
50 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 9, NO. 1, JANUARY 1998

Fast Compaction in Hypercubes
Nian-Feng Tzeng, Senior Member, IEEE, and Hsing-Lung Chen, Member, IEEE

Abstract —Compaction relocates active subcubes in a fragmented hypercube so as to produce a contiguous free region and
eliminate the adverse impact of fragmentation on performance. The overhead of compaction is often contributed primarily by task
migration, which makes use of disjoint paths for transmitting migrated data. Since task migration usually involves transmitting a large
amount of data, the time required for migration with single paths is long, making compaction an undesirably lengthy process. This
paper considers fast compaction through the use of all disjoint paths in existence for migration simultaneously from a source
subcube to its target subcube, effectively reducing the size of data transmitted over a path and shortening the migration time. This
approach leads to considerable savings in the compaction time for hypercubes which support circuit switching or wormhole routing,
when compared with that using single migration paths.

Index Terms —Compaction, disjoint paths, fragmentation, hypercubes, subcubes, task migration.

—————————— ✦ ——————————

1 INTRODUCTION

UBCUBES in the hypercube are assigned to execute jobs
according to a processor allocation scheme, with each

job occupying one subcube of an appropriate size. Example
processor allocation algorithms can be found in [1], [2], [3],
[4], [5]. When a job completes its execution, the occupied
subcube is released. After repeated subcube assignments
and releases, it is likely for a hypercube to become frag-
mented so that an incoming job cannot be allocated even if
a sufficient number of free nodes are present, because they
are scattered around the hypercube. A highly fragmented
system may exhibit poor performance and seriously delays
the entry of an incoming job, in particular, when the job
needs a large subcube. It might be advantageous for a
highly fragmented hypercube to perform compaction, by
moving active tasks to a specified area (for example, lower
addressed nodes) such that all free nodes are at a contigu-
ous region ready for upcoming jobs. In this case, compac-
tion rearranges the assignment of subcubes to active tasks
in an attempt to remove fragmentation. Compaction may
also be useful in applications where hard real-time tasks
(which must meet strict timing requirements) coexist with
regular tasks. For such an application, hard real-time tasks
have higher priority in getting resources and should be
admitted to the system immediately. If hard real-time tasks
arrive periodically, with their resource requirements known
a priori (which is not uncommon) [6], compaction can be
invoked to free subcubes of adequate sizes for these tasks
before their arrival. In this case, compaction helps to ensure
the successful completion of hard real-time tasks.

Compaction requires that all involved tasks be sus-
pended and a new assignment of subcubes to the tasks be
generated. The task assignment can be done using a proces-

sor allocation scheme, which extracts suspended tasks and
puts them back to the front of the waiting queue, treating
them as new tasks. These tasks are then assigned by the
allocation scheme to subcubes in a contiguous area to avoid
fragmentation. Many allocation schemes achieve this goal
naturally [2], [4], [5]. The new task assignment tells the tar-
get subcube of every suspended subcube, and task migra-
tion is carried out to move processes from suspended sub-
cubes to their respective target subcubes. After task migra-
tion is completed, the processes in target subcubes resume.
The result of compaction in a fragmented hypercube is
shown in Fig. 1.

Costs associated with compaction may include:

1) the cost of producing a new task assignment,
2) the cost of suspending tasks,
3) the cost of task migration, and
4) the cost of resuming tasks.

The first cost component depends on the complexity of the
processor allocation scheme used. The second (or the last)
one is due mainly to saving (or restoring) the execution
status and registers after a suspending (or resuming) signal
is received. Compared with these costs, the cost of task mi-
gration is usually dominating [7] because migration in-
volves process movement over the communication chan-
nels and the sizes of programs/data to be transmitted are
often large. To reduce the compaction duration, the third
cost component has to be lowered effectively. It is common
that processes in a subcube (which belong to one task) are
moved in parallel, as addressed in [1], [8].

