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Abstract—This article considers best checkpointing control realizable in real-world systems, whosemean time between failures (MTBFs)

often fluctuate. The considered control scheme is based on equating aggregate checkpointing overhead over an activity sequence of

interest (u) and the expected rework amount after a failure recovery for best checkpointing, called “CHORE” (i.e., checkpointing overhead

and rework equated), where u starts fromexecution resumption after failure recovery and ends after restore from the following failure.

CHORE lets its inter-checkpoint intervals in u follow a pre-determined sequence independent ofMTBF to aim at performance optimality and

is shown analytically to keep overall execution time overhead upper bounded.When failure occurrences are tracked during job execution for

real-timeMTBF estimation, an enhancedCHORE (dubbed En-CHORE) is obtained to lower checkpointing overhead by skipping certain

checkpoints at the beginning of each u before taking checkpointswith themost desirable inter-checkpoint intervals determined on-the-fly for

best checkpointing control. En-CHORE can outperform optimal checkpointing (which follows a fixed inter-checkpoint interval optimized for

one constant global MTBF known a prior) both under synthetic random failureswith localMTBF fluctuatingmarkedly and under real failure

traces of 22 real HPC systems (whose failure rates actually fluctuate over their trace time spans).

Index Terms—Absorbing Markov chains, checkpointing control, execution time overhead, mean time between failures (MTBFs), optimal

checkpointing, rework after failure recovery

Ç

1 INTRODUCTION

FAULT tolerance for computing systems becomes indis-
pensable as their sizes grow, and it often involves check-

pointing in order to permit execution state restoration after
system failures occur [1], [24]. Checkpointing comes with
overhead both in time and in storage, contributed mainly
by halting execution temporarily for snapshotting the exe-
cution state and by transferring and storing the check-
pointed data volume. Ample research articles proposed to
reduce the checkpointed data volume [8], [11], [22], [23],
[25], while others focus on the checkpoint placement techni-
ques that aim to minimize overall execution time overhead
[2], [3], [5], [13], [18], [26], [29].

Most of the previous checkpointing studies assume that
the mean time between failures (MTBF) of a computing sys-
tem (1) is known a priori and (2) stays constant throughout
the course of job execution. A recent article analyzed the
failure characteristics of high-performance computing using
real failure logs [14], [38], [39], [40], revealing that various
computing systems comprising the same hardware compo-
nent type (i.e., identical system nodes) can have their node
failure rates vary up to 50� among different systems. In
addition, the system’s failure rate also varies during job exe-
cution since a heavy load yields a higher node temperature
than a light load [28]. Likewise, execution may experience a

drastically different failure rate from one spatial locality to
another (i.e., from one cluster to another cluster of comput-
ing resources) [30], [38], [40] and execution during the day-
time versus the nighttime [14], [30]. For example, fewer jobs
are running during the night, so there will be more idle
nodes that have lower chances to fail. Even during the stable
operational period, it is revealed in [30] that MTBF may vary
by up to 4�. When GPUs are equipped in its compute units,
a system suffers from elevated MTBF fluctuation due to
unprotected errors (like multi-bit corruption) in GPUs [31],
[33], [38], [39]. Separately, the MTBF of disk drives is
unveiled to vary by up to 30� of the published value [16].
Those findings contradict the common, simplified assump-
tion that a given computing system has a constant overall
MTBF over its execution duration, based on which the opti-
mal inter-checkpoint interval is determined (as reported in
[2], [3], [18], [26], [29]). Meanwhile, findings in [5], [14], [30],
[32] reflect that the Weibull distribution [41] with decreasing
hazard represents the failures more realistically in comput-
ing systems. Under the Weibull distribution, both scale and
the shape parameter (which can vary widely over time [30])
are required.

Since a real-world system may find its MTBF either
unknown a priori or constantly changing instead of a con-
stant, prior studies on optimal checkpointing (OPT) control
under constant MTBF are usually ineffective in practice. To
quantify the execution time overhead levels as the system’s
MTBF fluctuates away from the given MTBF, we have mea-
sured the total execution times by simulation under various
inter-checkpoint intervals, each of which is optimized for a
given MTBF value (called MTBFideal) according to prior
studies [2], [3], [18], [26], [29]. As shown in Fig. 1, the execu-
tion time overhead ratio (m) is plotted over a range of MTBF
values (M) when the inter-checkpoint interval is optimized
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for MTBFideal, with MTBFideal ¼ 2500 sec, 10000 sec, and
60000 sec, corresponding respectively to the curves of OPT-
2500, OPT-10000, and OPT-60000. The ratio of m is defined
as the overall execution time overhead measured under a
given MTBF over that under MTBFideal, where each check-
point is assumed to take 20 sec, so is the restoration time
after a failure.

Clearly, overall execution time overhead is higher (so is
m) if a given system’s MTBF deviates more from MTBFideal,
as illustrated by curves in Fig. 1. For example, the system
with its MTBF ¼ 1000 (or 5000) sec but following periodic
checkpoints at the optimal interval of MTBFideal ¼ 10000 sec
throughout job execution, it then takes 1.84 � (or 1.06 �)
longer than that of the best possible (in an ideal scenario
where the inter-checkpoint interval is optimized for MTBF
¼ 1000 (or 5000) sec), as can be found on the curve of OPT-
MTBFideal ¼ 10000. In essence, execution time overhead, in
this case, rises (so does m) when its actual MTBF is smaller
than MTBFideal because job execution then has a longer
inter-checkpoint interval than the best desirable, involving
a higher “rework” amount after each failure despite lower
aggregate checkpointing overhead, where rework refers to
previously executed job work that was not checkpointed
and thus lost to a failure. Similarly, execution time overhead
is also elevated if its actual MTBF is larger than MTBFideal
since job execution then has a shorter inter-checkpoint inter-
val than the best desirable one, involving more aggregate
checkpointing overhead, despite a smaller rework amount
after each failure.

From the simulation results given in Fig. 1, we are moti-
vated to address “effective checkpointing control which is
oblivious to varying MTBF values during the course of job
execution in a real-world computing system, while upper
bounding overall execution time overhead.” To this end, we
have undertaken the OPT (optimal checkpointing) analysis
for givenMTBF using the absorbingMarkov chain [15] as out-
lined in Section 3, arriving at a unique insight as follows: for
OPT over an activity sequence of interest (denoted by u), the
aggregate checkpointing time over u always equals the
expected rework amount after failure recovery, where u starts
from execution resumption after failure recovery (or execu-
tion onset at the very beginning), and it ends after restore
from the following failure. Exploiting the unique insight, our

checkpointing control lets checkpoints taken in such a way
that the aggregate checkpointing time within u equates
approximately the rework amount after failure recovery.
Referred to as “CHORE” (short for ‘checkpointing overhead
and rework equated’), this proposed control targets OPT dur-
ing the course of job execution in a real system, irrespective of
its actual failure scenario. CHORE lets its inter-checkpoint
intervals in u follow an identified sequence oblivious to
MTBF, in order to satisfy our unique insight as best as
possible.

A detailed analysis is conducted on CHORE control
under system failures that are assumed to occur randomly,
following a Poisson distribution with given MTBF. The ana-
lytic result given in Section 3.2.2 uncovers that CHORE
incurs at most 26 percent extra execution time overhead
when compared with the smallest possible time overhead of
its ideal counterpart whose inter-checkpoint interval is opti-
mized for MTBFideal. For example, if an ideal system with
constant MTBFideal incurs 4.2 percent execution time over-
head (over one without checkpointing at all) following its
optimal inter-checkpoint interval, CHORE exhibits no more
than 5.3 percent execution time overhead. In sharp contrast,
OPT with a constant inter-checkpoint interval optimized for
MTBFideal can exhibit arbitrarily large execution time over-
head in a real system if its actual MTBF fluctuates widely,
as shown in Fig. 1.

When tracking failure instances during job execution for
real-timeMTBF estimation to realize best checkpointing con-
trol adaptively in real systems, enhanced CHORE (denoted
by En-CHORE, detailed in Section 4) is obtained to (1) first
skip certain early checkpoints in each u and (2) then follow a
specified inter-checkpoint interval sequence to take check-
points until the next failure occurs (when u ends). Our simu-
lation evaluation for a wide range of MTBF confirms that En-
CHORE lowers the time overhead ratio of m up to 1.01 (from
1.26 under CHORE) if failures happen randomly without
MTBF fluctuation, governed by a Poisson distribution with
given MTBF. In addition, En-CHORE brings m below 1.00 �
(to be faster thanOPT), if theMTBF of a systemvaries consid-
erably (likely in practice) so that its failures to happen ran-
domlywithmoderate to high fluctuation.

Evaluation results under real traces of 22 different HPC
systems at Los AlamosNational Lab (LANL) [36] reveal that,
on an average, CHORE (or En-CHORE) incurs no more than
1.13 � (or 1.00�) execution time overhead when compared
with its theoretically OPT counterparts. It should be noted
that the results under OPT are unrealizable in practice because
they require “known”MTBF values (which are derived from
entire failure traces globally) prior to execution onset.
Assuming the MTBF of a system to stay constant throughout
job execution, OPT can be inferior to En-CHORE under
actual trace evaluation, because the MTBF of a real system
may fluctuate widely, making OPT that follows one fixed
inter-checkpointing interval throughout entire execution
slightly underperformed.

