IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 5, NO. 2, FEBRUARY 1994 211

Allocating Precise Submeshes in Mesh Connected Systems

Po-Jen Chuang and Nian-Feng Tzeng

Abstract—We propose a new processor allocation strategy that applies
to any mesh system and recognizes submeshes of arbitrary sizes at any
locations in a mesh system. The proposed strategy allocates a submesh
of exactly the size requested by an incoming task, completely avoiding
internal fragmentation. Because of its efficient allocation, this strategy ex-
hibits better performance than an earlier allocation strategy based on the
buddy principle. An efficient implementation of this strategy is presented.
Extensive simulation runs are carried out to collect experimental cost and
performance measures of interest under different allocation schemes.

Index Terms—Centralized control, distributed approaches, mesh con-
nected systems, cost and performance es, simulation, submesh
allocation.

I. INTRODUCTION

Various parallel architectures have become economically feasible
as a result of advanced very large scale integration (VLSI) technol-
ogy. The mesh topology, because of its simple and regular structure
suitable for VLSI implementation, has been drawing considerable
attention from researchers of different fields in recent years. Based on
this topology, several prototypes and commercial systems have been
built or are under construction, such as CLIP [1], the Tera Computer
System [2], and the Touchstone Delta System [3]. They exhibit a
high potential for the parallel execution of various algorithms, e.g.,
image processing, matrix multiplication, as well as for solving partial
differential equations [4], and may deliver performance as good as
typical supercomputers offer, and at a much lower cost.

Considered in this short note is a mesh connected system where
the resources are the processor nodes forming submeshes of various
sizes. An incoming task incident on the system is analyzed for
decomposability, and the number of processors required for the task
is determined. An appropriate submesh is then assigned to the task.
The job of a processor allocator is to find an available submesh with
a size just sufficient to meet the need of the task. In this short note,
we limit our attention to the processor atlocation of two-dimensional
(rectangular) mesh systems. An incoming task is assumed to need a
rectangular submesh. Allocation in a high-dimensional mesh system
can be investigated similarly.

The recognition of various submeshes in a mesh connected system
using the two-dimensional buddy strategy has been proposed recently
by Li and Cheng [5]. The strategy is a generalization of the tradi-
tional one-dimensional binary buddy system developed for memory
management [6]. This strategy, however, is applicable only to the
square mesh system and allocates only square submeshes, both with
certain predefined sizes. More specifically, the side lengths of the
system and its allowable submeshes are limited to exact powers of
2. Consequently, this strategy can neither be applied to square mesh
systems whose dimensions are not powers of 2 nor be incorporated

Manuscript received May 20, 1991; revised December 9, 1991, and October
27, 1992. N.-F. Tzeng was supported in part by the National Science
Foundation under Grants MIP-8807761 and MIP-9201308, and in part by
the State of Louisiana under Contract LEQSF (1992-94)-RD-A-32. A
preliminary version of this work was presented at the 11th International
Conference on Distributed Computing Systems, May 1991.

P.-J. Chuang is with the Department of Electrical Engineering, TamKang
University, Tamsui, Taipei Hsien, Taiwan, Republic of China.

N.-F. Tzeng is with the Center for Advanced Computer Studies, University

of Southwestern Louisiana, Lafayette, LA 70504.
IEEE Log Number 9214470.

in a non-square mesh system like the Touchstone Delta System [3].
Besides, an incoming task is always assigned to a 2° x 2° square
submesh such that 2° is no less than the maximum of the two side
lengths of the actually required submesh. As a result, this strategy
often allocates a submesh with its sizes “dilated” and is thus termed a
dilated submesh allocation scheme. Because it cannot recognize rect-
angular submeshes of arbitrary sizes, this strategy tends to result in
low processor utilization due to large internal fragmentation. Another
allocation scheme, proposed by Livingston and Stout [7], requires all
available (nonfaulty and nonbusy) processors to participate in the
allocation job in parallel. The correctness of their scheme is assured
by intensively sending and receiving messages among processors
operating in a synchronized fashion. As a consequence, it is readily
suited for an SIMD mesh system, but not for an MIMD mesh. Besides,
a common way of synchronization requires the broadcast operation
that is not supported by certain mesh implementations, such as the
wormhole routing meshes [10].

In light of the facts that processors in a mesh system are not always
arranged in a square fashion and a dilated submesh allocation scheme
often wastes a significant amount of processor resources (due to large
internal fragmentation), and hence imposes unnecessary delay on an
incoming task, it is desirable to consider a more efficient allocation
technique that can apply to any mesh system, recognize submeshes
with arbitrary sizes, and assign a submesh of the precise size to
an incoming task, totally eliminating internal fragmentation. In this
short note, we propose a new strategy that achieves precise submesh
allocation, and thereby achieves high processor utilization, as well as
short task waiting time in any mesh system, even those with unequal
sides. Note that a non-square mesh system could come from a square
mesh after failures arise and several rows or columns of processors
are removed (i.e., bypassed) during reconfiguration. The proposed
strategy searches an available submesh capable of accommodating an
incoming task by examining a sequence of candidate “frames,” each
with the same size in both dimensions as the requested submesh,
until the processors within a “frame” are found all available and are
assigned to the incoming task. Determining whether all processors
within a frame are available can be done quickly by managing three
simple sets appropriately (without checking every processor individu-
ally). This strategy can be implemented in a centralized or distributed
manner. It is an efficient strategy for allocating precise submeshes on
demand. Simulation results indicate that the proposed strategy gives
rise to significantly improved performance over a dilated submesh
allocation scheme while maintaining reasonably low time complexity.

