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SUSE: Superior Storage-Efficiency for Routing
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Abstract—A novel storage design for IP routing table con-
struction is introduced on the basis of a single set-associative
hash table to support fast longest prefix matching (LPM). The
proposed design involves two key techniques to lower table
storage required drastically: 1) storing transformed prefix rep-
resentations; and 2) accommodating multiple prefixes per table
entry via prefix aggregation, achieving superior storage-efficiency
(SUSE). With each prefix ������ maneuvered as a polynomial,
���� � ���� � ���� � ���� based on a divisor ����, SUSE keeps
only ���� rather than full and long ���� in an ����-indexed table
with 	������������ entries, because ���� and ���� uniquely identify
����. Additionally, using ���� as the hash index exhibits better dis-
tribution than do original prefixes, reducing hash collisions, which
can be tolerated further by the set-associative design. Given a set
of chosen prefix lengths (called “treads”), all prefixes are rounded
down to nearest treads under SUSE before hashed to the table
using their transformed representations so that prefix aggregation
opportunities abound in hash entries. SUSE yields significant table
storage reduction and enjoys fast lookups and speedy incremental
updates not possible for a typical trie-based design, with the
worst-case lookup time shown upper-bounded theoretically by the
number of treads ��� but found experimentally to be 4 memory
accesses when � equals 8. SUSE makes it possible to fit a large
routing table with 256 K (or even 1 M) prefixes in on-chip SRAM
by today’s ASIC technology. It solves both the memory- and the
bandwidth-intensive problems faced by IP routing.

Index Terms—Hash tables, linear feedback shift registers,
longest prefix matching, prefix aggregation, prefix transformation,
routing tables, table storage, tries.

I. INTRODUCTION

F AST IP address lookups have become indispensable for
all routers, whether core or edge ones, as the line rates

reach the OC-192 or even OC-768 speeds for many connec-
tions, resulting from widespread deployment of 10 G Ethernet
switches. Meanwhile, the number of prefixes in core routers
has experienced explosive growth recently, with large BGP
(Border Gateway Protocol) routing tables seen rapid surges
in their prefix numbers continuously. Earlier solutions for
IP address lookups were mostly trie-based through software
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execution to match an IP address progressively a few bits at
a time against prefixes stored in a tree-like data structure [4],
[5], [11], [12], [17], [19], to support longest prefix matching
(LPM), which chooses the longest prefix among those which
match the given IP address. While they usually have lower
hardware costs, trie-based solutions are no longer attractive due
to large latencies. On the other hand, hash tables are deemed
ideal for fast IP lookups because of their constant-time search
latencies, provided that care is taken to address potential colli-
sions inherent to the hash table (where multiple prefixes map
to the same hash index) [10]. Composed of regular SRAM,
they are relatively inexpensive than ternary content addressable
memories (TCAM), consuming less power and exhibiting much
higher density.

However, the application of hash tables to LPM is not
straightforward because the number of IP address bits to use for
hash calculation is not known a prior due to the variable lengths
of prefixes used in building hash table databases for lookups.
Therefore, hash tables must deal with two challenges when
applied for LPM, namely, (1) prefixes of variable lengths and
(2) address collisions associated with hashing. Techniques have
been considered [10], [22], [24] for handling these challenges.
An earlier design uses one hash table for each prefix length
[22], employing 25 tables in total for prefix length ranging from
8 to 32 under IPv4 addressing. If those 25 tables are examined
in sequence or following a binary search [22] for a given IP
address, it takes many memory accesses, thus exhibiting a long
latency. On the other hand, if parallel search for prefixes of
all lengths is to be performed, a large memory system which
supports 25 parallel accesses is required. Later solutions intend
to lower the degree of search parallelism by employing Bloom
filters or their variations [10], [23], coupled with hash tables.
They keep the salient features of hash-based architectures, such
as low lookup latencies and efficient updates. A recent solution,
referred to as Chisel [10], lowers table sizes and decouples
next-hop addresses (NHA) from prefixes themselves so that all
the involved hash tables, other than the NHA table, may fit in
on-chip SRAM to realize fast lookups. A smaller hash table
naturally is less expensive and consumes less power. Such a
solution also permits to accommodate a larger routing table
on-chip to yield better scalability. Separately, another approach
by partitioning a BGP routing table has been considered re-
cently to reduce total storage required for holding prefixes in
the table [14].

This paper proposes a novel storage design for routing tables,
realized by prefix transformation and aggregation to achieve
superior storage-efficiency (SUSE). The proposed design
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makes use of a single set-associative hash table to support fast
LPM for all lengths. It employs two key techniques for lowering
table storage required drastically: 1) storing transformed prefix
representations; and 2) accommodating multiple prefixes per
table entry via prefix aggregation. Significant storage reduction
makes it possible to fit a large routing table with 256 K (or even
1 M) prefixes in on-chip SRAM by today’s ASIC technology.
This solves both the memory- and the bandwidth-intensive
problems faced by IP routing. Simulation results on real
routing tables show that SUSE leads to more than 55% storage
reduction (from some 23 Mb SRAM for Chisel down to 10
Mb under an example routing table with 170 k prefixes),
when compared with any known hash table-based design or
any trie-based design (except for Lulea-Trie [12]). In addition,
SUSE enjoys fast lookups and rapid incremental updates, with
the lookup latency bounded theoretically by SRAM accesses
(where is the number of designated prefix lengths chosen
for collapsing prefixes to, as will be detailed in Section III), if
a small TCAM is used to hold spillover prefixes. In practice,
the worst-case lookup time is found experimentally to be 4
memory accesses, when equals 8. SUSE involves one single
hash table in SRAM, as opposed to tables of various sizes
in SRAM plus one result table in DRAM for Chisel, which also
needs at least 3 times as many hash functions.

After pertinent background and related work are provided
in Section II, this article introduces our proposed design in
Section III, including prefix transformation and a fast mecha-
nism for this transformation, which constitute the first superi-
orly storage-efficient technique for routing tables. Section IV
deals with mechanisms for prefix aggregation, which is the
second key technique for SUSE realization. A skewed method
for memory module layout is stated in Section V to avoid
access conflicts during parallel memory search for fast lookups
under SUSE. SUSE is evaluated in Section VI, with its perfor-
mance results obtained using real-world routing tables unveiled
therein. Size and power considerations for the hardware imple-
mentation of SUSE are detailed in Section VII.

II. PERTINENT BACKGROUND AND RELATED WORK

Techniques for IP lookups fall into two categories, depending
on what type of memory is employed to hold prefixes consti-
tuting lookup databases: TCAM- and RAM-oriented ones. Dif-
ferent TCAM-oriented techniques have been investigated [6],
[7], [9], [18], [21] lately, but they are usually more expensive
than their RAM-oriented counterparts and consume far more
power (which is proportional to the size). As a result, we deem-
phasize TCAM-based solutions and focus on the RAM-oriented
techniques, which can be grouped as trie-based and hash-based
ones.

A. Trie-Based LPM

A trie is an ordered tree data structure used to succinctly store
a set of “strings,” which are the IP route addresses in this context.
Each path from the root to a leaf in a trie corresponds to one
string in the represented set, and hence, the trie nodes denote
the prefixes of the strings.