En-CHORE exhibits better execution performance than the
recently considered checkpointing control schemes, known
as SIMPLE [34], [35] (which tracks failure instances during job
execution to estimate MTBF for determining the next inter-
checkpointing interval) and SKIP [5] (which skips one check-
point over every u to reduce the overall checkpointing cost).

Fig. 1. Normalize execution time overhead (mm) over a range of MTBF val-
ues for a system with the inter-checkpoint interval governed respectively
by MTBFideal of 2500 sec, 10000 sec, and 60000 sec for optimal check-
pointing, where mm is the ratio of overall execution time overhead mea-
sured underMTBFideal to that under a givenMTBF, and it bottoms (¼ 1.0)
if MTBF equalsMTBFideal.

316 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 2, FEBRUARY 2021

Authorized licensed use limited to: University of Louisiana at Lafayette. Downloaded on September 02,2020 at 01:43:07 UTC from IEEE Xplore.  Restrictions apply. 



Table 1 lists the defining features and performance potentials
of the four checkpointing control schemes: CHORE, OPT, En-
CHORE, SIMPLE, and SKIP. As can be seen in the table, OPT
needs the MTBF value before execution onset and assumes
MTBF to be fixed throughout job execution, making it infeasi-
ble for practical use, albeit to its better performance potential.
On the other hand, all other three schemes require no knowl-
edge about MTBF a priori and accommodate MTBF fluctuation
during job execution, rendering them applicable to real-world
systems. CHORE does not track failure instances during job
execution, but En-CHORE, SIMPLE, and SKIP do, with En-
CHORE to exhibit the best execution performance among all
five schemes.

The contributions of this paper are four-fold: (1) it reveals
that best checkpointing control results if the aggregate check-
pointing cost always equals the expected rework cost after
failure recovery, (2) it analytically proves that the overall exe-
cution time overhead under CHORE is upper bounded by
1.26� of that under OPT (the optimal one), (3) it derives En-
CHORE by tracking failure instances for real-time MTBF
estimation to realize best checkpointing control in real sys-
tems on-the-fly, and (4) it evaluates CHORE and En-CHORE
extensively under both random failures (in the absence and
the presence of MTBF fluctuation) and the real failure logs of
22 different HPC systems, confirming their superior check-
pointing behaviors. Note that manually adjusting check-
pointing intervals in the course of job execution (according
to failure instances encountered) is infeasible practically
because a long-running job with checkpointing always
undertakes automatic recovery from any encountered failure
using the recent checkpointing file(s)without halting job execu-
tion (when manual checkpointing interval adjustment may
then bemade).

2 PERTINENT BACKGROUND

2.1 Checkpointing Techniques

Various checkpointing techniques have been considered for
lowering the total execution time overhead either by reduc-
ing data volume involved in checkpoints taken during the
course of application run [8], [11], [22], [23], [25] or by deter-
mining the optimal periodic checkpoint interval [2], [3], [18],
[26], [29], when the checkpoint latency is often known via
execution profiling before an actual application run starts,
and some mechanisms [1], [6], [7] consider both techniques.
Other techniques resort to dynamic checkpointing which
either predicts the checkpoint cost on-the-fly to determine
appropriate points of time for checkpointing [1], [6], [19] or
omits certain periods like in application-initiated periodic
checkpoints [17]. Still, others adopt incremental checkpoint-
ing [1], [6], [22], [25], which collects only dirty pages or

memory blocks since the immediate prior checkpoint to
become the next checkpoint with a reduced footprint. Simi-
larly, multilevel checkpointing was proposed [7], [13] to
reduce I/O contention over a parallel file system. The check-
points frommultiple nodes were combined and compressed
with considering different data types in [8]. Hash-based
incremental checkpointing is tested in [4], [12], [22] where a
hash of immediate prior version of a data block is compared
with the hash of current version of the same data block.
Although these approaches reduce the checkpoint data vol-
ume, the additional processing is still in execution critical
path. Another technique proposes to offload the checkpoint-
ing job to a separate unused core [6] while the job is executed
concurrently to reduce the overall execution time if unused
core exists.

Assuming a fixed MTBF value and a given checkpointing
cost (which is the same for restoration) of a system, earlier
work [2], [3], [18], [26], [29] estimated the optimal inter-
checkpoint interval, while other studies [14], [16], [21]
showed that MTBF values were not fixed in real-world sys-
tems, often varyingmarkedly during the course of job execu-
tion. Hence, the assumption of constant MTBF is generally
inapplicable to real-world systems. Checkpoint/restart can
be donewith different restore costs. For example, Large-scale
high-performance computing systems typically do a full
application abort and restart into a new set of computing
nodes, while more intelligent solutions may use spare nodes
in the system so that spare nodes are still available to substi-
tute the failed participating node(s).

2.2 Checkpointing With Constant MTBFs

Earlier checkpoint analyses under constant MTBFs simplify
their analytic derivation with different assumptions, but
they are unrealistic for real-world systems. Specifically,
Young analyzed the OPT interval without taking the resto-
ration cost into account [29], while Benoit et al. assumed no
failures during checkpointing and restoration for OPT deri-
vation [2]. Both analytic results ignore the restoration cost
and reveal that the optimal inter-checkpoint interval is
fixed, equal to

ffiffiffiffiffiffiffiffiffiffi
2Mcc

p
, where M and c are MTBF and the

checkpointing cost, respectively. Meanwhile, another analy-
sis which takes the restoration cost into account [18], arrives
at the OPT interval of ww ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ðM þ rrÞccp
, with r being the res-

toration cost, under the first order assumption, while the
interval becomes ww ¼ ffiffiffiffiffiffiffiffiffiffi

2Mcc
p � cc, for cc < M=2, under a

high order approximation.

TABLE 1
Comparative Features and Performance Potentials

Schemes Fixed and known

MTBF a prior

Tracking failures

during execution

Real

applicability

Execution

performance

CHORE No No Yes Good

OPT Yes No No Better

En-CHORE No Yes Yes Best

SIMPLE [35] No Yes Yes Better

SKIP [5] No Yes Yes Better

TABLE 2
List of Repetitively Used Symbols

Symbol Description

P Probability to complete an interval without failure
w Job execution per interval
c Checkpoint cost
r Restoration cost
M MTBF
NET2 Normalized expected turnaround time
� Activity sequence of interest (i.e., duration between

two consecutive failures)
b (or a) Total checkpointing and rework overhead under

CHORE (or Optimal)
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3 CHORE CHECKPOINTING CONTROL

Based on the absorbing Markov chain, this section first ana-
lyzes two consecutive checkpoints to derive the mean time over
two consecutive checkpoints, with (1) failures possible to hap-
pen randomly even during checkpointing and restoration and
(2) all restoration and rework costs taken into consideration.
Such an analysis gives rise to optimal inter-checkpointing
characteristics, which signify that (1) the restore cost (r) has
no impact on the optimal inter-checkpoint interval and (2)
there exists one and only one desirable inter-checkpoint
interval w for optimal inter-checkpointing, under random
failures to follow a Poisson distributionwith a given constant
MTBF. Our derived optimalw agrees with that reported ear-
lier under a high order approximation [18]. This section then
analyzes optimal checkpointing durations that cover failures
(if existing) in ideal computing systems and in real-world
systems, separately.

3.1 Analysis on Two Consecutive Checkpoints

Long-running scientific applications involve a sequence of
execution and checkpointing activities denoted respectively
byw and c, as shown in Fig. 2a. If a failure happens, execution
state restore (using the last checkpoint file) is invoked before
execution resumption. The restore cost (r) includes the time
for (1) reading the immediate prior checkpoint, (2) transfer-
ring it (checkpoint file) to a substitute node, and (3) restoring
the job execution state in the substitute node. On the other
hand, the rework cost ð’’ � wwÞ involves the re-execution of
the previously executed job that has not been checkpointed
yet, from the last checkpoint till the point to which the failure
happens. It has been proved in [3] that the optimal (shortest)
execution under a given mean failure rate is achieved if the
inter-checkpoint intervals are kept the same.

An absorbingMarkov chain model [15] we adopt to derive
the expected execution timeover two consecutive checkpoints
is shown in Fig. 2b, where to simplify the derivation failures
are assumed to occur randomly (following a Poisson distribu-
tion,1 with theMTBF ofM) and possibly at checkpointing and

restoration durations. The model includes three states: initial
state (State 0), intermediate state (State 1), and absorbing state
(State 2, which incurs no cost). Beginning at State 0, the pro-
cess stays there till either (1) it completes a checkpoint without
experiencing any failure and then enters State 2 or (2) a failure
happens before finishing a checkpoint, it then enters State 1.
The preceding two scenarios correspond respectively to
Case 1 and Case 2 depicted in Fig. 2a. Whenever the process
transits to State 1, it invokes restoration with an overhead of r
seconds followed by re-execution forw seconds and a check-
point of c sec. The process then transits to State 2 if there is no
failure during the period of rrþ wwþ cc sec; otherwise, it
remains at State 1 and repeats the aforementioned activities,
as shown in Fig. 2b.