This short note is organized as follows. Section II presents useful
notation and related work on mesh processor allocation. Section
II introduces the proposed allocation strategy and addresses its
implementation. Section IV provides the experimental results on the
cost and performance measures of interest.

II. NOMENCLATURE AND RELATED WORK

A two-dimensional (rectangular) mesh, denoted by M> (w,h),
consists of w x h nodes arranged in a w X h two-dimensional grid.
(Notice that a node refers to a processor; nodes and processors are
used interchangeably.) The node in row i and column j is identified
by address (i, j) and is connected through direct communication links
to(i+1,j)and (i, j+1),for 0 <i <wand0< j < h (a boundary
node has fewer neighbors). A two-dimensional (rectangular) submesh
in Ma(w, h), denoted by Sa(w’, k'), is a subgrid My (w', ') such
that 1 < w' < w and 1 < A’ < h. The address of a submesh

1045-9219/94$04.00 © 1994 IEEE

212 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 5, NO. 2, FEBRUARY 1994

<1,0>

Fig. 1.

<2,0> <3,0>

A rectangular mesh M>(5,4).

is denoted by a quadruple (z,y,z’,y'), where (z,y) indicates the
lower-left corner coordinate of the submesh, and (2, y'} is the upper-
right corner. Fig. 1 shows a rectangular mesh M>(5,4). Nodes (2, 1),
(3,1), {4,1), (2,2), (3,2), and (4,2), for example, constitute a
submesh S3(3,2) with address (2,1,4,2).

The processors in M>(w, k) must be allocated to incoming tasks
efficiently to reduce fragmentation and obtain high processor uti-
lization. An incoming task 7' requesting a rectangular submesh
Sa(w',h'), with 1 < w' < wand1 < A < h, is specified by
T = (w',}"). In what follows, we briefly review prior allocation
strategies.

A. Two-Dimensional Buddy Strategy

The two-dimensional buddy strategy [5], being a generalization
of the conventional one-dimensional binary buddy system [6], is
applicable only to the situation where all incoming tasks need square
submeshes S2(w’,w’)’s, and the system itself is a square mesh
M (w, w), with both w” and w being exactly powers of 2. Assuming
w = 27, this strategy maintains a set of lists of available square
submeshes with side length w’ = 2" such that one list is for an
r' value, where 0 < r' < r. An incoming request for a submesh
of side ¢ (= 2*) is allocated the first element in the list of free
square submeshes So(2*,2%)’s, if the list is not empty; otherwise,
an available square submesh with ' > k is decomposed before
being allocated to the request. Although its allocation procedure
is straightforward, this strategy involves a complicated deallocation
procedure, whenever a submesh is released, in order to guarantee its
correctness. Specifically, the deallocation procedure first has to merge
the released submesh with other submeshes of identical size, if any,
to form a bigger submesh, and then remove the merged submeshes
from the list. This process will be repeated for the newly formed
submesh until nothing further can be done. To this end, the strategy
is implemented [15] by assigning an order to each submesh in the
list, through which each submesh can identify its three buddies. A
bigger submesh is created from a submesh, together with its three
buddies if the three buddies are all in the list.

This strategy cannot be incorporated in square mesh systems with
side lengths that are not powers of 2, not to mention in a non-square
mesh system like the Touchstone Delta System [3], where 528
processors are arranged in the two-dimensional mesh M;(33,16).
Under the strategy in question, an incoming request for S (w’, h')is
assigned a square submesh S (w,w), with w being the maximum
of w' and A’ rounded up to the nearest power of 2, ie., w =
2[logz(max(w’ 4] where max is a function that returns the bigger
value of w' and %'. Consequently, a significant amount of processor
resources could be wasted because of large internal fragmentation,
which may otherwise form certain submeshes able to accommodate
the subsequent incoming tasks. For example, this strategy allocates an

52(8,8) to a request that actually needs a submesh S»(2, 5), wasting
54 processors. A task may be unnecessarily deferred to enter the
system as a result of this inefficient submesh allocation.

B. Parallel Allocation Scheme

A parallel allocation scheme is proposed by Livingston and Stout
[7] for a d-dimensional mesh M (n1,n2,- -+, nq), with ny = ny =

* = ngq. In this scheme, all available (nonfaulty and nonbusy)
processors participate in performing the allocation job. In a one-
dimensional mesh M, (n), a processor with address (i) is considered
to be the leader of an Sy (t), for some ¢t < n, provided that each of
the processors with addresses (¢}, (i +1),---, (i +t— 1) is available,
but processor (i -+ ¢t} is not, meaning that (i) is the starting point of ¢
consecutive free processors. Processor (0) is the leader of S; (n) if all
of the processors are available. An available submesh is positioned by
a leader. Similarly, in a two-dimensional mesh M, (n, 1), a processor
is the leader of S3(t,t), provided that the node itself is a leader of
S1(t'), t' > t, along one dimension, and that each of its # — 1
successors along the second dimension is also such a leader. Each
available processor determines the size of S; of which it is the
leader along one dimension by repeatedly communicating with its
two immediate neighbors along the dimension in a synchronized
fashion. After this, each available processor can likewise determine
if it is the leader of a two-dimensional submesh of the required size
by appropriately communicating with its two neighbors along the
second dimension.