1) Path-Compressed DP Tries: In its simplest form, a binary
trie treats an IP address comprising a sequence of bits. One bit

information is inspected at each level. A bit of value 0 (or 1)
directs branching to the left (or right) subtree. Unfortunately,
binary tries often yield space-inefficient structures where long
one-child branches waste storage and cause long search times.
Path compression is the traditional solution to this problem, re-
sulting in the Patricia tree [5].

In a path-compressed trie, storage is saved and the search time
is reduced by collapsing one-child branches. This is done by as-
sociating internal nodes with an integer value, which indicates
the next bit position to be inspected. For example, let’s consider
a long one-child branch leading to route 101000*, and it shares
the same prefix 101 with another route 1011*, with their differ-
ence starting at the fourth bit. By specifying that the fourth bit
is the next bit to be inspected at an internal marked node which
branches to leaf nodes * and *, the long one-child
path is eliminated. When performing search, a descent in the trie
is performed according to the address bits as usual. However,
only the bit positions specified by the traversed internal nodes
are inspected, with other bits skipped. When a leaf is encoun-
tered, a comparison with the actual prefix is performed, calling
for the need to store the actual prefixes in the leaves.

The dynamic prefix trie (DP-trie) [20] is another well-known
method in this category. It differs from the Patricia tree more or
less in the data structure used to represent the trie. The idea of
path-compression by skipping insignificant bits applies to both
path-compressed tries and DP-tries.

2) Multibit LC and Lulea Tries: While path-compressed bi-
nary tries may be improved by eliminating one-child branches,
the gain could be moderate on an average. Because one bit is
inspected at a time, the worst case requires 32 memory accesses
for IPv4 addressing. To speed up the lookup operations, alter-
native solutions by checking multiple bits at a time have been
proposed [4], as common practice in the industry. For example,
a routing table for IPv4 addresses may comprise 5 levels fol-
lowing the (6, 6, 6, 6, 8) inspection pattern. The first level of
64 entries is indexed by the first 6 bits of an IPv4 address. The
result is either an entry of forwarding information, or a pointer
to a second level. The same apparatus is applied to the second,
the third, the fourth, and the fifth levels, with their branching de-
grees of , and , respectively. This leads to 64 copies
of 64-ary tables in the 2nd level, 64 64 copies of 64-ary ta-
bles in the third level, and so on, until the last stage, where the
longest IP prefixes (of 32 bits) reside. As it inspects multiple
bits per cycle, this solution yields a mutibit trie, which renders
a nice pipeline design, allowing “one lookup per cycle.” It lets
one new lookup be initiated every cycle, with the lookup latency
bounded deterministically by 5 cycles. Unfortunately, this de-
sign tends to waste a lot of memory space since m-ary tables
are often sparsely filled.

To overcome the problem, researchers have proposed novel
data structures to represent the multibit trie, with compression
techniques applied to keep the trie small. The Level-Com-
pressed (LC)-trie [17] and the Lulea-trie [12] are two represen-
tative methods. To form an LC-trie, each “complete” binary
subtree of levels (which should have 2 children) is replaced
by a single 2 -ary node. Recursively, this compression process
may continue as long as complete binary subtrees are found
and replaced by single multiway nodes. The LC-trie places its
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internal nodes in consecutive memory locations following a
succinct, compact representation [17].

Under the Lulea trie [12], a given set of prefixes are first trans-
formed into “disjoint” prefixes which do not overlap (i.e., no
route prefix is itself a prefix of others), and then the trie is made
complete by leaf pushing [19]. Therefore, a Lulea trie is a com-
plete trie, with IP route prefixes all kept at the leaves reflecting
disjoint intervals of addresses. Search in such a trie is trans-
formed to a more general interval set membership problem. All
route prefixes (and information pertinent to the route lookup res-
olution) are stored in a memory array of consecutive locations.
The Lulea algorithm then applies an efficient encoding scheme
to map the corresponding intervals into a concise “code word
array.” When search is performed, the IP address is used as an
index to a “map-table” for retrieving interval information and
then forwarding data [12].

While the LC and the Lulea methods require less memory
than a tree-like counterpart, techniques such as compression and
leaf pushing make incremental updates very difficult. Most im-
portantly, the linear memory array representations of the tries
leave holes upon route deletion and are difficult to accommo-
date new routes. They are not appealing practically, since whole
trie rebuilding is needed in those situations.

B. Hash- and Bloom Filter-Based LPM

In contrast to trie-based methods, hash-based techniques uti-
lize a flat data structure to hold prefixes, leading to fast lookups,
particularly if hash tables are made compact enough to fit in
on-chip SRAM. A hash function typically takes bit strings of a
fixed length as its inputs to produce values over a predetermined
range. It does not work for bit strings of variable lengths and
often exhibits collisions. Unfortunately, prefixes in a routing/
forwarding table are of variable lengths, calling for solutions
to deal with these problems. An early solution employed mul-
tiple hash tables, one for each possible prefix length, to hold
the prefixes of a routing/forwarding table [22], with markers in-
cluded in many prefix table entries to guide binary search over
those hash tables. The early solution thus requires accesses to
as many as hash tables for a given IP address during
binary search, exhibiting a long search time, in addition to a
high cost associated with those hash tables (where is the
number of allowable prefix lengths). No discussion or treatment
about hashing collisions was provided in [22]. Later, the use of a
counting Bloom filter was pursued [23] to support exact matches
using multiple hash functions for each item to calculate values,
among which one is chosen to point to the likely bucket (stored
in off-chip SDRAM) [24].

1) The Counting Bloom Filter (CBF): The Counting Bloom
Filter (CBF) is an extension to the Bloom Filter (BF) [29], where
a vector of counters is used to efficiently track a set (say, )
of elements. The counter vector is programmed as follows.
For each element in hash functions are computed on
to produce values ranging from 0 to ( , and the values
are used to access the counter vector. Each accessed entry in-
creases its counter by one. In this way, a membership query fol-
lows the same calculation of hash values. If all the entries
corresponding to the hash values have non-zero counts, the
lookup key is potentially a member of the set, .

It is well-know that BF may report false positives, but never
positive negatives. A false positive happens when BF reports a
match for an element not in . To achieve a sufficiently small
probability of false positives, BF must use many hash functions
and have a much larger size than the number of elements in
[3]. BF is found optimal under , where is its size
and is the number of hash functions. The ratio of is
usually considered as the average number of slots (among )
consumed by a single member in . In the optimal case, a linear
increase in decreases the probability of false positives
exponentially.

The basic architecture of using CBFs for LPM is illustrated
in [25], where there is one CBF for each prefix length. All CBFs
are kept on-chip while the much larger routing table database is
stored in off-chip memory. Since the hash functions do not sup-
port wildcard bits and the use of one CBF for each prefix length
can be too expensive, prefixes of variable lengths are often dealt
with via controlled prefix expansion (CPE) [19] to arrive at pre-
determined lengths, such as 12, 16, 24, and 32 bits. Each prefix
in the route table database, if needed, is expanded to the next
(predetermined) length. All expanded IP prefixes are treated as
separate items programmed into the CBFs and inserted into the
hash table.