Let P1 (or P2) be the transition probability from State 0 to
State 2 (or State 1 to State 2), with the associated state transi-
tion cost being wwþ cc ðor rrþ wwþ ccÞ. The state transition cost
from i to j refers to the mean time spent on State i before mak-
ing a transition to State j. Fig. 2b lists the transition probability
matrix and the transition cost matrix, denoted respectively by
TP and TC. Since failures follow a Poisson distribution with
MTBF ofM, the transition probabilities of P1 and P2 are given
respectively by P1 ¼ e�ðwwþccÞ=M and P2 ¼ e�ðrrþwwþccÞ=M . Thus,
the probability of transition from State 0 to State 1 equals
ð1� P1Þ ¼ 1� e�ðwwþccÞ=M , and that fromState 1 to itself is ð1�
P2Þ ¼ 1� e�ðrrþwwþccÞ=M: Similarly, the state transition cost from
State 0 to State 1 (i.e., C01; see TC in Fig. 2b) denotes the
expected time spent in State 0 before transiting to State 1. This
cost can be calculated by using the failure probability density
function at time t in an arbitrary execution interval of wwþ c,

as expressed by fðtÞ ¼ 1
Me�t=M

ð1�e�ðwwþccÞ=M Þ [15]. Hence, the expected

random time in the range of 0 � t � ðwwþ ccÞ is given by

C01 ¼
Rwwþcc
0 tð Þ 1

M e�
t
Mdt

1� e�
wwþcc
M

� � ¼ M � wwþ cc

e
wwþcc
M � 1

� � ¼ M � wwþ ccð ÞP1

1� P1ð Þ :

(1)

Similarly, the state transition cost from State 1 to itself
(i.e., C11; see TC in Fig. 2b) is expressed by

C11 ¼ M � rrþ wwþ ccð Þ � P2

1 � P2ð Þ : (2)

With all transition probabilities and transition costs
obtained, the mean execution time of an interval is estimated
by adding the expected time spent in State 0 (denoted by T0)
and State 1 (denoted byT1), withT0 andT1 being calculated by

T0 ¼ P1 � wwþ ccð Þ þ 1� P1ð Þ M � wwþ ccð Þ � P1

1� P1ð Þ
� �

¼ 1� P1ð Þ �M;

(3)

T1 ¼ 1� P1ð Þ
P2

P2 � rrþ wwþ ccð Þ þ 1� P2ð Þ M � rrþ wwþ ccð Þ � P2

1� P2ð Þ
� �� �

¼ 1� P1ð Þ
P2

1� P2ð Þ �M:

(4)

The term of ð1� P1Þ in T1 is the probability of transition
from State 0 to State 1, while 1=P2 represents how many

Fig. 2. (a) Execution and checkpointing activities during job execution,
where Case 1 (or Case 2) represents the scenario without failures (or
with a failure), and (b) Modeling the expected time between two conse-
cutive checkpoints, with restoration and rework costs taken into consid-
eration, by the absorbing Markov chain, where TP and TC denote
transition probability matrix and transition cost matrix, respectively.

1. A more realistic failure model is represented with the Weibull
distribution [5, 14, 30, 32].

318 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 2, FEBRUARY 2021

Authorized licensed use limited to: University of Louisiana at Lafayette. Downloaded on September 02,2020 at 01:43:07 UTC from IEEE Xplore.  Restrictions apply. 



times the process transits from State 1 to itself because P2 is
the probability to exit from State 1. The total mean execution
time, T, is given by

T ¼ T0 þ T1

¼ M: 1� P1ð Þ=P2 ¼ M � 1� e� wwþccð Þ=M
� �

=e� rrþwwþccð Þ=M

¼ M � err=M � e wwþccð Þ=M � 1
� �

:

(5)

We are interested in normalized expected turnaround
time (NET 2), defined as the ratio of the total mean execution
time (T) to the base process execution time for that interval,
w > 0, i.e.,

NET 2 ¼ T=ww ¼ Merr=M e wwþccð Þ=M � 1
� �

=ww: (6)

Differentiating Eq. (6) with respect to w and setting it to
0, we get the minimum value point (i.e.,w), as below:

d NET 2ð Þ
dww

¼ 0 ¼ ww�Mð Þe wwþccð Þ=M þM

) M � ww ¼ Me� wwþccð Þ=M:

(7)

Interestingly, Eq. (7) is independent of the restoration cost
(r). Additionally, the second derivative of NET2 is monotoni-
cally increasing for ww > 0 and hence, any value of ww > 0
which satisfies Eq. (7) gives the minimum value ofNET2. Fur-
thermore, the right-hand side of Eq. (7) is an exponentially
decaying function with a maximum value of Me�cc=M (i.e., �
M) and it reaches zero when w approaches1, while the left-
hand side function is linearly decreasing with a maximum
value ofM, reaching zero whenw approachesM. Thus, there
exists one and only one desirable inter-checkpoint interval w
(with 0 < ww � M) that minimizes NET2. We approximate
e�ðwwþccÞ=M in Eq. (7) with a second order polynomial based on
e�ðwwþccÞ=M ¼ 1� ðwwþ ccÞ=M þ ðwwþ ccÞ2=2M2 to get

ww ¼
ffiffiffiffiffiffiffiffiffiffi
2Mcc

p
� cc; (8)

which happens to equal the result derived earlier by Daly
under a high order approximation [18], as reviewed in
Section 2.2. Adopting the Newton-Raphson method [27]
with an initial value of ww0 ¼

ffiffiffiffiffiffiffiffiffiffi
2Mcc

p � cc, we can approach
precise w quickly via iterations, with its first precision digit
obtained usually in no more than three iterations.

To corroborate our analytical finding that the restore cost
(i.e., r) has no contribution over an inter-checkpoint interval,
we simulated a long-running job with varying r values, as
depicted in Fig. 3. In the figure, the normalized execution turn-
around time (NET2) plotted against the inter-checkpoint inter-
val is governed by a convex curve, where NET2 refers to the
execution time normalized with respect to that without check-
pointing and without failures. Every NET2 value shown is
averaged over 10,000 event-driven simulation runs. The sys-
tem is evaluated under the parameter values of per checkpoint-
ing cost (c) ¼ 20 sec, MTBF (i.e., M) ¼ 10000 sec, and restore
cost (r) ranging from 0 to 4xc sec. Started at 20 sec, the inter-
checkpoint interval maintains 5-sec precision throughout sim-
ulation for all sets of results, as shown in Fig. 3. The simulation
results illustrate that the optimal inter-checkpoint interval for

all four r values (i.e., rr ¼ 0; cc; 2xcc, and 4xc) stays the same,
equal to 610 sec, whereas the analytical value (i.e.,

ffiffiffiffiffiffiffiffiffiffi
2Mcc

p � cc)
is 612.45 sec. Although the optimal inter-checkpoint interval is
independent of r, the associatedNET2 value under the optimal
inter-checkpoint interval of 610 sec increases by 0.2, 0.4, and 1.0
percentwhen r rises from 0 to c, 2xc, and 4xc, respectively.

Observation 1. The absorbing Markov chain accurately
models the execution time overhead of a system. For a
given MTBF of M and checkpointing cost of c, the optimal
inter-checkpointing interval is expressed byww ¼ ffiffiffiffiffiffiffiffiffiffi

2Mcc
p �cc.

3.2 Analyzing Execution Duration

Each analyzed checkpointing duration here involves at most
one failure because a new duration begins after failure recov-
ery to the immediate last checkpoint. A duration starts from
either execution onset (see Fig. 4) or execution resumption
after failure recovery (see Fig. 4b), and it ends after restore
from the following failure, involving an activity sequence of
interest (denoted by u). In otherwords, u covers repeated exe-
cution (w) and checkpoint (c) activities, followed by a failure,
which incurs restoration of r and rework of ’’.

3.2.1 Optimal Checkpointing in Ideal Systems

As considered by all previous checkpointing control studies
for minimizing execution time overhead, an ideal system is
assumed to have its MTBF (1) known a priori and (2) fixed
during the entire course of an execution run and from one
run to another [2], [3], [18], [26], [29]. From Eq. (1), ’’ for OPT
(optimal checkpointing) in an ideal system with a constant
MTBF of M can be derived by M � ðwwþ ccÞ=ðeðwwþccÞ=M � 1Þ:
Using Laurent series expansion of 1=ðeðwwþccÞ=M � 1Þ in the
preceding expression, we have

’ ¼ M � wwþ ccð Þ M

wwþ cc
� 1

2
þO

1

M1

� �� �
¼ wwþ cc

2
þO M�1

	 

;

(9)

which reflects that the expected rework amount is nearly
equal to one half of the interval (i.e.,� ðwwþ ccÞ=2, after trun-
cating high-order terms).

