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Abstract —Mutual exclusion in shared-memory multiprocessors is realized by employing a lock to determine the processor among
those which compete for the critical section. Accesses to such a mutual exclusion lock may create heavy synchronization traffic
and/or serious contention over the network, thereby degrading system performance considerably. In this paper, we introduce an
efficient scheme which keeps synchronization traffic low and avoids serious hot-spot contention. This is made possible by
constructing a circular list of the processors waiting for the critical section and by dispersing accesses to the lock. Extensive
simulation of the proposed approach was conducted and the lower bound on the elapsed time was derived. Our simulation results
demonstrate that the proposed scheme indeed achieves better performance than prior techniques, with its elapsed time close to the
lower bound for the whole range of simulated system sizes, thus promising good scalability for large systems.

Index Terms —Circular lists, critical sections, hot-spot contention, linked lists, multiprocessors, mutual exclusion, tree of locks.

1 INTRODUCTION

M UTUAL exclusion with respect to a particular data
structure requires that no more than one processor
hold that data structure at a time. A lock is commonly used
to realize mutual exclusion, guaranteeing that at most one
processor at a time proceeds to the critical section.

A large multiprocessor system, such as NEC Cenju-3 [1]
and Cedar [2], contains many processors and memory
modules interconnected by the multistage interconnection
network (MIN). To implement mutual exclusion in such a
multiprocessor usually results in many processors acquir-
ing a common variable (i.e., lock) located in a remote mem-
ory module. As a result, it not only causes serious conten-
tion at the remote memory module containing the lock,
called a hot spot, but also crowds the network paths from
that memory module all the way back to processors, known
as tree saturation, which blocks other normal network traffic
and thereby demotes system performance. This phenome-
non lasts until every involved processor accomplishes its
critical section. It is shown in [3] that even a small percent-
age of requests from each processor destined for the par-
ticular memory module can severely degrade the effective
communication bandwidth of a large system.

Some early researchers in this area resorted to hardware
approaches [3], [9], [14] and others sought software solu-
tions [10], [11]. Hardware approaches [3] incorporate cer-
tain hardware in the interconnection network to trap and
combine access requests heading toward the same memory
location for hot-spot relief. However, the cost overhead due
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to added hardware poses a major concern. A less costly
hardware combining technique has been introduced [9].
Goodman et al. [14] proposed the use of a synchronization
bit, Queue_On_Lock bit, for implementing mutual exclu-
sion. Their scheme requires the support of cache-coherence
to maintain a linked-list queue, where the header processor
of the queue becomes the owner of the lock and the queue
members spin on their local cache lines, waiting to be
awakened.

Instead of seeking a hardware solution, Anderson [10]
considered a software approach, called the array-based
queuing lock, where each processor uses the
fetch_and_increment atomic instruction to get a unique
location on which it spins. This scheme successfully dis-
perses processors waiting for a single spin location at a re-
mote memory module and lets each waiting processor spin
on a location situated at a different remote memory mod-
ule, with all spin locations formed an array.

Mellor-Crummey and Scott’s [11] list-based queuing lock
(called the MCS lock) was inspired by the Queue_On_Lock
bit described in [14], but implemented in software. This
scheme uses a fetch_and_store atomic instruction on a lock
located in a remote memory module to link the involved
processors to form a single waiting list. The header of the
linked list acquires the lock, while any other processor,
polling the lock later than the header, appends itself to the
list and then goes to spin on a local memory location until it
is awakened. On completion, the processor with the lock
writes a wake-up message into the next processor’s spin
location, passing the lock. Their experimental result shows
that the MCS lock has a better performance than Ander-
son’s array-based queuing lock. The reason is that each
member processor in MCS’s linked list spins on a local
memory location without going through the network, while
each waiting processor in Anderson’s array queue spins on
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a designated flag located in a different remote memory
module. Spinning on a remote flag must go through the
network, thereby taking much longer time and consuming
network bandwidth, when compared with spinning on a
local memory location.

Both Anderson’s array-based queuing lock and MCS’s
list-based queuing lock are efficient software approaches
for mutual exclusion in the multiprocessor system. How-
ever, there are still some drawbacks associated with these
schemes:

1) Both of them require all involved processors to com-
pete for a single lock located at a remote memory
module in realizing mutual exclusion, rendering the
memory module containing the lock a hot spot. The
accesses to this single lock tend to create extremely
heavy traffic contention.

2) In Anderson’s scheme, each processor wait-spinning
on a different remote flag must traverse the network,
thereby consuming lots of network bandwidth and
interfering with other processors’ accesses to memory
modules. MCS’s linked list remedies this drawback
by spinning on local memory locations. However, the
MCS scheme suffers from one problem caused by the
process of forming a linked list, as stated in the fol-
lowing. Each processor first issues a fetch_and_store
instruction to the remote lock to obtain its predeces-
sor’s address (if any). It then sends a message con-
taining its own address to notify its predecessor of re-
versing the link direction, referred to as linked list redi-
rection. The linked list redirection operation must go
through the network, consuming appreciable network
bandwidth.

