
HaRP: Rapid Packet Classification via
Hashing Round-Down Prefixes

Fong Pong, Senior Member, IEEE, and Nian-Feng Tzeng, Fellow, IEEE

Abstract—Packet classification is central to a wide array of Internet applications and services, with its approaches mostly involving

either hardware support or optimization steps needed by software-oriented techniques (to add precomputed markers and insert rules in

the search data structures). Unfortunately, an approach with hardware support is expensive and has limited scalability, whereas one

with optimization fails to handle incremental rule updates effectively. This work deals with rapid packet classification, realized by

hashing round-down prefixes (HaRP) in a way that the source and the destination IP prefixes specified in a rule are rounded down to

“designated prefix lengths” (DPL) for indexing into hash sets. HaRP exhibits superb hash storage utilization, able to not only

outperform those earlier software-oriented classification techniques but also well accommodate dynamic creation and deletion of rules.

HaRP makes it possible to hold all its search data structures in the local cache of each core within a contemporary processor,

dramatically elevating its classification performance. Empirical results measured on an AMD 4-way 2.8 GHz Opteron system (with

1 MB cache for each core) under six filter data sets (each with up to 30 K rules) obtained from a public source unveil that HaRP enjoys

up to some 3:6� throughput level achievable by the best known decision tree-based counterpart, HyperCuts (HC).

Index Terms—Classification rules, decision trees, filter data sets, hashing functions, incremental rule updates, IP prefixes, packet

classification, routers, set-associative hash tables, tuple space search.

Ç

1 INTRODUCTION

PACKET classification is performed at routers by applying
“rules” to incoming packets for categorizing them into

flows. It employs multiple fields in the header of an arrival
packet as the search key for identifying the best suitable
rule to apply. Rules are created to differentiate packets
based on the values of their corresponding header fields,
constituting a filter set. A field value in a filter can be an IP
prefix (e.g., source or destination subnetwork), a range (e.g.,
source or destination port numbers), or an exact number
(e.g., protocol type or TCP flag). A real filter data set often
contains multiple rules for a pair of communicating
networks, one for each application. Similarly, an application
is likely to appear in multiple filters, one for each pair of
communicating networks using the application. Therefore,
lookups over a filter set with respect to multiple header
fields are complex [8] and can easily become router
performance bottlenecks.

Various classification mechanisms have been considered,
and they aim to quicken packet classification through
hardware support or the use of specific data structures to
hold filter data sets (often in SRAM and likely with
optimization) for fast search [19]. Hardware support
frequently employs field programmable gate arrays
(FPGAs) or ASIC logics [4], [17], plus ternary content
addressable memory (TCAM) to hold filters [21] or registers

for rule caching [7]. A classification mechanism with
hardware support usually cannot handle incremental rule
updates well, since any change to the mechanism (in its
search algorithm or data structures) is expensive. Addi-
tionally, it exhibits limited scalability, as TCAM (or
registers) employed to hold a filter set would dictate the
maximal set size allowable. Likewise, software-oriented
search algorithms dependent on optimization via prepro-
cessing (used by recursive flow classification [8]) or added
markers and inserted rules (stated in rectangle tuple space
search (TSS) [18], binary TSS on columns [22], diagonal-
based TSS [12], etc.) for speedy lookups often fail to deal
with incremental rule updates effectively. The inherent
limitation of classifiers (be hardware- or software-oriented
ones) in handling incremental rule updates (deemed
increasingly common due to such popular applications as
voice-over-IP, gaming, and video conferencing, which all
involve dynamically triggered insertion and removal of
rules in order for the firewall to handle packets properly)
will soon become a major concern [24].

