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Abstract—When multiple copies of a certain resource exist in a cube network system, it is desirable that-every nonresource node
can reach the resource in a given number of hops. In this paper, we introduce systematic approaches to resource allocation in‘a
cube system so that each nonresource node is connected with a specified number of resource copies and that thé-allocation
performance measure of interest is optimized. The methodology used is based on the covering radius results of known codes:
These codes aid in constructing desired linear codes whose codewords address.hodes where resource copies. are placed. The
resource aflocation problem is translated to an integer nonlinear program whose best possible solution.can be identified quickly.by -
taking advantage of basic properties detived from the known codes, yielding an optimal or near-optimal allocation result: Those
basic properties lead to drastic time complexity reduction (up fo several orders of magnitude smaller), in particular for large system
sizes. Our approaches are applicable to any cube size, often arriving at more sfficient allocation outcomes than what are attalnable

using prior schemes.

Index Terms—-Binary n-cubes, integer nonhnear programs, linear block codes, multiple connection; resource allocatlon

single connection.

1 INTRODUCTION

HE cube network has drawn. considerable attention re-

cently due to its powerful topological properties [1] and
efficient support of various algorithms [2], makirig it at-
tractive for interconnecting large-scale multiprocessor sys-
tems. Successful research and commercial systems based on
the cube network have been built, including notably Cos-
mic Cube [3], Mark III [4], the Intel iPSC/2 [5], the Ncube
[6], and the Connection Machine [7], among others. Such a
system is also known by the name of hypercube. A three-
dimensional hypercube is depicted in Fig. 1.
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Fig. 1. A three-dimensional cube network, Qs. (Nodes with circles have
one resource copy each.)
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Resources in a cube network system mlght be shared to
reduce the overall system cost, in patticular when a re-
source is expensive or is used by cube nodes infrequently.
By resources, we mean hardware devices (like I/ O proces-.
sors, disks; vector units, ‘etc.). or software modules (like Ti-
brary routines, compilers, data files, etc.), which can be at-
tached fo or placed at cube nodes. The access of a shared
resource tends to involve delay-attributed by possible con-
tention with other access requests and by communication
latency from a node without such a resource fo reach a
node with the resource. Multiple copies. of each type of re-
source often exist in a large-scale system to keep the delay
of shared resource access reasonably low,‘and also toen- -
sure high availability of a resource (because the loss of one
copy then would not render.a type of resource: totally un-
available).

The problem of allocating multiple copies ofia Tesource
in a cube network system is challenging, and. a systematic
allocation' approach- is .desirable to . achieve® best results.
There are two possible situations o be considered’ in-the
context of resource allocation, depending upon ‘how many
resource copies each node is connected with. If a:cube node
without the resource is in connection ‘with-a single copy,
called single-connection (as shown'in Fig. 1), fewer resource
copies are required than multiple-connection, in which
every node without the resource is in connection.with more
than one copy, as exemplified by Fig: 2. On the other hand,
multiple-connection gives rise to less contention, possibly
ylelding better performance, and reduces potential per-
formance degradation after a copy is lost, because every
node still can get access to one resource copy in the same
number of hops. Most prior resotrce allocation articles deal
with single-connection.
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Fig. 2. Each nonresource node in connection with two copies. (Nodes
with circles have one resource copy each.)

Distributing resource copies in a hypercube with an
attempt to optimize system performance measures of in-
terest has been investigated [8], [9], [10]. Livingston and
Stout have studied [8] the minimum number of resource
copies needed to meet certain specified requirements
when distributing the resource in a hypercube computer.
Reddy [9] considered allocating I/O processors (the re-
source) to cube nodes in a way that every node is adjacent
to at least one I/O processor. A perfect allocation results if
and only if every cube node is adjacent to exactly one 1/0O
processor. A perfect allocation is shown to exist only for
certain cube sizes and is obtained by placing the I/O
processors at cube nodes with addresses being the code-

" words of the Hamming codes, which are known to be per-
fect codes [11], [12]. An extension to I/O processor alloca-
tion in other cube sizes was also presented in [9]. Re-
cently, efficient algorithms have been developed by Chiu
and Raghavendra [10] for allocating a given number of
resource copies to a hypercube system in an effort to op-
timize a defined performance measure, called the resource
diameter. Resource diameter is the maximum resource
distance among all the cube nodes, where the resource
distance of a node is the minimum number of hops from
the node to a node equipped with a copy of the resource.
Their algorithms partition hierarchically a system under
consideration into levels, in each of which allocation is
accomplished following a perfect code (like the Hamming
code, the Golay code [11], [12]) or a basic strategy. ’

More recently, multiple-connection allocation in hyper-
cubes has been proposed on the basis of multiple-
adjacency linear block codes [14], [18], which specify the
addresses of the nodes involving resource copies. The al-
location results are provably optimal if the resource di-
ameter is 1. For the resource diameter greater than 1, the
allocation procedure presented is somewhat involved,
and the results obtained are not necessarily best possible.
Multiple-connection resource allocation in k-ary n-cubes is
treated in [17]. ,

In this paper, we deal with allocating copies of a certain
resource to cube nodes efficiently in a large system for both
single- and multiple-connection situations. Qur approaches
are based on the covering radius results of known codes to
aid-in constructing desired linear codes whose codewords
address nodes at which resource copies are placed. Our
focus is on the cases of the resource diameter greater than 1,

since an optimal solution for the case of unit resource di-
ameter has been provided in [14]. The resource allocation
problem is translated to an integer nonlinear programming
problem whose best solution can be obtained efficiently,
giving rise to optimal or near-optimal allocation. It is found
from measured data that execution times are shortened
drastically by reducing the search space of the integer non-
linear programming problem. Our introduced approachies
are applicable to any cube size systematically and often
achieve allocation results better than those derived using
any previous strategy.

The rest of this paper is organized as follows. In Section 2,
necessary notations and useful background are given. Sec-
tion 3 presents our basic methodology for the resource allo-
cation problem. Section 4 considers allocation under the
single-connection situation, i.e., every cube node without a
resource is ensured to reach one resource copy in a speci-
fied number of hops (resource diameter). Multiple-
connection resource allocation is treated in Section 5. Sec-
tion 6 concludes this paper.

2 PRELIMINARIES
2.1 Notations

A cube network, denoted by Q,, consists of 2" nodes, each
addressed by a unique n-bit number. A link exists between
two nodes of Q, if and only if their node addresses differ in
exactly one bit position, and the two nodes are adjacent. A
link is said to be along dimension i if it connects two nodes
whose addresses differ in the ith bit (where the least signifi-
cant bit is referred to as the Oth bit). Qs is illustrated in Fig. 1.
The distance between any two cube nodes is the number of
bits differing in their addresses. For example, the distance
between nodes (011) and (101) is 2. The number of hops (i.e.,
traversals) needed to reach a node from another node
equals the distance between the two nodes. '

An allocation of multiple identical copies of a certain
resource is the set of cube nodes to which these resource
copies are assigned. The resource distance of node X un-

-der allocation A, represented by {4(X), is the minimum

number of hops it has to travel to reach a copy of the re-
source. A small {4(X) is preferred for node X, as it con-
tributes low traffic to the system, thereby leading to a fast
response. An allocation should take the whole network
into account, minimizing {4(X) for all cube nodes Xs. The
resource diameter (defined in Section 1) under an alloca-
tion A, denoted by dg, is defined as the maximum 4(X)
among all cube nodes Xs.