Hypercubes of the second generation support either cir-
cuit switching (such as Intel’s iPSC/2 and iPSC/860), or
wormhole routing (such as NCUBE’s n-Cube/2) for effi-
cient message transmission. Task migration in a hypercube
with circuit switching or wormhole routing requires that
the migration paths be totally disjoint from a subcube to its
target subcube, because, under circuit switching, this allows
a path to be set up successfully between every pair of corre-
sponding nodes, whereas, under wormhole routing, this
eliminates message blocking. The communication latency

1045-9219/98/$10.00 © 1998 IEEE

¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥

• N.-F. Tzeng is with the Center for Advanced Computer Studies, University
of Southwestern Louisiana, Lafayette, LA 70504.

 E-mail: tzeng@cacs.usl.edu.
• H.-L. Chen is with the Department of Electronic Engineering, National Taiwan

University of Science and Technology, Taipei, Taiwan, Republic of China.

Manuscript received 28 June, 1995.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number 104588.

S

TZENG AND CHEN: FAST COMPACTION IN HYPERCUBES 51

under circuit switching and wormhole routing is distance-
insensitive if no conflicts occur [9], [10]. It consists of three
components: start-up latency, network latency, and block-
ing time. If migration paths are totally disjoint, the commu-
nication latency is contributed only by the first two compo-
nents. Start-up latency is the time required to handle the
message at both the source and destination nodes. Network
latency equals the elapsed time after the head of a message
has entered the network at the source until the tail of the
message emerges from the network at the destination [10],
and, under circuit switching, it also includes the time for
path setup. Network latency is proportional to the message
size, and it tends to dominate for large message transfers,
such as those during compaction. To transmit a message of
100K bytes in iPSC/2, for example, the network latency
accounts for 99 percent of total communication latency
(which is roughly 36ms for such a transfer [9]; the start-up
latency is only about 0.3ms). Consequently, network latency
has to be reduced so as to lower communication latency ef-
fectively. This makes it highly desirable to utilize as many
disjoint paths as possible for delivering migration data con-
currently, reducing the size of data transmitted over a path.

In this paper, we investigate fast compaction by using all
disjoint migration paths in a hypercube supporting circuit
switching or wormhole routing. The paths employed may
contain any links because all jobs are suspended during
compaction. All nodes of a subcube transmit their data to
corresponding nodes in the target subcube at the same

time. After a subcube completes its migration, another sub-
cube follows, until all subcubes involved in compaction are
exhausted. Utilizing all disjoint paths shortens the migra-
tion time to the utmost extent, achieving fast compaction.
To implement this compaction, every node is assumed to
have a dedicated router permitting all-port communication
[11], so that multiple messages can be transmitted concur-
rently from a node over different paths.

2 PRELIMINARIES AND EARLIER WORK

2.1 Nomenclature

Let Hn denote an n-dimensional hypercube, which consists of

2n nodes, each labeled by an n-bit string, b b b bn n� �1 2 1 0� , where

bit bi corresponds to dimension i. A link joins two nodes
whose labels differ in exactly one bit position. All links are
bidirectional and full duplex, i.e., two messages can be trans-
mitted simultaneously in the opposite directions of any link. A
link O(x, y) is said to be along dimension i if x and y differ in
that dimension. Every path between an arbitrary pair of nodes
can be specified uniquely by an ordered sequence of links, and
the length of a path is the number of its constituent links. A d-
dimensional subcube in Hn is represented by a string of n
symbols over set {0, 1,
}, where
 is a don’t care symbol, such
that there are exactly d
's in the string.

To facilitate subsequent discussion, the following nota-
tions are adopted and they are used throughout this paper.

 (a)

 (b)

Fig. 1. (a) Initial task assignment; (b) task assignment after compaction.

52 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 9, NO. 1, JANUARY 1998

Let N denote the set {n � 1, ..., 1, 0}. For any subcube S and
integer i ∈ N, S[i] indicates the ith bit of the address of S.
Bit b represents the complement of b and is defined only
for b = 0 or 1. Suppose subcubes S and T are the source and
target subcubes, respectively. Let D(S) = {i ∈ N : S[i] =
},
D(T) = {i ∈ N : T[i] =
}, I(S,T) = {i ∈ N : S[i] = T[i]}, and
C S T i N S i T i(,) { : [] []} ° , which mean that S and T have
don’t care bits at D(S) and D(T), respectively; S and T are
bitwise identical at I(S, T), and they are complementary to
each other at C(S, T). Note that the four sets I(S, T), C(S, T),
D(S) � D(T), and D(T) � D(S) are pairwise disjoint, and their
union is N, as stated in [8]. Furthermore, |D(S) � D(T)| is
always equal to |D(T) � D(S)|, which denotes the number
of elements in set D(T) � D(S).