Unfortunately, CBFs tell only the presence or absence of
items of interest in the hash table, but they do not reveal their
whereabouts in the table. As a result, revised designs were
proposed later [24], where the calculated hash values are
employed to index a set of counters which are associated
with buckets for the hash table. On insertion, a new item is
added to one hash bucket chosen (out of the buckets) based
on heuristic metrics, such as the bucket with least-load, i.e.,
one with the smallest counter value. Because multiple items
can be stored in one bucket associated with a counter when
their respective hash results yield that same counter ID, those
colliding items in the bucket are chained [24]. The search time
tends to be long, not only because it involves slow off-chip
SDRAM accesses but also because there could be many such
accesses (in sequence to traverse those chained items held
therein). Although nearly collision-free hashing was shown
to be achievable [24], it requires many hash functions (e.g.,

) and Bloom filters (which are much larger than the
number of items in set ).

2) Collision-Free Bloom Filters: Recently, a hash-based de-
sign with guaranteed deterministic lookup rates has been inves-
tigated for LPM, called Chisel [10]. Built upon a Bloomier filter
(which is an extension to Bloom filters [3]), Chisel achieves
nearly collision-free hashing (i.e., with a probability arbitrarily
close to 1) by utilizing an index table with entries, satisfying

, if there are prefixes in total and hash functions
employed in the design. When equals 3, the index table size
is at least 3 times the number of prefixes. To set up the index
table, the hash values for all elements in the set are calcu-
lated. For element , its calculated hash values, which are also
indices to the index table, define a neighborhood . Sub-
sequently, all elements in are ordered by pushed into a
stack. When an element is popped from the stack, a hash
value in is selected, based on one criterion—for
all present before in the stack, cannot be a member
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Fig. 1. Lump multiple hash tables into one set-associative table.

of the neighborhood of . When this criterion is met,
the value stored in entry is:

, where is a pointer or address to a separate filter
table (which keeps the actual elements), specifying the entry
holding item . During lookups, pointer is easily recov-
ered by XORed values in the neighborhood of , that
is, . Clearly, if is in the neigh-
borhood of some prior element in the stack,
we cannot recover when a lookup on is performed be-
cause values of are altered due to . If the above
process does not converge, a separate TCAM will keep those
colliding prefixes. It is conjectured that a small spillover TCAM
(with some 16 to 32 entries) suffices [10].

To deal with variable lengths of prefixes, Chisel collapses
prefixes with length ( , a permissible length) into prefixes
of length , and then performs “leaf pushing” to expand every
such collapsed prefix to multiple prefixes of length (being
the next permissible length and ). All original prefixes col-
lapsed to ones with length , plus all expanded prefixes through
leaf pushing to reach length , constitute one subcell, which in-
cludes an index table, a filter table, and a bit-vector table (all
kept in on-chip SRAM), plus a result table (held in off-chip
DRAM) [10]. As each expanded prefix through leaf pushing
takes a bit-vector entry and an NHA (next-hop address) entry,
SRAM and DRAM storage needed for Chisel is enlarged con-
siderably. If distinct prefix lengths are chosen as permissible
ones for prefix collapsing use, Chisel then requires
on-chip tables of various sizes, involving many hash functions

. During a lookup, all the subcells are searched in
parallel using the given IP address, with the results sent to a pri-
ority encoder to get the LPM result. Given the number of hash
functions involved in one Bloomier filter [3] equal to ,
the worst-case lookup time for Chisel is given by SRAM
accesses plus one DRAM access, with (or 1) due to accesses to
the index table (or to the filter table and the bit-vector table con-
currently), assuming that TCAM and the index table are fetched
simultaneously.

As will be seen later, our proposed SUSE not only reduces
the SRAM storage requirement by a factor of 2 and employs
fewer hash functions (only in total) but also enjoys a smaller
average-case lookup time (of 1.07 SRAM accesses). In addition,
SUSE involves just one single (set-associative) table in SRAM,
as opposed to tables of various sizes in SRAM plus one

result table in DRAM for Chisel, which requires separate access
logics and control circuitry to gain parallelism. Its worst-case
lookup time is bounded by when a small TCAM is employed
to hold overflow prefixes.

III. PROPOSED DESIGN

A. Lump Hash Table

In order to arrive at a desirable hash-table-based solution, we
apply prefix transformation, realized by choosing a designated
prefix length set, DPL: , where denotes a
prefix length, such that for any prefix P of length (expressed
by ) with , the prefix is rounded down to

. A naïve design assigns one hash table to hold all prefixes
, under the chosen DPL, with each table

entry holding one prefix together with its rounded down
bits. During lookups, parallel search for prefixes of

different lengths under DPL, , is per-
formed. This prefix transformation lowers the number of hash
tables down to (from 25 under IPv4 addressing). Nonethe-
less, those hash tables tend to waste many entries, exhibiting
poor table utilization, since most prefixes in a routing table are
of length between 16 and 24, making tables for prefixes ,
with , heavily populated, whereas others are likely
underutilized.

We thus lump the individual tables together to arrive at an
efficient design, as illustrated in Fig. 1. Each entry in the re-
sulting hash table uses an indictor to specify the length of its
stored prefix. It also contains an aggregation field for keeping
the round-off bits (described above). The aggregation
field enables deep prefix compression, as will be elaborated in
Section IV, to reduce the hash table size. The canonical prefix
field holds the arithmetically transformed representation of a
prefix; transformed representations can be shorter than their cor-
responding prefixes and yet suffice to distinguish prefixes. The
use of transformed representations reduces the width of each
table entry. Details about the transformed representations of pre-
fixes will be provided in Section III-B. Each entry has a field for
NHA, which keeps a pointer to another table where outgoing
port numbers and port configurations are stored.

Because a perfect hash function is impossible, collisions do
occur. We employ a simple set-associative design for the re-
sulting hash table to accommodate collisions, namely, those pre-
fixes mapped to the same table index. Colliding prefixes may be
combined when their NHA’s are identical in order to keep the
associative degree low in practice, as will be illustrated by our
simulation results in Section VI.

B. Transformed Prefix Representations

The transformed prefix representations (TPR) are obtained
by considering each prefix as a polynomial, , of de-
gree , i.e., . Such
a polynomial is defined over a Galois Field GF(2), so that its
coefficients are either 0 or 1. The algebra used for GF(2) is
modulo 2, namely, the XOR (exclusive-or) operators. Given a
generator polynomial , we have ,
where is the quotient and is the remainder. Note that
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the above polynomial arithmetic is the same as that for CRC cal-
culation. This TPR permits us to characteristically differentiate
polynomial using and .

Theorem 1: Given a generator polynomial , two dis-
tinct polynomials and

can be differentiated by their unique pairs of
quotients and remainders, i.e., .

