2.0 cycle on an average for (as
shown in Table II), independent of the lookup table size. This
fact benefits performance scalability of CoLT, ensuring high
performance as BGP tables grow.
To gain insight into CoLT’s resilience to overflows, we ex-

amined all BGP tables with respect to their growth patterns over
years, discovering that all tables exhibit similar trends and sta-
tistics. Hence, the outcomes for Table rrc00 from the year 2002
to the present are depicted in Fig. 5 for simplicity. CoLT under a
small hash table with 16 K 4 entries (taking 1.725 Mb) starts
to experience growing overflows (as indicated within paren-
theses) near 2004, when table utilization of 80% is observed. By
doubling the hash table capacity to 32 K 4 entries (involving
3.75 Mb), CoLT works well until 2008, when the hash table
is 74% utilized and the number of overflows rises sharply. A
larger table with 64 K 4 entries (7.5 Mb) is required to cope

Fig. 6. Scaling for different LPM methods over years.

with growing prefix tables henceforth, bringing table utilization
down to roughly 50% even under the largest BGP table, rrc00,
with some 340 K prefixes (in the beginning of year 2011).
We conjecture a consistent trend by the past results and by

the outcomes of large tables composed by blending together
chronological data. As depicted in Fig. 5, a 64 K 4 CoHa table
can handle up to some 590 K routes (under Year 20XX) before
the number of overflows become large. Experimentally (with
data not shown), we may dramatically cut down the number
of overflows and achieve better hashing load distributions with
one more DPL tread for enriching migration; more parallel table
probes per lookup will be involved as a result. It meets our
expectation. Alternatively, with the table capacity doubled to
128 K 4 entries, no overflow occurs until there are about 1 M
routes (denoted by the second rightmost dashed rectangle in
Fig. 5. If the number of routes grows to 1.3 M, a few overflows
exist, with table utilization approaching 54%.
Fig. 6 shows how different LPM methods scale with growth

in routing tables from 2002 to 2011, reflecting storage scala-
bility. For CoLT, the lookup table grows its size at a slower pace
than other methods, able to hold up until its utilization reaches
some 74% and signifying its better storage scalability.

V. IPV6 SUPPORT

A. Lookup Table Construction for IPv4 and IPv6

According to IPv6 address allocation and assignment
policy [1], [6], IPv6 prefix length varies from 16 to 64 bits.
While it is possible to directly expand our CoLT design to
accommodate IPv6 prefixes by widening the CoHa table entries
(to hold a larger length field and a longer quotient/digest field;
see Fig. 1), such a direct expansion, however, is unattractive
because the storage footprint thus grows significantly and the
table entries are mostly underutilized since IPv4 addresses
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Fig. 7. Algorithm and an example for installing an IPv6 prefix of 2001:0470:0102::/48 under CoLT.

dominate. Furthermore, a larger number of DPL treads are
needed in order to keep the strides between consecutive treads
reasonably small. Otherwise, the round-off bitmap field can
become very long. This calls for higher SRAM bandwidth to
support correspondingly larger parallel fetches to the CoHa
table.
To accomplish an efficient CoLT design, we employ

a separate hash table to hold those IPv6 prefixes with
more than 32 b. This second hash table (referred to as
the SeHa table hereafter) has much fewer entries (than the
CoHa table), as it is meant for holding rear portions (after
bit 32) of long IPv6 entries only. Given DPL of IPv6 being

, for example,
our CoLT produces for the CoHa
table and for the SeHa
table, where 1 (or 5) in is due to 33 (or 37–32).
Our design is best explained by the example shown in Fig. 7.