2.2 Node Model
Each node in Hn has a dedicated router so that computation
and communication can be overlapped at each node. The
router supports either circuit switching or wormhole rout-
ing. It has multiple external channels for communication
among nodes and internal channels for connecting the
router with the local processor/memory. Every external
channel is assumed to have a corresponding internal chan-
nel so that the node can send and receive on all its ports
simultaneously, allowing all-port communication. All-port
communication is realized in the n-Cube/2 hypercube and
may become popular for future hypercubes, because it
avoids any communication bottleneck between the router
and the local processor/memory. With these kinds of
routers, each node in Hn can handle up to n simultaneous
paths, one along a pair of external input/output channels.
Our proposed fast compaction requires source routing,
i.e., the entire path of a message is determined and speci-
fied by the source node. When J (≥ 2) disjoint paths exist
between any given source-destination pair, each of them
conveys 1/J of total migrated information, effectively re-
ducing the network latency (as it approximates L/B,
where L and B are the message length and the channel
bandwidth, respectively).

2.3 Earlier Work
Chen and Shin developed a task migration method under
Gray code subcube allocation [1]. The method is suitable for
hypercubes with store-and-forward switching, requiring
that migration be carried out by all participating nodes in
locked steps, synchronously. In contrast, the algorithm by
Chen and Lai [8] constructs parallel edge-disjoint paths
between two subcubes for task migration under circuit
switching. With this algorithm, totally disjoint paths are
identified between nodes in a subcube and their corre-
sponding nodes in the target subcube, and there is one mi-
gration path for each pair of nodes.

An isomorphism from S to T is a bijection from nodes of
S to nodes of T such that two nodes in S are adjacent if
and only if their images in T are adjacent. Chen and Lai
defined an isomorphism f from S to T [8] such that, for
any node u in S, the address of its image f(u) in T is de-
termined as follows:

f u i

u i all i I S T
T i all i C S T D S D T
u i all i D T D S u i T i
u i all i D T D S u i T i

()[]

[] (,)
[] (,) (() ())
[] () () [()] [()]
[] () () [()] [()] ,

%

&

K
K

'

K
K

°

° ª �

° � �

° �

� �

� �

for
for
for and
for and

D D

D D

1 1

1 1

where D is any arbitrary, but fixed, bijective function from
D(S) � D(T) to D(T) � D(S) and D �1 is its inverse. This iso-
morphism yields that the Hamming distance between any
node u in S and its image f(u) in T is exactly |C(S, T)| +
|D(S) � D(T)|. It is clear from this isomorphism that C(u,
f(u)) is the union of three disjoint subsets: Df (S|u) ∪ Df
(T|u) ∪ C(S, T), where Df (S|u) = {i ∈ D(S) : u[i] ≠ f(u)[i]}
and Df (T|u) = {i ∈ D(T) : u[i] ≠ f(u)[i]}.

The regular path was defined in [8] as follows: A Ham-
ming path between u ∈ S and f(u) ∈ T is regular if, on the
path from u to f(u), all links along the dimensions in Df
(T|u) ∪ C(S, T) precede all links along the dimensions in Df
(S|u). It has been proven that any two regular paths with dif-
ferent source nodes are totally disjoint. If a regular path from
each node u in S to its image f(u) in T is chosen as the mi-
gration path, then all the migration paths are pairwise to-
tally disjoint, since they are regular paths with different
source nodes.

3 BASIS OF MIGRATION PATHS

This section describes the basis of migration paths for every
subcube involved in compaction. The next definition is use-
ful for subsequent description.

DEFINITION 1. The least coverage subcube of S and T is the
smallest subcube which contains both S and T, denoted by
lcs(S, T).

3.1 Bound on the Number of Paths
Naturally, it is interesting to find out the upper bound on the
number of disjoint migration paths existing from every node
in subcube S to its corresponding node in target subcube T.
The bound actually depends on whether or not S and T are
overlapped, as stated below, and its proof can be found in [12].