Proof: According to
,

we have , if and
, since the addition is a XOR operation. This means that
must equal , contradicting to the fact of

.
Based on Theorem 1, it is clear that we may keep only the

quotient in the hash table, indexed by the remainder .
The hash table consists of sets, each with entries, where

is the degree of generator polynomial and is the
associative degree. Consider being CRC-16 expressed by

, for example, a prefix
will give rise to an 8-bit quotient and a 16-bit remainder (i.e., of
order 15). A hash table with sets, indexed by the remainder,
can then be used, with only the quotient kept in an entry of the
indexed set to differentiate the prefix from others. In general,
this works as long as the hash table has sets when the re-
mainder is of bits, without aliasing concerns. This way leads
to significant savings in storage when compared with keeping
full prefixes. Given a degree-16 , for example, it takes only
16 bits (or 8 bits) to keep for a prefix (or ). For
a prefix with length less than 16, it does not even need to store
any quotient (which is always 0).

While it is not uncommon in the design of hash tables to use
the least significant bits of a key to address a table with
entries and to keep the remaining bits in the addressed entry.
Such a design, however, often results in poor distributions of
hash keys. On the other hand, remainders calculated based on a
primitive generator polynomial were shown to yield good hash
distributions [16]. A primitive polynomial refers to one
which cannot be factored and its every possible remainder is
a remainder of some power of . We are to employ primitive
generator polynomials for obtaining remainders (i.e., ) and
quotients (i.e., ) of prefixes and IP addresses in our hash
table design.

C. Calculation of and

Calculating and can be achieved by a Linear
Feedback Shift Register (LFSR). Fig. 2 illustrates the LFSR for

used in this paper.
An LFSR performs binary divisions by shift and exclusive-or
operations. In every cycle, it feeds the linear system with one
bit of the prefix as its input. At the end of a division, the LFSR
contains its remainder.

This LFSR circuitry is relatively simple, but it takes time,
namely, 32 cycles for a 32-bit prefix. A quick way of calculating
remainders is to leverage on a remainder table. Since a primi-
tive generator polynomial is such that its every remainder is a
remainder of a term of some power of , we can precalculate
the remainders of terms , . A simple fact about
polynomials is that the remainder of a sum of polynomials is

Fig. 2. The LFSR for ���� � � � � � � � � � � � � � �.

TABLE I
SEQUENCE OF EVENTS DURING A BINARY DIVISION

the sum of their respective remainders, namely,
. Thus, one may calculate

the remainder of a prefix by considering its every bit individu-
ally. For a prefix of length , denoted by

, one first gets the remainder for
each whose coefficient is nonzero and then performs XOR
on those remainders. Hence, can be computed by hardware
in one cycle with today’s ASIC technology. After is ob-
tained, one can start accessing the hash table while hiding the
latency of calculating . First of all, is always 0 for any
prefix of length less than or equal to 16, because is of de-
gree 16 in this work. For a prefix with its length greater than 16,
one can obtain its by the following algorithm for binary
divisions (identical to CRC calculation).

• Given an initial dividend polynomial (represented
by its ) and
a divider (represented by its

), there are two possibilities at each
computation stage:
1) If the leftmost bit of is 0, is shifted to the

left by one position. The quotient is shifted to the
left, appended by a value of 0.

2) If the left-most bit of is 1, an XOR is performed
between and . Then, is shifted to the
left by one position. The quotient is shifted to the
left, appended by a value of 1.

The sequence of events in Table I illustrates an example of
.

Clearly, the above scheme gives rise to one resulting bit per
cycle. To obtain for a prefix of 32 bits, it takes 16 cycles
over a degree-16 . Although one may hide the latency by
overlapping accesses to the hash table, it is desirable to speed up
the operation. This can be achieved by a modulo-2 arithmetic,
as follows:

(1)

where is the th state of the linear system for ,
namely, the current dividend after the th subtraction and
denotes the one-bit shift-in serial input of current , which
is the first element of matrix and also the resulting bit
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for after this step. Additionally, G is an ( by 1) matrix
, where the first elements are

from , with unused. As shown in the above example,
the left-most resulting bit after each subtraction is discarded
due to the shift operation. Finally, F is an ( by ) matrix of

Note that Equation (1) simply implements the algorithm for
a binary division. If equals 0, only the shift operation is
performed on (by ). If is 1, an XOR and a
shift operations are performed over the two components. In a
generic form, the solution for Equation (1) is given by

(2)

The preceding equation demonstrates the th state of the div-
idend related to the initial state and the inputs. Hence, one can
accomplish parallel calculation on by expanding Equation
(2) for the first bits of . Then, the next batch of bits can
be calculated by replacing in the expression with .
This way accelerates the calculation of by times. We
believe is reasonable, in light of the additional hard-
ware cost. In the worst case, dividing a 32-bit prefix by a
degree-16 takes 8 (or 4) cycles for (or 4).

IV. PREFIX AGGREGATION

For table storage reduction and speedy IP address lookups,
our SUSE design has chosen a DPL (designated prefix length)
set, based on which prefixes are rounded off before being stored
in the hash table, as mentioned earlier. Each prefix length in the
DPL set is referred to as a tread and the distance between two
consecutive treads is called the stride. As the length of a given
prefix (say, ) is known, our design calculates and
of before storing it in a hash table entry indexed by
during hash table creation and updating, and this is achieved
with respect to just a single tread (determined by the length of

). To arrive at a compact hash table, SUSE follows prefix
aggregation to keep multiple prefixes in a table entry. This ag-
gregation can be carried out in two ways: round-off aggrega-
tion and bit-mapping aggregation, where the former targets pre-
fixes with the same NHA (next-hop address) and the latter deals
with more efficient aggregation via bit mapping. An important
concern in aggregation is to preserve complete route informa-
tion even after route updates and withdrawals, since an aggre-
gated entry corresponds to multiple prefixes and its deletion re-
moves all its represented prefixes. If one prefix (say, which
was aggregated with another prefix, say, , to share a table
entry) is withdrawn, Prefix should remain in the table after
the withdrawal of , to ensure proper LPM lookups for in-
coming IP addresses. For example, two prefixes 101* and 10*

with the same NHA can be aggregated for a , rep-
resented by the single prefix of 10* (with different round-off
bits). When route 10* is deleted, Prefix 101*should be preserved
in the routing table. A design whose route information is never
lost during route updates and withdrawals is referred to as loss-
less. Unlike many earlier optimization techniques which could
lose route information upon route deletion [13], SUSE is always
lossless, existing in 3 different versions governed by aggregation
schemes detailed in sequence.

A. Round-Off Aggregation (ROA)

This aggregation can be made very aggressively by putting
many prefixes, which belong to the same tread and share the
same NHA, into one hash entry, with appropriate fields em-
ployed to record their corresponding round-off bits. However,
this aggressive approach complicates hash table maintenance
logics greatly, since a single prefix withdrawal could result in
multiple round-off fields being created to ensure the lossless
property. If Prefixes *, *, *, and *
are allowed to share one hash entry under , for ex-
ample, the round-off bits of the four prefixes are denoted by ,
occupying a single field. When a prefix, say 100101*, is deleted,
the original aggregated entry has to take up two round-off fields,
namely, 00 and 1*, for indicating the remaining three prefixes
after deletion.

Our design chooses to adopt limited round-off aggregation for
hardware simplicity and a fast operation during prefix deletion,
letting only two prefixes aggregated in each entry. As a result, a
single don’t care field (to denote if the last round-off bit is don’t
care) is needed in the hash table design under this limited ag-
gregation, as shown in Fig. 3. This aggregation scheme exhibits
less than satisfactory utilization in hash table storage, as will be
demonstrated in Section VI-A by results obtained with respect
to real-world prefix tables of various sizes. It gives rise to SUSE
with round-off aggregation, denoted by .