Similarly, we obtain aggregate execution time overhead
over u due to checkpoints alone as cc � EC#

ideal, where ECideal
#

is the expected number of complete intervals with repeated
w and c activities over u in an ideal system. To estimate

Fig. 3. Normalized expected turnaround time (NET2) versus inter-check-
point interval (ww) under varying restore values (r), M ¼ 10000 sec, and
c ¼ 20 sec.
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EC#
ideal, we use the negative binomial distribution for deter-

mining the expected number of completed intervals. Fail-
ures are assumed to occur randomly (following a Poisson
distribution) with their MTBF equal to M, as commonly
adopted earlier [2], [3], [18], [26], [29]. Additionally, OPT in
ideal systems has a fixed inter-checkpoint interval of wwþ
cc ¼ ffiffiffiffiffiffiffiffiffiffi

2Mcc
p

(from Eq. (8)). Let P be the probability to com-
plete the execution and checkpointing (without a failure
happens) of an interval of ðwwþ ccÞ sec. The probability of a
failure happen within an interval of ðwwþ ccÞ is given by
ð1� P Þ ¼ 1� e�ðwwþccÞ=M ¼ 1� e�

ffiffiffiffiffiffiffiffiffi
2cc=M

p
. Since the total num-

ber of completed intervals equals zero if a failure happens
in the very first interval, we have the mean number of com-
pleted intervals equal to

EC#
ideal ¼ 0 � 1� Pð Þ þ 1 � P 1� Pð Þ þ 2 � P 2 1� Pð Þ þ . . .þ

i � Pi 1� Pð Þ þ . . . to1 terms

¼ 1� Pð ÞP ð1þ 2 � P þ 3 � P 2 þ 4 � P 3 þ . . . to1 terms

¼ 1� Pð ÞP= 1� Pð Þ2 ¼ P= 1� Pð Þ ¼ 1= e
ffiffiffiffiffiffiffiffiffi
2cc=M

p
� 1

� �
:

Expanding 1=ðe
ffiffiffiffiffiffiffiffiffi
2cc=M

p
� 1Þ in the preceding expression

via Laurent Series, we get

EC#
ideal ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
M=2cc

p
� 1=2þO M�1=2

� �
: (10)

Therefore, the aggregate execution time overhead over u
due to checkpoints only is given by cc � EC#

ideal ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Mcc=2

p �
cc=2þOðM�1=2Þ, and for M >> c, the value can be approxi-
mated by cc � EC#

ideal 	
ffiffiffiffiffiffiffiffiffiffiffiffi
Mcc=2

p ¼ ðwwþ ccÞ=2. It reflects that
the aggregated checkpointing time over u is nearly equal to
one half of the interval (i.e.,� ðwwþ ccÞ=2), which equals
expected rework after failure recovery, according to Eq. (9).
Hence, for OPT in an ideal system, the aggregate checkpoint-
ing time over u always equals expected rework after failure
recovery.

Based on the result derived above to characterize inter-
checkpoint intervals, CHORE is designed to undertake
checkpoints in such a way that the aggregate checkpointing
time over u approximates 1=2 of the inter-checkpoint interval
as best as possible on the fly during job execution to aim at
performance optimality, as follows.

Observation 2. Under optimal checkpointing, aggregated
checkpointing time overhead over u is nearly equal to one
half of an interval (i.e., � ðwwþ ccÞ=2), and it equals the
expected rework after failure recovery (’’).

3.2.2 CHORE Checkpointing in Real Systems

Given MTBF of a real system has been shown to highly fluc-
tuate [14], [16], [21], it is desirable to pursue checkpointing
control for computing systems with unknown or fluctuating
failure rates. To this end, we first introduce a control strategy
that yields checkpointing overhead and rework equated
(CHORE) over u. Unlike employing a fixing inter-checkpoint
interval for an ideal system, CHORE varies the ith inter-
checkpoint interval over u, denoted bywi (see Fig. 4b). It first
lets a job run for ww1 ¼ cc sec before taking a checkpoint (with
job execution paused) that involves overhead of c sec. The
execution and checkpointing activities then repeat until a
failure occurs, with inter-checkpoint intervals (wi) governed
by the control strategy below. Each checkpoint is assumed to
involve a fixed overhead of c.

Control Strategy. Under CHORE control, the ith (for i 
 2)
inter-checkpoint interval,wi, over u is set towi ¼ (2i – 3)�c, before
taking a checkpoint.

An example of the CHORE checkpointing control strategy
is illustrated in Fig. 4b, where the execution state is restored
after the failure, using the most recent checkpoint file(s), and
u then concludes. The subsequent u starts from the previous
checkpoint until the next failure, and it involves rework,
whose expected amount is nearly equal to one half of the
very last inter-checkpoint interval, as indicated by Eq. (9).
The inter-checkpoint intervals in u under CHORE always fol-
low the specified sequence of cc; cc; 3cc; 5cc; 7cc, etc. and they are
oblivious toMTBF.

Following CHORE control, checkpointing is adaptive to
the failure characteristics of a system, without knowing its
MTBF a priori or fixing its MTBF. Execution and checkpoint
activities over u under CHORE always satisfy that the
aggregate checkpoint cost equals the mean rework amount
after failure recovery, to target optimality, as proved next.

Proposition 1. The aggregate checkpointing cost over u under
CHORE always equals mean rework after failure recovery.

Proof. To prove the proposition, we use the negative bino-
mial distribution with varying probability for determin-
ing the expected interval number at which a failure
occurs. Failures are assumed to occur randomly (follow-
ing a Poisson distribution) with their MTBF equal toM. tu
Let Pi be the probability to complete the execution and its

subsequent checkpointing (without a failure) of ith interval
for wwi þ cc sec, where wwi ¼ ð2i� 3Þ �c for i 
 2, with ww1 ¼ c,
as shown in Fig. 4b. The probability that failure happens in
the ith interval is thus given by ð1� PiÞ ¼ 1� e�ðwwiþccÞ=M ,
leading to the expected interval number at which the failure
occurs as

E# ¼ ð1� P1Þ þ 2 � P1 1� P2ð Þ þ 3 � P1P2 1� P3ð Þ þ . . .þ
i � P1P2 . . . Pi�1 1� Pið Þ þ . . . to 1 terms:

Substituting the value of Pi for all i’s in the above expres-
sion followed by some algebraic manipulations, we have

Fig. 4. Activity sequence of interest (�) during the course of job execu-
tion, under two scenarios: (a) optimal checkpointing, which requires
known, constant MTBF, and (b) CHORE, whose inter-checkpoint inter-
vals (wwi) follow a pre-determined sequence (of c, c, 3c, 5c, 7c, etc.)
oblivious to MTBF.
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E# ¼ 1þ
X1
i¼1

e� 2þi� i�1ð Þð Þ � cc=M: (11)

Over an activity sequence of interest (u), a failure strikes at
the last interval, i.e., Interval E#. Since wi under CHORE is
(2i – 3) � c according to the control strategy given above, the
total length of Interval E# equals (2 �E# – 3) � ccþ cc ¼
2�cc� (E# – 1), which becomes 2 � cc�P1

i¼1 e
�ð2þi�ði�1ÞÞ � cc=M

from Eq. (11). One half of the very last interval in u represents
the expected rework amount (see Eq. (9)), which equals

cc�
X1
i¼1

e� 2þi� i�1ð Þð Þ � cc=M: (12)

Each completed interval over u incurs the checkpointing
cost of c. If failure strikes in the very first interval, none
interval has been completed, yielding the mean number of
completed intervals before failure as

EC# ¼ 0 � ð1� P1Þ þ 1 � P1 1� P2ð Þ þ 2 � P1P2 1� P3ð Þ þ . . .

þ i � P1P2 . . . Pi 1� Pið Þ þ . . . to 1 terms:

Replacing the value of Pi for all i’s in the above expres-
sion followed by some algebraic manipulations, we have

EC# ¼
X1
i¼1

e� 2þi� i�1ð Þð Þ � cc=M:

The aggregate checkpointing cost over u thus equals cc�
EC# ¼ cc�P1

i¼1 e
�ð2þi�ði�1ÞÞ � cc=M , which is identical to the

mean rework amount after failure recovery, as expressed by
Eq. (12). This completes the proof. &

Multiple u sequences may exist during job execution,
dictated by the number of failures present. Note that if the
whole job execution duration experiences no failure, no mat-
ter how long the duration is, the system at hand must be
failure-free, signifying no checkpointing at all. CHORE suit-
ably fits in this scenario as the inter-checkpoint interval
grows unboundedly without encountering a failure.

� Execution time overhead under CHORE
Oblivious toMTBF, CHORE is analyzed to get its execution

performance for contrasting against that achieved on an ideal
system with a known and fixed MTBF. Given that CHORE
incurs an equal amount of aggregated checkpointing cost and
rework after failure recovery over u (as proved in Proposition
1), the total overhead due to checkpointing and rework (say,
bÞ over u is twice the value expressed by Eq. (12), i.e.,

b ¼ 2 � cc�
X1
i¼1

e� 2þi� i�1ð Þð Þ� cc=M: (13)

The infinite series (i.e.,
P1

i¼1 e
�ð2þi�ði�1ÞÞ � cc=M ) in Eq. (13)

has no close form solution. For the estimation purpose, we
have numerically evaluated the infinite series for various
sets of c and M values, as shown in Fig. 5. The Y-axis of the
figure represents the normalized sum (g, defined as the ratio
of the sum of the infinite series to

ffiffiffiffiffiffiffiffiffiffi
M=cc

p
), while its X-axis

denotes MTBF. Each curve represents g for its associated c
value over a wide range of M, and it levels off after a

sufficient large MTBF (M), with g always smaller than 0.887
for all c values examined. Curves in Fig. 5 signify that (1)
for a given M, g is smaller for a large c, and (2) for a given c,
g rises monotonically as M increase to plateau just below
0.89. As a result, we arrive at:

P1
i¼1 e

�ð2þi�ði�1ÞÞ � cc=M< 0:887 �ffiffiffiffiffiffiffiffiffiffi
M=cc

p
, giving rise to b < 2� 0:887 � ffiffiffiffiffiffiffiffi

Mcc
p

.
On the other hand, optimal execution in an ideal system

has a fixed inter-checkpoint interval of ðwwþ ccÞ ¼ ffiffiffiffiffiffiffiffiffiffi
2Mcc

p
(from Eq. (8)), with the mean number of completed intervals
over u expressed by Eq. (10) as EC#

ideal ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
M=2cc

p � 1=2þ
OðM�1=2Þ. The optimal execution over u incurs aggregate
checkpoint overhead of EC#

ideal � cc and expected rework offfiffiffiffiffiffiffiffiffiffi
2Mcc

p
=2 (i.e., one half of an inter-checkpoint interval).