It should be noted that each waiting processor in Ander-
son’s array queue spins at least once on the remote flag to
acquire the lock (actually, waiting processors require more
spins as their ranks in the queue increase), while each
waiting processor in MCS’s linked list issues only one
linked list redirection operation. So, Anderson’s scheme
tends to generate more synchronization traffic through the
network, exhibiting inferior performance.

As a result, a scheme able to overcome the above draw-
backs is highly desired for large MIN-based multiprocessors.
An efficient lock scheme is proposed in Section 2. In Section 3,
we compare four mutual exclusion schemes. A lower bound
on a parameter of interest is derived in Section 4. Our ex-
perimental results are demonstrated in Section 5. Conclud-
ing remarks, including a discussion about the implementa-
tion of different schemes on bus-based multiprocessors and
future work, are provided in Section 6.

2 PROPOSED APPROACH

Our approach is briefly outlined first, followed by its de-
tailed description in Section 2.1 and Section 2.2.

Instead of employing one lock located in a remote mem-
ory module, we use a tree of locks, assigning each lock to a
different remote memory module. For a tree of locks, we
define locks in the leaf level as leaf locks, the lock at the root
as the root lock, and locks in between as interior locks. Fur-

thermore, any list formed by linearly linking processors
which share a leaf lock is called a local list. A local circular
list (called local CL for short) is a local list with the last ele-
ment pointing to the first element. An intermediate CL (or
list) and the global CL (or list) are defined with respect to an
interior lock and the root lock in a similar manner. The
header of the global CL (or list) is the global header.

The purpose of our scheme is to form a global CL
through these locks. The global CL, like MCS’s linked list or
Anderson’s array queue, decides the sequence order for
involved processors to enter the critical section, ensuring
mutual exclusion. To form a global CL, all processors in-
volved in mutual exclusion use the fetch_and_store atomic
instruction to compete for the locks (in the tree). The proc-
ess of forming a global CL starts with leaf locks to build
local CLs, and then constructs intermediate CLs by merging
local CLs through interior locks, until the global CL is
formed using the root lock.

A [log, N']-level tree of locks with degree n is used in

our scheme for a MIN-based multiprocessor with N proces-
sors involved in mutual exclusion, which are divided into
|'N/n'| groups. To avoid possible memory contention, it is

preferable that all nodes in a lock tree reside in separate
memory modules [15]. For a system with N memory mod-
ules, the largest lock tree is a tree with the minimum fan-
out, i.e., n = 2, and the total number of nodes in such a tree
is 3 +8 + ... +2+1=N-1.Thus, it is always possible to
spread these locks across N separate memory modules. As
an example, a system with N =8 and n = 2 is shown in Fig. 1,
where circles and squares are employed to represent the
locks and the processors, respectively. The symbol beside
each lock indicates in which memory module a lock resides.

root lock (Mg
interi & )
interior locks (Omy (Ms
leaf locks \Cj Mo L/; M, C) My ;) Me
Po P P2 P3 P4 Ps Ps P7
processors D D D D
group O group 1 group 2 group 3

Fig. 1. A system with N = 8 processors divided into four groups with n=2
processors each, requiring a three-level tree of locks with degree two.

In a lock tree, the parent lock of a particular lock is de-
fined as the lock in the next higher level (toward the root
lock) of the same subtree. For example, the lock in M, in
Fig. 1 is the parent lock of the locks in M, and in M,.
Similarly, the parent lock of the locks in M, and M; is re-
sided in M,. Initially, a leaf lock is assigned to each group.
Processors in each group compete for their assigned com-
mon leaf lock to build a local CL. Totally, [N/n] local CLs
are created in the system. For each CL, only the header
competes for its parent lock in an interior level (or the root
level if the tree has only two levels), while members halt,
waiting to be awakened. Again, these [N/n] headers are

partitioned into {N/n2-| groups, with n headers in a group

sharing one common parent lock in an interior level. The n
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headers in a group compete for the common lock to form a
single intermediate CL by merging their corresponding n

CLs, where each of these CLs contains n — 1 members and
one header. As a result, the total number of intermediate

CLs after merging is {N/n2-|, with n? — 1 members and one

header in each intermediate CL. This merger process re-
peats progressively until all the intermediate CLs constitute
one global CL (at the root level). This global CL contains

N — 1 members and one global header.

It should be noted that the above discussion considers
only a specific situation where all processors in the same
group are assumed to form one single CL. However,
processors in one group in general may form multiple
CLs, depending on when they issue the synchronization
requests. The single lock assigned to a group guarantees
forming one CL at a time; when a CL is completed, it
serves to form another CL. The header of each CL, know-
ing that it is the header, participates in merging. Our sub-
sequent discussion deals with general situations where
processors in the same group could form an arbitrary
number of CLs, one at a time.

Our scheme has the attributes of

1) selecting one processor to enter the critical section as
soon as possible, and

2) passing the lock to the next processor (by notifying it)
immediately after a processor is done with the critical
section, as long as there is any waiting processor.

The first attribute results from global lock acquisition de-
scribed below, while the second attribute is due to privilege
consignation stated in Section 2.2.