This paper treats hashing round-down prefixes (HaRP)
for rapid packet classification, where an IP prefix with l bits is
rounded down to include its first � bits only (for � � l; � 2
DPL, “designated prefix lengths” [14]). With two-staged
search, HaRP achieves high classification throughput and
superior memory efficiency by means of 1) rounding down
prefixes to a small number of DPL (denoted by m, i.e., m
possible designated prefix lengths), each corresponding to
one hash unit, for fewer (than 32 under IPv4, when every
prefix length is permitted without rounding down) hash
accesses per packet classification, and 2) collapsing those
hash units to one lumped hash (LuHa) table for better
utilization of table entries, which are set-associative. Based
on a LuHa table keyed by the source and destination IP
prefixes rounded down to designated lengths, HaRP not

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 22, NO. 7, JULY 2011 1105

. F. Pong is with the Broadcom Corporation, 2451 Mission College
Boulevard, Santa Clara, CA 95054. E-mail: fpong@Broadcom.com.

. N.-F. Tzeng is with the Center for Advanced Computer Studies, University
of Louisiana, Lafayette, LA 70504-4330. E-mail: tzeng@cacs.louisiana.edu.

Manuscript received 9 Sept. 2009; revised 18 Feb. 2010; accepted 30 June
2010; published online 8 Nov. 2010.
Recommended for acceptance by J. Zhang.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number TPDS-2009-09-0416.
Digital Object Identifier no. 10.1109/TPDS.2010.195.

1045-9219/11/$26.00 � 2011 IEEE Published by the IEEE Computer Society

only enjoys fast classification (due to a small number of hash
accesses to SRAM) but also handles incremental rule updates
efficiently (without precomputing markers or inserting rules
often required by typical TSS). With its required SRAM size
dropped considerably (to less than 800 KB for all six filter
data sets examined), generalized HaRP (denoted by HaRP�)
permits all its search data structures possibly to be held in the
local cache of each core in a processor, further boosting its
classification performance.

Our LuHa table yields high storage utilization via
identifying multiple candidate sets for each rule (instead
of just a single one under a typical hash mechanism), like the
earlier scheme of d-left hashing [1]. However, the LuHa table
differs from d-left hashing in three major aspects: 1) the
LuHa table requires just one hash function, as opposed to d
functions needed by d-left hashing (which divides storage
into d fragments), one for each fragment, 2) the hash
function of the LuHa table under HaRP� is keyed by 2m
different prefixes produced from each pair of the source and
the destination IP addresses, and 3) a single LuHa table
obtained by collapsing separate hash units is employed to
attain superior storage utilization, instead of one hash unit
per prefix length to which d-left hashing is applied.

Extensive evaluation of HaRP has been conducted on our
AMD system, which comprises four 2.8 GHz Opteron
processors with 1 MB cache each, under six filter data sets
obtained from a public source [23]. The proposed HaRP was
made multithreaded so that up to four threads could be
launched to take advantage of the four AMD cores.
Measured throughput results of HaRP are compared with
those of HyperCuts (deemed the best known decision tree-
based classifier [16]), whose source codes were downloaded
from a public source [23], and then made multithreaded for
executing on the same platform to classify millions of packets
generated from the traces packaged with the filter data sets.
Our measured results reveal that HaRP� boosts classification
throughput by some 3:6� over HyperCuts (or HC for short),
when its LuHa table has a total number of entries equal to
1:0n and there are five designated prefix lengths, for a filter
data set sized n. HaRP attains superior performance, on top
of its efficient support for incremental rule updates lacked by
previous techniques, making it a highly preferable software-
oriented packet classification technique.

2 PERTINENT WORK

Classification lookup mechanisms may be categorized, in
accordance with their implementation approaches, as being
hardware-centric and software-oriented, depending upon if
dedicated hardware logics or specific storage components
(like TCAM or registers) are used. Different hardware-
centric classification mechanisms exist. In particular, a
mechanism with additional registers to cache evolving
rules and dedicated logics to match incoming packets with
the cached rules was pursued [7]. Meanwhile, packet
classification using FPGA was considered [17] by using
the BV (Bit Vector) algorithm [11] to look up the source and
destination ports and employing a TCAM to hold other
header fields, with search functionality realized by FPGA
logic gates. Recently, packet classification hardware accel-
erator design based on the HiCuts and HyperCuts (HC)

algorithms [3], [16] (briefly reviewed in Section 2.1), has
been presented [10]. Separately effective methods for
dynamic pattern search were introduced [4], realized by
reusing redundant logics for optimization and by fitting the
whole filter device in a single Xilinx FPGA unit, taking
advantage of built-in memory and XOR-based comparators
in FPGA.