As the size of systems in question is a power of 2, in this
paper, we limit our consideration to the cases where the
number of copies of a resource is an exact power of 2, be-
cause full load balance in such a case can be achieved by
making each copy support an equal number of cube nodes.
Let 2° resource copies be allocated to a cube network in ac-
cordance with allocation A, resulting in the resource di-
ameter denoted by d,(n, k). When there is no confusion,
d4(n, k) can be expressed by d(n, k) for simplicity. An allo-
cation in Q, is optimized if either d(n, k) is minimum for a
given k, or k is minimum for a given resource diameter.



330 ) IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED-SYSTEMS; VOL. 7, NO.4, APRIL 1996 )

2.2 Background

Our resource allocation approach is based on the binary
linear block code (see, for example, [11], [12]), which is briefly
reviewed here. A binary linear block code (1, k), denoted by
¥(n, k), comprises a set of 2 binary sequences of length n
called codewords. Code W(n, k) can be described concisely
using a k by n matrix G known as the generator matrix. Any
codeword of W(, k) is a linear combination of the rows of
G, an associated generator matrix. The linear combination
is performed by modulo-2 additions over corresponding
bits.

Whether or not an n-tuple ¢ is a codeword of code
W(n, k) can be checked by using an (n — k) by n matrix H,
called a parity-check matrix of the code. ¢ is a codeword if
and only if 1t is orthogonaTI to every row vector of H,
namely, ¢ - H' =0, where H' is the transpose of matrix H.
Notice that the ch01ce of H is not unique, and any chosen H
satisfies G - H' = 0. This equality makes it possible to cal-
culate the correspondlng G (that specifies all the code-
words) for a given H, and thus is essential. A linear block
code is completely defined as long as its parity check matrix
H is known.

If a parity-check matrix H for a binary code has « rows,
then each column is an o-bit binary number and there are at
most 2” — 1 nonzero columns The "largest" parity-check
matrix H obtainable is o by 2% = 1. In other words, the col-
umns of this "largest” parity-check matrix H consist of all
the possible nonzero a-tuples (totally, 2* — 1 of them). This
"largest" parity-check matrix H is special and, in fact, is the
parity-check matrix of a-Hamming code [11]. The Hammin,
code is a special hnear code ¥(n, k) such that n equals 2°
— 1 and k is equal to 2% — 1 — q. Linear codes ¥(3, 1), ¥(7,
4), ¥(15, 11), and ¥(31, 26) are examples of the Hamming
codes. A-possible parity-check matrix H of the Hamming
code W(7, 4) is

H=|0101011]. 1)

0010111

1001101'

A basic parameter of linear codes is the covering radius
[13]. Consider linear code W(n, k) and any n-tuple y. Let
Aly) be the minimum distance between y and a codeword
in W(n, k), then the covering radius of the code is defined as
the maximum A(y) among all ys [15]. As a result, the cov-
ering radius of a linear code is exactly the same as the re-
source diameter of an allocation obtained by following the
code. Since our allocation is equivalent to finding out a de-
sired linear code (whose codewords specify the locations of
nodes at which resource copies are placed), hereinafter, the
terms resource diameter and covering radius will be used
interchangeably.

The quality of linear codes can be compared according to
the following:

1) Let two codes have the same size of parity-check ma-
trices, i.e., they have the same # and k, then the code
with a smaller covering radius is better and clearly
gives rise to a more efficient allocation.

2) Let two codes have an identical covering radius but
different sizes of parity-check matrices, (n; — k;) by

and (1, - k) by n,, respectively, with #; —k; equal to
1y — ky. If 1y < m,, then ky is less than k, and the former
code is better, because the ratio of codewords in the
former code to all n; tuples is less than the ratio of
codewords in the latter code to all n, tiples due to
ki/ny <ky/n, (which results directly from n; = k; = n,
—kyand 1y <ny). In other words, the allocation result
derived from the former code is more efficient, as
every resource copy then “covers” more nodes. The
former code is said to be shorfer-than the latter code
for the given covering radius, and a shorter code is
" preferable.

The allocation problem can‘be solved elegantly by mak-
ing use of covering radius results provided in [16], which
are given below to facilitate the: presentation. of our ap-
proach. Let codes W(n;, k), i = 1, 2, have covering radius 7;
and parity check matrix H;. Then, the direct sum of the two
codes is a linear code W(n, + #,, k; + kz) w1th parity check

matrix
.[H] 0}
O H
and covering radius 71 +r,. Multiple linear codes may form
another linear code through the direct sum.

Only a few codes have optimal (i.e., smallest possible)
covering radii, and are referred to as, perfect codes.  In
particular, Hamming codes ‘}’(2 =L 2%1 - have the
optimal covering radius of 1, and the Golay code (23, 12)
has the optimal covering radius of 3 [11]: Hamming codes
and the Golay code are the shortest codes for covering
radius equal to 1 and- 3, respectively. They are the only
two types of codes known so far to have optimal covering
radii. For any other covering radius, there is no method
yet, by which a shortest code can be found. However,
near-shortest linear codes with the covering radius of 2
have been introduced [16], where the patameters 7 and 'k
of the near-shortest linear codes are given'by -

n="5ifn-k=4;
n=13ifn— k=6
and for integerp > 2,

n=9,ifn—k=5;
n=19,if n- k=7

n=@" =" +1), if 7= k =4p;
n=@ -0+ D+ @Y -1, ifn-k=dp+l
n= -+ )+ Q7 1), ifn-k=4p+2;

n=( D"+ D+ Q¥ 1), ifn—k=4p+3 O

As an example, the near-shortest linear code with covermg
radius 7= 2 for n — k = 6 is ¥(13, 7), as k then equals 7.
Similarly, for p=2 and n - k=8, we have the near- -shortest .
linear code W(27, 19), as n is 27 in this situation. The parity
check matrix of every near-shortest linear codes with cov-
ering radius 2 is specified in [16]. The followihg givés the
parity check matrix of near-shortest code W(13, 7):

1111111100000
1111000000000
H-= 0101011010001
0110001101001
0110010100101
0011011000011
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3 PROPOSED METHODOLOGY

Our basic methodology for resource allocation is to deter-
mine the parity check matrix H of an appropriate code
whose codewords specify the node addresses at which re-
source copies are located, in an attempt to optimize the al-
location performance measure of interest. For the single-
connection’situation, two performance measures are of our
particular interest: the resource diameter and the number of
resource copies.