2.2 Global Lock Acquisition

Every processor wishing to enter the critical section exe-
cutes the global lock acquisition procedure, as demon-
strated by a C-like code in Fig. 2, to select one processor to
enter the critical section as soon as possible. In this code,

#define root_level = [log, NT;
struct node {
boolean wait;
struct node *next;
b
typedef struct node lock[1..root_level];
Acquire_lock(lock L, node *I) {
int level;
I->wait = FALSE;
I->next = my_proc_id;
for (level = 1; level < root_level; level++) {

I->next = fetch_and_store(L[level], I->next);
/* T am a member of the CL. */
/* set spin flag */

/* exit loop */

if (I->next != nil) {
I->wait = TRUE;
break;

}

if (level < root)

I->next = fetch_and_store(L[level], nil);

}
while(I->wait);

}

Fig. 2. Global lock acquisition of the proposed scheme.

array L keeps the assigned lock locations along the path
from a leaf to the root in the lock tree. Specifically, L[1]
keeps the memory location where the assigned leaf lock
resides, L[root_level] has the location for the root lock, and
L[i], 2 <i <root_level -1, is for the assigned intermediate
locks at level i. As an example, L[i], 1 <i < 3, for processor
P, in Fig. 1 contains the lock locations, respectively, in
memory modules M,, M;, and M,, while it is M,, Mg,
and M, for processor P,. Variable | contains two fields:
wait and next; I->wait is a Boolean flag indicating the spin
status of the current processor, while I->next records the
address of the next processor in the CL (or list). Initially, I-
>wait and I->next are set respectively to a FALSE and to
the current processor’s own address (i.e., processor id).
All locks in the system are initialized with nil.

In Fig. 2, the first iteration of the loop is to form a local
CL for each group, iteration, till iteration, ..., merge

local CLs (or intermediate CLSs) in the same group into an
intermediate CL, and finally a global list is formed through
the last iteration. Within each loop, the first fetch_and_store
atomic instruction is responsible for forming a linked list,
and this linked list is closed into a CL through the second
fetch_and_store instruction. The details of how it works are
stated in the following.

Every processor in the same group issues the first
fetch_and_store to fetch a value from, and store its I->next
value into, the assigned lock. Any processor which ac-
quires a nil (i.e., I->next == nil) from the assigned lock
becomes the header; otherwise, it becomes a list member.
Once a processor knows itself as a header, it then issues
the second fetch_and_store to acquire the next processor’s
address (for closing the linked list into a CL), and, mean-
while, resets the assigned lock to nil. On the other hand,
when a processor knows itself as the list member, it exits
the loop and halts, waiting to be awakened by spinning
on its local flag. Once a processor becomes a header after
its first fetch_and_store instruction, any processor in the

/* reset spin flag */
/* set 'next’ as myself */

/* a global list will be formed after this loop */
/* form a list */

/* only enforce on leaf lock and intermediate locks */

/* form a CL */

/* member processor spins local flag, waiting for being awakened */
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Fig. 3. Two local CLs built in the same group through a leaf lock.

leaf lock

same group may be added to the linked list as a member
before the header closes it into a CL. Actually, each proces-
sor fetches the address of its next processor (in the list)
from the lock and adds itself to the list through the
fetch_and_store instruction. Note that our approach does
not require linked list redirection, as in MCS’s mentioned
earlier. Processors arrive at the critical section temporally
differently. If a processor arrives at the critical section late
and fetches the lock right after the lock is reset by the
header’s second fetch_and_store instruction, it becomes
the header of a separate CL.

The above idea is better illustrated by an example in Fig. 3,
where a slash symbol in a circle represents the lock con-
taining a nil value, a slash symbol in a square is a header,
and arrow (node i) — (node j) indicates that node i contains
node j’s address.

Once a CL is formed (after issuing the second
fetch_and_store), the header (i.e., the processor which ac-
quires a nil from the assigned lock) starts to access its par-
ent lock in the next iteration, attempting to merge its corre-
sponding CL with other CLs into an intermediate CL. This
merger process repeats progressively until a global linked
list is constructed at the root level. The global header then
has the privilege to enter the critical section.

Fig. 4 shows a system with N = 16 processors divided
into four groups with n = 4, requiring a two-level tree of
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locks. Only the root lock is depicted. Initially, it is assumed
that two separate local CLs were formed each in group 0
and group 2, and one local CL in group 1 and in group 3, as
shown in Fig. 4a. Fig. 4b and Fig. 4c illustrate that two local
CLs in group 0 are merged into a global linked list. Proces-
sor P, is the global header, implying that P, actually ac-
quires the lock and is allowed to enter the critical section.
Now, the global header does not issue the second
fetch_and_store instruction to close the global linked list, so
as to permit as many upcoming CLs as possible to be
merged in the current global linked list during the period
when the global header is executing its critical section.