Hardware approaches based on TCAM are considered
attractive due to the ability for TCAM to hold the don’t care
state and to search the header fields of an incoming packet
against all TCAM entries in a rule set simultaneously [13],
[21]. Widely employed storage components in support of
fast lookups, TCAM has such noticeable shortcomings
(listed in [19]) as lower density, higher power consumption,
and being pricier and unsuitable for dynamic rules, since
incremental updates usually require many TCAM entries to
be shifted (unless provision like those given earlier [15], [21]
is made). As a result, software-oriented classification is
more attractive, provided that its lookup speed can be
quickened by storing rules in on-chip SRAM.

2.1 Software-Oriented Classification

Software-oriented mechanisms are less expensive and more
flexible (better adaptive to rule updates), albeit to slower
filter lookups when compared with their hardware-centric
counterparts. Such mechanisms are abundant, commonly
involving efficient algorithms for quick packet classification
with an aid of caching or hashing (via incorporated SRAM).
Their classification speeds rely on efficiency in search over
the rule set (stored in SRAM) using the keys constituted by
corresponding header fields. Several representative soft-
ware classification techniques are reviewed in sequence.

Recursive flow classification (RFC) carries out multistage
reduction from a lookup key (composed of packet header
fields) to a final classID, which specifies the classification
rule to apply [8]. Given a rule set, preprocessing is required
to decide memory contents so that the sequence of RFC
lookups according to a lookup key yields the appropriate
classID [8]. Based on a precomputed decision tree, Hier-
archical Intelligent Cuts (HiCuts) [9] holds classification
rules merely in leaf nodes and each classification operation
needs to traverse the tree to a leaf node, where multiple
rules are stored and searched sequentially. During tree
search, HiCuts relies on local optimization decisions at each
node to choose the next field to test. HyperCuts (HC) is an
improvement over HiCuts by allowing cuts to be made over
multiple dimensions at a node [16], as opposed to just a
single dimension each in HiCuts. At every node, there can
be totally

QD
i¼1 ncðiÞ child nodes, where nc(i) is the number

of splits made in the ith dimension. Like HiCuts, HC is also
a decision tree-based classification mechanism, but each of
its tree nodes splits associated rules possibly based on
multiple fields. It is shown to enjoy substantial memory
reduction while considerably quickening the worst-case
search time under core router rule sets [16], when compared
with HiCuts and other earlier classification solutions.

Given that decision tree-based methods (like HiCuts and
HC) in general are notorious for the tree size explosion
problem (with the decision tree size highly depending on
the data sets and possibly to grow exponentially), refine-
ment techniques are introduced to reduce their storage

1106 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 22, NO. 7, JULY 2011

requirements. The tradeoff between storage and lookup
performance can be measured by the space factor (SF), with a
larger SF value yielding a wider and shallower decision
tree. A larger SF is expected to consume more storage but
support faster lookups.

Meanwhile, storage-saving for decision tree-based clas-
sifiers can be achieved by pushing common rules upwards,
aiming to keep a common set of rules at the parent node if
the rules hold true for all of its child nodes. Although this
way lets rules be associated with nonleaf nodes to save
storage by avoiding replicas at the leaves, it can degrade
lookup performance, as a lookup then has to examine
internal nodes. Additionally, since decision trees are known
to involve excessive (child node) pointers, a common fix lets
the parent node keep merely the starting base address
pointing to its first child plus an additional n-bit “Extended
Path Bitmap” (EPB) to remember existing child nodes [16].
This pointer compression reduces space greatly from n
pointers to one plus (n� 1) bits. Also, practical decision tree
implementation stores all filter rules in a memory array of
consecutive locations; the decision tree only keeps indices in
the tree nodes. This reduces storage by avoiding replicas of
filter rules which hold true for multiple subtrees due to
wildcard addresses or port ranges. Adversely, such
compression techniques make incremental updates very
difficult. The linear memory array representation leaves
holes upon rule deletions and is hard to accommodate new
rules. The resulting indirect lookup process becomes
inefficient because memory, in principle, exhibits maximal
bandwidth under continuous bursts of requests. When data
objects are accessed in a random (or nonburst) manner,
memory bandwidth efficiency dwindles rapidly, so is the
packet classification rate.