To guarantee the correctness of this scheme, all participant pro-
cessors must send and receive messages in a strictly synchronized
manner, which is possible only in an SIMD mesh. Besides, a
common way of synchronization requires the broadcast operation
that is not supported by certain mesh implementations, such as the
wormhole routing meshes [10].

IlI. PROPOSED ALLOCATION STRATEGY

We introduce a new submesh allocation strategy based on frame
sliding, termed the FS strategy, which can recognize submeshes of
actual sizes needed by incoming tasks. The FS strategy completely
eliminates internal fragmentation and exhibits better performance than
the buddy strategy.

A. Basic Idea

All processors within a “frame” of a given size can be told
immediately when the location of a particular frame point, say the
lower left corner of the frame, is specified. Hereafter, a frame refers
to those processors within it, and a frame is positioned by its lower
left corner address, i.e., the lower left corner address serves as the
location of the frame.

We observe that in response to a request, the buddy strategy
checks frames at certain specific locations dictated by the size of
the requested submesh. The mesh system M, (16,16) illustrated in
Fig. 2(a), where each square represents the location of a processor,
gives an example. When an incoming task T = (8, 8) arrives, the
buddy strategy checks only four locations, namely, 4, C, I, and
K, for availability. On the other hand, it examines locations A
through P (but not other locations) in response to a task T = (4,4).
Because all possible locations selected by the buddy strategy are
fixed and implicit according to the size of a requested submesh, the
strategy can be implemented in a way that a free list is designated
for kegping track of available square submeshes of a certain size,
and there is no need to explicitly record the locations of all allocated
submeshes. Although simple at the allocation step, this scheme is
fairly restricted in identifying the possible locations and sizes of
recognizable submeshes, making it potentially inefficient. Consider

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 5, NO. 2, FEBRUARY 1994 213

M N o P
I J K L
E F G H
A B C D
(@)
<0,8p <3$,8
<0,0: <3,0:

()

Fig. 2. (a) Recognizable submeshes in M3 (16, 16) under the buddy strategy.
(b) Four allocated square submeshes present in M2 (16, 16), indicated by bold
boxes.

Fig. 2(b), for instance: An incoming task of T' = (5,4) cannot enter
the mesh system in the presence of four allocated square submeshes
with addresses (0, 0, 1, 1), (8, 0, 11, 3), (0, 8, 7, 15), and (8, 8,
15, 15), as shown in the figure, despite the fact that a frame with
size 5 x 4 at node (2, 0) involves only free processors and would be
assigned to the task if it were recognizable. The deallocation step of
this strategy also tends to be fairly complex.

To remedy this inadequacy and to improve flexibility in identifying
available submeshes (in both their sizes and locations), we propose
using a frame whose size is identical to that of the requested submesh
(rather than fixed and square) and whose possible location depends
on the available resources at the time of allocation (rather than
implicit and predefined). When processors in the currently examined
frame are not all available, the frame is slid over the “plane” of
the mesh system in search of next candidates, with the horizontal
and vertical strides equivalent to, respectively, the width and height
of the requested submesh. The search process starts with the frame
at the lowes-leftmost available processor, called start_loc. When the
same incoming task T = (5,4) reaches Fig. 2(b), for example, a
5 x 4 frame at (2, 0), the start_loc, is examined first. In this case, the
first attempt succeeds, and the processors in the examined frame will
be assigned to the incoming task.

If the processors in an examined frame are not all available, the
next candidate frame is checked until a frame involving only free
processors is found, or until all candidate frames are exhausted. The
latter case indicates that no suitable submesh exists to accommodate
the incoming task and that the task cannot enter the mesh system
at this time. Consider an incoming task 7' = (8, 4) incident to the
mesh system shown in Fig. 2(b). The first examined 8 x 4 frame,
which is again at startloc (2,0), is unavailable, and the second
candidate frame at node (10,0) (determined by sliding the frame
rightward along the horizontal direction with a stride 8, the width of

the requested submesh) is then checked. This candidate is apparently
unavailable, because node (10,0} itself is not free. When the frame
is further slid rightward, the location of the next candidate is found
outside the boundary of the system. Therefore, the frame is slid along
the vertical direction with a stride 4, the height of the requested
submesh, and then moved leftward such that the right end of the frame
is at the right boundary of the mesh system, reaching the candidate
frame at node (8,4). Now this frame is available, and all processors in
it are assigned to the incoming task. Note that after making a vertical
stride, the frame is slid repeatedly along the horizontal direction
until it exceeds the boundary in the opposite side. In general, the
search process is carried out by examining a sequence of frames that
altogether cover the entire mesh “plane.”