3.1 Minimizing Resource Diameter

In order to minimize resource diameter d(n, k) for given n
and k, we search for an k by [ parity check matrix, H,, which
is composed of parity check matrices of Hamming codes,
near-shortest codes with covering radius = 2 (called NS codes
for simplicity), and the Golay code, such that the resultant
covering radius is minimized. The constituent parity check
matrices lie along the diagonal of H,, as depicted in Fig. 3,
where the resulting linear code is constituted by the direct
sum of codes with parity check matrices H;, H, ..., H,, as ex-
plained in Section 2.2. From H,, we want to trivially get an
(n = k) by n matrix, H, which fulfills the requirement of G
-H' =0, so that the resource addresses can be derived (from
G). Now, if the size of H, obtained satisfies h >n — kand I <
1, we may trivially get H from H, by trimming off its lowest
h— (n —k) rows and adding n — I columns of zero vectors to
its right end, as shown in Fig. 4. This is obviously true, since
H, is a parity check matrix, there must be a k by | matrix G’
satisfying G” - H' =0,and G canbe G’ augmented with n — [
columns of arbitrary vectors to its right end.

I
iy
> —>

H.= *

Fig. 3. Hy formed by Hy, Hy, ..., H,.
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Fig. 4. H constructed from H, by trimming its lowest h —~ (n — k) rows
and adding (n — /) columns of zero vectors to its right end.

The constraint on % and [ values is essential, making it
possible to translate the search of an appropriate code (for
allocation) to an integer programming problem. Consider
the case of k = 13 and n = 20 as an example (n —k = 7).
There are many different ways to construct the parity
check matrix H,, including the three illustrated in Fig. 5.
In Fig. 5a, the parity check matrices of four Hamming
codes constitute the resulting matrix, yielding h =7, 1 =12,
and covering radius = 4. The matrix given in Fig. 5b is
composed of the parity check matrices of three Hamming
codes, exhibiting & = 8, I = 17, and covering radius = 3. On
the other hand, Fig. 5¢ consists of only the parity check
matrix of an NS code. It is apparent that the matrix de-
picted in Fig. 5c is the best choice, since it leads to a
minimum covering radius.

For any set of n and k, the selection of a parity check ma-
trix with the smallest covering radius is achieved by
solving the following integer nonlinear program. Let the
constituent parity check matrices involve x, Hamming
codes W2~ 1,2~ 1 - @), y, NS codes ¥(w(B), w(B) - p),
and z Golay codes, where w(ﬁ , B, and {(p) are, respectively,
n, n —k, and p given in (2), with {(B) 22, and x,,, Ygr and z
are nonnegative integers. We have

Sox,+ Y By rllzzn—k 4)
Yo vB
Y 5, 2% =D+ Zyﬁw(ﬁ) +23z<n )
Ya VB
thx + 2 2y + 3z minimized 6)
YVa VB

Solving the set of preceding equations directly is very
time-consuming, as those equations involve integer vari-
ables x, and vy, for all o, B > 0, in addition to z. Fortu-
nately, we may reduce the complexity of the solution sig-
nificantly by taking advantage of the basic properties asso-
ciated with Hamming codes, NS codes, and the Golay code:
For any given #, an NS code gives rise to no larger covering
radius than the code resulting from a direct sum of multiple
Hamming codes, and the Golay code gives rise to no larger
covering radius than the code from a direct sum of multiple
Hamming codes and NS codes. For n = 13, as an example,
NS code ¥(13, 7) has covering radius 2, whereas the code
from a direct sum of Hamming codes ¥(7, 4), ¥(3, 1), and
¥(3, 1) has covering radius 3. A solution can be obtained
without searching all possibilities of x, and y 5 exhaustively,
as will be seen in the next section.

3.2 Minimizing the Number of Resource Copies

For a given resource diameter 4, it is interesting to find the
minimum number of resource copies required in Q,. This is
equivalent to deriving a linear code ¥(x, k) for a given cov-
ering radius d(n, k) such that it contains as few codewords
as possible (i.e., minimum k, as each codeword corresponds
to a resource copy). In other words, a suitable parity check
matrix of the code with covering radius r is to be con-
structed in the same way as described above, i.e., making
use of parity check matrices of Hamming codes, NS codes,
and the Golay code to constitute the resulting parity check
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Fig. 5. Three possible ways to form a parity check matrix satisfying n = 20 and k= 13.

matrix. However, the set of inequalities (or the nonlinear
program) to be satisfied becomes

2% +z2yﬁ +3z<r @)
Yo vp
D528 =1+ Y ygw(B) + 232 < n ®)
Yo v )
fA Zaxa +2ﬁyﬁ +llzvmwcimized )

Yo vB

where nonnegative integers x,, i, and z are as defined be-
fore, with {() >"2. Note that for a given 7, minimizing k
means maximizing n —k, which is expressed by (9). Again,
this minimization problem is translated to an integer non-
linear programming problem. Like the prior one, this inte-
ger program has a very high time complexity, and signifi-
cant reduction in time complexity can result from the basic
properties of Hamming codes, NS codes, and the Golay
code. The treatment of this minjmization problem will be
detailed in the next section.

4 SINGLE-CONNECTION RESOURCE ALLOCATION

An allocation with a-minimum resource diameter is highly
desirable, because it tends to yield lightest traffic over every
link and thereby a fastest response time. The first problem
under consideration is to find a minimum resource diame-
ter for given n and. k, by solving the integer nonlinear pro-
gram defined by (4)-(6).

4.1 Achieving Minimum Resource Diameter

This integer program can be simplified substantially, ac-
cording to the next theorem, whose proof is provided in
Appendix A. '

THEOREM. 1. A solution for (4)-(6) involves.at most one nonzero
KXoy SAY Xk, and four nonzero y s, §(B) = 2. In addition,
Xg# 18 no larger than 1, and the nonzero:y s-are consecu-
tive, denoted by say Yo yﬁ*'+1, Ygres and yﬁ*+-3.

Theorem 1 indicates that it is impossible for-a solution
to involve multiple Hamming code parity check matrices;
a solution contains at most one Hamming code parity
check matrix. The search process for. the solution is thus
simplified to -

3
O Xp 4+ (B* + Dyg,, +1lzzn—k (10)
=0

X 27 -+ iyﬁ*ﬂ. Ww(B™ + i) +“z3’z sbn (1)
i=0 . .
such that the covering radius,
Xy 2iyﬁ*+i +3z
i=0
is minimized, where o is less than logy(n + 2) (from (11)
by letting x « = 1, and the remaining five variables equal

to 0). For a set of known x_« and z, (10)<(11) become, re-
spectively

3
Y (B + Dygi., 2 m (12)
i=0 |
5 :
Zyﬁ*ﬂ. wip* +i<n 13)
i=0

where m’ =n —k —oxx» — 1lzand n” =n — xxQ2" = 1) -
23z, with n” 2z m” > 0. The expression to be minimized
becomes ) ) ‘
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A solution for (12)-(13) is reached efficiently by making use
of the next lemma and Theorem 2.