Thus, overall checkpoint and rework overhead for optimal
execution on an ideal system over u (say, aÞ is given by

a ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
M=2cc

p
� 1=2þO M�1=2

� �� �
� ccþ

ffiffiffiffiffiffiffiffiffiffi
2Mcc

p� �
=2;

which can be approximated as a 	 ffiffiffiffiffiffiffiffiffiffi
2Mcc

p
forM >> cc.

The degree to determine how close CHORE reaches the
execution performance under OPT can be quantified by the
ratio of b to a, i.e., b=a ¼ ð2� 0:887

ffiffiffiffiffiffiffiffi
Mcc

p Þ= ffiffiffiffiffiffiffiffiffiffi
2Mcc

p ¼ 1:2544.
It signifies that CHORE incurs less than 26 percent additional
checkpointing and rework time overhead as compared to
that under optimized checkpointing with a known, constant
failure rate throughout job execution. For example, if opti-
mized checkpointing has 4 percent execution time overhead
(for any M and c), CHORE incurs approximately 5 percent
execution time overhead when M fluctuates and unknown
during job execution. It is interesting to note that the time
overhead increase amount of CHORE is upper bounded by
26 percent, irrespective ofM and c, as proved below.

� Upper bound on time overhead under CHORE
Excluding the restoration cost, the ratio of mean execu-

tion time overhead under CHORE to that under optimal
checkpointing (i.e., b/a < 1.26), serves as the basis for our
proof of an upper bound for a non-zero restoration cost.

Proposition 2. Themean execution time overhead under CHORE
is upper bounded by 1.26� of that under optimal checkpointing.

Proof. Let d 
 0 be the execution time overhead incurred by
restoration cost only. For d ¼ 0, we already observed that
the expected execution time overhead under CHORE (i.e.,
b) is 1.26� as compared to that under optimal checkpoint
(i.e., a). Now, for d 6¼ 0, assuming identical restoration cost
upon failure, as shown in Fig. 4, both methods incur an

Fig. 5. Sums (g) of the infinite series, normalized w.r.t.
ffiffiffiffi
MM
cc

q
, versus

MTBF, for various costs (c).
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equal amount of additional execution time overhead (i.e.,
d). Thus, the modified expected execution time overhead
ratio became (b þ d) / (a þ d). If we prove the modified
ratio (bþ d) / (aþ d)< b/a, it completes the proof. &

Suppose the ratio satisfies the inequality, we have

ðbþ dÞ=ðaþ dÞ < b=a ) 0 < b � ðaþ dÞ � �a � ðbþ dÞ
) 0 < d � ðb� aÞ:

Since b > a, the inequality always holds for any d > 0,
thereby completing the proof.

Note that results derived in this section assume that the
checkpointing cost is constant (cc) throughout job execution.
In practice, this assumption may not hold true. Nonetheless,
the control strategy can use the immediate prior c as a basis
to decide how long it should wait before placing another
checkpoint. Note also that other control strategies are possi-
ble, expected to result in various bounds on execution time
overhead.

Observation 3. CHORE with the ith (for i 
 2) inter-check-
point interval, wi, over u given by wi ¼ (2i – 3) � c, satis-
fies the optimality condition under unknown MTBF, and
its execution time overhead is upper bounded by 1.26 �
of that of optimal checkpointing under a given MTBF.

4 ENHANCED CHORE (EN-CHORE)

CHORE checkpoint control works superbly without knowing
failure rates a priori or tracking failure instances during job exe-
cution for checkpointing control.With failure tracking for real-
time MTBF estimation, however, CHORE can be enhanced to
lower total execution time overhead by “skipping some early
checkpoints” in each u (an activity sequence of interest; see
Fig. 4b), arriving at En-CHORE (enhanced CHORE). Specifi-
cally, the failure instances during job execution are tracked
under En-CHORE to determine adaptively (1) if one or multi-
ple early checkpoints in u can be skipped and (2) the suitable
inter-checkpointing intervals after checkpoint skipping until u
ends, when a failure occurs. In Fig. 4b, for example, if the fail-
ure instances gathered till the last failure (i.e., immediately
before the onset of the current u) indicate that skipping the
very first two checkpoints is beneficial in lowering overall
time overhead, En-CHORE skips those two early checkpoints,
knowing that should a failure happen before the checkpoint
following ww3 ¼ 3cc in Fig. 4b is completed, all work done from
the start of u until the failure point has to be repeated, incurring
higher rework-after-failure overhead than that under CHORE.
Note that althoughEn-CHOREand the earlier control schemes
of SKIP [5] and SIMPLE [34], [35] track failure instances during
job execution for real-time MTBF estimation (as listed in
Table 1), En-CHORE bases its estimated MTBF to determine
two control parameters for minimal execution time overhead:
(1) the optimal interval of checkpoint skips at the beginning of
each u and (2) the most desirable inter-checkpoint intervals,
whereas SIMPLE uses the estimated MTBF to decide the next
inter-checkpointing interval and SKIP skips just one (say, the
second) checkpoint.

The two control parameters of En-CHORE to realize the
best checkpointing are derived below in sequence.

4.1 Deriving Checkpoint Skips

For En-CHORE to determine the optimal number of check-
point skips at the beginning of each u, we consider a job exe-
cution segment of length w which spans two consecutive
inter-checkpoint intervals of wi and wwiþ1, as depicted in
Fig. 6. Assuming failures to occur randomly (following
a Poisson distribution) with MTBF of M, the probability
of having a failure within interval wwiþ1 is governed by
ð1� e�wwiþ1=MÞ. As the expected rework amount equals one
half of the interval (see Eq. (9)) and wwi has been check-
pointed in Fig. 6a, the total mean execution time overhead
to complete the job segment of lengthw is

O1 ¼ ccþ 1� e�
wwiþ1
M

� �
� wwi þ 1=2:

On the other hand, execution of wwi in Fig. 6b is completed
but not checkpointed, and hence, should a failure happen
before completing wwiþ1; wwi is counted toward rework to get
the total mean execution time overhead of

O2 ¼ 1� e�
wwiþ1
M

� �
� wwi þ wwiþ1=2ð Þ:

Including a checkpoint will lower the overall cost, if and
only if O1 � O2, namely,

ccþ 1� e�
wwiþ1
M

� �
� wwiþ1=2 � 1� e�

wwiþ1
M

� �
� wwi þ wwiþ1=2ð Þ:

to yield

cc � 1� e�
wwiþ1
M

� �
� wwi: (14)

The preceding non-linear inequality can be solved using
the Newton-Raphson method [27], with an initial solution

of wwi ¼ 1
2 ½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2c2k2k2 þ 4ccM

p � c :kc :k�, which is obtained by approx-

imating e�wwiþ1=M in Eq. (14) with a first-order polynomial
based on e�wwiþ1=M ¼ 1� wwiþ1=M ¼ 1� ðwwi þ c:kÞ=M. The
first precision digit of wwi can be obtained by an approximate
initial solution followed by usually no more than three
iterations.

With a predictedMTBF ofM, a known checkpointing cost
of c, and for a given value of k, En-CHORE skips all check-
points up to wwi which satisfies Eq. (14), to reduce execution
time overhead. Based on our observed insight which reveals
that optimal checkpointing results if the expected check-
pointing cost over u equals the rework amount after failure,
we have En-CHORE governed by equalizing the total check-
pointing cost and the rework amount after failure in u, as

Fig. 6. Job execution segment of length w resided at the beginning of �
and spanning two consecutive inter-checkpoint intervals of wwi and wwiþ1

under (a) checkpoint after wwi and (b) checkpoint skip.
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shown in Fig. 7, where ww0 denotes the job execution before
taking any checkpointing (i.e., the portion of u to skip check-
pointing), and wwi ¼ ww0þi�c�k for ii 
 0. The value of w0 is
obtained by solving Eq. (14).

4.2 Deriving Inter-Checkpointing Intervals

En-CHORE employs the same observed insight that motives
CHORE design for the best checkpointing control (illus-
trated in Fig. 4), namely, equating the aggregate checkpointing
time within u and the rework amount after a failure recovery. For
a given M and a known value of ww0, we can accurately esti-
mate the value of k, known as the incremental factor which
dictates the inter-checkpointing interval, such that the over-
all checkpointing cost over u equals the expected rework
amount after failure, as discussed next.