In addition to keeping IPv4 prefixes, the CoHa table also holds
IPv6 prefixes, with table entries installed according to .
Each table entry is augmented by three bits: 1) a v4-bit to in-
dicate that the entry keeps an IPv4 prefix; 2) a v6-bit for IPv6
prefixes; and 3) a “ ” bit to signify that the entry keeps an
IPv6 prefix longer than 32 b. Both v4 and v6 indicators are
set at the same time, when an IPv6 and an IPv4 routes share
a common prefix. IPv6 prefixes longer than 32 b are consid-
ered to comprise two parts: a 32-b IPv6 leading prefix stored
in the CoHa table, and the remaining suffix stored in the SeHa
table. As illustrated in Fig. 7, to install a 48-b IPv6 prefix of
2001:0470:0102::/48, the first 32-b prefix 2001:0470 is stored
in an entry e1 in the CoHa table according to the algorithm out-
lined in Fig. 2. The prefix (polynomial) 2001:0470 is divided
by generator to produce a
quotient, 0x2222, and a remainder, 0x9fca. Following the CoLT
algorithm, the quotient (i.e., 0x2222) is installed in the hash
bucket 0x9fca, with its fields “v6” and “ ” set to specify that
it contains an IPv6 route longer than 32 b.

1) Suitable Keys to SeHa Table by Progressive Mashing: For
explanation purposes, let us assume a SeHa table of 4 K sets
(with 4 K 4 entries totally), adequate to accommodate thou-
sands of IPv6 prefixes existing in any core router currently. Such
a table requires a generator polynomial with ,
say an example CRC-12 with polynomial code 0x1069. To in-
stall the remaining 16-b suffix 0102 in the SeHa table smartly,
we employ a “progressive mashing” process to get a suitable key
with 32 b always to the hash function, formed by taking
least-significant bits from the leading 32-b prefix 2001:0470,
appended to the bits from the suffix 0102, where belongs
to and equals 16 to yield 0102:2001 in this particular
example. A suitable key so obtained is dubbed a progressive
mashing (PM) key. In general, if a suffix contains bits, with

, the suffix is rounded down to length , such that
is the largest value in ; this follows the same way

as rounding down IPv4 prefixes for hashing to CoHa buckets.
The progressive mashing process aims to deal with cases where
suffixes are short or contain mostly 0’s, producing PM keys to
the SeHa table. Without progressive mashing, short IPv6 suf-
fixes as hash keys will have the form of ,
which causes a poor hashing distribution in the SeHa table and
always-0 quotients, undesirable situations to be avoided. PM
keys also provide far better opportunities for entry migration
in the SeHa table and ensure the high-order bits of v6 prefixes
to maintain the same transitive property so that both IPv4 and
IPv6 can be treated uniformly by one hardware.
Note that a 32-b keywith respect to degree-12 produces

a 20-b quotient used to compute a digest signature for storing in
the SeHa bucket indexed by its remainder, as demonstrated in
Fig. 7.
2) SeHa Table Construction and Use of Digest Signatures:

Like installing prefixes into the CoHa table, long IPv6 prefixes
are installed into the SeHa table buckets keyed by the remain-
ders of TPR expression , as stated in
Section II-B, where refers to 32-b PM keys obtained by the
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Fig. 8. Example of LPM to installed IPv6 prefix of 2001:0470:0102::/48 under CoLT.

progressive mashing process. To have high storage-efficiency,
can be stored in any one of the candidate sets indexed by
and by its round-down prefixes (i.e.,

under ). Those candidate sets provide
multiple choices for each suffix as before.
Continuing on the example, the obtained PM key of

0102:2001 yields a quotient 0x1159 and a remainder 0xff0 by
generator . Rather than keeping the quotient of 0x1159
(say, in the bucket e2 indexed by 0xff0), we store a digest
obtained by the XOR operation of the first index 0x9fca and
the quotient 0x1159 derived from the key of 0102:2001. This
digest acts effectively as approximate filtering to validate a
“legitimate binding” of matched entries (e1, e2) in the CoHa
and the SeHa tables during LPM search.
Next-hop information is stored in off-chip RAM, as illus-

trated in Fig. 7. Every NHA entry contains eight fields for
keeping eight next-hop data, enabling direct accesses indexed
by the round-off bitmap kept in the CoHa table (or the SeHa
table for any IPv6 prefix with more than 32 b, denoted by

). Also, one extra field is provisioned to hold infor-
mation about the CoHa entry that keeps the leading 32 b of

to avoid false positive lookups. This entry information
essentially comprises the bucket index (i.e., 0x9fca for the
example of Fig. 7) and a 2-b indictor for one of the four-way
entries in the bucket. Matching and the exact CoHa entry
number for associated P/32 ensures to detect all possible false
positives.