LEMMA 1. Any solution for (12)-(13): %,y i 0 <i<3, satisfies

ﬁﬁ(/% < —:1— (14)

PrOOF. Equation (12) leads to
3

(B* + 3 yp, S m
i=0

Since w(B*) is a monotonically. increasing function,
ie, w(B+1)>w(P),itiseasy from (13) to get

3
WBYY Ypuy s S
i=0

Equation (14) results directly from the above two
newly derived inequalities (note that

w(B")

cannot equal

because they are equal only if Ygrei = 0, forall0<i<3,
which is not a set of solution for m”> 0). O

It should be noted that any solution for (12)-(13) satisfies
(14), as proved above; but a B satisfying (14) does not neces-
sarily fulfill (12)-(13). In the next theorem, we refer § only to
an integer which fulfills (12)-(13).

THEOREM 2. Let f3, be the largest integer satisfying (14), then
there is a solution set for the nonlinear program given in

(12)-(13): p*, y P y et Ygesr ]/ﬁ*+3 such that B* equals j3,,
B.,—1,0rB,-2.

A proof of Theorem 2 can be found in Appendix A. This
theorem suggests that only three possible * values have to
be examined in the process of search for a solution. For each

* value, a set of Yy Ygosts Yoo Y sy is identified and the
covering radius calculated Tile soFutlon is thus arrived at

333

directly’ without checking all possible 8* values. An algo-
rithm for obtaining the solution in this efficient way, called
Algorithm 1, is provided in Appendix B.

EXAMPLE 1. Consider allocating four copies of a certain re-

source in Qg such that the resource diameter is mini-
mized. Since 1 = 8 and k = 2 in this case, we have from

Algorithm 1, f=3, o =2, f*=4,x,* =1,y _,=1,and
the remaining output variables = 0, giving rise to par-
ity check matrix

in accordance with (2), where the upper left and the
lower right rectangles are, respectively, the parity
check matrices of Hamming code W(3, 1) and NS code
¥(5, 1) [16]. With H, the generator matrix G is found
according to G - H' =0,as given by
G - [1 1 100000}
00011111}

The four resource copies are allocated to the nodes ad-
dressed by the linear combinations of the rows of G,
i.e., 00000000, 11100000, 00011111, 11111111, achieving
the resource diameter = 3, which is minimum.

It is naturally interesting to find out the computation
time savings due to the results obtained above for reduc-
ing the search space in arriving at a solution set. Algo-
rithm 1 is implemented using C++ and run on a Sun
SPARCstation 2 to get solution sets under various # and k
values, with measured execution times (in ms) listed in
Table 1. For comparison, solving (4)-(6) directly without
search space reduction is also conducted for the same n
and k values, with execution times (in ms) recorded and
given in brackets. These two ways give exactly identical
solution sets for all cases, as expected. Algorithm 1 in-
volves dramatically shorter computation times because its
search space is reduced enormously, in particular, for
large 7 values. As an example, for n = 25 and k = 22, Algo-
rithm 1 has an execution time of 3ms, about four orders of
magnitude smaller in comparison with that required by
solving (4)-(6) directly. More importantly, the execution
time of Algorithm 1 remains very small throughout the
range of n values under study. This is in sharp contrast to
its direct solving counterpart.

TABLE 1
EXECUTION TIME (IN ms) UNDER VARIOUS n AND K VALUES
k n=10 n=15 n=20 n=25 n=30
7 79 12.5 5.1 5.9 8.6
"= [16.1] [437] [10,100] [34,289] [717,4487
_3 34 35 29 3.0 6.2
" [16.1] {4371 [10,281] [35,010] [734,121]

(Times for solving (4)-(6) directly without search space reduction are given in brackets.)
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4.2 Achieving Fewest Resource Copies

Finding the minimum number of copies needed to achieve
a given resource diameter in Q, is natural, since.this
number tells the lowest cost possible. It is translated to an
integer nonlinear program specified by (7)-(9), whose
search space is reduced drastically according to the sub-
sequent theorem. This theorem can be proved in exactly
the same way as that for Theorem 1, as explained in Ap-
pendix A:

THEOREM 3. A solution for (7)-(9) involves at most one nonzero
Xq and four nonzeroy s, {(B) = 2. Nonzero x, is no larger
than 1, and the nonzero y s are consecutive, denoted by
say yﬁ*’ ]/ﬁmr yﬁ*+2r and yﬁ*+3'

Let the nonzero x,, if any, be denoted by x... As a result
of Theorem 3, the nonlinear program under consideration is
simplified to

3
Xy + 22 Yprss + 3z<r (15)

i=0

X% =D+ Y yp, w(B* +D)+23z2<n  (16)
i=0

such that

3
mA o+ Y (B + Dy +11z
i=0

is maximized, with o < log, (n + 2). For given x x and z,
(15)-(16) become, respectively,

3
> Vg <7 (17)
i=0

3

zyﬂ*ﬂ, w(B*+ i) < n’ 18)

where v'= (r — x,. — 32)/2, n" is as defined in (13), n” 27 >
0. The expression to be maximized is

m = Zm )Y

i=0
We may identify the search space of the integer nonlinear

program specified by (17)-(18) in two different cases, de-
pending on the value of

2 Ve
i=0

Casel. Zyﬁm =
i=0

In this case, we have

3 3
w(B*)r’ = W(’B*)Eyﬁ*ﬂ' < Zw(ﬁ* + i)yﬂ*ﬂ. <,
i=0 =0

leading to

/

w(f*) < —

(recall that w(ﬁ) isa monotomcally increasing function). Let
B, be the largest integer value satisfying

’

n
W(ﬁ*)#‘}j /

then the * value to be examined ranges from 2 to B, inclu-
sively. For each * (an integer)' examined, the above nonlin-
ear program becomes a linear program and a solution set

can be found, with m” obtained. The solution under this
case is the one which gives rise to the maximum m .
3

Case 2. Zyﬁ*ﬂ. <r
i=0
In this case, let

3 .
.Eyﬁ*+i =7 - 6/

with1<8§=<7’ —1.If 87, Y Ygr1r Y geeas yﬁ“g,.are a set of
solution for the above nonhnear program, we have the fol--
lowing inequality (see Appendix A for a proof).