Let Pi be the probability of completing the execution of ith
interval and its subsequent checkpointing (without a failure)
for a total duration of wi þ c, where wwi ¼ ww0 þ i�c�k for i 
 0
as shown in Fig. 7. The probability that failure happens in
the ith interval is thus given by ð1� PiÞ ¼ 1� e�ðwwiþccþi�cc�kkÞ=M ,
leading to the mean inter-checkpoint interval count where
the failure to occur as

h ¼ ð1� P0Þ þ 2 � P0 1� P1ð Þ þ 3 � P0P1 1� P2ð Þ þ . . .þ
i � P0P1 . . . Pi�2 1� Pi�1ð Þ þ . . . to 1 terms:

Substituting the value of Pi for all i’s in the above expres-
sion followed by some algebraic manipulations, we have

h ¼ 1þ
X1
i¼1

e�i: ww0þccð Þ =M � e�i: i�1ð Þ � kk:cc=2M: (15)

The expected length of the interval at which the failure to
happen equals (ww0 þ ccþ h � cc � kk), and half of the interval rep-
resents the mean rework amount after failure (see Eq. (9)),
which is (ww0 þ ccþ h � cc � kkÞ=2. Since the total number of suc-
cessfully completed intervals equals ðh� 1Þ and each com-
pleted interval incurs the checkpointing cost of c, we have the
checkpointing cost over u equal to ðh� 1Þ � cc. Equating the
total checkpointing cost and the rework amount over u gives
rise to ðh� 1Þ � cc ¼ ðww0 þ ccþ h � cc � kkÞ=2, simplifying

X1
i¼1

e�i� ww0þccð Þ =M � e�i� i�1ð Þ�kk�cc=2M ¼ ww0 þ cc � kkþ 1ð Þð Þ
cc � 2� kkð Þ :

(16)

For given ww0, M, and c, the value on the left side of Eq.
(16) decreases as k rises, but the value on the right side
grows when k increases from 0 to 2. Each value of k which
satisfies Eq. (16) for various combinations of M and c is

illustrated in Fig. 8, where k value is zero if the value of the
left side of Eq. (16) is smaller than that of the right side eval-
uated at k ¼ 0. From the figure, k is seen to increase as M
rises, signifying that under a lower failure rate, the inter-
checkpointing interval can grow more aggressively. Addi-
tionally, the k value under c ¼ 100 sec (or c ¼ 600 sec) is
zero for MTBF < 2000 sec (or 12000 sec), reflecting that if
M/c < 20, k equals zero. Fig. 9 depicts k versus M/c, with k
for M/c < 20 discarded as it is then equal to zero. From the
figure, the computed k values and the values given by the
curve of 0:6214� 2:694� eð�0:5142�lnðM=cÞÞ are virtually iden-
tical. Thus, any k value used for subsequent evaluations is
obtained from this fitted curve.

Observation 4. For an estimated MTBF of M and a known
checkpointing cost of c, the ith inter-checkpointing inter-
val over u given by wwi ¼ ww0þi�c �k for i 
 0 under En-
CHORE leads to optimality, where k ¼ 0.6214 -2.694�exp
(-0.5142�ln(M/c)) and ww0 is the solution of equation
cc ¼ ð1� e�ðww0þcc:kkÞ=MÞ� ww0

5 PERFORMANCE EVALUATION

This section includes comprehensive evaluation under both
synthetic failure models and under real-world failure traces.
It first presents the failure model and failure trace details
assumptions used for extensive evaluation of CHORE and
En-CHORE, followed by outlining the simulation setup and
assumptions.

5.1 Failure Models and Failure Traces

Failure models govern synthetic failure occurrences, assum-
ing failures to occur randomly, following a Poisson distribu-
tion with MTBF of M. Two types of failures exist: transient
and permanent failures. The former refers to ones that are
not persistent and their involved compute cores may
resume execution successfully after restore, whereas the

Fig. 7. Activity sequence of interest (�) under En-CHORE, in which the
inter-checkpoint interval (ww) after early checkpoint skipping is adaptively
adjusted to equate total checkpointing cost with rework after a failure.

Fig. 8. Incremental factor (k) versusM under various costs (c).

Fig. 9. Incremental factor (k) versus the ratio ofM/c.
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latter refers to ones that render involved compute cores
wholly unavailable.

In addition, our evaluation also employs real failure logs
of 22 different HPC systems at Los Alamos National Lab
(LANL) from January 1997 through August 2005, available
to the public [36]. Each entry in the failure logs contains
detailed information about the node outage that occurred
during its operation, such as the time when the failure hap-
pened, the time when it was resolved, the system ID and
nodes affected, and the root cause of the failure. For our eval-
uation purpose, a failure that brought down multiple nodes
is recorded as one single failure instance.

The MTBFs computed from the failure logs of real sys-
tems [36] used by OPT (optimal checkpointing) control are
listed in Table 3. In the following sections, the terms of Sys-
tem # and S# are used interchangeably.

5.2 Simulation Assumptions and Operations

With checkpointing, job execution in real-world systems
under CHORE and En-CHORE involves a sequence of
repeated events, as shown respectively in Figs. 4 and 7. We
assume that whenever a failure arises, a monitoring mecha-
nism detects it and immediately triggers the restoration pro-
cess from the most recent checkpoint file(s). Additionally,
the most recent checkpoint file(s) is (are) assumed to be
always accessible for restoration purpose.

Checkpointing and restoration costs both depend on the
checkpoint data volume, and they are mostly determined
by the application memory footprint and hardware resour-
ces involved. Since the restoration cost is irrelevant to the
checkpointing decision, we set the restoration cost equal to
the checkpointing cost (i.e., cc ¼ rr), unless stated otherwise,
as in [2], [3], [5], [19], [26]. The simulator takes fixed c and
r as parameters, and it is fed with either random errors
governed by a Poisson distribution or failure instances reg-
istered in real failure traces. Under CHORE, the simulator
takes the checkpointing cost (c) as the very first inter-
checkpoint interval and linearly increases the interval until
it encounters a failure and reset the inter-checkpoint inter-
val to c, as stated in the control strategy and shown in
Fig. 4b. On the other hand, the simulator for OPT in ideal
systems uses a fixed inter-checkpoint interval, given by
ww ¼ ffiffiffiffiffiffiffiffiffiffi

2Mcc
p � cc (see Eq. (8)), throughout the job execution,

as depicted in Fig. 4a. Under En-CHORE, the simulator
tracks failure instances during job execution for estimating
MTBF to determine the checkpoint skip distance of ww0 at
the beginning of the next u, based on Eq. (15). En-CHORE
after skipping ww0 starts to take checkpoints with inter-
checkpoint intervals governed by Eq. (16) for best check-
pointing control until u ends (when a failure occurs). Note
that En-CHORE assumes an initial MTBF (before failures
are tracked for real-time MTBF estimation) to be a typical
value (say, 5 years per core) upon a job execution onset,
and so does SIMPLE [34], [35].

Both CHORE and En-CHORE are compared with theo-
retically OPT (with constant, known MTBF a priori to follow
a fixed inter-checkpoint interval throughout job execution),
SIMPLE [34], [35] and SKIP [5], which skips one checkpoint
over every u to reduce the overall checkpointing cost. It
should be noted that OPT relies on the full failure log of a
given system to estimate its MTBF for checkpointing con-
trol, with the failure rate assumed to always stay constant
(for ideal systems). OPT achieves optimal checkpointing
only upon rerunning the job controlled by estimated MTBF.
If the MTBF of a system varies during job execution (likely
to happen in practice), however, OPT may not achieve optimal
checkpointing any more since it resorts to one fixed inter-
checkpoint interval. On the other hand, both CHORE and
En-CHORE have no MTBF knowledge of a system upon the
onset of job execution, with En-CHORE tracking failure
instances during job execution to achieve the best check-
pointing control. Although SIMPLE and SKIP also observe
failure occurrences during job execution to estimate subse-
quent inter-checkpoint intervals, they both are outperformed
by En-CHORE soundly, as evidenced by our evaluation
results in Section 6.2.

6 EVALUATION RESULTS AND DISCUSSION

Evaluation results on execution time overhead for CHORE
and En-CHORE are presented in sequence, under (1) syn-
thetic failure occurrences governed by given MTBF follow-
ing a Possion process and (2) real system failure traces.

6.1 CHORE Evaluation

6.1.1 Failures Governed by MTBF

To quantify CHORE performance, we first gather total exe-
cution time overhead by simulation under CHORE for the
computing system in which failures happen randomly fol-
lowing the Poisson distribution with various MTBF values,
under cc ¼ rr ¼ 20 sec. The gathered time overhead result for
each MTBF is then normalized against the lowest total exe-
cution time overhead incurred under OPT determined by
the MTBF for an ideal system counterpart, to get the nor-
malized execution time overhead ratio (m). System failure
occurrences governed by MTBF are assumed to exhibit no
fluctuation throughout job execution in our analyses on the
time overhead bound. In practice, system failures tend to
occur with various degrees of MTBF fluctuation (dictated
by factors like the system load, ambient temperature, com-
ponent variations, etc.). In fact, a heavier system load and a
higher temperature tend to yield more failure rates. Besides,
failure rates of the same type of system may fluctuate
widely, as revealed earlier [14], [16], [30], where constituent
nodes of different systems are found to have their MTBF
values vary by up to 50�. For a given MTBF, failure rate
fluctuation may lower m of CHORE considerably, with
more fluctuation to result in smaller m.