B. LPM Procedure for IPv6 Addressing

During IPv6 LPM, both tables are searched in parallel by the
basic algorithm depicted in Fig. 2, with the additional require-
ment of composing the hash keys for the SeHa table by the
above progressive mashing process. If the search result of the
CoHa table does not result in a match to any IPv6 P/32 entry
with the “ ” bit set, there is no need to further probe the SeHa
table. Otherwise, longer than 32-b IPv6 routes potentially exist,
and the search continues.

To best illustrate this, let us consider an example of LPM
search for IPv6 address 2001:0470:0102:000d in Fig. 8,
where the hash tables are assumed to contain the prefix route
2001:0470:0102::/48 installed in Fig. 7. Hashing of trans-
formed prefixes to all treads in the DPL is performed. Both
CoHa and SeHa tables are accessed in parallel (or in two stages
of a pipelined design). In this example, the CoHa table reports
a match to a P/32 entry with its “v6” and “ ” bits set,
indicating that a longer-than-P/32 IPv6 route may exist. Hence,
the SeHa table search result is taken into consideration.
1) Use of Scrambled Signature for Approximate Filtering:

As each long IPv6 prefix has multiple candidate sets to select in
the SeHa table (characterized by ) during table construc-
tion, LPM search for a given IPv6 address must examine all
table sets (i.e., for ) identified using the IPv6 ad-
dress and . This search may report multiple candidates. It
is desirable to rapidly filter out mismatches. Recall the example
of Fig. 7. For route 2001:0470:0102::/48, the leading 32-b prefix
2001:0470 and the remaining suffix 0102 are stored respectively
in Bucket 0x9fca and Bucket 0xff0 of the two tables. During
search, not only both entries must report matches, but also an
assertion must exist: “the prefix stored in Bucket 0x9fca of the
CoHa table is the leading P/32 prefix of an IPv6 route whose
remaining suffix is stored in Bucket 0xff0 of the SeHa table.” A
straightforward method for assertion is to store the first index
0x9fca together with the suffix 0102 in the same SeHa table
entry. However, such a method incurs additional bits per
SeHa table entry.
To arrive at a concise lookup table, aforementioned assertion

is embedded inside the SeHa table (in the form of digest signa-
tures) without an extra field, subject to a negligible probability
of false positive errors. Specifically, a scrambled digest is cal-
culated by a signature function on the index of 0x9fca for the
CoHa table and the quotient of 0x1159 obtained from the PM
key for the SeHa table, as signature(0x1159, 0x9fca) in Fig. 7.
Upon LPM lookups, the same process is taken to calculate and
validate the digest signature in Fig. 8.
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While false positives may be practically rare, CoLT detects
and eliminates any false positive by keeping the CoHa entry
number of the leading P/32 prefixes in off-chip NHA storage,
as shown in the last step of LPM search in Fig. 8. Note that
one field for the CoHa entry number is adequate for all pre-
fixes aggregated to the same SeHa table entry corresponding to
the NHA storage entry. This serves as the final defense in pre-
venting wrong lookup results.

C. Analysis, Evaluation, and Comparison

If the probability of errors is denoted by and scrambled
digests have a length of bits, it is assumed permissible with

, where is shorter than , the
total bits needed to keep the index of the CoHa table plus the
quotient of a PM key for the SeHa table. Intuitively, the length
of the scrambled digest (i.e., ) should increase to lower the
allowable fraction of errors (i.e., ). The expected false posi-
tive rate is (1/2) when validating digests upon lookups since
every bit has a probability of 0.5 to be different. If rises to

bits, all information is explicit, and no errors
will exist. In this paper, the field for scrambled digests has 20 b,
exhibiting a mean false positive rate of 9.5E–7 in matching two
20-b numbers.
The concept of representing information by a short digest