TSS [18] has a potential for speedy classification, based
on decision tree variations (such as tries). A tuple under TSS
specifies the involved bits of those fields used for classifica-
tion, defining its tuple search space for efficient probes by
hashing to obtain appropriate rules. To discover the number
of bits used to form the tuple (or hash keys), a TSS method
builds a separate tree for each one of the header fields.
Guiding searches to the decision trees, the cross-product of
the result tuple lists signifies the hash tables (or tuples) to be
explored via hashing. Therefore, a practical implementation
of TSS utilizes both decision trees and hash tables.
Enhanced versions of TSS (including binary TSS on
columns [22], diagonal-based TSS [12], etc.) are later
considered for fast identifying candidate hash tables, where
appropriate filters are then probed. While enhanced TSS is
promising, it generally suffers from the following limita-
tions: 1) expensive incremental updates, 2) poor parallelism,
and 3) limited extensibility to additional fields, in parti-
cular, if markers and precomputation for best rules are to be
applied [14].

An efficient packet classification algorithm was intro-
duced [2] by hashing flow IDs held in digest caches (instead
of the whole classification key comprising multiple header
fields) for reduced memory requirements at the expense of
a small amount of packet misclassification. Recently, fast
and memory-efficient (2D) packet classification using
Bloom filters was studied [6] by dividing a rule set into

multiple subsets before building a cross-product table for
each subset individually. Each classification search probes
only those subsets that contain matching rules (and skips
the rest) by means of Bloom filters, for sustained high
throughput. The mean memory requirement is claimed to
be some 32-45 bytes per rule [6]. As will be demonstrated
later, our mechanism achieves faster lookups (involving 8-
16 hash probes plus four more SRAM accesses, which may
all take place in parallel, per packet) and consumes fewer
bytes per rule (taking 15-25 bytes per rule).

A dynamic packet filter, dubbed Swift [24], comprises a
fixed set of instructions executed by an in-kernel inter-
preter. Unlike packet classifiers, it optimizes filtering
performance by means of powerful instructions and a
simplified computational model, involving a kernel im-
plementation. Lately, HyperSplit has been pursued for its
superior classification speed and memory usage [25]. Based
on recursive space decomposition, HyperSplit has the tree
size explosion problem and requires 66 MB storage for 10K
ACL rules, in sharp contrast to less than 250 KB under
HaRP� (see Section 4.5).

3 PROPOSED HARP ARCHITECTURE

3.1 Fundamentals and Pertinent Data Structures

As eloquently explained earlier [19], [20], a classification
rule is often specified with a pair of communicating
networks, followed by the application-specific constraints
(e.g., port numbers and the protocol type). Our HaRP
exploits this situation by considering the fields on commu-
nicating networks and on application-specific constraints
separately, comprising two search stages. Its first stage
narrows the search range via communicating network
prefix fields, and its second stage checks other fields on
only entries chosen in the first stage.

3.1.1 Generalized HaRP

As depicted in Fig. 1, the first stage of HaRP comprises a
single set-associative hash table, referred to as the LuHa
table. Unlike typical hash table creation using the object key
to determine one single set for an object, our LuHa table
aims to achieve extremely efficient table utilization by
permitting multiple candidate sets to accommodate a given
filter rule and yet maintaining fast search over those
possible sets in parallel during the classification process. It
is made possible by 1) adopting designated prefix length, DPL:
fl1; l2; . . . li; . . . lmg, where li denotes a prefix length, such
that for any prefix P of length w (expressed by Pjw) with
li � w < liþ1, P is rounded down to Pjli before used to hash
the LuHa table, and 2) storing a filter rule in the LuHa table
hashed by either its source IP prefix (sip, if not wild carded)
or destination IP prefix (dip, if not wild carded), after they
are rounded down. Each prefix length �, with � 2 DPL, is
referred to as a tread. Given P, it is hashed by treating Pjli as
an input to a hash function to get a d-bit integer for (2d) sets
in the LuHa table. The round-down prefixes of P are aimed
to index hash buckets (i.e., sets) suitable for keeping the
prefix. Since treads in DPL are determined in advance, the
numbers of bits in an IP address of a packet used for hash
calculation during classification are clear and their hashed