B. Implementing the FS Strategy

The proposed strategy can be implemented efficiently, without
examining the availability of every processor in a candidate frame
individually during search, by appropriately generating two sets
according to the requested submesh size and the current occupancy
situation in the mesh system. The base of a (sub)mesh is the processor
at the lower-left corner of the (sub)mesh. In Fig. 1, for example, the
bases of mesh M3(5,4) and the submesh with address (2, 1, 4, 2) are
processors (0,0) and (2, 1), respectively. Some definitions are given
before an efficient implementation of the FS strategy is presented.

Definition 1: The busy set of a mesh system is the collection of
all current allocated submeshes in the system.

The busy set of the mesh shown in Fig. 2(b) consists of four
elements corresponding to the four allocated square submeshes, i.e.,
{(0,0, 1, 1), (8, 0, 11, 3), (0, 8, 7, 15), (8, 8, 15, 15)}.

Definition 2: The coverage of an allocated submesh « with respect
to an incoming task 7', denoted by &4, is a collection of processors,
each of which cannot serve as the base of any available submesh for
accommodating T". The coverage set is the union of the coverages of
all allocated submeshes, i.e., the elements in the busy set.

As an example, in Fig. 1, if the submesh with address (2, 1, 4,
2) is allocated and T' = (2, 1) is requested by an incoming task, the
coverage of the allocated submesh comprises all processors in the
submesh (1, 1, 4, 2). In general, let (z,y,z’,y’) be the address of
an allocated submesh o for an incoming task 7' = (7, 7). It is easy
to obtain that coverage £,,7 comprises all of the processors of the
submesh (z — i + 1,y — j + 1,2/, 7).

Definition 3: A reject submesh with respect to an incoming task
is a submesh involving processors that can never be the base of any
available submesh for accommodating the incoming task. The reject
set is the collection of all such reject submeshes.

To give an example, the two submeshes (3, 0, 4, 3) and (0, 3,
4, 3) in Fig. 1 form the reject set with respect to an incoming task
T = (3,2). In general, for system Mz(w,h), the reject set with
respect to an incoming task T' = (¢, j) comprises two submeshes with
addresses (w —i+1,0,w—1,h—1) and (0,h—j+1,w—1,h—1).

The next theorem serves as the basis of an efficient implementation
of our strategy.

Theorem 1: Let ¥, A, and x be the coverage set, the reject set with
respect to an incoming task, and the location of a frame, respectively.
Then the processors within the frame are all available only if = does
not belong to any element in ¥ or A.

This theorem follows directly from the fact that 1) if = belongs
to any element in ¥, the frame would be overlapped with some
allocated submesh(es); and 2) if = belongs to any element in A, then
(a portion of) the frame would be outside the boundary of the mesh
system. When an incoming task arrives, all candidate frames can
be determined immediately and are examined in sequence, starting
with the one positioned at start_loc. Whether an examined frame is

214 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 5, NO. 2, FEBRUARY 1994

availabie can be determined quickly by checking its lower-left corner
node against the coverage set and the reject set, which are produced
on receiving the incoming task.

Variable start_loc, which dictates the starting location of each
search process, is initialized to (0, 0) and may be updated at an
allocation/deallocation step, depending upon whether such a step
leads to a change of the position of the lowest-leftmost available
processor in the system. Specifically, startloc is updated at an
allocation step if the first examined frame is assigned to the incoming
task, making the lowest-leftmost available processor changed to the
first subsequent available processor. Likewise, if a released frame
is positioned at a row no higher than the row specified by start_loc
(when they are at the same row, the released frame is to the left of
start_loc), this deallocation step causes start_loc to shift to the location
of the released frame, reflecting the current position of the lowest-
leftmost available processor. The proposed FS allocation strategy is
formally described as follows.

(The busy set is empty and start_loc is (0, 0) initially.)

Processor Allocation:

Step 1) Set i := w' and j := &', where T = (w', k') is the
current incoming task.

Generate the coverage set (from the busy set) and the
reject set according to ¢ and j.

Compare the lower-left corner node of every candidate
frame in sequence, starting with start_loc, against the
coverage set and the reject set. If it belongs to any element
of the two sets, proceed to the next candidate; otherwise,
£0 to the next step. If all candidates are exhausted, g0 to
Step 5. .

Include the selected submesh (i.e., the current frame)
in the busy set, update start_loc if necessary, and then
allocate the submesh to T'. Stop.

Attach T to the task queue and wait until a submesh is
released.

Step 2)

Step 3)

Step 4)

Step 5)

Processor Relinquishment: Remove the released submesh from
the busy set and update start_loc if necessary.

Our allocation strategy can be carried out either by a host processor
centrally or by multiple free processors in a distributed manner. In
a centralized approach, the host processor keeps the busy set and
start_loc, and only the host processor is responsible for allocation.
When a request arrives at the mesh system, the host processor
executes the allocation steps provided above.

In a distributed approach, all of the free processors are involved
in the job of processor allocation. Each free processor checks in
parallel whether it can be the base of a submesh suitable for the
incoming task, but the busy set is managed uniquely by the host
processor. Like the parallel allocation scheme proposed by Livingston
and Stout (7], the distributed approach also requires the support of
broadcast operations, which are not implemented in certain mesh
systems. During the entire course of performing the allocation job,
however, the involved processors need not communicate with one
another; instead, they communicate only with the host processor.
This makes our strategy more efficient and suitable for an MIMD
mesh system.