LEMMA 1. Consider d-dimensional subcubes S and T in Hn. If S
and T are nonoverlapped, every node in S has at most (n � d)
migration paths to reach its corresponding node in T, such
that all the paths from S to T are pairwise totally disjoint.

Next, if S and T are overlapped, let S ∩ T = P, whose di-
mension is d � G, 0 ≤ G ≤ d. The case of G = 0 is trivial and is
omitted. For G = 1, it is clear that subcubes S � P and T � P
are of the same dimension d � 1, where S � P refers to the
part in S but outside P. Excluding the overlapped part P,
we consider the mapping from S � P to T � P and see how
many migration paths exist between them. This is an opti-
mistic scenario, because nodes in P are assumed not to require
any migration paths. It is easy to verify that C(S � P, T � P)
consists of two elements; in other words, the addresses of
S � P and T � P have exactly two complementary bits.

Consider S =
1
1 and T = 0

1 in H4 illustrated in Fig. 1.
In this example, P = 01
1, S � P = 11
1, and T � P = 00
1,
so S � P and T � P involve exactly two complementary bits

TZENG AND CHEN: FAST COMPACTION IN HYPERCUBES 53

(i.e., b3 and b2). Assume that C(S � P, T � P) = {i, j}. Every node
in S � P can obviously have exactly two paths (with one taking
dimension i first, followed by dimension j, and the other
taking dimension j first, followed by dimension i) within
lcs(S, T) to reach its corresponding node in T � P such that
all the paths are pairwise totally disjoint. We then examine
the possible migration paths outside lcs(S, T). Since the dimen-
sion of lcs(S, T) is d + 1, each node in lcs(S, T) has (n � d � 1)
outgoing links, suggesting that every node in S � P has ex-
actly n � d � 1 migration paths (formed by taking dimen-
sions k, i, j, and, then, k in sequence, where k is the dimen-
sion of an outgoing link) outside lcs(S, T) to reach its corre-
sponding node, such that all the paths are pairwise totally
disjoint. Thus, every node in S � P has exactly 2 + (n � d � 1)
migration paths, indicating that every node in S has at most
(n � d + 1) disjoint migration paths.

For G > 1, some nodes in S would have fewer disjoint mi-
gration paths than what was discussed for the case of G = 1
above, as described in the following lemma, whose proof is
provided in [12].

LEMMA 2. If the overlapped subcube P of S and T is of dimension
d � G, 1 < G ≤ d, then not every node in S can have (n � d + 1)
paths to reach its corresponding node in T, such that all the
paths are pairwise totally disjoint.

From the above discussion, it is concluded that the theo-
retic upper bound on the number of disjoint migration
paths from each participating node is n � d, unless the di-
mension of P is d � 1, in which (n � d + 1) migration paths
from each node in S � P have been identified. The question
next is: Can this upper bound be achieved and how can it
be achieved? Interestingly, we have derived a systematic
approach to achieving this bound. Our approach is based
on two types of paths defined below. These definitions re-
quire that, for given S and T, every dimension in C(S, T) ∪
(D(T) � D(S)) be assigned an arbitrary, distinct priority.
Once priorities are assigned to dimensions in D(T) � D(S),
dimensions in D(S) � D(T) are given priorities as follow: If

k = D�1(j), then dimension k is given the same priority as
dimension j. Recall that a Hamming path between nodes u
and f(u) takes links along dimensions in C(u, f(u)), which
equals Df(S|u) ∪ Df(T|u) ∪ C(S, T). Under this priority as-
signment, no two dimensions in C(u, f(u)) are assigned the
same priority. This is because, from the definition of iso-
morphism f for j = D(k), we have k ∈ Df (S|u) if and only if

j ∉ Df (T|u).

DEFINITION 2. For any j ∈ Df (T | u) ∪ C(S, T), a Hamming
path between u ∈ S and f(u) ∈ T is definite, if it takes
links along dimensions ∈ C(u, f(u)) in a decreasing priority
order, starting with link j, and the link with the lowest di-
mension priority is followed by the link with the highest
dimension priority.