2.2 Privilege Consignation

After the global header finishes with the critical section, it
consigns the lock privilege to the next processor, if any, in
the global list. Here, we propose a new atomic instruction,
swap_and_compare, which is a modification to the previ-
ous compare_and_swap instruction used in the MCS
scheme [11]. The semantics of these two instructions are
contrasted in Fig. 5, where our proposed instruction first
exchanges the content of the variable “old” with that in “L,”
then assigns “new” to “L” if “L” equals “old.”

The pseudocode for our privilege consignation (or lock
release) is illustrated in Fig. 6, with each line numbered to
facilitate explanation of this code in the following. For a

F'12 P13 P14 P15

group 3

v L e

group 2

Piz P13 P14 Pis

[IDD

group 2 group 3

Piz Piz P14 P15

m;am;é%mmm

group 2

Fig. 4. Two CLs in group 0 merged into a global linked list through the root lock.
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compare_and_swap (L, old, new) {

if (L == old) {
L = new;
return TRUE;

}

clse

return FALSE;
}

Fig. 5. compare_and_swap and swap_and_compare primitives.

Release_lock(lock L, node *I) {
if (I->next == nil) {
while (1) {
I->next = my_proc_id;

if (I->next == my_proc_id)
return;

I->next->wait = FALSE;

I->wait = TRUE;

9 while(I->wait);

10 }

11 }

12 I->next->wait = FALSE;
13 }

Fig. 6. Privilege consignation of the proposed scheme.

member processor in the global linked list, the process of
privilege consignation is simple: it just wakes the next proc-
essor up by setting its spin flag to a FALSE (see line 12 in
Fig. 6). As for the global header (whose I->next == nil), it
issues a swap_and_compare atomic instruction toward the
root lock, resulting in the following two possible scenarios
depending on the retrieved value from the root lock.

1) If the retrieved value (saved in I->next) is the global
header’s own address, no processor except the global
header itself is in the global list, implying that the lock
is released successfully (see lines 4-6 in Fig. 6);

2) If the retrieved value is not the global header’s own
address, the global list is closed into a global CL with
multiple members in the CL; the global header, there-
fore, consigns the privilege to the next processor in
the global CL, and then halts, waiting to be awakened
(see lines 4 and 7-9).

To better explain the above scenarios, an example follows.
As mentioned earlier, multiple separate local and inter-
mediate CLs are likely to be formed during the process of
global lock acquisition, which determines the global header
(or the first processor say, P" denoted by the shaded square
in Fig. 7) to enter the critical section. However, no more
than one global CL may exist at any time to guarantee mu-
tual exclusion. To do this, P" issues a swap_and_compare
instruction to store its address (rather than a nil) in the root
lock, as illustrated by Fig. 7a. With this, all subsequent
headers (of intermediate CLs), if any, would form a global
list when accessing the root lock before the last member of
the global CL finishes with the critical section, as given by
Fig. 7b and Fig. 7c. As soon as the last global CL member
exits from the critical section, it wakes up pf (i.e., the first
processor that entered the critical section), which then
makes the existing global list become the only global CL by
accessing the root lock once (using a swap_and_compare

swap_and_compare (L, old, new) {
swap(L, old);
if (L == old)
L = new;

0

1 /* T am a global header */

2 /* repeatedly consign privilege until releasing lock */
3 /* set 'next’ as myself */

4 swap_and_compare (L[level], I->next, nil);
5

6

7

8

/* try to release lock */

/* no processor is waiting for privilege */
/* release lock successfully */
/* wake up next processor */
/* set spin flag */
/* spin local flag, waiting for being awakened */

/* wake up next processor */

instruction), as depicted in Fig. 7d. Now, the privilege of
entering the critical section is again consigned to every
member in the newly formed global CL in sequence, as be-
fore. In the meantime, all headers (of intermediate CLs)
which access the root lock, if any, would constitute a global
list until members in the current global CL are all ex-
hausted. This process repeats till no more processors are
waiting for the privilege, causing pf eventually to release
the lock as shown in Fig. 7e.

The privilege consignation procedure in Fig. 6 relies on
the swap_and_compare instruction to release the lock. Basi-
cally, the swap_and_compare instruction executes two op-
erations atomically:

1) exchanges the content of the root lock with that of the
I->next, and

2) resets the root lock if two swapped variables have the
same content.

Now, considering the case that only the fetch_and_store
atomic instruction is available and no swap_and_compare
primitive is supported. The global header in this case must
issue two separate fetch_and_store instructions to realize
the above two operations in a non-atomic manner, resulting
in more complicated lock release as depicted in Fig. 8,
where the first two fetch_and_store instructions are to ac-
complish the above two operations. A member processor in
this case, however, behaves exactly the same as that in Fig. 6.
Privilege consignation from one competing processor to
another depends on whether or not any header (of an in-
termediate CL) accesses the root lock during the course of
(1) privilege consignation among members of the global CL,
and (2) resetting the root lock (by Pf). As soon as all mem-
bers of the current global CL are exhausted, P" is awakened
(by the last CL member when it exits from the critical sec-
tion) and accesses the root lock using the fetch_and_store
instruction, as demonstrated in Fig. 8. If no other header
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Fig. 7. One global CL and one global linked list coexisting to realize fast privilege consignation.

accesses the root lock during the course of situation 1
above, as shown in Fig. 9a, no other intermediate CL is
waiting for the privilege and thus pf proceeds to reset (i.e.,
store a nil in) the root lock; otherwise, a global linked list
exists and one (or more) intermediate CL(s) is (are) waiting
for the privilege, requiring the member(s) in the existing list
to be granted the privilege one by one, as indicated by state 1
of Fig. 8, which corresponds to lines 2-4 and 7-10 in Fig. 6.