IV. EXPERIMENTAL PERFORMANCE EVALUATION

Extensive simulation runs are conducted to collect important cost
and performance measures of different strategies for mesh processor
allocation. Because of difficulty in quantifying the communication
time and cost, we simulated only our allocation strategy under

centralized control and the buddy strategy,' leaving out our strategy
operating in a distributed manner, as well as the parallel allocation
scheme by Livingston and Stout [7]. Simulation studies on various
mesh sizes ranging from 16 x 16 to 1024 x 1024 were carried out, with
all of the results following a trend similar to those reported here for
M>(256,256). The entire simulation is performed on a Sun 4 System.

The simulation model is given as follows. Task allocation is
carried out centrally by a dispatching processor outside the simulated
mesh system so that a request for all of the mesh processors is
allowed. Initially, the entire simulated mesh is free, and 1000 tasks
are generated and queued at the dispatcher. The dimensions of
submeshes, and the residence times requested by these 1000 tasks,
are assumed to follow given distributions. The dispatcher attempts
to allocate the task at the top of the queue first, and if it fails
to identify an available submesh of the desired size for the task,
it reattempts when a submesh is released until an available one is
eventually obtained; i.e., the FCFS scheduling discipline is followed.
When a task gets allocated, it is removed from the queue, and the next
task is served at the following time unit. No new task is generated
during the course of simulation.

Under this simulation model, we collected such performance
measures as the completion time (Z—the time taken to finish all
1000 tasks), processor utilization (the percentage of a processor being
used per unit time) over the period =, internal fragmentation (Fin),
external fragmentation (F..), and total fragmentation (Fio(). Fin is
similar to what is defined in [5]: the percentage of overallocated
mesh processors (i.e., those exceeding what are actually needed)
over allocated mesh processors. F.,, refers to the percentage of
total processors in the requested submesh over total processors at
each feasible allocation failure (in which the number of Processors
available is no less than the number of processors requested). Fio.
indicates the percentage of total processors wasted in allocation, and
it can be calculated according to (hit ratio) X Fi, + (miss ratio)
X Fezi, where miss ratio is the rate of total feasible allocation failures
to total feasible requests and hit ratio = 1—miss ratio. Note that Fey
and Fi. are defined differently from those given in [5], because our
preceding definitions appear to be more appropriate. The simulation
results are averaged over five independent runs.

The results for processor allocation in M (256, 256) are shown in
Table 1. The side lengths of submeshes requested by the 1000 tasks
are governed by four distributions — uniform, normal, decreasing, and
increasing distributions. It should be noted that the two side lengths
of each requested submesh are under the same distribution, with two
different random number streams, one for each side, employed to
generate the length value. A rectangular submesh so generated can
be of any arbitrary size. The uniform distribution indicates that each
side length is uniformly distributed between 1 and 256, which seems
to reflect well the situations where the nature of tasks to be executed
is unknown. By contrast, the decreasing distribution indicates that
the probability of requesting a larger submesh is lower, reflecting
better the cases where most tasks have reasonable parallelism, but
are not suitable for fine-grained partition. The probabilities of side
lengths of requested submeshes under the decreasing and increasing
distributions are shown below the table. P, 4) denotes the probability
of side length to fall within Q = [a,], and all possible side lengths
in @ are uniformly distributed. The mean of the normal distribution is
one-half of the mesh system side size, 128, and the standard deviation
is 43. The residence times of the 1000 tasks are governed by two
distributions: uniform and normal distributions. Simulation studies
on various ranges of residence time were carried out, and all of the
results followed a trend similar to those presented here; i.e., for the

! The simulation program for the buddy strategy was provided by K. Li and
K.H. Cheng.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 5, NO. 2, FEBRUARY 1994

215

TABLE 1
SIMULATION RESULTS OF PERFORMANCE MEASURES FOR Af2(256, 256)
Side-length distribution Uniform Normal Decreasing* Increasing**
Residence Time Distribution Uniform Normal Uniform Normal Uniform Normal Uniform Normal
Completion Buddy 16642.9 18443.0 16641.2 18433.6 11785.5 12833.8 17478.3 19492.2
time FS 9922.1 10766.8 11050.4 12084.0 4176.6 4520.0 152345 16718.6
Processor Buddy 25.8 26.2 26.0 26.2 12.0 125 51.2 50.8
utilization FS 43.2 44.9 39.1 399 339 355 58.7 59.2
" Internal Buddy 68.9 68.9 69.3 69.3 81.9 81.9 476 47%6
ragmenta-
tion FS 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
frEa"f]’e?l‘:]a Buddy 28.1 28.1 286 285 14.9 15.0 427 424
gt.m“ FS 335 33.1 29.1 29.1 25.2 248 40.4 399
Total frag- Buddy 61.1 61.1 614 615 57.2 58.2 47.5 47.5
mentation FS 14.6 14.0 14.1 13.9 11.1 10.2 10.4 10.1
Memory SCH** 35 3.5 32 32 6.5 6.4 2.7 2.7
requirement SCkk 8.8 8.4 6.2 6.4 16.0 16.0 6.0 6.2
Nt 16.4 16.3 4.0 4.0 47.0 50.8 6.9 6.8
FS time Nellll 13.7 13.8 5.8 5.7 39.3 41.7 6.8 6.8
complexity | Noiiy 15.3 14.7 4.1 40 44.4 438 7.9 7.8
NCT‘HT 13.1 13.0 59 59 38.5 40.5 74 7.4

*Pl1s2) = 0.4, Pgz 64) = 0.2, Prgs 128) = 0.2, Pyog 256 = 0.2.
*¥P1a2s) = 0.2, Plizg 192) = 0.2, Pios 204] = 0.2, Plaas 56 = 0.4
***Size of union of coverage and reject sets (average case).