3 :
D g BT+ D) >0 =8 w(p) “(19)
i=0 )
Rearranging (19) arrives at _
< g+ OWB D v, W+ )
=1 ‘
which is less than
3 : s
G+ YpeW(B* + 3) =1 w(B*+3).
i=0
This results in
w(B* + 3) >‘% . 20)

On the other hand, from
3 o
PETWES:
i=0 , ’
(i.e., at least one of the three terms is nonzero), we have
3 o
i=0 ,
which is < n/ according to (18). Let f; and B, be, respec-

tively, the minimum and the maximum values which sat- -
isfy both (20) and w(B )y < n”. The B~ value to be searched

Tanges from max(f;, 2) to f3,, wherée max is:a’maximum

function. For each value searched, (17)-(18) become a lin-

~ ear program and a solution is then obtained. The solution

under Case 2 is the onewhich yields maximum m~’ . We,
thus, solve this problem based on the Case 1 solution and
the Case 2 solution. An algorithm for arriving at the solu-
tion using these results, called Algorithm 2, is listed in
Appendix B. ,

EXAMPLE 2. Suppose that an allocation with resource’ di-

ameter » = 3 is to be determined in Qyp using fewest
resource copies. FrOm Algorithm 2, we have output

variables m = 9, o* = 3, B =6x.=1y.=1, and the
rest being 0, resulting in a'parity check matrix
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TABLE 2
EXECUTION TIME (IN ms) UNDER VARIOUS nAND r VALUES

r n=10 n=15 n=20 n=25 n=30
’ 3.3 6.1 15.5 23.2 452
[495] [15,358] [187,840] [1,290,819] [?]
3 52 139 759 792 857
[1,168] [15,941] [190,752] [1,296,747] [?]
5 55 147 767 800 866
[1,172] [15,968] [194,365] [1,316,872] [?]
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(Times for solving (7)-(9) directly without search space reduction are given in brackets, and ? indicates a very large execution time.)

H O
0o H,/|
where H; is the parity check matrix of Hamming

code ¥(7, 4) given by (1) and H, is the parity check

matrix of NS code ¥(13, 7) expressed by (3). The
generator matrix corresponding to the above 9 by 20
parity check matrix specifies the addresses of re-

source nodes, which amount to 2" in total. If the
strategies given in [10] are followed, one can show

that the best result achievable for r = 3 in Q) requires
2" resource copies (an example such allocation is
done by using Hamming code ‘¥(15, 11) plus the basic

strategy for Qs with resource diameter 2 (=3 - 1)),
two times as many copies as in our allocation.

Algorithm 2 is implemented using C++ to check its
execution efficiency in comparison with solving (7)-(9)
directly without search space reduction. Execution times
(in ms on a Sun SPARCstation 2) needed. for different n
and r values are presented in Table 2, where those in-
cluded in brackets are times required if solution sets are
obtained from (7)-(9) directly. Algorithm 2 arrives at the
same solution set as its direct solving counterpart for any
given n and r, but involves a substantially shorter execu-
tion time. It is possible to attack larger n cases without
increasing execution times much following Algorithm 2.
Conversely, exhaustive search makes the execution time
grow rapidly as n increases.

5 MULTIPLE-CONNECTION RESOURCE ALLOCATION

The preceding section deals with the situation where a
nonresource node is connected with one copy of the re-
source. Under this situation, excessive sharing of one re-
source copy may occur in a large system because every
copy has to support an increasing number of nodes when
the system dimension is enlarged, degrading overall sys-
tem performance due to growing contention. Conse-
quently, it might be desirable for a large system to con-
sider the allocation of a resource in a way that every non-
resource node is in connection with multiple resource
- copies. Such a resource allocation is fault-tolerant in the
sense that the resource diameter of the allocation remains
unchanged even after a fault arises. This kind of resource
allocation is the focus of this section.

The problem to be dealt with here concerns efficient ap-
proaches to multiple-connection resource allocation. Opti-
mal or near-optimal solutions which achieve a specified

- degree of connection (for any node without the resource) j

under a resource diameter r, are to be found. They are
based on the result obtained in Section 4.2 for given n” and
r’ so as to minimize the number of resource copies in-
volved. The subsequent cases are treated separately. to ar-

rive at desired solutions.
Casel.j< 2!

In this case, we focus on the situation of r > 1, as our con-
cern lies in multiple-connection allocation, i.e., j > 1. Sup-
pose that © = |—Iog2 il and H’ is a parity check matrix of lin-
ear code W(n", k) with covering radius r’, where n’ =n -1,
k’” =k - 7 (to be decided), and r* = r — 7 (which is > 1). Ma-
trix H' is obtained using the method described in Section
42. Then, the parity check matrix characterizing j-
connection resource allocation with resource diameter r and
minimized k for a given n is specified by

H,=[00--00H]

where there are 1 zero vectors 0 of size (n —k) by 1 (as n”
—k’=n —k). Since H"is an (n "— k’) by n’ matrix, H, is
an (n — k) by n matrix.

What remains to be proved is that any noncodeword
with respect to H; has at least j codewords within distance
r or less, as stated in the following theorem. '

THEOREM 4. Parity check matrix H; specifies a j-connection re-
source allockution with resource diameter r, j <2°, in Q,
involving 2" resource copies.

PROOF. First, consider linear code ¥(n’, k’) and any of its
noncodeword a’ = (a,_, 14, ;> ... A44y). Since H is a
parity check matrix of linear code ‘¥(n”, k”) with cov-
ering radius r”, there is one codeword ¢’ = (¢,_, 16, >
.. €1¢g) such that the Hamming distance between ¢’
and a’ isno more thanr” =7~ 7.

Next, consider any noncodeword, a = (4, 14, 5 ... 4,_,
a’), and a codeword, ¢ = (¢, 1€, 5 ... C4_; ), with re-
spect to parity check matrix H;, where a” and ¢ are, re-
spectively, the noncodeword and the codeword re-
garding W(n’ , k" ). Let e denote (e, _se, 5 . ,_ 00 ... 0),
where e, n —12h>n -1, can be 0 or 1; in other words,
e is any one of the 2" distinct vectors, depending on the
values of ¢;s. Clearly, for any e, (¢ + e) is a codeword .
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with respect to parity check matrix Hj, and the Ham-
ming distance between (c + ) and noncodeword a is
no more than 7+ r’ = r, as the distance between ¢’ and
a’is v’ or less. Consequently, noncodeword a is con-
nected with 27 (= /) codewords whose distances are
within 7. [

EXaMPLE 3. Consider the case ofj=4andr=3 1n Qg. This
case satisfies j < 2" "and wehavet=2,n" =n—1=
2,7 =r—1=1, indicating that a linear block code of
length 7 with covering radius 1 should be found first.
Hamming code W(7, 4) is such a code, whose parity
check matrix is given in (1). The 4—connection re-
source allocation result is thus specified by a 3 by 9
parity check matrix:

001001101
H, = |000101011]|.
0600010111
Since Hamming code is an optlmal code, the allo-
cation so obtained is optimal, requiring 27 = 64 re-

source copies in total.