B. Lossless Aggregation Bit-Maps

Improved utilization in table storage can be achieved using
bit-mapping aggregation. Two bit-mapping designs which en-
able deep prefix aggregation with slightly more storage than
simple ROA, are presented next.

1) Full-Fledged Bit Maps (FFBM): The first scheme em-
ploys a full-fledged bit-map (FFBM) to record round-off bits,
yield . Because any prefix P of length with

is rounded down to round-off bits mean
that at most prefixes of length can have the same
hash index. Instead of using full-size entries, a vector
of bits can accurately record the round-off bits;
this way lowers needed storage dramatically. In total, all pre-
fixes , where , can be remembered by a full
map of bits when all the prefixes have the same
NHA. It represents the greatest aggregation achievable by this
FFBM scheme.

Fig. 4 demonstrates the layout of prefixes with different
lengths in a hash table entry. The first column lists the chosen
prefix lengths in DPL (encoded as shown in the second column).
In this design, only the lengths in DPL need to be encoded
because the bit-maps of the third column freely indicate the
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Fig. 3. Per-entry format in simple round-off scheme.

Fig. 4. Per-entry format in full-fledged bit-maps scheme.

number of round-off bits. For example, to search for a prefix
, the hash index is calculated based on . While a

matching must be found, the 8-bit bit map is also exam-
ined for the three round-off bits.

As shown by Figs. 3 and 4, the FFBM scheme requires a
longer entry (of 40 bits) than ROA (of 29 bits). With additional
storage, FFBM can achieve a greater amount of aggregation, as
to be shown in Section VI-A. The longest entry is determined
by the bit maps and the length of for . To keep the
bit maps reasonably short, a small stride of 3 is chosen. This
leaves to be specially handled. Our idea is to pack two

prefixes in one entry so that better storage utilization can be
achieved. The indicator with a value of 1101 or 1110 (or 1111)
means that the first or the second subentry holds (or both suben-
tries hold) a prefix. Nevertheless, unused space for treads
below 24 could waste sizeable storage, as depicted in Fig. 4.
To make effective use in space, we introduce the Controlled
Bit-Maps scheme next.

2) Controlled Bit-Maps (CBM): FFBM’s effectiveness
relies on a single hypothesis—a large number of prefixes
between treads can be aggregated. This happens only to those
prefixes which have the same NHA. Prefixes with the same
leading bits are found more commonly to share a few next-hop
addresses (instead of just one NHA). For example, a group of

subnets shares and another group of subnets
uses . Although both groups may be under the same

network, FFBM’s effectiveness is compromised due to
their different NHAs. In such cases, packing and fitting as
many prefixes as possible in one table entry is a more effective
solution.

Fig. 5 illustrates the formation of a table entry under con-
trolled bit-maps (CBM). In essence, every entry contains two
fields, each comprising a bit-map, a , and one NHA. Each
of the two fields intends to hold one aggregated prefix, except
for prefixes of length greater than 24 (where each table entry

then holds just one aggregated prefix). The second column of
Fig. 5 contains the length indicators (but for and ,
we leverage on two unused bits in the bit-map to encode them
as shown). Since each field has its own length indicator, there
is no restriction on the prefixes stored in an entry. Prefixes of
different lengths can be mixed in the same entry as long as
space permitted. The bit-map serves the same purpose as that in
the FFBM scheme, but it works only for the single designated
prefix length specified by the indicator. As the length indicator
now specifies the actual prefix length (rather than the tread as
in FFBM), we aggregate only prefixes of the same length under
CBM, leading to .

For example, two prefixes with the same NHA can
be aggregated. They are rounded down to tread for hash
calculation (but the length indicator will specify 18). The two
round-off bits will be captured by the bit-map as usual. In this
case, only the last 4 bits of the map are used. When a new
prefix is to be added, a new entry will be allocated. Although
a controlled prefix expansion [19] may be applied to expand
a prefix into two prefixes so that all these prefixes
can be aggregated aggressively into one entry, our CBM
chooses not to, because otherwise, a prefix withdrawal may
result in creating an extra table entry. This choice keeps a
simple lossless design for CBM, facilitating fast route updates
and withdrawals.

V. SKEWED MEMORY LAYOUT FOR MAPPING MULTIPLE HASH

TABLES

Section III-A has explained that SUSE collapses multiple
hash tables [8] into a single one. A method is then demonstrated
to transform any prefix into a polynomial representation for easy
calculating its quotient and remainder over a divisor

. It is followed by the selection of treads used to search
the hash table during lookups when IP addresses arrive. Each
table search involves memory accesses. Naturally, all memory
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Fig. 5. Per-entry format in controlled bit-maps (CBM) scheme.

accesses should take place in parallel to minimize the search
time, calling for independently accessed memory modules. To
keep hardware complexity low, the number of memory mod-
ules is assumed to be a power of 2 (for example, 8 modules).
Our design requires a hash table with a total of sets, be-
cause the generator has a degree of 16. For 8 modules to
constitute this hash table, each module then has sets. Each
prefix, , belongs to one of the treads in set 29, 25, 24, 22,
20, 16, 12, 8 given in Section IV-B2 based on its length, with
corresponding and calculated.

During the table lookup, an IP address is searched for all the
legitimate treads (i.e., those in the set 29, 25, 24, 22, 20, 16,
12, 8 ) to realize LPM (longest prefix matching). Eight sets of
hardware logics are equipped for computing and si-
multaneously. To support fast lookups, it is desirable to launch
hash table accesses in parallel, guided by the eight computed

’s. To this end, the sets pointed by those eight ’s must
fall in different memory modules. If multiple ’s point to a
memory module, accesses to the module experience a conflict,
which requires corresponding memory accesses issued in order.
Take an IP address of 192.128.x.y as an example. The most sig-
nificant 16 bits of the address are 11000000 10000000. By the
arithmetic of Section III-C, we arrive at ’s for treads 8, 12,
and 16, as follows:

Fig. 6. Map ���� to memory array with ���� ��	��� 
 �.

If a straightforward mapping is adopted to modulo the
number of memory modules, all three indexes will point to
memory module 0. This causes access conflicts, leading to
undesired serial launches of the three search operations to
the same memory module. To overcome this problem, a skew
factor is employed when collapsing multiple hash tables into
one. Fig. 6 depicts an example of distributing to 8 memory
modules, with a skew degree of one. Mathematically, address
decoding can be expressed by the equation at the bottom of the
page.

Because the number of memory modules is assumed to be
a power of 2, it only takes simple operations to compute the
address and the module ID of each computed . This way
uses distinct skews for different treads to reduce the likelihood
of memory conflicts. Search by , and in the
above example will be directed respectively to modules 0, 1, and
2, if skew degrees of 0, 1, and 3 are used accordingly.