TABLE 3
MTBF (in Minutes) Derived From Failure Logs of Real Systems [36], Represented in a Tuple (S#, MTBF)

(S#, MTBF) (S#, MTBF) (S#, MTBF) (S#, MTBF) (S#, MTBF) (S#, MTBF) (S#, MTBF) (S#, MTBF) (S#, MTBF) (S#, MTBF) (S#, MTBF)

(S2, 880) (S4, 3404) (S6, 17773) (S8, 5120) (S10, 4543) (S12, 4024) (S14, 3791) (S16, 1310) (S18, 467) (S20, 861) (S23, 8772)
(S3, 3590) (S5, 3290) (S7, 18236) (S9, 3740) (S11, 3860) (S13, 5332) (S15, 7329) (S17, 13795) (S19, 483) (S21, 1438) (S24, 24124)
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� Synthetic failure occurrences without MTBF fluctuation
Results ofm versusM for CHOREwhen failure occurrences

are synthesizedwithout MTBF fluctuation is shown in Fig. 10.
Every m value in the figure is averaged over 1,000 event-
driven simulation runs of a long-running job (say, 1000 hours).
Experimental results confirm that CHORE upper bounds
extra execution time overhead beyond what is the smallest
achievable time overhead under OPT. Oblivious to MTBF,
CHORE takes checkpoints over u during execution with their
inter-checkpoint intervals following the sequence of c, c, 3c,
5c, 7c, etc. so as to equate the aggregate checkpointing cost
with the rework after failure, yielding a near-constant m (of
1.26) over thewideMTBF range examined.

To demonstrate the effectiveness of CHORE, we have
measured the m values of CHORE under various check-
pointing costs (c) and restore costs (r) for M ranging from
1000 sec to 200000 sec, denoted by the curves of CHORE-c:r
in Fig. 10. It is evidenced from the figure that each curve
moves up gradually when M increases before leveling off at
a value < 1.26. For example, m under CHORE-600:600 is
1.07 at M ¼ 1000 sec, and it plateaus at 1.24 for M 
 20000
sec. Similarly, m at M ¼ 1000 sec equals 1.23 under CHORE-
100:100, and it levels off at 1.25 for M 
 10000 sec. CHORE
is confirmed to upper bound its m by 1.26 for a wide range
of c and r values examined.

The effects of checkpointing and restoration costs on m

under OPT optimized for MTBFideal ¼ 10000 are also
included in Fig. 10, with OPT-c:r denoting the outcomes of
OPT for MTBFideal ¼ 10000 under given c and r. As can be

found from the curves, OPT-c:r rises monotonically without
upper bounds if M deviates more from MTBFideal ¼ 10000
at faster paces for larger c and r, in sharp contrast to
CHORE-c:r whose m is upper bounded always by 1.26. At
M ¼ 1000 sec, for example, OPT-20:20 is 1.84, as opposed to
2.92 for OPT-600:600. This results mainly from bigger aggre-
gate restore and rework during job execution caused by
larger r and an inadequate number of checkpoints taken at
the constant interval optimized for MTBFideal ¼ 10000
(rather than for actual MTBF of 1000 sec).

� Synthetic failure occurrences with MTBF fluctuation
CHORE performance under synthetic failure occurrences

with various MTBF fluctuation degrees is depicted in
Figs. 11 and 12, where MTBF fluctuates during job execution
such that a randomly chosen number of failures between 1
and 100 are to occur locally with their MTBF equal to an arbi-
trary value within (a � MTBFideal to 1/a � MTBFideal),
respectively for MTBFideal ¼ 10000 sec and MTBFideal ¼ 6700
minutes locally. Such MTBF fluctuation characterization can
also be found in earlier work [14], [16], [30], [35], [37]. Here,
failure occurrences are synthesized for a ¼ 3.5, 6.0, and 10.0,
to reflect three different MTBF fluctuation degrees, with a
larger a signifying larger fluctuation (and a ¼ 1.0 for no fluc-
tuation). Each normalized mean execution time overhead
ratio (m) with c ¼ r ¼ 20 sec (or c ¼ r ¼ 10 minutes) in Fig. 11
(or Fig. 12) is averaged over 1000 evaluation runs of a long-
running job (for 1000 hours). From Fig. 11, CHORE sees its m
to drop down to 1.04with a¼ 10 from 1.16with a¼ 3.5, while
CHORE has a higher m value of 1.26 in the absence of MTBF
fluctuation. Similarly, with MTBFideal equal to the average
MTBFs of 22 real systems and c ¼ r ¼ 10 minutes illustrated
in Fig. 12, m under CHORE reduces down to 1.04 with heavy
fluctuation (i.e., a ¼ 10) from 1.26 with no fluctuation (i.e., a
¼ 1.0). In general, the execution time of CHORE comes closer
to that of OPT ifMTBF fluctuatesmore, and it in fact involves
considerably lower than 26 percent additional execution
time overhead than that under OPT in a real system, as dem-
onstrated next under failure traces.

6.1.2 Under Real System Failure Traces

We have evaluated CHORE under real failure logs of 22 dif-
ferent HPC systems at Los Alamos National Lab (LANL),
with MTBF (in minutes) of each system obtained from its
failure log listed in Table 3 for use by theoretically optimal
checkpointing, OPT. Execution time overhead of CHORE

Fig. 10. Normalized execution time overhead ratio (m) versus M under
CHORE, En-CHORE, and OPT-MTBFideal ¼ 10000 for various check-
pointing costs (c) and restoration costs (r), designated respectively by
CHORE-c:r, En-CHORE-c:r, and OPT-c:r, where failures happen ran-
domly following the Poisson distribution without MTBF fluctuation.

Fig. 11. Normalized execution time overhead ratio (m) under synthetic
failures for c ¼ r ¼ 20 sec, with varying MTBF fluctuation degrees in that
local M values range randomly from a � MTBFideal to 1/a � MTBFideal,
for MTBFideal ¼ 10000 sec.

Fig. 12. Normalized execution time overhead ratio (m) under synthetic
failures for c ¼ r ¼ 10 minutes, with varying MTBF fluctuation degrees in
that local M values range randomly from a � MTBFideal to 1/a � MTBFi-

deal, for MTBFideal ¼ 6700 minutes (averaged over the MTBFs of 22 real
systems listed in Table 3).
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normalized with respect to that of OPT for c ¼ r ¼ 10
minutes (m) is shown in Fig. 13. Every m value in the figure
is averaged over 1,000 evaluation runs of a long-running
job, with failure occurrences following real system traces.
Each evaluation run starts from a randomly chosen time
point in the real traces and computes the overall execution
time overhead incurred until completing 1000-hour effec-
tive work per node. From the figure, m under CHORE
ranges from 0.89 (for System 13) to 1.26 (for System 4), with
the mean m value of all 22 systems equal to 1.13, markedly
less than that of the analytical upper bound (of 1.26). The
standard deviation of the gathered m range of each system
over 1000 evaluation runs for CHORE is marked at its corre-
sponding bar. It is found that the m values under CHORE
for five systems (i.e., S9�S11, S13, and S21) are smaller than
those under OPT. In addition, fourteen systems (all but
S2�S5, S16, S18�S20) see their m ranges to stretch below 1.0,
indicating that their actual MTBFs fluctuate widely and
deviate greatly from those derived globally from corre-
sponding whole real traces (i.e., MTBFideal’s).

6.2 En-CHORE Evaluation

6.2.1 Failures Governed by MTBF

Execution time performance under synthetic failure occur-
rences without MTBF fluctuation and with fluctuation is
presented below in sequence.

� Synthetic failure occurrences without MTBF fluctuation
The result of m versus examined M values of En-CHORE

under various checkpointing costs (c) and restore costs (r) for
M ranging from 1000 sec to 200000 sec, denoted by the curves
of En-CHORE-c:r is shown in Fig. 10. As evidenced by the
curves, m of En-CHORE-20:20 stays at a constant level of
1.02, but En-CHORE-100:100 and En-CHORE-600:600 see
their m values to go below 1.0 under a smallM. For example,
m of En-CHORE-600:600 is 0.95 atM¼ 1000 sec, and it creeps
up asM rises to reach 1.0 atM¼ 10000 sec; it plateaus at 1.02
forM¼ 100000 sec.

� Synthetic failure occurrences with MTBF fluctuation
Figs. 11 and 12 depict comparative m results under En-

CHORE, SIMPLE, and SKIP for three MTBF fluctuation
degrees, with two extreme c ( ¼ r) values examined. They
reveal that En-CHORE consistently outperforms SIMPLE,
with its m equal to 1.01 (or 1.07), 0.96 (or 0.99), 0.92), and 0.88
(or 0.89), respectively for a¼ 1.0, 3.5, 6.0, and 10.0 under c¼ r
¼ 20 seconds (or¼ 10 minutes), as opposed to SIMPLE’s m of
1.01 (or 01.09), 0.97 (or 1.03), 0.93 (or 0.98), and 0.90 (or 0.94),

respectively. Similarly, it is observed in Figs. 11 and 12 that
En-CHORE consistently outperforms SKIP. Clearly, the gaps
of m values under En-CHORE and under SIMPLE and SKIP
become noticeable for large c (¼ r), in the presence of MTBF
fluctuation. In addition, En-CHORE shortens its execution
time more if MTBF has a wider fluctuation degree locally.
En-CHORE is faster than OPT under moderate to high fluc-
tuation (with a
 3.5), as the result of its adaptive checkpoint-
ing control enabled by tracking failure occurrences on the fly.
Likewise, SIMPLE and SKIP may outperform OPT, albeit
under larger fluctuation degrees.