For example, if links along dimension b in C(S, T) ∪
(D(T) � D(S)) are assigned priority b, C(u, f(u)) = {5, 3, 2, 0}
and j = 2, then the path formed by taking links along di-
mensions in the sequence of 2, 0, 5, 3 is a definite path. The

path is definite because it is defined once the starting link is
known. It is obvious that there are |Df (T | u) ∪ C(S, T)|
definite paths between u and f(u). The following definition
characterizes a path, which is not a Hamming path, be-
tween nodes u and f(u).

DEFINITION 3. For j = D(k) and u[j] = f(u)[j], a path between u ∈ S
and f(u) ∈ T is extended if it takes link j first, then takes links
along dimensions ∈ C(u, f(u)) � {k} in a decreasing priority
order, then travels through link k and, finally, through link j.

An extended path starts and ends with links along the
same dimension which is not in C(u, f(u)). For an extended
path, j = D(k) and u[j] = f(u)[j] imply j ∈ D(T) � D(S) and u[k] ≠
f(u)[k], or, equivalently, k ∈ Df(S|u). Since each k specifies one

extended path, there are |Df(S|u)| extended paths in total
between u and f(u).

3.2 Properties of Paths
The proofs of the following lemmas are omitted (they can
be found in [12]).

LEMMA 3. Let u be any node in S. Any pair of definite paths be-
tween u and f(u) ∈ T are totally disjoint.

LEMMA 4. Let u be any node in S. Any pair of extended paths
between u and f(u) ∈ T are totally disjoint.

LEMMA 5. Let u be any node in S. A definite path and any ex-
tended path between u and f(u) ∈ T are totally disjoint.

LEMMA 6. Let u and v be any two nodes in S. A definite path
from u to f(u) ∈ T and any definite path from v to f(v) ∈ T
are totally disjoint.

LEMMA 7. Let u and v be any two nodes in S. A definite path
from u to f(u) ∈ T and an extended path from v to f(v) ∈ T
are totally disjoint.

LEMMA 8. Let u and v be any two nodes in S. An extended path
from u to f(u) ∈ T and any extended path from v to f(v) ∈ T
are totally disjoint.

4 PROPOSED FAST COMPACTION

Compaction involves four actions: suspending active tasks,
producing a new task assignment (without fragmentation)
for suspended tasks, then, performing task migration, and,
finally, resuming the tasks. Since task migration is often the
dominating action among the four [7], we intend to mini-
mize the time overhead of migration, accomplishing fast
compaction. To this end, as many disjoint paths as possible
are established between a source subcube to its target sub-
cube. The hypercube under consideration (like most con-
temporary machines) implements circuit switching or
wormhole routing, and the communication latency in such
a hypercube is insensitive to the path length, provided no
conflicts occur. As a result, migration paths can be of une-
qual length without affecting the communication time, and
they may include any links.

Consider migration from d-dimensional subcube S to sub-
cube T in Hn, with S ∩ T equal to ∅ or of dimension d � G, 1 < G
≤ d. (Note that the cases of G ≤ 1 have been treated earlier, in
Section 3.1.) The following explains how to determine (n � d)
migration paths from every node in S to its corresponding

54 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 9, NO. 1, JANUARY 1998

node in T such that all of the paths are pairwise totally disjoint.
This is the largest number of migration paths to expect, based
on Lemmas 1 and 2. Paths within lcs(S, T) and outside lcs(S, T)
are identified in sequence. Let lcs(S, T) be of dimension w.

The address of lcs(S, T) can be represented uniquely by a
string of n symbols over set {0, 1,
}, and w is the number of

 in the string. Every symbol i in the string is considered. It
belongs to one of the following possibilities:

1) i ∈ C(S, T),
2) i ∈ D(S) � D(T),
3) i ∈ D(T) � D(S),
4) i ∈ D(S) ∩ D(T),
5) i ∈ I(S, T) � (D(S) ∩ D(T)).