****Size of union of coverage and reject sets (worst case).

uniform distribution, it ranges from 5 to 30 time units, and for the
normal distribution, its mean and standard deviation are 20 and 5,
respectively.

The results shown in Table I are reasonably accurate. Given
95% confidence, for instance, the first value 16642.9 (in time unit)
provided in the table has the calculated confidence interval half-
width over the five replications equal to 456.7, meaning that we
are 95% confident that the true result would fall into the interval of
16642.9 & 456.7, or equivalently, 16 642.9 & 2.7%. This simulated
value involves only less than 3% error.

As can be observed from Table I, the FS strategy has significantly
shorter completion time and notably larger processor utilization than
the buddy strategy, particularly under the uniform, normal, and
decreasing side-length distributions. Simulation results are almost
the same for both uniform and normal residence time distributions.
Shorter completion time is a direct result of more efficient processor
utilization for the FS strategy, which totally eliminates internal
fragmentation (whose value ranges from roughly 69% to 82%, as
experienced by the buddy strategy shown in Table I). This clearly
demonstrates the advantage of our strategy over a dilated submesh
allocation scheme, like the buddy strategy. Note that both strategies
hold almost the same external fragmentation under the normal and
increasing side-length distributions, whereas for the uniform and
decreasing distributions, the FS strategy exhibits larger external
fragmentation. The total fragmentation, nevertheless, is shown to be
much less for the FS strategy, meaning that fewer processors are
wasted in allocation.

The next two rows give the average-case and worst-case memory
requirement using the FS strategy, measured by the number of

T Number of comparisons per successful attempt (first 1000 tasks).
1 Number of comparisons per attempt (first 1000 tasks).
11 Number of comparisons per successful attempt (second 1000 tasks).

111 Number of comparisons per attempt (second 1000 tasks).

elements in the union of the coverage set and the reject set (which
comprise the major memory space required by the FS strategy). As we
can see, the memory requirement is no more than 4 in the average case
and no more than 9 in the worst case under all distributions except
the decreasing distribution. Note that one element in the coverage
set or the reject set consists of four coordinates that take no more
than four words. The largest memory requirement happens under
the decreasing distribution, because tasks then are more likely to
request smaller submeshes, and, at any point of time, more allocated
submeshes (most of which are small) exist simultaneously in the mesh
system. The required size of memory remains reasonable, however:
No more than 7 in the average case, and no more than 16 in the
worst case.

We then studied the situation where the number of tasks generated
and queued at the dispatcher is 2000 initially. The last four rows of
the table give time complexity using the FS strategy, measured by the
expected number of comparisons per (successful) allocation attempt.
The results in the first two rows are accumulated from the first 1000
tasks, and the next two rows are from the second 1000 tasks, that
is, when there are many allocated submeshes present at the time
when the first task under consideration (i.e., task 1001) enters. By
a comparison, we mean taking one processor to see if it is in one
element of the coverage set or the reject set. A comparison thus in-
volves checking the two coordinates of the processor address against
the two ranges specified by the element. Since every attempt often
requires a small number of comparisons, and since each comparison
includes only simple operations, the mean search time for finding an
available submesh is very short, yielding low time complexity. As can
be noticed from the first two rows, it takes about 42 comparisons for

216

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 5, NO. 2, FEBRUARY 1994

TABLE 11
SIMULATION RESULTS OF TiME COMPLEXITY
Submesh Side-Length Distribution
System Strategy Complexity
Uniform Normal Decreasing* Increasing**

operations 2636 2170 4554 1295
Buddy # orders 7641 5861 16880 2142

CPU time 95 94 106 93

M>(256,256)

#operations 2386 2346 5649 2042

FS*** #coverages 5140 5135 6636 5001

CPU time 82 81 82 84
operations 2636 2154 4554 1295
Buddy # orders 7641 5775 16880 2142

CPU time 96 95 108 91

M>(1024.1024)

Foperations 2386 2327 5649 2042

FS#** #coverages 5140 5120 6636 5001

CPU time 83 86 83 82

* For Mz(256,256), see Table I; for Mj(1024.1024): Py y98) = 0.4, Plisg a56) = 0.2, Piys 510) = 0.2, Prsy3 1094) = 0.2.
**For My (256,256), see Table I; for M(1024.1024): Py 5157 = 0.2, Pis1sres) = 0.2 Prrgo soq) = 0.2, Pisr 1004 = 0.4,

*** FS strategy with restricted allowable submesh sizes.

an allocation attempt in the worst case, which is still favorable when
compared with the buddy strategy, because the latter tends to involve
high overhead in the deallocation procedure. If a desired submesh
is available (a successful attempt), it takes a little more mean search
time to identify such a submesh, because all elements in the coverage
and reject sets must be compared exhaustively in order for the frame
to be assigned. The worst case happens under the decreasing side-
length distribution, because as mentioned earlier, more small allocated
submeshes exist simultaneously under this distribution at any time,
leading to more elements in the coverage set to be compared at
every allocation attempt. It is also observed that time complexities
are almost the same for the first 1000 and the second 1000 tasks,
indicating that the expected number of comparisons per (successful)
allocation attempt remains the same when there are many allocated
submeshes present initially.