If no header accesses the root lock during the course of
situation (2) above, P releases lock successfully, as denoted
by state 2 of Fig. 8, which corresponds to lines 3-6 in Fig. 6.

On the other hand, if at least one header accesses the root
lock, as illustrated in Fig. 9b, the root lock value fetched
through the reset fetch_and_store instruction has to be
stored back to the root lock (called restoration) using another
fetch_and_store instruction. A global CL formed by the
reset fetch_and_store instruction is shown in Fig. 9c. Note
that the situation of Fig. 9c is similar to that of group 0 in
Fig. 4a, which happens during the course of global lock
acquisition.

Again, if no header accesses the root lock during the
course of restoration by P', no more intermediate CL is

(store my address)

consign privilege to next No
processor, then spin,
wait for being awakened

my address.
?

fetched value

fetch_and_store) (restoration)

Fig. 8. Privilege consignation of global header without the swap_and_compare primitive.
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Fig. 9. Privilege consignation leading to state 3.

group O

waiting, leading back to the start point in Fig. 8 (with its
situation similar to that of group 0 in Fig. 4b). However, if
at least one header accesses the root lock during restoration,
a separate global list is formed, as shown in Fig. 9d where
the list consists of P,. Now, this restoration makes the
global CL merged with the newly formed global list, yield-
ing a single global linked list as illustrated in Fig. 9e. As a

result, P" is no longer the global header (as shown by the
gray square) and P,, becomes the new global header due to
acquiring a nil from the root lock as shown in Fig. 9d,
leading to state 3 in Fig. 8. Under this circumstance, P,
halts, waiting to be awakened. When P, a gray square, is
awakened later on, it consigns the privilege to its next proc-
essor. In the next section, we discuss hot spot contention
associated with the previous schemes and how it is solved
by our proposed scheme through reducing the number of
accesses to the root lock.

3 COMPARISON OF MUTUAL EXCLUSION SCHEMES

Typical mutual exclusion in a multiprocessor system con-
sists of three activities: acquire lock, wait lock, and release
lock. For all previous schemes, processors acquiring lock
must compete for a single lock located at a remote memory
module, possibly rendering the memory module containing
the lock a hot spot. As only one processor can get the lock
at a time (according to mutual exclusion), the other com-
peting processors must wait for the lock to come; they usu-
ally spin on a flag located in local memory or remote mem-
ory. Spinning on remote memory must go through the in-
terconnection network, creating considerable traffic over
the network. Release lock usually takes a negligible time
because it just consigns the lock privilege to the next proc-
essor (if any) or resets the lock, without confronting any
competitors. On the other hand, acquire lock and wait lock
take much longer times, especially in the presence of a hot
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spot resulting from acquire lock in the previous schemes,
where system performance is degraded severely.

A comparison of four mutual exclusion schemes is listed
in Table 1: pure test and set (PTS), Anderson’s array-based
queuing lock (ADS), Mellor-Crummey and Scott’s list-based
gueuing lock (MCS), and our scheme. Processors in the PTS
scheme acquire and spin on the same single lock located at a
remote memory module, rendering that memory module to
be a severe hot spot. This drawback was partially overcome
by the ADS scheme, where each processor spins on a sepa-
rate remote memory module to relieve contention. However,
those spin operations must go through the network, creating
considerable traffic. Processors in the MCS scheme spin on
local memory module, with the help of linked list redirection,
to solve the remote spinning problem. There is still one
drawback yet to be addressed: one single remote memory
module for acquiring the lock can become a hot spot. Our
proposed scheme avoids this drawback by employing a tree
of locks to distribute contention and also eliminates unneces-
sary synchronization traffic due to spinning on the remote
memory locations or linked list redirection.

In all previous schemes, up to N processors compete for
a single lock, with only one of them getting the lock at a
time, while the remaining processors must wait to be
served in sequence. In contrast, our proposed scheme em-
ploys a tree of locks so that at most n processors compete
for a common lock in each group at any time. All locks (i.e.,
leaf locks, intermediate locks, and the root lock) in our lock
tree form/merge CLs in parallel, thereby reducing tremen-
dously the degree of contention at any lock and also form-
ing the waiting queue in parallel. Furthermore, only the
header in each group is eligible to compete for the parent
lock in the next level, while all members halt and wait for
being awakened, resulting in further reduction in conten-
tion at the parent locks. In order to gauge the effectiveness
of the proposed scheme in reducing hot spot contention, we

TABLE 1
A COMPARISON OF FOUR MUTUAL EXCLUSION SCHEMES
PTS ADS MCS Ours
Acquire lock at single lock single lock single lock tree of locks
Hot spot existing at single lock single lock single lock no
Spin on single lock | remote memory local memory local memory
Linked list redirection no no yes no
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derive a lower bound on the elapsed time as follows. Our
derivation does not take the contention time into account.