Case2.j> 2 andr> 1

In this case, we cannot define 1T as above bécause cover-
ing radius 7 — 7is then no longer > 1, precluding the exis-
tence of any linear code W(n-— 7, k — 7). Instead, let o, be the
smallest integer satisfying

()=

v=0
where
Oy
v
equals .
!
Oy
1 ST
v (GX v)!

the total Combmatrons of v out of o, items, and 1<y <r -1

Assume that H is a parity check matrix of linear code

¥(n - 0y k — 0,) with covering radius  derived using the
procedure presented in Section 4.2. In other words, there is

one H; produced foreachy, 1<y <r—1, whenn — oy and

covering radius x are given as inputs to Algorithm 2. A re-
source allocation with j-connection and resource diameter r
in this case can be achieved according to a linear code
whose parity check matrix is

,=[00--0H,],

where there are o, zero vectors 0 of size (n — k) by 1. The
next theorem expresses the correctness of using parity

check matrix H, in this case.
THEOREM 5. Parity check matrix H, specifies a ]-connectzon re-

source allocatlm}< with resource diameter v, j> 2" (r> 1), in
Qy involving 2 resource copies.

PROOF. Assume that a* = (an_gx_lan_cx_zy"-alao) is not a
codeword in ¥(n

codeword c* = (¢

o,). There must be one
“¢cy) such that: the

-0, k-
n‘—o‘lélcn‘cr_x—z"
Hamming distance between c* and a* is y, for the
covering radius of ‘P(ﬁ ~o,k-0)=1y

Next, consider anynoricodeword,

= : ey *
a= (an—lan—Z . an—ol a )

and a codeword,
¢= (cn-lcn*2 Crg ¢ )

z

with respect to parity check matrix H,, where a* and
c* are, respectively, the noncodeword and the code-
word regarding ¥(n — ¢, k~ 7). Let e denote

(Caminz 0 0.0 - 0),

wheree, n—12h2n-gc, can be 0 or 1 such that the
total number of bits “1” is no more than r =% In other
wotds, e is any one of the '
r-x
v
v=0

distinct vectors, relying on the values of €;s: Suppose -
that :

t=(a, 0, a,, 00--0).

x

For any e, it is clear that (¢ + e + ) is'a codeword
with respect to parity check matrix Hy, “and . the
Hamming distance between (¢ +-¢” + e):dnd non-
codeword a is no more than {r— x) + x =7, as the
distance between - : ; : :

Ay la Qn—dl .

: and the leftmost oy bits-of (¢ + e e is Iess than or
equal to r —y. Since there are :
=%
0'
>

3%

v=0 X
distinct e vectors, noncodeword a is connected with at
least j codewords whose distances are within 7. O

Every x value results in one allocation specified by H;
which is constructed according to Algorithm 2, and such an
allocation always meets the requirements of j and 7, as indi-
cated by Theorem 5. Our solution:is-the most efficient allo-

cation involving fewest resource copies, selected from- the

r — 1 allocations, one corresponding to-a’y value.

ExaMPLE4. Assume that an- allocatron with j i= 6 and r=3isto
be realized in Qs using as few resource copies as possi-
ble. Since this allocation satisfies j > 2 and 7 > 1, we get
oy =3when yis1 and Gz~5when)(152 For)( 1, the
two inputs-to Algorrthrn 2 are'n = 16— oy and r= 1,
yielding

=[000000 Hf]

' Where H' is the parity check matrix of Hammrng code
- W(7,4) givenin (1). On the other hand, the two. 1nputs
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to Algorithm 2 for y =2 aren = 16 — o, and r = 2,
leading to

_ $
H, = [00 H']

where H is the parity check matrix of NS code ¥(9, 4)
[16]. Consequently, the most eff1c1ent allocation re-
sults from y = 2, taking 299 = 2" total resource
copies. This same example was attempted in [14] by a
hierarchical scheme, requiring a total of 2 2 copies.

Case3.j>landr=1

This case of multiple-connection allocation requires the
resource diameter equal to 1. It becomes a multiple-
adjacency problem treated in [14], where the parity check
matrix of linear block codes for charactenzmg such place-
ments is provided.

6 CONCLUSIONS

Systematic resource allocation in cube network systems
that optimizes the measure of interest has been presented.
This is made possible by constructing appropriately a
parity check matrix of the desired linear code whose
codewords specify the locations of resource copies, using
the results of three types of known codes: Hamming
codes, near-shortest codes with covering radius = 2, and
the Golay code. Finding the best allocation with respect to
a given measure of interest is translated to selecting a set
of the'codes whose covering radii satisfy two nonlinear
inequalities and optimize the third one. Significant reduc-
tion in the time complexity of selecting such a set is at-
tained by taking advantage of the basic properties of the
three types of codes. For single-connection resource allo-
cation, we have pursued the approach to achieving mini-
mum resource diameter in a cubesystem involving a
given number of resource copies as well as the approach
to achieving fewest resource copies for a given resource
diameter. Collected data show that execution times can be
shortened by orders of magnitude due to search space
reduction made by utilizing basic code properties. For
multiple-connection resource allocation, we have derived
optimal or near-optimal solutions which satisfy a given
degree of connection for any nonresource node under a
specified resource diameter. The allocation results we
obtained appear interesting and are particularly useful for
large-scale cube network systems.

APPENDIX A

The proof of Theorem 1 relies on Lemmas 2-5 below, which
characterize how a solution can be refined for a given cov-
ering radius

fA 2xa+22yﬂ+32
Vo
expressedAby (6). A set of solution, ©: Xy» 35, and z, for (4)-

(5) is said to be better than another set of solution ©: X, Y 57

and z, for a given f, if

Yoz, vy By 11z 2y ax, +3 By, +11z (21
Vo vB Yo vp

D F Q=D+ F, () +232 <

Yo A7)

Zxa(Za -1 +2yﬁ w(B) +237 .

Yo vj3 (22)

The preceding inequalities serve as the basis of our refine-
ment process.

LEMMA 2. Let © be a solution for (4)-(5), with f minimized. For

any x, > 2, we have a refined solution ©: ¥, = x, - 2;
= yg, for all
B # 2s. The refined solution keeps f unchanged.

Vo = Yo, + L %, =x,, forall o+ s; and iﬂ

PROOF. It is trivial to show that solutions © and © have the
same f. In order to check whether or not (21)~(22) hold
for the two solutions, we consider an even s and an
odd s separately.

(1) s =2k:In this case,

AA[ZM —VZ ]

Yo

[Eﬁiﬁ-z’ﬁyﬁ =-25+25=0"
VB VB

implying that (21) is satlsfled Accorkdlng to (2),
w(Zs) equals @ -nE" s =2’ 2" -1
<2(2° - 1), i.e, w(2s) < 2(2° - 1). Since

ra (2(2 )Tl 1)}
[% Fw(B) - %yp w(m]

=-22° - 1)+ w(2s)
which is less than 0, (22) holds.