VI. EVALUATION AND RESULTS

A. Prefix Distribution in Hash Table

To examine effectiveness in the storage utilization of SUSE
under round-off aggregation (denoted by ) and
under bit-mapping aggregations (denoted by and

and
when
when
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Fig. 7. Distribution of prefixes in AS12654 BGP table under different aggregation schemes.

Fig. 8. Prefix distribution for five other routing tables under ���� .

) as described in Section IV, real-world prefix tables
obtained from [2] are employed to build the hash table. Fig. 7
demonstrates the prefixes distribution under the three design
schemes with the number of memory modules equal to 8 and
16, when AS12654 BGP routing table is used for table con-
struction. is observed to have a relatively limited
success on aggregating prefixes. One don’t-care bit in each
table entry groups at most two prefixes only. Under ,
up to 15 prefixes (aggregated or not) can fall into one hash table
set in the worst case. It means that a 4-way set-associative table
needs a method to keep 12 overflow prefixes. and

achieve much higher degrees of prefix aggregation
than . They result in at most 7 and 6 prefixes, re-
spectively, hashing into one table entry, no matter whether the
number of memory modules is 8 or 16.

Overall, a 4-way set-associative table is adequate, especially
for . is particularly effective when pre-
fixes share the same common “leading” prefixes. For example,
all prefixes of length 16, 17, 18, and 19 which share the same
16 leading bits (namely, for all .*.*) can be represented
together in one entry if they have the same next-hop address.
However, it is more common that prefixes with the same leading
prefix share a few next-hop addresses. Specifically, in both

and is rounded down to for
calculating the hash index. Out of the 8 combination values
of the three round-off bits , some may have the
same next-hop address, , and others have a different
next-hop address, . Consequently, which
packs two prefix groups in one entry leads to better space uti-
lization than its counterpart. Because
exhibits the best overall benefit, we henceforth focus merely on

.
Similar results have been obtained for other BGP tables,

which all contain more than 150 K prefixes each (including
AS3333, AS6447, AS6539, and AS7660). As can be seen in
Fig. 8, a negligibly small number of sets receive more than 4

prefixes for all the routing tables examined under .
is also effective in grouping prefixes, with 90% of

the sets involving no more than two active entries.
From a theoretic analysis perspective, the probability distri-

bution could be approximated by a Bernoulli process assuming
a uniform hash distribution. Thus the probability of hashing
a prefix to an entry in a table with entries is .
The probability for prefixes hashing to an entry equals

. For a 4-way set-associative

hash table with 64 K sets and each table entry comprising
two fields (Fig. 5), prediction on the utilization of a set by
the simple Bernoulli model is illustrated in Fig. 8. The results
are fairly close to the simulation outcomes, though the latter
shows that the hash table is less loaded than prediction. This
minor discrepancy is because the simple Bernoulli model does
not include the benefit of prefix aggregation (Section IV-B2).
Overall, 4-way is shown to be pleasantly effective.

B. Impact on Prefix Distribution by Number of Treads

The number of memory modules has little impact on the hash
distribution or collisions of prefixes (as depicted in Fig. 7 for the
situations of 8 and 16 memory modules), nor collapsing multiple
prefix tables intensifies the problem. However, it is found that
the selection of treads (namely, legitimate prefix lengths) has a
more pronounced impact than other factors.

Three representative cases, in which the number of treads (de-
noted by ) equals 25, 8, and 5, are examined, with their out-
comes demonstrated in Fig. 9, where the percentage values of
active entries in a are listed explicitly. Calculating hash
indexes based on the GF(2) arithmetic stated in Section III-B
is believed to yield good distributions, as unfolded by prior re-
search [16]. The case with 25 treads, one for each prefix length
( to ), reflects the best possible prefix distribution. It
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Fig. 9. Distribution of prefixes under different � .

offers an indication of how well prefixes scatter across the col-
lapsed hash table. Fig. 9 depicts that most sets in this case have
small numbers of active entries.

While a finer stride is expected to yield a better hash distribu-
tion, it also comes with an increased cost for the memory system
since it then has to support more parallel accesses. Further-
more, table storage also increases to accommodate the bit-maps,
whereas no bit-map is needed for . The proposed ap-
proach detailed in Section IV-B2 achieves a good compromise,
by using merely 8 treads for hashing. (requiring the sup-
port of 8 parallel accesses) arrives at a cost-effective memory
system design, taking about 20% more storage than the case
under .

When drops further, prefix distribution results deteriorate.
As shown by Fig. 9, collisions start sprouting markedly when

equals 5, although the percentage of overflowing a 4-way
set is considerably low. Many overflow sets are due to the fol-
lowing reason. Consider a number of prefixes between and

that have the same leading prefix . When length 16 is
chosen for hashing, all those prefixes collide because of their
identical leading prefix. In this case, the 5 round-off bits can re-
sult in up to 32 prefixes falling into one table entry. Thus, it com-
plies with the general expectation—the more round-off bits, the
higher chance of hash collisions. Additionally, dropping from
8 to 5 increases the storage by a whopping 50% because of the
longer bit map.

To further assist in understanding treads selection and to
prove the effectiveness of at , we simulate
another DPL: 29, 25, 23, 21, 19, 16, 12, 8 . In this run,
we adopt a small stride of 2 for prefixes of lengths between
19 and 24, which are known to contain most of prefixes in
existing routing tables. As illustrated in Fig. 9, the result is
consistent with the previous findings. Most sets include a few
active entries. Consequently, the following general guidance is
reached. For the set of most common prefixes between
and , we prefer a design with multiple prefixes packed in
one table entry. Those prefixes tend to be disjoint in that they
occasionally share the same leading prefixes. As a result, we
rely on a good hash distribution achieved by the hash function
outlined in Section III-B to spread the prefixes throughout the
table. On the other hand, those shorter prefixes mean larger
network routes, thereby providing abundant opportunities for
aggregation, which favors .

Fig. 10. Storage requirement for AS12654 BGP routing table (with 170 K�
prefixes).

C. Storage Requirements

Fig. 10 depicts storage usage for two families of designs: one
based on hash tables and the other on tries. All results are for
the AS12654 BGP routing table (with 170 K prefixes). For

, three numbers are reported: (a) storage used to actu-
ally keep active prefixes, (b) storage provision for a 2-way hash
table, and (c) storage provision for a 4-way table. The ratio be-
tween the first number to the second (or third) number is referred
to as table space utilization.

First of all, consumes 3.8 Mb, as depicted by the
leftmost bar in Fig. 10. This is very small when compared with
other schemes. The second (or third) bar shows that the storage
size for a 2-way (or 4-way) table is 5 Mb (or 10 Mb) SRAM.
Interestingly, according to the results of Figs. 7 and 8, 90% of
the sets have no more than two active entries. We thus conjec-
ture that a 2-way table with the aid of CBM aggregation and
a simple overflow scheme under SUSE can be very effective
for routing/forwarding tables with 200 K prefixes. Since the
number of overflow prefixes under a 4-way design for DPL: 29,
25, 23, 21, 19, 16, 12, 8 is found to range from 11 (for AS7660)
to 109 (for AS6447), an alternative design may use a 4-way table
(comprising 10 Mb SRAM) with a small spillover TCAM (com-
posed of 256 entries or less) to achieve a deterministic lookup
latency.