4 BOUND ON ELAPSED TIME

Consider a system with M processors, among which N proc-
essors are involved in mutual exclusion. A mutual exclusion
session includes the first processor acquiring the lock, the
lock privilege being consigned in sequence to the other N — 1
processors, and finally the last processor resetting the lock.
The elapsed time is defined as the duration of a mutual
exclusion session, measured by the time from the first proc-
essor issuing an operation to access the lock till the lock
being released by the last processor. To obtain a lower

bound on the elapsed time (E¢), we consider only the time

needed to carry out mutual exclusion activities, ignoring
the effect due to contention either in the network or at
memory modules. This bound obviously reveals the best
scenario a mutual exclusion session can be, as follows:

E¢=T1+T2><(N—l)+T,

where T, is the time for the first processor to acquire the
lock, T, is the time for a processor to consign the privilege
to its next processor, and T, is the time to reset the lock.

If T,, T,, and T, are assumed to take the same amount of

time, i.e., the message turnaround time (T,,) between a proc-
essor and a remote memory module, the expression for E, is
simplified to E, =T, X (N +1). The message turnaround
time for a MIN-based multiprocessor can be calculated by

T, =2x (TSW x[log,, M]) + Tonsg + T

where T,

M, m, T

msg ?
system size, the switch size, the time for a processor to send
one message, and the remote memory module latency, re-
spectively. Since T, T and T, are constant, we can

sw?! 'msg’

and T, are the switch latency, the

further simplify the expression of E, to
E, = (C, x[log,, M]+C,) x (N +1),

where C;, C, are constant values. This indicates that the
lower bound on the elapsed time grows by the rate of
Q(N log,, M), where N is the number of processors in-

volved in mutual exclusion.

Since the derived lower bound on the elapsed time does
not take contention into account, a scheme with perform-
ance closes to the derived lower bound indicates that it is
more effective in reducing hot spot contention. The per-
formance results in the next section demonstrate that our
scheme achieves the best performance among known
schemes (in terms of the elapsed time and the response
time), as its elapsed time is the closest to the lower bound.

5 PERFORMANCE STUDY

For comparison, we simulated our scheme and earlier tech-
nigues using an event-driven simulator, called PARSIM,
which was developed as a part of the CHIEF simulation
environment at CSRD in University of Illinois [4], [5].

5.1 Simulation Model

PARSIM simulates a shared-memory architecture with M
processors and M memory modules interconnected by an
Omega network. It can handle the system size up to 256. No
cache is considered in this simulation study. Any unsuc-
cessful, blocked request in the network is held in its buffer
instead of being dropped. Every request consists of three
words of 32 bits each, constituting a packet. The network is
packet-switched with cut-through pipelining for efficiency.

It is assumed that a remote memory module, on receiving
a wake-up request from a processor, sends two acknowledge
requests back: one to the processor which issued the wake-up
request, and the other to the processor to be awakened. Ac-
tually, this assumption is not necessary in such a system as
the Butterfly multiprocessor, where processors and memory
modules are at the same side of the interconnection network.
Each processor in such a system has its local memory.

Four mutual exclusion schemes were simulated: PTS,
ADS, MCS, and our scheme. The simulation results were
obtained under the same set of system parameters, including

1) the latencies for processors, switches, and memory
modules equal to one, two, and ten clock cycles, re-
spectively, and

2) the buffer in a network switch or in a memory mod-
ule able to accommodate one request (three words).

The switch size is two, so the request turnaround time
(T) for M = 256 is 45 cycles, according to the formula in
Section 4.

5.2 Implementation

The ADS scheme requires both fetch_and_store and
fetch_and_increment atomic instructions, while the other
three schemes employ only the fetch_and_store instruc-
tion. In the PTS scheme simulated, each processor re-
peatedly sends a fetch_and_store request to a lock located
in a remote memory module to see if the lock acquisition
is successful. Only one processor can hold the lock at a
time, and all the other waiting processors keep spinning
on the lock until the lock is acquired. On completing the
critical section, the processor issues a fetch_and_store in-
struction to reset the lock. In the ADS scheme and the PTS
scheme, the wait-spinning processors issue new spin re-
qguests only after previous spin requests have returned,
i.e., a waiting processor has at most one outstanding spin
request at a time.

Once a processor knows itself being a member processor
of the global CL (or list) in our (or the MCS) scheme, it
halts, waiting to be awakened. To consign the lock privi-
lege, the processor with the privilege sends a wake-up re-
guest to awaken the next processor in the CL (or list). For
the ADS scheme, the processor with the lock privilege re-
sets the next processor’s spin flag located in a remote mem-
ory module to consign the privilege, while the next proces-
sor must poll its spin flag to learn privilege consignation.
This is because a processor in the ADS scheme knows only
its next processor’s spin location (rather than its identifica-
tion number).