with a small allowable fraction of errors was first introduced
in [4] and was later enhanced and deployed to construct a fast,
small, and effective lookup table for TCP connections by scram-
bling the digest [15]. Basically, a scrambling function is sim-
ilar to a hash function, which comprises repeated “combine-
and-mix” steps of inputs and internal states [18], [19], [21]. To
have better scrambling results, the progressive mashing process
is designed to ensure that always-0 quotients do not happen
for IPv6 suffixes stored in the SeHa table. While it is desirable
for a scrambling function to take several runs in shuffling and
combining bits [18], [19], [21], a simple scrambling function
adopted here (as in [15]) works just fine; in our study, we have
observed only one false positive for all BGP tables examined
under tens of millions of lookup requests.
We followed the same procedure stated in Section IV-C to

evaluate CoLT performance under large BGP datasets, which
were synthesized from three original BGP tables based on their
prefix length distributions: rrc00, rrc01, and rrc14, each of
which has about 8000 IPv6 prefixes with the rest being IPv4
prefixes. Collected results of the SeHa table with 16 K 4
entries under different numbers of IPv6 prefixes are listed in
Table III. With multiple hashing bucket candidates and the
aid of migration under CoLT, the SeHa table is found to ex-
perience very few overflows (just like the CoHa table). Using
tens of millions of IPv6 LPM requests produced randomly
and purposely according to the BGP tables’ route prefixes, we
observed just one single false positive case (i.e., one SeHa entry
falsely matches another input address), which was eliminated
after fetching the indexed NHA entry (as shown in Step 4 in
Fig. 8). This evaluation confirms that the proposed CoLT design
offers a new solution for extremely rapid IP lookups in future
backbone routers where IPv4 and IPv6 addresses coexist, due

TABLE III
LOAD DISTRIBUTIONS AND FALSE POSITIVES UNDER SEHA WITH 16 K 4
ENTRIES, GIVEN (RESULTS WITH

MIGRATION LISTED IN NEXT SHADED COLUMNS)

to its high memory efficiency in handling both address types
via a unified fashion.

VI. CONCLUSION

A hash table-based scheme capable of constructing concise
lookup tables (CoLT) for fast IPv4 and IPv6 LPM lookups
in scalable routers has been introduced and evaluated. CoLT
resorts to simple, unified hash tables indexed by the remainders
of round-down prefixes to lower the memory requirement,
stores “transitive signatures” of transformed representations,
and allows for rich prefix aggregation in CoLT tables built over
on-chip SRAM. For an IPv4 packet, its lookup involves search
over the first hash table only. An IPv6 packet calls for search
across both hash tables simultaneously, with the first 32 b of
its address used to search over the first hash table. Handling
both IPv4 and IPv6 effectively, CoLT achieves exceptionally
high SRAM storage efficiency, resulting from its provision
of multiple candidate sets in hash tables for a given prefix
to improve load balancing and thus lower the number of set
overflows. The prefix can be kept in those candidate entries,
following a migration rule to ensure correct LPM without false
positives. Our evaluation results based on real routing tables
(available to the public [3], [20]) reveal that CoLT leads to
noticeable storage reduction when compared to other schemes,
making it possible to fit a large BGP table in on-chip SRAM for
rapid lookups. Being hash-oriented, CoLT naturally supports
incremental table updates effectively, able to reach lookup
throughput over 310 MPPS practically when its constituent
SRAM modules operate at 500 MHz.

APPENDIX
PROOF OF THE MIGRATION RULE

Consider previous and the example design of
Section III-A, where is a degree-16 primitive polynomial
and the CoHa table has 2 buckets. Since is a prime,
using the total of 2 possible P/32 prefixes for indexing, each
of the 2 buckets will be hit precisely 2 times. The first 2
(i.e., ) polynomials are mapped one-to-one to
the 2 buckets, with their quotients all equal to 0. The next
2 numbers are also mapped one-to-one to those buckets, with
their quotients being 1. Similarly, any subsequent group of
2 numbers is mapped one-to-one to the buckets, with their
quotients all equal to . When is moved to its colony ,
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there will be a group of totally 2 ’s able to identify
the same bucket via , where P is composed
generally by concatenating with a (32- )-bit constant
suffix C. For notational simplicity, we use to
denote the above process.
According to the stated migration rule, can be mi-

grated to the bucket identified by tread in DPL, with or
. The cases of , and are

treated in sequence.
Case of :
a) , which is migrated. After migration,
the digest comprising is stored in the bucket
indexed by .