For possibility 1, either S[i] = 0 and T[i] = 1, or S[i] = 1 and
T[i] = 0. In either case, lcs(S, T)[i] must equal
 so that lcs(S, T)
contains both S and T. For possibility 2, S[i] =
, indicating
that lcs(S, T)[i] must equal
, as, otherwise, lcs(S, T) cannot
contain S. Similarly, for possibility 3, T[i] =
, indicating
that lcs(S, T)[i] must equal
, as, otherwise, lcs(S, T) cannot
contain T. For possibility 4, S[i] = D[i] =
, thereby signify-
ing lcs(S, T)[i] =
. For possibility 5, however, lcs(S, T) can-
not be
, since S[i] and D[i] are then both equal to 0 or 1.

The above analysis of symbol i immediately leads to w =
|C(S, T)| + |D(T) � D(S)| + |D(S) � D(T)| + |D(S) ∩ D(T)|,
which equals |C(S, T)| + |D(T) � D(S)| + |D(S)|. Since
|D(S)| is equal to d, the preceding equation implies |C(S, T)|
+ |D(T) � D(S)| = w � d. From Definition 2, there are |C(S, T)|
+ |Df (T|u)| definite paths between u and its corresponding
node f(u) ∈ T. According to Definition 3 and its subsequent
discussion, |Df(S|u)| extended paths exist between u and f(u).
All these definite and extended paths lie inside lcs(S, T), and
the total number of these paths amounts to |C(S, T)| +
|Df(T|u)| + |Df(S | u)|, which equals |C(S, T)| + |D(T) �
D(S)| because D is a bijective function and |D(S) � D(T)| =
|D(T) � D(S)| = |Df(S|u)| + |Df(T | u)|. As a result, every
node in S has exactly (w � d) migration paths within lcs(S, T).
Based on Lemmas 3, 4, 5, 6, 7, and 8, all migration paths se-
lected are pairwise totally disjoint.

Next, migration paths outside lcs(S, T) are determined. For
any node u in S, choose an arbitrary definite path (or an ar-
bitrary extended path, if there is no definite path) between u
and f(u), say formed by taking dimensions r1, r2, ..., rz in or-
der. Since every node in lcs(S, T) has (n � w) outgoing links
(for lcs(S, T) is of dimension w), there are exactly (n � w) paths

traversing dimensions k, r1, r2, ..., rz, k from node u to its cor-
responding node, where dimension k is along an outgoing
link of u. In other words, exactly (n � w) paths from u to f(u),
one along each outgoing link of u, can be determined. These
paths are outside lcs(S, T) and are clearly pairwise totally
disjoint. Consequently, every node in S has exactly (w � d) +
(n � w) migration paths to reach its corresponding nodes in T
such that all the paths are pairwise disjoint. The next theorem
follows immediately.

THEOREM. Consider task migration from d-dimensional subcube
S to target subcube T in Hn, with S ∩ T = P. If P = ∅ or P
is of dimension smaller than d � 1, then the number of

disjoint paths present between every node in S and its
corresponding node in T is (n � d), and this number is op-
timal (i.e., maximum). In addition, all the paths between S
and T are pairwise totally disjoint. If P is of dimension d � 1,
however, it is possible to identify (n � d + 1) migration
paths between every node in S and its corresponding node
in T, such that all the paths between S and T are pairwise
totally disjoint.

The following provides an example of migration using all
disjoint paths in existence. Let S = 10
1 and T = 0
00 in H4
depicted in Fig. 1. It is apparent that S ∩ T =∅ and lcs(S, T) =
H4, resulting in n � d = w � d = 3. Based on the above theo-
rem, three migration paths exist between every node in S
and its corresponding node in T. For this task migration,
D(S) � D(T) = {1}, D(T) � D(S) = {2}, C(S, T) = {3, 0}, and
D(1) = 2. As mentioned earlier, dimensions in C(S, T) ∪
(D(T) � D(S)) have to be assigned different priorities. If di-
mension b is assigned priority b (any other assignment will
do as well), then dimension 3 has priority 3, dimension 0
has priority 0, and dimension 2 has priority 2. In addition,
dimension 1, which belongs to D(S) � D(T), is assigned pri-
ority 2, identical to that of dimension 2 because 1 = D�1(2).