In reality, processors tend to arrive at the critical section
at different times. In our simulation, the mutual exclusion
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Fig. 10. Performance of four schemes in comparison with the lower bound, which is shown by the dashed curve (with nil critical section time).

requests of processors are characterized by a normal distri-
bution® with mean value u and standard deviation o, as
used in other studies [7], [8]. For a small o under the nor-
mal distribution, all involved processors in the system gen-
erate mutual exclusion requests in a short period of time,
likely to render the memory module containing the lock a
hot spot. The request patterns generated by processors are
affected by several factors, such as random delays and non-
deterministic processing requirements [12], memory con-
tention [13], the program’s internal structure and control
dependence graph [6], and so on.
The performance measures of interest are

1) the elapsed time and

2) the response time, which is defined as the average
time from acquiring the lock till finishing with the
critical section by a typical processor.

A small elapsed time indicates the effectiveness of a
scheme in reducing hot spot contention, while a short re-
sponse time reflects fast lock acquisition. A serious hot
spot contention usually leads to many processors waiting
in the queue (of the ADS scheme), in the linked list (of the
MCS scheme), or in the global CL (of ours), thus prolong-
ing the response time.

5.3 Simulation Results

In our simulation, all processors are involved in mutual
exclusion, i.e., N = M. The simulation results are obtained
by averaging ten runs to arrive at unbiased outcomes. In
each run, a different random number seed is given to gen-
erate various patterns of the processor request time. For a
system with N involved processors, each point of our
simulation results shown in the figures is the outcome of
collecting N critical section entries, i.e., each processor exe-
cutes the critical section exactly once instead of repeatedly
acquiring the lock. This reflects such real program execu-
tion scenarios as Integer Sort (IS) in the NAS benchmark
suite [16], where a processor in IS requests the critical sec-
tion exactly once before facing a barrier.

1. Our normal distribution is generated using a procedure provided by
Dr. Seth Abraham at Purdue University.

5.3.1 Overall Performance

In Fig. 10, the elapsed time and the response time versus N
are illustrated for the four schemes, where our scheme uses
n = 8. The lower bound on elapsed time derived using ex-
pressions in Section 4 is also included in Fig. 10a for com-
parison. The mean value u and the standard deviation o
of request generation patterns are set to 4,000 cycles and 50
cycles, respectively, and the critical section time is assumed
nil. The use of nil critical section time in this illustration is
to compare these schemes with the lower bound, which is
derived by assuming a nil critical section time (although the
critical section in reality is not nil).

The PTS scheme, as expected, has the worst performance
among all the four. As N increases, both its elapsed time and
the response time increase quickly, much faster than those of
the other schemes. When compared with the ADS scheme,
the MCS scheme exhibits better performance, as shown in the
figure. This is because the ADS scheme generates more syn-
chronization traffic over the network (due to spinning) than
the MCS scheme (due to linked lock redirection). Our scheme
achieves the best performance throughout the range of N
simulated, as might be expected, because it avoids any single
lock from becoming a hot spot and removes undesirable syn-
chronization traffic caused by spinning (in the ADS scheme)
or linked list redirection (in the MCS scheme). In addition,
the performance gaps between our scheme and the other
schemes tend to increase gradually as N grows. Although the
simulator used, PARSIM [4], can handle at most 256 proces-
sors, we expect the gaps to keep increasing consistently
when N goes beyond 256 due to the fact that hot-spot con-
tention gets more serious as N becomes large.

The effectiveness of our scheme is evident when com-
pared with the lower bound shown by the dashed curve in
Fig. 10a. It is observed that the performance curve of our
scheme stays closely to the lower bound for every N, with
the gap between the two curves kept virtually unchanged.
This gap is mainly due to the time needed for processors to
accomplish the global lock acquisition through the tree of
locks. If a tree of locks with fewer levels (denoted by
[log, N) is chosen, the global lock acquisition time gets

reduced and the gap thus shrinks, but the network and
memory contention would increase.
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5.3.2 Effect of Standard Deviation (o ) under Empty
Critical Section

For a given N, the optimal n depends mainly on ¢ (standard
deviation of processor request time distributions). The per-
formance as a function of o for N = 256 under different
schemes is shown in Fig. 11, where the critical section time is
assumed nil. The o values range from five cycles to 600 cy-
cles (which equal 13.3 times of the message turnaround time
T, under N = 256). Under the circumstance of o = 600 for
N < 256, the distribution of processor request time is quite
sparse, as the time interval between the first critical section
request and the last one for o = 600 and N = 256 is about 80
times of T,,. For a given o, the optimal n in our scheme is
decided by the trade-off between the network/memory con-
tention time and the global lock acquisition time. For differ-
ent o values, the optimal n varies. From Fig. 11, n = 8
achieves the best performance both on the elapsed time and
on the response time under o < 200 cycles, while the optimal
n is 64 for o > 200 cycles. It appears that, for a given N, the
optimal n increases as o grows. This is somewhat expected,
because a larger o means that processors tend to request
mutual exclusion over a longer period of time, leading to a
lighter contention in network/memory, and the choice of a
larger n thus reduces the global lock acquisition time without
causing severe contention.