The search spaces (composed of recognizable submeshes) are
different for precise (like the FS strategy) and dilated (like the
buddy strategy) submesh allocation strategies. To compare the costs
meaningfully, the allowable submesh sizes of the FS strategy are
limited to those permitted by the buddy strategy so that the two
strategies would have the same search space. The total number of
operations performed and the CPU time (in seconds) required to finish
the allocations and deallocations of the 1000 tasks in M>(256,256)
and M>(1024,1024) are accumulated and listed in Table II. By
an operation, we mean a comparison (described earlier) for the FS
strategy, whereas for the buddy strategy, we mean decomposing a
bigger available submesh, inserting a submesh in the appropriate
position of a particular list, or merging and removing a submesh
together with its three buddies from the list. We concern only
the major operations involved in the strategies, excluding trivial
operations such as calculating the order in the buddy strategy and
generating the coverage for a particular submesh in the FS strategy,
which are collected and shown separately. Since all of the simulation
results under the normal residence time distribution follow the same
trend as they do under the uniform residence time distribution, only
those under the uniform residence time distribution are presented.
The side lengths of submeshes requested by the 1000 tasks in

M>(256,256) are under the same four distributions as those given in
Table I. The side length of requested submeshes in M, (1024, 1024)
is uniformly distributed between 1 and 1024 under the uniform
distribution, and has a mean value of 512 and a standard deviation
value of 171 under the normal distribution. The probabilities of side
lengths under the decreasing and the increasing distributions are
provided below the table. The FS strategy is found to involve more
operations under the normal, decreasing, and increasing distributions
(by 8%, 24%, and 58%, respectively), but requires slightly fewer
operations under the uniform distributions. It should be remembered,
however, that an operation of the FS strategy is far simpler than that
of the buddy strategy; thus, the total time spent could be more for
the buddy strategy than for the FS strategy with restricted allowable
submesh sizes. The total number of orders calculated in the buddy
strategy and the total number of coverages generated in the FS
strategy are also listed in the table for reference. Note that generating
a coverage is much simpler than calculating an order, and that
coverages involved are fewer than orders, except for the increasing
distribution. As shown in the table, the FS strategy always requires
less CPU time to finish allocating the 1000 tasks. It can also be
observed that the numbers of operations and CPU times involved are
almost identical in M»(256,256) and in M (1024, 1024) for both
strategies, implying that the FS strategy, like the buddy strategy,
involves no higher complexity for a larger system, ensuring its
suitability for a system of any size.

Instead of making strides according to the width and height of
a requested submesh, we investigate other choices of stride values.
Shortening strides, intuitively, could have more candidate frames
examined, and thus could lead to a higher probability of successfully
finding an available candidate frame for an incoming request. For
example, making the horizontal stride one-half of the submesh width
gives rise to twice as many candidate frames being examined. We
simulated the FS strategy with various strides and observed that
with shorter strides, the performance gains are always negligible,
though substantially higher time complexities often result. This point
is illustrated by the simulation outcomes of the FS strategy, with both
horizontal and vertical strides being one-half of the submesh width

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 5, NO. 2, FEBRUARY 1994 217

TABLE III
PERFORMANCE COMPARISON OF DIFFERENT STRIDES IN M2 (256.256)
Performance Completion Processor External 1 1
measure time utilization fragment NC NC
FS;11 89830.3 47.7 33.7 16958.7 56937.3
FSyalf halt 9716.8 44.1 34.0 444 38.8
FS 9922.1 432 335 16.4 13.7

T Number of comparisons per successful attempt.
1 Number of comparisons per attempt.

and height, listed in row FSpair hair of Table III, where both side-
length and residence time distributions are uniform. In the extreme
case, when both horizontal and vertical strides equal 1 (the results
are shown in row FS; ;), time complexity becomes excessively high,
but performance does not improve significantly. It is thus concluded
that making strides equal to the side lengths of a requested submesh
appears to be a good choice.