6.2.2 Under Real System Failure Traces

The m results, averaged over 1000 runs, under En-CHORE,
SIMPLE, and SKIP for various systems with c ¼ r ¼ 10
minutes are presented in Fig. 13, where the cost of 10 minutes
for c and rwas chosen earlier in the SIMPLE study [34], [35] as
well. For each evaluation run, En-CHORE, SIMPLE, and SKIP
assume an initial MTBF of 5 years per core for determining
when to take the very first checkpoint after execution onset.
They update their MTBFs upon encountering each failure
accordingly for deciding the best checkpoint starting point in
the next u. Additionally, En-CHORE also estimates the best
inter-checkpoint intervals based onEq. (16). In this evaluation,
each control scheme incorporates all failures encountered
over the period of job execution for updating itsMTBF.

According to Fig. 13, En-CHORE exhibits marked reduc-
tion in execution time overhead, bringing m down below 1.0
for 13 systems out of 22 systems. Given that En-CHORE
outperforms optimal checkpointing if system’s MTBF fluc-
tuates by a factor of 1.5 or more (as observed in Fig. 10), the
results of Fig. 13 signify a majority of real systems possess
highly fluctuating MTBF’s, as also pointed out in previous
articles [14], [16], [28], [30], [31]. The mean m value under
En-CHORE ranges from 1.11 (for S6) to 0.89 (for S13), with
an average of 1.00 over all 22 systems. In contrast, SIMPLE
(or SKIP) yields the mean m values of all systems to range
from 1.28 for S7 (or 1.1 for S17) to 0.96 for S20 (or 0.99 for
S10), with 8 (or 3) systems to have their m values less than
1.0. Here, SIMPLE and SKIP assume an initial MTBF of
5-year per core as well, when job execution starts. SIMPLE
and SKIP, both with the mean m of 1.04 over all systems, are
outperformed soundly by En-CHORE, which achieves the
best checkpointing control realizable in real computing sys-
tems by tracking failure instances during job execution for
adaptively skipping some early checkpoints in u before tak-
ing checkpoints with inter-checkpointing intervals appro-
priately determined.

Fig. 13. Execution time overhead of CHORE, EN-CHORE, SIMPLE, and SKIP normalized w.r.t. that of OPT (mm) under the real failure traces of 22
systems with c ¼ r ¼ 10 minutes, where the standard deviation of gathered m of each system over 1000 runs is marked at its corresponding bar.
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6.2.3 Comparison With Lazy Checkpointing

Realizing temporal locality in failures, authors in [5] pro-
posed a simplified version of Weibull distribution-based
checkpointing, called Lazy checkpointing, to capture the
temporal locality of failures. In addition to MTBF, Lazy
checkpointing also takes into consideration, the Weibull
shape parameter of the system’s failure distribution. The
shape parameter value below 1.0 indicates that the failure
rate decreases over time, signifying a gradual increase in
the inter-checkpointing interval to be favorable. However,
the shape parameter is not known ahead of time in practice,
and hence, we tuned Lazy checkpointing with a typical
shape parameter (say, 0.7) for fair comparison against En-
CHORE, as suggested in [5], and estimated the MTBF of a
system in each run on-the-fly.

The normalized execution time overhead ratios (m) of En-
CHORE and Lazy checkpointing for cc ¼ rr ¼ 10 minutes to
complete 1000-hour productive work (without checkpointing over-
head under failure-freeness) per node under various systems are
shown in Fig. 14. Every m value in the figure is averaged
over 1,000 evaluation runs of a long-execution job, with fail-
ure occurrences following real system traces. From the
figure, En-CHORE is seen to consistently outperform Lazy
checkpointing under all systems except System 21 (denoted
by S21). Lazy checkpointing is outperformed soundly by
En-CHORE for all 22 systems with cc ¼ rr ¼ 10 minutes and
their mean m values equal to 1.06.

6.2.4 OPT Results Under Real System Failure Traces

This subsection presents the total execution times under
OPT and under the Baseline (i.e., without checkpointing
under failure-freeness) for real failure logs of 22 different
HPC systems [36]. Each entry in failure logs contains vari-
ous information, but this evaluation uses only the system-
outage timestamp, which registers the time of a system fail-
ure event. Specifically, all system-outage timestamps of a
given system are used for deriving a constant global MTBF
of the system according to its failure trace, as listed in
Table 3. Additionally, our evaluation assumes that (1) every
system executes a long-running application, (2) all system
nodes are involved in the execution, and (3) adequate
backup nodes are available for substituting permanent fail-
ure nodes upon execution recovery from the very last check-
point. The inter-checkpointing interval (i.e., w in Fig. 2a) of

a system under OPT is obtained according to the previously
computed constant global MTBF of the system (see Table 3)
and its checkpointing cost (c), which depends on the mem-
ory footprint of the application of interest only.

Fig. 15 depicts the results of total execution times taken
by OPT to complete the work amount of the Baseline in
1000 hours for various systems with cc ¼ rr ¼ 10 minutes,
where each result is the average over 1000 runs. Every eval-
uation run starts from a randomly chosen time point in real
traces and ends upon completing 1000-hour productive
work per node. It is found from the figure that S24 incurs
the shortest mean execution time (of 1030 hours) to com-
plete the 1000-hour productive work per node due to its
largest MTBF (see Table 3), while S18 takes the longest time
(of 1267 hours) to complete because of its smallest MTBF.
As expected, Fig. 15 reveals that a system completes the exe-
cution of a long-running job quicker under a larger MTBF in
general. For example, S2 with MTBF of 880 minutes takes
1180 hours to complete the job, whereas S7 with MTBF of
18236 minutes requires 1034 hours for job completion under
OPT. Note that Fig. 15 also includes the base execution time
results of 1000 hours (denoted by Baseline) for reference.

7 CONCLUSION

This article deals with efficient checkpointing control for
real-world computing systems, whose MTBFs are unknown
a priori or fluctuate widely during job execution. The pro-
posed control strategy aims to realize the best checkpointing
with the lowest execution time overhead possible in real-
world computing systems. It results from analyzing optimal
checkpointing over an activity sequence of interest (u) to
discover that the aggregate checkpointing cost and expected
rework after a failure recovery over u are equated for perfor-
mance optimality, dubbed “CHORE” (checkpointing over-
head and rework equated). Execution checkpoints under
CHORE are taken with their inter-checkpoint intervals fol-
lowing a specified sequence oblivious to system’s MTBF.
CHORE exhibits an upper bound on the normalized execu-
tion time overhead ratio (m, which is with respect to the
time overhead of optimal checkpointing, OPT). If failure
instances are tracked during job execution for estimating
the MTBF of a system in real time, CHORE can be enhanced
to lower execution time overhead by appropriate early
checkpoint skipping over u before taking checkpoints with
suitable inter-checkpointing intervals, yielding En-CHORE.

Fig. 14. Execution times overhead of EN-CHORE and Lazy Checkpoint-
ing (with the shape parameter of 0.7) normalized w.r.t. that of OPT (m)
under real failure traces of 22 systems with r ¼ c ¼ 10 minutes, where
the standard deviation of gathered mm of each system over 1000 runs is
marked at its corresponding bar.

Fig. 15. Execution times taken to complete 1000-hour productive work
per node under OPT and Baseline for the real failure traces of 22 sys-
tems with c ¼ r ¼ 10 minutes, where the standard deviation of gathered
execution times (in hours) of each system over 1000 runs is marked at
its corresponding bar.
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Like CHORE, En-CHORE attains best checkpointing, with
its control parameters derived by equating the checkpoint-
ing cost with the rework amount after failure.

Extensive simulation evaluation has been conducted to
assess CHORE and En-CHORE, under both synthetic failure
occurrences and real system failure traces. Evaluated results
of the average m over 1000 independent runs are summa-
rized in Table 4. Specifically, CHORE is confirmed to have
its m stay below 1.26 (or at 1.04) for various checkpoint and
restore costs, when failures happen randomly following the
Poisson distribution without (or with) MTBF fluctuation. In
addition, CHORE and En-CHORE see their m values to
drop markedly for synthetic failure occurrences with MTBF
fluctuation. When evaluated under the real failure traces of
22 different HPC systems at Los Alamos National Lab
(LANL), our En-CHORE exhibits the average m value of
1.00, with respect to its OPT counterpart. Note that En-
CHORE may see its m to drop below 1.0 for certain systems,
since OPT is then no longer “optimal” for every system
given that the MTBF of a system is derived globally from its
whole real trace, whose local failure rates may, in fact, fluc-
tuate widely over the logged time span. En-CHORE, SIM-
PLE [34], [35], and SKIP [5] track failures during job
execution for runtime MTBF estimation to enable different
checkpointing control schemes, with En-CHORE seen to
clearly outperform its two counterparts, whose mean m val-
ues across all 22 systems both equal 1.04. Similarly, En-
CHORE consistently outperforms Lazy checkpointing [5],
whose checkpointing control follows a simplified Weibull
distribution. Note that if the knowledge of one constant
global MTBF of a real system is known a priori, OPT does
remarkably well for that system.

En-CHORE is readily applicable to real-world system
checkpointing in support of long-running job execution,
when system failures are tracked for best checkpointing
control. In contrast, manually adjusting checkpointing inter-
vals in the course of job execution (according to failure
instances encountered) is infeasible practically because such
job execution always undertakes automatic recovery from
any encountered failure using the recent checkpointing file
(s) without halting job execution to make manual check-
pointing interval adjustment.
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