(il) s = 2k + 1: In this case, we may prove in the same
way as above that A > 0 and (21) is valid. From (2),
one can similarly derive w(2s) < 2(2° = 1), which
indicates that T < 0 and thus (22) is true. This
completes the proof. O

LEMMA 3. Let © be a solution for (4)-(5), with f minimized. For
Xeep 2 1, we have a refined
1 b Fogy T Yo T LEg = X for
al a# sors+1;and 5, :yﬁ,forallﬁ# 2s + 1. The re-
fined solution keeps f unchanged.

any  x,, solution

% =x -1 X, =x,

PROOE. It is clear that solutions ® and © have the same f. Fol-
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lowing the same way as given in the proof of Lemma 2,
one can easily arrive at A (defined above) > 0 and thereby
(21). Next, if we prove w(2s + 1) < @™ = 1) + 2° - 1), (22)
follows immediately because I” (defined above) 1s then <
0. Let s = 2k first. From (2) w(Zs +1is (2 - 1)(2 + D+
(2 ~1), Whldlequals(z 1)+(2 ~1)<2 —1+
A L N Whens—2k+ 1, the inequality of
w(2s +1) < @™ = 1) + (2 - 1) can likewise be obtained. As
aresult, (22) is valid for any s. O

LEMMA 4. Let @ be a solution for (4)-(5), with f minimized. For
any X, X 2 1, and h 2 2, we have a refined solution

- 1; xs+l =

h .
[j—lé L<h; X, =xy

forall #s,s+1,s+hand 5, = Yy, for all B. The refined
solution keeps f unchanged.

X, =x, ~L X, =x, X, +2, forany

PROOF. It is obvious that both solutions have the same f. To
prove (21), we examine A, which is equal to

—s—(s+h)+2(s+l):—h+2120[as Pﬂsz}

Consecguently, we have (21). Since 2(25” 1)=2 (ZM)
~2 < 22" +1) = 2 (for I < ), which equals 2° - 1) +
@ - 1), (22) follows. O

LEMMA 5. Let © be a solution for (4)-(5), with f minimized. For
any Yo, Yo = 1, and b 2 4, we have a vefined solution

O: 5, =y, — Ly, = Ysin 1ys+l Yo +2 for any

1= s
S\ZP 8T8

forall B#s,5s+1,s+hand %, =Xy,
fined solution keeps f unchanged.

for all o. The re-

PROOF. It is trivial to see that both solutions have the same
f- We may arrive at (21) due to A > 0, based on a
similar examination as given in the proof of Lemma 4.
Next, the inequality of 2w(s) < w(s + 2) is to be
shown. For s = 4k + 2, we have 2w(s) = 2w(dk + 2) =
2(227C+l - 2k -1+ 221(+1 — 1), according to (2). The pre-
ceding expression is less than 2+ _ ok — 1, which
equals w4k + 4) = w(s + 2). The same result of 2w(s) <
w(s + 2) can be obtained for s = 4k, 4k + 1, and 4k + 3.
From the above result, 2w(s + I) <w(s + I + 2), which is

Lw(s + h), for :
> k >
h,_4,l: 7 MZ

and w(s) is a monotonically increasing function. This
means that 2w(s + 1) < w(s + h) < wls + h) + w(s), im-
plying I" < 0, which leads to (22) directly. O

PROOF OF THEOREM 1. This theorem is proved by applying
the results given in Lemmas 2-5 repéatedly; as fol-
lows. A given solution is refined using Lemma 2 re-
peatedly until x, = 0, or 1, for all 5. Lemma 3 is then
applied repeatedly to make every pair of x, = x4 = 1
become 0, yielding: a solution in which there 'is no
consecutive x5 being nonzero. The next step is to
have every two nonzero x, and x,,,, with > 2, dec-
remented by 1 each; and x;,; incremented by 1 for any

h <  -
-2': _l<]’l,

according to Lemma 4. In case any x,,; becormes 2 in

~ the course of the above step, Lemma 2 is employed to
make it become zero. At the end of this step, there is
at most one nonzero x; left:

From Lemma 5, any nonzero y, and Yon 2 1, with h > ,
4, can be refined by decrementing them by 1 each: and
by incrementing y,,; by 2, for any

o aTRT

. Z —~= 7 .
Repeated application of Lemma 5 fesults" in that no
more foury_s are nonzero and they are consecu’ave,’
as described in the theorem : : : |

PROOF OF THEOREM 2.. We first prove that

wip

(#2 ﬁi% e

s a strictly increas‘ing,fﬁ‘nc’don. Let B= 4l<+3 then
B+3wB+1) =B + Hw(P).= B+ 3w+ 1) —
w(B) — w(p) = (4k + 6)(2"" - 1><2k+2 - @

k+1 Tl

[l -

-DET D - @ o = Q- pEM e -
(22k+2 1), from (2). This expressmn equals o
(4k+6)(22k+3 _ 2k+1 1 22k+1 4 2k 41 - 22k+2 4}1) i

QFM okl n. ‘
= @+ 6)(22k+1 +1) _1(122k+1 1) (22k+2 : )>~
@k + 5% 1) — L 1) >
Gk +5) Q" v 1y 2% Lok iy
=@k +3)Q" —2 1S 0.
This means that ; .
' w(B)  w(B+1)
B+3" B+4 7

or eqmvalently, E(p) is a strlcﬂy mcreasmg functlon
Along the same line, it can be easily proved that Z(B)
is a’strictly increasing furction for the cases of /3 4k,
4k +1, and 4k + 2.

Now that Z(f) is a strictly increasing function and f,
is the largest integer satisfying (14), no 8 value greater
than Bu needs to be considered in the search of a solu-
tion.. B, tulfills (12)-(13). For this 8, (12)-(13) become



an integer linear program, called LP, and suppose that
{yﬁ 4|0 <@ < 3)}(which involves elements g+ Vg a1

Yg 420 Vg ,3)1s a set of solution for LP. We then show

by contradiction the subsequent inequality regarding
this solution set.

3
D Bty <
=0 !

m'+ B, +2, if Vg, = Vg1 = Vg2 :0,'yﬁ”Jr3 =0
m'+ B, +1, if Yp, = V.41 =0,yﬁ“)r2 %0

m'+f,, ifyl3 =0,yﬁ a#*0

m+p, -1 if Vg, #0 23)

Let us examine the case of yﬂu = yliu“ = yﬁ a2 0, ]/ﬁu 43
# 0 first. Assume

3
zo’(ﬁ” +i)y, . >m B, 2,

and consider the set:
58,43 = ¥p,03 "1 Tp, = Vg, = Fp,02 = 0. B =B,

The above set is then a refined solution because it
satisfies (12)-(13), as below

3
Y BTy =B+ Ty =B+ - 1)
i=0

which > (m” + B, + 2) ~ (B, + 3) 2m” due to our as-
sumption, and

3 N 3
Y B, +DwB+iy< D (B, +i)wB+i<n’.
i=0 i=0

However, the refined solution set yields covering radius

3 3
Z% <D Vg
i=0 i=0

suggesting that {y, ,, 10<i<3} is not a solution set

for LP, a contradiction, which results from our earlier
assumption. This means that

5
> By +iyy  <m+ B, T2,
i=0

if
Vg, = Vpn = Vg0 = 0Yp,5 %00

We may show (23) for the other three cases using a

similar argument.