b) The group with a total of 2 prefixes will index
to the same colony bucket via . When
taking any prefix in as its input, the lookup algo-
rithm (outlined in Fig. 2) inspects all buckets indexed by

. If false positives arise, Bucket must
be matched by . Due to the primitivity
of , all ’s in (including itself) must share
the same common leading prefix of (as other-
wise, they will not index to the same bucket through
their leading prefix . More precisely, all those
32-b prefixes in Group can be expressed in a
polynomial form

same leading trailing suffix

c) Next, to obtain and in order to validate
for the stored digest in for

, any prefix in Group is divided by a
degree-16 , giving rise to . For
easy comprehension, let us assume that the simple Linear
Feedback Shift Register (LFSR) is used for the binary di-
vision. The quotient is shifted out on the left of the LSFR,
and the prefix input is fed to LSFR on the right. After pro-
cessing the common leading prefix , all prefix

s in Group produce exactly identical interme-
diate quotients and reminders, and . (
equals 0 in this case because . Nevertheless,
generality of the following proof holds.) The division
continues by taking in the trailing 16-b s of
all s to arrive at precisely 2 different reminders
(with numerical numbers varying from 0 to , as
a result of the property of primitive polynomial ),
and meanwhile to get the same collection of quotient
’s (equal to binary strings concatenating and

). For the given , XORing it with
2 different ’s produces 2 unique signatures,
thereby incurring no false positive. In other words,
always equals for any in Group , while is
equal to only for , implying
for any . Hence, the validation equation of

suffices to eliminate ambiguity,
avoiding false positives.

Case of : For a longer tread (say,
without loss of generality), Group will involve exactly
2 prefixes that produce the same index through

) and ), according to the fol-
lowing arguments.
a) , which is migrated. After migration,
the digest comprising is held in the bucket in-
dexed by ).

b) The total 2 prefixes (in Group ) that produce the
same index of via ) can be expressed by

same leading trailing suffix

and

same leading trailing suffix

where is and equals
, which denote leading 17 b of all prefixes in Group .

This is because is a degree-16 prime, letting every
bucket mapped to exactly twice via ) for
all possible 2 combinations of 17-b strings.

c) Based on b) above, we observe that
yields exactly unique due to the 15-b trailing
suffix under a degree-16 , given that
the starting state is (same for 2 all suffix com-
bination strings) after . Furthermore, there
are two important properties involved in the division
of by a degree-16 primitive . First,
shifting the 15 bits of into LFSR (which
contains the initial state ) moves the least signifi-
cant bit of to the most significant position, whose
value is either 0 or 1. Hence, 2 unique ’s can be
denoted by constant bit binary combinations .
Second, there are two and only two final quotients,

, for all 2 unique ’s. By
starting with the two states, and ,
based on b) above and taking in the 15-b suffix ,
the two quotients are 16-b binary strings whose most
significant bit is 0 or 1, concatenated by a 15-b field pro-
duced by . Hence, when the quotient of
( or )
is added (over GF(2)) to those 2 unique of the
form constant bit binary combinations , we have
2 unique signatures (which equal for
and equal with the most significant bit toggled for

). As a result, the signatures so derived by
can distinguish exactly 2 prefixes in

Group , avoiding any false positive. The same proof
steps above can be repeated and hold true for all .

Case of : This case could lead to ambiguity under
, which implies . Given ,

for example, there are totally 2 P/32 prefixes mapped to the
bucket indexed by . This calls for a way to produce
at least 2 unique digests in order to support prefix migration,
with false positives completely evaded. When the CoHa table
has a field with only 16 b for signatures (as depicted in Fig. 1),
false positives may occur after prefix migration. The proof is
thus completed.
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