V. CONCLUSION

In this short note, we have introduced an efficient mesh processor
allocation strategy based on frame sliding, termed the FS strategy,
which can be applied to any mesh system and recognizes submeshes
with arbitrary sizes at any location. The FS strategy allocates a sub-
mesh of the precise size to an incoming task, completely eliminating
internal fragmentation. As a result, when compared with an earlier
allocation strategy based on the buddy principle, this strategy leads
to far better processor use and substantially reduces total time spent
in finishing a batch of tasks. An effective implementation of the
strategy that greatly simplifies the search of candidate frames for an
available submesh is also presented. Simulation results confirm that
our proposed strategy is consistently superior in allocating submeshes
whose side lengths follow any of the four distributions, in terms
of performance measures of interest. The mean search time per
allocation attempt is fairly short, involving at most tens of simple
comparisons. The FS strategy tends to have a larger search space
than the buddy strategy, but its time complexity is kept low. It
is observed from simulation that the CPU time spent in allocating
1000 tasks is less following the FS strategy than it is following the
buddy strategy, when both strategies have the same search space.
The FS strategy involves no higher complexity for a larger mesh
system and is thus efficiently applicable to a system of any size. The
performance of the FS strategy under different stride values is also
pursued by simulation. Shortening strides gives rise to more candidate
frames being examined and incurs higher time complexity. In the
extreme case, where both horizontal and vertical strides are equal
to 1, time complexity becomes excessively high, but performance
improves insignificantly. It appears that making strides the same as
side lengths of a requested submesh is a good choice.

We also have explored (but have not included in early sections,
because of the space limitation) two approaches for reducing exter-
nal fragmentation of our strategy: one by limiting the number of
allowable submesh sizes and the other by using compaction [8], [9].
It is observed from simulation that our strategy is found to behave
virtually the same as the buddy strategy if its allowable submesh
sizes are limited to those permitted by the buddy strategy. As for
compaction, not to mention its large migration overhead, it contributes
no performance improvement, perhaps because of the essential nature
of precise submesh allocation: reduced fragmentation, which is not

further reducible. Compaction is thus unnecessary for our allocation
strategy. We believe that the FS strategy is readily useful for any
mesh connected system.

REFERENCES

{1] T.J. Fountain, K. N. Matthews, and M. J. B. Duff, “The CLIP7A image
processor,” IEEE Trans. Pattern Anal. Machine Intell., vol. 10, pp.
310-319, May 1988.

(2] R. Alverson, et al., “The Tera computer system,” in Proc. 1990 Int.
Conf. on Supercomputing, 1990, pp. 1-6.

[31 G. Zorpette, “Technology 1991: Minis and mainframes,” IEEE Spec-
trum, pp. 4043, Jan. 1991.

[4] R.W. Hockney and C.R. Jesshope, Parallel Computers: Architecture,

Programming and Algorithms. Bristol, UK: Adam Hilger, 1981.

K. Li and K.-H. Cheng, “A two-dimensional buddy system for dynamic

resource allocation in a partitionable mesh connected system,” Proc.

ACM Comput. Sci. Conf., Feb. 1990, pp. 22-28; also J. Parallel Distrib.

Computing, vol. 12, pp. 79-83, May 1991.

{6] J.L. Peterson and T. A. Norman, “Buddy systems,” Commun. ACM, vol.
20, no. 6, pp. 421-431, June 1977.

[71 M. Livingston and Q.F. Stout, “Parallel allocation algorithms for

hypercubes and meshes,” in Proc. 4th Conf. Hypercube Concurrent

Comput. Applications, 1989, pp. 59-66.

M.-S. Chen and K. G. Shin, “Task migration in hypercube multiproces-

sors,” in Proc. 16th Annu. Int. Symp. Comput. Architecture, 1989, pp.

105-111.

C.-H. Huang and J.-Y. Juang, “A partial compaction scheme for

processor allocation in hypercube multiprocessors,” in Proc. 1990 Int.

Conf. Parallel Processing, vol. 1, 1990, pp. 211-217.

[10] W.]. Dally and C.L. Seitz, “The Torus routing chip,” Distrib. Comput-

ing, vol. 1, no. 3, pp. 187-196, 1986.

&
]

8

Py

[9

Performance Evaluation of an Efficient
Multiple Copy Update Algorithm

T. V. Lakshman and Dipak Ghosal

Abstract— A well-known algorithm for updating multiple copies is
the Thomas majority consensus algorithm. This algorithm, before per-
forming an update, needs to obtain permission from a majority of the
nodes in the system. In this short note, we study the response-time
behavior of a symmetric (each node seeks permission from the same
number of other nodes and each node receives requests for update
permission from the same number of other nodes) distributed update-
synchronization algorithm where nodes need to obtain permission from
only O(V/N)(N being the number of database copies) other nodes
before performing an update. The algorithm we use is an adaptation of
Maekawa’s O(W) distributed mutual exclusion algorithm to multiple-
copy update-synchronization. This increase in the efficiency of the update-
synchronization algorithm enhances performance in two ways. First, the
reduction in transaction service time reduces the response time. Second,
for a given arrival rate of transactions, the decrease in response time
reduces the number of waiting transactions in the system. This reduces
the probability of conflict between transactions. To capture the interaction
between the probability of conflict and the transaction response time, we
define a new measure called the conflict response-time product. Based on
the solution of a queueing model we show that optimizing this measure
yields a different and more appropriate choice of system parameters than
simply minimizing the mean transaction response time.

Index Terms—Transaction processing, concurrency control, replicated
data, multiple copy update, transaction response time, conflict probability,
transaction throughput, diameter-two sparse-graphs, finite projective
planes.

Manuscript received September 4, 1991; revised March 17, 1992.

The authors are with Bell Communications Research, 331 Newman Springs
Road, Red Bank, NJ 07701.

IEEE Log Number 9214472.

1045-9219/94$04.00 © 1994 IEEE