Now, for u = 1001, we have f(u) = 0100 according to iso-
morphism f, given in Section 2, yielding C(u, f(u)) = {3, 2, 0}.
Since Df(T|u) = {2} and C(S, T) = {3, 0}, from Definition 2,
there are three definite paths between nodes 1001 and 0100:

1001 0001 0101 0100
3 2 0
� � � , 1001 1101 1100 0100

2 0 3
� � � , and

1001 1000 0000 0100
0 3 2
� � � , where the number above an

arrow is the priority of the dimension taken. For instance,
the first path takes dimension 3 first, followed by dimen-
sion 2, and then dimension 0. In this case, Df (S|u) = ∅, sig-
nifying that there is no extended path present between the
two nodes, as expected. The three identified migration
paths are denoted respectively by Y1, Y2, and Y3 in Fig. 2.

Next, for u = 1011, we have f(u) = 0000 based on isomor-
phism f, leading to C(u, f(u)) = {3, 1, 0}. As Df(T|u) = ∅ and
C(S, T) = {3, 0}, according to Definition 2, there are two
definite paths between nodes 1011 and 0000:

1011 0011 0001 0000
3 2 0
� � � ,

and

1011 1010 0010 0000
0 3 2
� � � ,

since link 1 is assigned priority 2. In this case, Df(S|u) = {1},
indicating that there is one extended path present between
the two nodes, based on Definition 3. The extended path
starts and ends with links along dimension j = 2, which
equals D(1), as:

1011 1111 0111 0110 0100 0000
2 3 0 2 2
� � � � � ,

since k is 1 and link 1 is assigned priority 2. Again, there are
three migration paths in total between nodes 1011 and 0000,
as illustrated in Fig. 2, where they are represented by Z1, Z2,
and Z3, respectively. As can be observed, these six migra-
tion paths between S and T are pairwise disjoint. The use of
all available paths lowers the migration time to the full ex-
tent, leading to fast compaction.

TZENG AND CHEN: FAST COMPACTION IN HYPERCUBES 55

5 CONCLUSION

We have proposed fast compaction by using all disjoint paths
present between a subcube and its target subcube for task
migration in the hypercube which supports circuit switching
or wormhole routing. During compaction, the time spent for
task migration often dominates because the amount of in-
formation transferred from each involved node is often large.
In such a hypercube, the migration time is dictated mainly by
network latency, which is proportional to the message size.
When γ disjoint paths are utilized for migration, each path
then delivers only 1 J of total migrated information, short-
ening the network latency to 1 J of that needed with a single
path, if the router permits all-port communication. This re-
sults from the fact that under circuit switching and wormhole
routing, the communication latency is insensitive to path
length, so migration paths identified can be of unequal length
while maintaining same efficiency.

The method for determining all migration paths is sim-
ple and can be carried out at each participating node in a
distributed manner. It is applicable to any fragmented hy-
percube, reducing the migration interval drastically. This
makes it possible to achieve compaction much faster than
an approach based on single migration paths.

ACKNOWLEDGMENTS

Nian-Feng Tzeng was supported in part by the U.S. Na-
tonal Science Foundation under Grants MIP-9201308 and
CCR-9300075, and by the State of Louisiana under Contract
LEQSF(1994-96)-RD-A-39. Hsing-Lung Chen was supported
by the National Science Council of the Republic of China
under Contract NSC83-0408-E011-001. A preliminary ver-
sion of this paper was presented at the Seventh Interna-
tional Conference on Parallel and Distributed Computing
Systems, October 1994.

REFERENCES

[1] M.S. Chen and K.G. Shin, “Subcube Allocation and Task Migra-
tion in Hypercube Multiprocessors,” IEEE Trans. Computers, vol. 39,
no. 9, pp. 1,146-1,155, Sept. 1990.

[2] J. Kim, C.R. Das, and W. Lin, “A Top-Down Processor Allocation
Scheme for Hypercube Computers,” IEEE Trans. Parallel and Dis-
tributed Systems, vol. 2, no. 1, pp. 20-30, Jan. 1991.

[3] P.-J. Chuang and N.-F. Tzeng, “A Fast Recognition-Complete
Processor Allocation Strategy for Hypercube Computers,” IEEE
Trans. Computers, vol. 41, no. 4, pp. 467-479, Apr. 1992.

[4] Q. Yang and H. Wang, “A New Graph Approach to Minimizing
Processor Fragmentation in Hypercube Multiprocessors,” IEEE
Trans. Parallel and Distributed Systems, vol. 4, pp. 1,165-1,171, Oct.
1993.