Fig. 10 shows the results for LC-Trie [17], Lulea-Trie [12],
and DP-Trie [20]. In the family of trie-based schemes, Lulea
normally requires the smallest amount of space. In our evalua-
tion, Lulea-Trie takes up 7.45 Mb, close to that of .
However, enjoys easier and faster incremental up-
dates than Lulea-Trie. LC-Trie and DP-Trie consume 37.14 and
26.3 Mb, respectively. Proposed thus demonstrates
at least 85% storage reduction in comparison to LC-Trie and
DP-Trie.

SUSE is also compared with the Chisel design [10]. We sim-
ulated Chisel by a set of proven universal hash functions [31],
[32], which produce good distributions of hash values. Recall
the discussion of Section II-B2. Given prefixes, hash func-
tions (satisfying ) are used to generate hash values
to index a table with entries. According to [31], a universal
hash function is achieved by treating a prefix of bits as a
series of disjoint words , where each word
consists of bits. random values are then selected from
the value range of 0 to . A hash function is defined as

. While a
more generic form of the universal hash function is to narrow
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Fig. 11. A multiport SRAM cell.

each word to one bit (at the cost of many more hash functions),
we do not find any significant difference in the simulation re-
sults. Therefore, we present one set of data only.

The ratio is another important factor for the Chisel-like
design. The larger the ratio is, the easier the counting Bloom
filters converge and the lower the probability of hash collisions,
naturally taking more memory. By adopting the parameters sug-
gested in [10], we set the ratio of 3 and the such
that there are totally 5 subcells. Fig. 10 illustrates that the op-
timal configuration for Chisel takes about 23 Mb SRAM, as op-
posed to 10 Mb for our 4-way ,1 leading to a storage
reduction of 56%. The simulated configuration is optimal be-
cause we measure the storage required to keep the route prefixes
of AS12654 exactly. For instance, if a subcell has prefixes,
the filter table is sized with precisely entries to keep those pre-
fixes with the designated tread lengths, without provision for ex-
pansion (understood to be impractical in real field deployment).
Nevertheless, this optimal configuration serves as the compar-
ison baseline. Results depicted in Fig. 10 clearly demonstrate
the superior storage-efficiency of .

Another factor to be considered is the SRAM bit cell size, in
addition to the number of bits. Solutions such as Chisel require
calculation of hash functions and accesses to the Bloom filter
in parallel. This calls for -port SRAM memory. Fig. 11 shows
a multiport memory using the simple 5 T SRAM cell. A -port
cell needs word lines and bit lines. If the number of ports
grows, the cell becomes more wire-limited, especially when the
feature size shrinks.

Generally speaking, multiport SRAM is not space-efficient.
While a smaller feature size improves device performance, the
impact of miniaturization has been less positive for intercon-
nects [26]–[28]. A smaller cross section, wire pitch, a longer
wire, and larger loading all increase the resistance and the ca-
pacitance of the device, consequently elevating the signal prop-
agation (RC) delay. Thus, the bit cell size is rather determined
by the wiring requirements [26]. To the best of our knowledge,
there are no publicly known area results for multiport SRAM
cells, especially when exceeding two ports. To gain the first-
order idea, we compare a single-port SRAM module to its dual-
port counterpart using the TSMC 65-nm library by Broadcom’s
memory compiler. It is revealed that the dual-port SRAM al-
most doubles the area. Therefore, the chip area size for Bloom
filter-based solutions like Chisel is worse than what is suggested
by simply counting the number of bits in Fig. 10. We further

1Results for the Chisel turn out to be difficult to generalize. By changing the
strides, the results fluctuate dramatically. Nevertheless, we had simulated strides
ranging from 1 to 6 (or equivalently, 12, 8, 5, and 4 subcells). ���� con-
sistently shows 56% to 83% storage reduction when compared with its Chisel
counterpart.

Fig. 12. Storage space versus routing table size.

contemplate that a Bloom filter with hash functions will post
a challenge to practical implementation of space-efficient cir-
cuit.

An alternative which uses single-port memory modules
comes with two issues. First, the worst case may cause all

accesses to the same memory module. This is the same
structural conflicting issue discussed in Section V; it forces
serial accesses to the same module. The Bloom filter itself
posts a danger of being the bottleneck in this case. Second,
as we have discussed in Section II-B2, all original prefixes
collapsed to a predetermined length form a subcell in Chisel
[10], where the subcell assimilates to our DPL treads. If each
subcell requires memory modules for the index table and two
modules respectively for the filter table and for the vector table,
the design will comprise tens of memory blocks, and worst yet,
they all have different sizes. The difficulty in such a design is
that the physical placement of those point-like blocks becomes
absolutely critical; otherwise, the majority of wires turn to be
global, presenting a challenging physical design problem to the
overall wiring plan.

D. Scalability

Proposed is scalable. When provisioning for
more prefixes, a higher degree will naturally be employed
to produce a longer index necessary for a larger hash
table. Subsequently, the length of shrinks. Considering a
design for one million prefixes, as an instance, a 4-way hash
table of one million entries comprises sets. A with
degree-18 produces with 2 bits shorter than does a
of degree-16. Due to this interesting property, eventually
occupies a small portion of total storage. Naturally, this scheme
is toward using prefixes as the addresses of memory modules
which constitute the routing table [15].

Because a real routing table with 512 K (or 1 million) pre-
fixes does not exist yet, we put together two synthetic tables
from those real AS tables. The two synthesized prefixes tables
have 486 435 and 888 335 prefixes, respectively. The hash table
is configured accordingly with 512 K and 1024 K entries. Under
a 4-way set-associative configuration, the storage amount for

is depicted in Fig. 12 for comparison with other
methods. All results are obtained by simulation.

is clearly superior, as its storage growth is steadily
linear. While Lulea-Trie has the lowest storage requirement,
it employs several techniques to lower storage, including leaf
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Fig. 13. Prefix distribution for large routing tables.

pushing, making a complete trie, the use of codeword encoding,
and packing pointers in a sequential array. These techniques
render incremental updates for Lulea-Trie very difficult, if not
impossible. By contrast, incremental updates for
are straightforward. It should be noted that spends
almost 40% of its storage on the next-hop address. Strictly
speaking, NHA is not a part of the lookup apparatus. Thus,

has room for improvement.
Fig. 13 demonstrates the prefix distribution in for

the two synthesized routing/forwarding tables. Once again, be-
cause of the prefix aggregation benefit, the simulations show a
less loaded table than what the simple Bernoulli model predicts.
The results further prove that is effective, since a
vast majority of sets contain no more than two active entries. It
is very rare to have more than 4 entries in a set to cause colli-
sions. As a result, a 4-way design with some simple strategy for
handling set overflow suffices. The active entries nevertheless
comprise only some 45% of total storage, presenting room for
improvement in storage utilization.

The proposed architecture is suitable for IPv6 addressing as
well by employing more treads (probably 16), with larger gaps
between treads. The generator polynomial used can have a
degree higher than 16.