The impacts of o on the performance of ADS and MCS
schemes are significant, as can be observed from Fig. 11; a
smaller ¢ tends to yield a yield a larger elapsed time and a
notably longer response time, as a result of more serious hot-
spot contention and longer lock acquisition. Our scheme,
however, leads to only a slight decrease in the elapsed time
and a slight increase in the response time as o decreases,
indicating that it successfully alleviates hot-spot contention
and achieves fast lock acquisition. Consequently, our scheme
exhibits superior performance. In general, the number of
member processors formed in the queue (of the ADS
scheme), in the linked list (of the MCS scheme), or in the
global CL (of ours) get reduced as ¢ grows, resulting in
shorter response times of all the three schemes as shown in
Fig. 11b. It should be noted that, under o > 500, processors
generate requests quite sparsely and contention is no longer

serious. This effect can be observed from Fig. 11b that the
ADS scheme has a smaller response time than that of the
MCS scheme for such a o, because processors in the ADS
scheme then no longer spend much time spinning to acquire
the lock (due to light contention in network/memory), while
link list redirection is still needed (in the MCS scheme). The
degree of hot spot contention is generally decided by two
parameters: the number of involved processors (N) and the
standard deviation of processor request time distributions
(o). For a fixed N, the contention gets serious as o decreases.
For a fixed o, the contention gets severer as N increases.

5.3.3 Effect of Standard Deviation (o ) under Non-empty
Critical Section

The critical section in an application program usually con-
tains a few instructions. To investigate the behavior of our
scheme applied to real programs, we had carried out
simulation under various nonzero critical section times. The
performance versus ¢ for N = 256 under the critical section
time equal to 10 cycles is shown in Fig. 12. The results for
other critical section times follow similar trends. Each curve
in the figure has a higher magnitude when compared with
the corresponding curve in Fig. 11, and the gaps between
the ADS curve and the MCS curve (or our scheme’s results)
get larger. This is mainly because a non-zero critical section
time delays the process of privilege consignation, thus ren-
dering the subsequent processors in the queue of the ADS
scheme to generate more synchronization traffic over the
network (due to spinning), while each member processor in
the MCS scheme (or our scheme) does not generate synchro-
nization traffic over the network, because processors in the
MCS scheme (or our scheme) halt and wait for being awak-
ened once they know themselves to be member processors.

6 CONCLUDING REMARKS AND FUTURE WORK

In this paper, an efficient implementation of mutual exclu-
sion locks in multiprocessors has been introduced, which
not only avoids serious hot-spot contention inherent to both
the MCS and ADS schemes, but also eliminates unneces-
sary synchronization traffic due to spinning or linked list
redirection. Consequently, the proposed scheme achieves
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Fig. 12. The impact of standard deviation (c) on the behaviors of the three schemes (with critical section time equal to 10 cycles).

the best performance among known techniques and yields
elapsed time results close to the lower bound. Since the
elapsed time and the response time of our scheme grows
slowly as the number of processors involved in mutual ex-
clusion increases, it offers good scalability and is suitable
for large systems.

Both the ADS and MCS schemes require a single remote
lock to construct a queue. For the MIN-based multiproces-
sor, synchronization traffic is more due to spinning in the
ADS scheme than due to linked list redirection in the MCS
scheme, suggesting that the MCS scheme exhibits a better
performance than the ADS scheme, as confirmed by our
experimental results shown in Fig. 10. For a bus-based
multiprocessor with cache, however, each waiting proces-
sor in the ADS scheme can spin on a counter located in a
local cache line (without producing synchronization traffic
over the bus), while the MCS scheme still requires linked
list redirection done over the bus, indicating that the ADS
scheme is superior. This has been validated by experimen-
tal results obtained on a Sequent Symmetry Model B ma-
chine [11]. When our scheme is applied to bus-based multi-
processors, it would still exhibit the best performance due
to dispersing a single remote lock into a tree of remote
locks, eliminating hot-spot contention.

In our proposed scheme, there is a possibility for the
global header to repeat the process of closing a global
linked list into a global CL (i.e., circular list) several times
before releasing the lock, when a global linked list coexists
with the global CL. Under such a situation, the global
header acts very much like a centralized controller to con-
sign the privilege to the next processor in the global CL
without entering the critical section itself. However, the
global header changes from time to time and it, in fact, can
take advantage of the lock privilege arrival by entering the
critical section immediately (if it is requesting for the critical
section) on receiving the lock privilege, and then consigning
the privilege to the next processor after finishing with the
critical section. With this, the global header enters the critical
section even without sending any request message out.

This paper considers the situation that every processor
requests mutual exclusion once before encountering barrier
synchronization. This reflects such real program execution

scenarios as Integer Sort (IS) in the NAS benchmark suite
[16]. Future research on this topic includes developing syn-
chronization primitives based on the proposed mutual ex-
clusion scheme and evaluating the performance of repre-
sentative application programs on top of the developed
primitives. In addition, it is interesting to investigate situa-
tions where every participating processor generates many
mutual exclusion requests before encountering any barrier
synchronization.
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