[5] S. Rai, J.L. Trahan, and T. Smailus, “Processor Allocation in Hy-
percube Multiprocessors,” IEEE Trans. Parallel and Distributed Sys-
tems, vol. 6, no. 6, pp. 606-616, June 1995.

[6] C. Shen, K. Ramamritham, and J. Stankovic, “Resource Reclaim-
ing in Multiprocessor Real-Time Systems,” IEEE Trans. Parallel
and Distributed Systems, vol. 4, no. 4, pp. 382-397, Apr. 1993.

[7] C.-H. Huang and J.-Y. Juang, “A Partial Compaction Scheme for
Processor Allocation in Hypercube Multiprocessors,” Proc. 1990
Int’l Conf. Parallel Processing, vol. I, pp. 211-217, Aug. 1990.

[8] G.-I. Chen and T.-H. Lai, “Constructing Parallel Paths Between
Two Subcubes,” IEEE Trans. Computers, vol. 41, no. 1, pp. 118-123,
Jan. 1992.

[9] O. Frieder et al., “Experimentation with Hypercube Database
Engines,” IEEE Micro, pp. 42-56, Feb. 1992.

[10] L.M. Ni and P.K. McKinley, “A Survey of Wormhole Routing
Techniques in Direct Networks,” Computer, vol. 26, no. 2, pp. 62-
76, Feb. 1993.

[11] P.K. McKinley and C. Trefftz, “Efficient Broadcast in All-Port
Wormhole-Routing Hypercubes,” Proc. 1993 Int’l Conf. Parallel
Processing, vol. II, pp. 288-291, Aug. 1993.

[12] N.-F. Tzeng and H.-L. Chen, “Fast Compaction in Hypercubes,”
Technical Report TR-95-8-4, Center for Advanced Computer
Studies, Univ. of Southwestern Louisiana, 1995.

Fig. 2. Three disjoint paths present between every node in S = 10
1 and its corresponding node in T = 0
00.

56 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 9, NO. 1, JANUARY 1998

Nian-Feng Tzeng (S’85-M’86-SM’92) received
the BS degree in computer science from Na-
tional Chiao Tung University, Taiwan, the MS
degree in electrical engineering from National
Taiwan University, Taiwan, and the PhD degree
in computer science from the University of Illinois
at Urbana-Champaign in 1978, 1980, and 1986,
respectively.

He has been with the Center for Advanced
Computer Studies at the University of South-
western Louisiana (USL), Lafayette, since June

1987. From 1986 to 1987, he was a member of the technical staff at
AT&T Bell Laboratories, Columbus, Ohio. He is on the editorial board
of IEEE Transactions on Computers, has served on program commit-
tees for several conferences, and was a distinguished visitor of the
IEEE Computer Society. He was co-guest editor of a special issue of
the Journal of Parallel and Distributed Computing on distributed shared
memory systems, 1995, and was the newsletter editor for the IEEE
Technical Committee on Distributed Processing. His research interests
include parallel and distributed processing, high-performance computer
systems, high-speed networking, and fault-tolerant computing.

Dr. Tzeng is a member of Tau Beta Pi, a member of the ACM, a
senior member of the IEEE, and the recipient of the outstanding paper
award of the 10th International Conference on Distributed Computing
Systems, May 1990. He received the University of Southwestern Lou-
isiana Foundation Distinguished Professor Award in 1997.

Hsing-Lung Chen (S’79-M’88) received the BS
and MS degrees in computer science from Na-
tional Chiao Tung University, Taiwan, in 1978 and
1980, respectively, and the PhD degree in electri-
cal and computer engineering from the Illinois
Institute of Technology, Chicago, in 1987.

From 1987 to 1989, he was an assistant
professor in the Department of Mathematics
and Computer Science at Clarkson University,
Potsdam, New York. In 1989, he joined the
Department of Electronic Engineering at Tai-

wan Institute of Technology, Taipei, Taiwan, where he is currently a
professor. His research interests include parallel processing, distrib-
uted computing, and database systems.

Dr. Chen is a member of the ACM and the IEEE.