E. Performance

1) Constant-Time O(1) Operations: exhibits
constant-time operations for lookups and incremental updates.
Fig. 14 illustrates the steps for a lookup. Algorithmically,
searching different prefix lengths incurs no dependent memory
accesses. However, structural dependency may arise due to
conflicts in memory accesses. If memory conflicts occur, a
penalty exists for sequencing accesses in order. Because the
number of treads used for hash calculation is 8, the pathological
case happens when all 8 memory accesses must be performed
in order. Of course, it is only a theoretic upper bound on the IP
lookup time, assuming that a small spillover TCAM is accessed
simultaneously.

Incremental updates are based on the lookup operation. To
announce a new route or withdraw an existing one, the same
hashing steps are performed to find the appropriate table entry,

Fig. 14. Pseudo code for the lookup operation.

involving constant time operations as well. This is another ad-
vantage over its trie-based counterparts, besides a gain in storage
reduction.

2) Average Number of Memory Accesses: To gain insight
into memory conflicts, we employed synthetic lookup traces
for our studies due to the lack of real ones. The input lookup
file was created as follows. A prefix was chosen randomly
from the routing table to generate lookup IP addresses. Given a
prefix with length 16 (say, .0.0), for example, IP lookup
addresses were produced by replacing 0.0 with random bit
strings to yield . Thus, for a chosen prefix
in AS1256 routing table, a needed number of IP addresses were
generated, with their LPM (longest prefix matching) being the
chosen prefix.

A parallel probe to different sets in distinct modules is
counted as one memory access. Collisions to the same module
result in a serial order of accesses. All prefixes in one set are
fetched simultaneously. Given each entry with 41 b, a 4-way set
design requires 164 b datapath per module. This can be easily
accomplished by today’s technology (Section VII). In a run of
millions of lookups in our simulation for a 4-way CBM design,
per lookup operation on an average logged 1.07 memory ac-
cesses. The worst case took 4 memory accesses with a standard
deviation of 0.25, according to our extensive simulation study.
By fitting the routing table into on-chip SRAMs, SUSE can
easily achieve over 100 M lookups per sec.

We further simulated a design using the Counting Bloom
Filter (CBF). The results in Fig. 15 reveal that the occurrence
of false positives dwindles when more hash functions are de-
ployed. In order to lower false positives to a content level, it
often requires more than 4 or 5 hash functions. With adequate
CBFs, the number of hash probes approaches one per lookup.
This is consistent with the past results [25].

As discussed in Introduction, CBF may be a good data
structure for the membership query, but it does not manifest
where the interested objects are stored in a hash table nor
does it suggest how hash collisions should be handled. That
said, to arrive at a collision-free hash function for routing
tables is a classic issue. Assuming a straightforward open hash
design with the number of its buckets being twice the number
of prefixes and collisions resolved by linked lists, we
obtained the average number of memory accesses per probe as
demonstrated in Fig. 15. As stated above, a query to the routing
table is more targeted and selective for CBF with more hash
functions. According to our simulation, the mean linked-list
length is 2, signifying that the average number of (off-chip)
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Fig. 15. Probability of false positives per hash probe and number of probes per lookup under CBF.

memory accesses per lookup approaches 2 asymptotically,
versus an average of 1.07 (on-chip) accesses under .

It is understood that the open hash table used in our simu-
lations may not be optimized, and nearly collision-free hashing
was shown to be achievable earlier [24], where it called for many
hash functions (e.g., ) and large Bloom filters (i.e., with
their sizes equal to times the number of items in set ). The
methods considered in [24] also required complex algorithms to
maneuver incremental updates such that the shortest search path
to any route prefix appeared as the outcome for the next lookup.
On the contrary, incremental updates are always straightforward
for , deemed as its another clear advantage.

VII. SIZE AND POWER CONSIDERATIONS FOR HARDWARE

IMPLEMENTATION

A highly integrated chip design for SUSE is demonstrated in
Fig. 16. As requires memory in the mega-byte range
only, a whole routing table can be fit in on-chip SRAM blocks
easily. For today’s 90 nm ASIC technology, a 2048 41-bit
building memory array takes an area of 122 114 um , as re-
ported by Broadcom’s memory compiler. For a provision of
256 K-prefix capacity, the memory block is roughly 16 mm .
Power-wise, a building memory array has active and leakage
power around 20 uW/MHz and 15 mW, respectively. Thus, as-
suming a 500 MHz clock, total dissipation for both static and dy-
namic power will be less than 2 W. If the more advanced 65-nm
technology is used, the building block area drops to 76 174 um ,
and the memory block becomes mm , consuming about
1.15 W at 500 MHz. It is worthwhile mentioning that these num-
bers include NHA information storage. For a design with NHA
kept in off-chip memory, the on-chip memory size will then be
cut down by 40%.

For being power-conscious, is compared with
TCAM-based solutions. While a TCAM device allows parallel
search of all entries, it has lower density than SRAM of an equal
capacity. Importantly, power dissipation is often prohibitively
high for TCAM. A conventional 4.5 Mb TCAM device con-
sumes 7 W, assuming no power management, a supply voltage
of 1.5 V, and operating frequency at 143 MHz [9]. An earlier
study on general power-consumption for TCAM [1] reveals
that it takes about 1.7 W per Mbits at 100 MHz frequency for
the active power, equal to about 8.7 times that for SRAM of the
same size.

Fig. 16. Highly integrated switch chip with 8 on-chip memory modules.

To overcome high power dissipation, recent advances in
TCAM technology break the memory into banks. Dynamic
power-savings is achieved by activating selected banks only.
However, one must know exactly the appropriate banks to
activate [7] during accesses, e.g., following the methods in-
troduced earlier [7] to partition and to distribute prefixes into
TCAM banks. Specifically, the earlier methods involve two
lookup stages, with the first stage being a trie-based structure
or the selection of prefix bits and the second stage searching
for the TCAM bank(s) indicated by the results of the first
stage [7]. Therefore, the two-stage design incurs extra time
overhead. In addition, TCAM entries have to be sorted for
LPM. While a recent article [30] provided one possible solution
for quickening updates to TCAM-based tables, incremental
updates typically involve tricky operations in such tables and
may require reallocation of TCAM banks due to overflows.

VIII. CONCLUSION

IP address lookups call for longest prefix matching (LPM)
among those prefixes in a routing/forwarding table. There are
four major parameters of interest in search for an ideal LPM
solution, including small table storage, a low lookup latency,
easy route updates, and low power dissipation. Motivated by
inefficiency of existing solutions, we have proposed a design
which excels in all four aspects for routing/forwarding tables,
arriving at superior storage-efficiency, dubbed SUSE. With
novel prefix transformation and controlled bit-maps (CBM)
aggregation techniques, is shown by extensive sim-
ulation based on real prefix tables to save up to 85% of SRAM
storage, when compared with prior designs. This significant
storage reduction makes it possible to fit a large BGP table
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in on-chip SRAM. In contrast to off-chip RAM hampered by
chip-crossing latency and humble bandwidth due to budget pin
counts, on-chip SRAM can be accessed fast and be banked
to realize parallel accesses. Thus, SUSE enjoys rapid lookups
in support of LPM. Being hash table-based, it also empowers
much speedier route updates than trie-based counterparts. In
addition, on-chip SRAM has higher density and lower power
dissipation than TCAM, carrying a far smaller price tag.
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