Now, we want to prove our result by contradiction,
i.e., assume that any solution set {8*, y ..; | 0<i <3}
for the nonlinear program given in (lﬁ-(lS) satisfies
B* < B, — 3. Consider the two expressions:

3 3
E =;yﬁ*” and E, zg(;yﬂ”ﬂl

where {y 5, +i 10 <i< 3} is a solution set for LP.

(G) If E* > E,, then E* is not minimized, implying
that {*, y .,; | 0 <i <3} is not a solution set, a
contradiction.
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(i) If E* = E,, then {8,,y, ,, 10 <i<3} is also a solu-
tion set for the nonlinear program (because
p,ei 10i53) satisfies (12)-(13) when B* = B,);
but according to the above assumption, every

solution set satisfies f* (whichis 8,) < B, -3, a
contradiction.
(iii) If E* <E,, or equivalently,

3 3

;yﬂ’w— i < ;yﬁﬁ i L

then we have the following contradiction:
3 .

m' < g;(ﬁ* +i)yy,,  (from (12)

3 .
< Z(ﬁu -3+ i)yﬁ*ﬂ, (as B~ < B, — 3 from assumption)

i=0
=By 5 +y 541 +y 52 + yﬁ*+a) - 3yﬁ* - 2yﬁ*+1 - yﬁﬂz
3
< ﬂ”(gd Vi~V =3y

-2 Bl Vg2 (from (iii) above)

- 2y/3U+2 - 3y[iu+3 - 3)’[3* - Zyﬂ*-ﬂ ~ Vg 42

which according to (23) results in

(i) for
Vg, =g = Vg0 = 00paa 2O
<m'+B,+2-8, =Yg+ —2yﬁu+2
= 3p T T2 T Vs
:m’+2—3yﬁ b3 <,
(i) for
Vg, = Vg0 = 0 g0 # 0
Sm'+ﬁu+l—ﬁu-yﬁu+1
= Wpa2 T Wpas T g
- 2yﬁx+1_yﬂ*+2 <m 4
(iii) for
Vg, = 0, Vg, +1 # 0
s m’+ﬁu—ﬁu _yﬁu.ﬂ
- zyﬂu+2_ 3yﬁu+3 - 3yﬂ;
- 2yﬂ"+1 -_yﬁ*+2 <m,
(iv) for

Vg, = 0:
—<-ml+ﬂu_l_ﬁu —yﬁu.;.l
- Zyﬁu+2‘3y/3u+3 - Syp*

- 2yﬁ*+1 _yB*+2 <m’.
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As aresult, the preceding assumption always leads to
a contradiction and this theorem is thus proved. O

PROOF OF THEOREM 3. Suppose that © is a solution for (7)-

(8), with

v=Yax, +25Yﬁ +11z
Yo i

maximized. It is easy to see that a set of lemmas iden-
tical to Lemmas 2-5 can be obtained for solution ©,
because during the refining steps,

(i) the covering radius is kept unchanged and thus
(7) is satisfied;

(i) (22)is ensured, so (8) holds, and

(iii) v remains maximized, as according to (21), v is
never reduced. This theorem can be proved by ap-
plying repeatedly, in the same way as in Theorem 1,

. y0+y1+y12 +y3 i yﬁ* +5

yﬁ*+l + yﬁ*+z + }_)ﬁ*q-s =

D wB’+) =, +6) w(B)

i=0

3
i=1 .
3 L ‘ »
=3 Yy W+ S w(B),
i=0 . : R

which is < n'~ 8 w(B*) + & w(B* = n/according to our
assumption This means that the refined set: 8°, yo yl,

y y satisfies the nonlinear program given by (17)-
(18). However,

the results of the set of lemmas obtained. [}

PROOF OF (19). (By contradiction.) Assume

3 N
m® A 2(,60 i)y =By, +6)
. . =
Y, wB +i)sn =5 w(p),
2 ; zw* “ o,
and let the solution set be refined as: ,80 = ﬁ*, yo =Y,

> Z(ﬁ* + l)y,;* =,

1mp1y1ng that ﬁ* y r y a1 Y M, 3 are not a solu-
tion set (as m”is not maxmuzed) ﬁus is a contradic-
« tion, resulting from:our assumption. Hence 19) holds.

3
+ 0, y1 =Ygy yz =Yg Y =Yg We then have

Appendix B
Algorithm 1

Input: n‘, k (n: system dimension; k: 2k resource copies)
Output: f,a , .2, Xg*, Y Yprals Y pte2s YB3 .
fi=mn (initial covering radius) )
for o ranging from O to ini(log,(n + 1)) do (int(x) is the integer part of x)
for z ranging from O to int(n/23) do
for x, ranging from 0 to 1 do
{
m=n-k-—ax,-11z;
ni=n—x,(2% —1)-23z;
if m">0& n" >0then
( i
w(B) n'
+3
for g ranging from 8, -2 to g, do
for y/m, 0 <i £3, ranging from Oto int(n/(w(B +i)+1)) do

le(,B—H)yﬂH 2m&2y5+, w(ﬂ+z)<n’&xa+22yﬂ+,+3z<fthen '
{
3
fi=xe +2 Y ypi+32;
=0

o =a; B = = xy =X Yprai =¥pih, forO i <3y

B, = the maximum £ such that

}
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Algorithm 2

Input: n, r

Oz\Atput: m, o, ﬂ*, z', Xa®s Yp*r Yprsels Y420 Y43

m:=0;
for o ranging from 0 to int(log,(n + 1)) do- -
for z ranging from 0 to int(n/23) do
for x, ranging from O'to 1 do

r’=(r -x, =32)/2;
ni=n-x,2%-1)-23z;
if ¥ >0 & n’ >0 then

{

B, := the maximum S such that w(B) < n—, ;

for 3 ranging from 2 to 8, do

for ypﬂ, 0<i<3, ranglng from O to int(n’/(w(B +1) +1)) do

lfz Vori=r'& Zy,gﬂ w(B+i)Sn'& xa+2(ﬂ +0) i+ 11z > mthen

(
3
m=Y(B+i)ysi+11z;
i=0 :

}

* * * i .
a =0, 8 =7 =2 K = Xy Ygrei = Ygap Or0<i £3;

B, (or B,) := minimum (or maximum) S such that w(4 +3) > ;; and w(f)< n’;

for A ranging from max(g;, 2) to g, do

for yﬂ+,, 0<i<3, rangmg from O to int(n"/(w(B +i) + 1)) do
if Z Vpei <r'& Z Yprri WB*+D) S & x, +Z(ﬂ+:)yﬂ+, +11z > mthen

[
3

m=Y(B+0) ypei+11z;
i=0

x 0 . )
a = f =BT = X =X Ypray T Ve fOr 0K £3;

}
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