PONG AND TZENG: HARP: RAPID PACKET CLASSIFICATION VIA HASHING ROUND-DOWN PREFIXES 1107

values can be obtained in parallel for concurrent search over
the LuHa table. This classification mechanism results from
HaRP during filter rule installation and packet classification
search [14], denoted by HaRP�. The mechanism works
because it takes advantage of the “transitive property” of
prefixes—for a prefix Pjw;Pjt is a prefix of Pjw for all t < w,
considerably boosting its pseudo set-associative degree.
Under the special case where Pjw (with li � w < liþ1) is
rounded down to Pjlb, for i � b � i, the method is denoted
by HaRP1. When the input prefix is further allowed to be
rounded down to the next tread li (i.e., i� 1 � b � i), we
have a scheme called HaRP2. It means that the input prefix
Pjw can then be stored in hash buckets indexed by either
Pjli or Pjli�l; namely, there are two candidate hash buckets
to choose from. Accordingly, our HaRP� scheme is defined
to permit as many candidate hash buckets (in existence) as
possible. In summary, HaRP1 is the basic scheme, where
only one hash bucket can keep an object. HaRP2 means two
hash buckets available to hold the hashed object. HaRPk

permits k hash buckets to choose from to keep the hashed
object, with HaRP� being the utmost situation where all
possible buckets are available for consideration.

A classification lookup for an arrived packet under DPL
with m treads involves m hash probes via its source IP
address and m probes via its destination IP address,
therefore allowing the prefix pair of a filter rule (say,
(Psjws;Pdjwd), with lsi � ws < lsiþ1 and ldi � wd < ldiþ1) to be
stored in any one of the is sets indexed by round-down Ps

(i.e., Psjfl1; l2; . . . ; lsig, if Ps is not a wildcard), or any one of the
id sets indexed by round-down Pd (i.e., Pdjfl1; l2; . . . ; ldi g, if Ps

is not a wildcard). Those indexed sets are referred to as
candidate sets. HaRP� balances the prefix pairs among many
candidate sets (each with � entries), making the LuHa table
behave like an ðis þ idÞ � � set-associative design under ideal
conditions to enjoy high storage efficiency. Note that HaRP
still benefits from elevated set-associativity even when Ps (or
Pd) is a wildcard, as long as id (or is) is larger than 1.

Given DPL with five treads: {1, 12, 16, 24, 28}, for example,
HaRP� rounds down the prefix of 010010001111001� ðw ¼
15Þ to 010010001111 (� ¼ 12) and 0 (� ¼ 1) for hashing.
Clearly, HaRP� experiences overflow only when all candidate
sets in the LuHa table are all full. The following analyzes the
LuHa table in terms of its effectiveness and scalability,
revealing that for a fixed, small � (say, 4), its overflow
probability is negligible, provided that the ratio of the
number of LuHa table entries to the number of filter rules is a
constant, say �.

3.1.2 Effectiveness and Scalability of LuHa Table

From a theoretic analysis perspective, the probability
distribution could be approximated by a Bernoulli process,
assuming a uniform hash distribution for round-down
prefixes. (As round-down prefixes for real filter data sets
may not be hashed uniformly, we performed extensive
evaluation of HaRP� under publicly available nine real-
world data sets, with the results provided in Section 4.3.)
The probability of hashing a round-down prefix Pjli
randomly to a table with r sets equals 1/r. Thus, the
probability for k round-down prefixes, out of n samples
(i.e., the filter data set size), hashing to a given set is
n
k

� �
ð1=rÞkð1� 1=rÞn�k. As each set has � entries, we get

probability(overflow j k round-down prefixes mapped to a
set, for all k > �Þ ¼ 1�

P�
k¼0

n
k

� �
ð1=rÞkð1� 1=rÞn�k, with

r ¼ ðn� �Þ=�.
The above expression can be shown to give rise to almost

identical results over any practical range of n, for given �
and �. When � ¼ 1:5 and � ¼ 4, for example, the overflow
probability equals 0.1316 under n ¼ 500, and it becomes
0.1322 under n ¼ 100;000. Consequently, under a uniform
hashing distribution of round-down prefixes, the set over-
flow probability of HaRP� holds virtually unchanged as the
filter data set size grows, indicating good scalability of
HaRP� with respect to its LuHa table. We therefore provide
in Fig. 2, the probability of overflowing a set with � ¼ 4
entries versus � (called the dilation factor) for one filter data
set size (i.e., n ¼ 100;000) only. The overflow probability
dwindles as � rises (reflecting a larger table).

HaRP1 achieves better LuHa table utilization, since it
permits the use of either sip or dip for hashing, effectively
yielding “pseudo 8-way” if sip and dip are not wildcards. It
selects the less occupied set in the LuHa table from the two

1108 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 22, NO. 7, JULY 2011

Fig. 1. HaRP classification mechanism comprising a set-associative hash table and an application-specific information table, with a prefix pair stored

in any one of hash buckets indexed by round-down prefixes, suitable for parallel lookups.

Fig. 2. Overflow probability versus � for a 4-way set-associative table.

candidate sets hashed on the nonwild carded sip and dip.
The overflowing probability of HaRP1 can thus be approxi-
mated by the likelihood of both candidate LuHa table sets
(indexed by sip and dip) being fully taken (i.e., each with
four active entries). In practice, the probability results have
to be conditioned by the percentage of filter rules with wild
carded IP addresses. With a wild carded sip (or dip), a filter
rule cannot benefit from using either sip or dip for hashing
(since a wild carded IP address is never used for hashing).
The set overflowing probability results of HaRP1 with wild
carded IP address rates of 60 percent and 0 percent are
depicted in Fig. 2. They are interesting due to their
representative characteristics of real filter data sets used in
this study (as detailed in Section 4.1; the rates of filter rules
with wild carded IP addresses for nine data sets are listed
with the right box). With a dilation factor � ¼ 1:5, the
overflowing probability of HaRP1 drops to 1.7 percent (or
8.6 percent), for the wildcard rate of 0 percent (or 60 percent).

Meanwhile, HaRP2 and HaRP3 are seen in the figure to
outperform HaRP1 smartly. In particular, HaRP2 (or
HaRP3) achieves the overflowing probability of 0.15 percent
(or 1.4 E-07 percent) for � ¼ 1:5, whereas HaRP3 exhibits the
overflowing probability less than 4.8 E-05 percent even
under ¼ 1:0 (without any dilation for the LuHa table). These
results confirm that HaRP� indeed leads to virtually no
overflow with � ¼ 4 under � > 2, thanks to its exploiting
the high set-associative potential for effective table storage
utilization. As will be shown in Section 4, HaRP� also
achieves great storage efficiency under real filter data sets,
making it possible to hold a whole data set in local cache
practically for superior lookup performance.

3.1.3 Application-Specific Information (ASI) Table

The second stage of HaRP involves a table, each of whose
entry keeps the values of application-specific filter fields
(e.g., port numbers, protocol type) of one rule, dubbed the
application-specific information (ASI) table (see Fig. 1). If
rules share the same IP prefix pair, their application-specific
fields are stored in contiguous ASI entries packed as one
chunk pointed by its corresponding entry in the LuHa table.
For fast lookups and easy management, ASI entries are
fragmented into chunks of a fixed size (say eight contiguous
entries). Upon creating a LuHa entry for one pair of sip and
dip, a free ASI chunk is allocated and pointed to by the
created LuHa entry. Any subsequent rule with an identical
pair of sip and dip puts its application-specific fields in a
free entry inside the ASI chunk, if available; otherwise,
another free ASI chunk is allocated for use, with a pointer
established from the earlier chunk to this newly allocated
chunk. In essence, the ASI table comprises linked chunks (of
a fixed size), with one link for each (sip, dip) pair.

The number of entries in a chunk is made small practically
(say, eight), so that all the entries in a chunk can be accessed
simultaneously in one cycle, if they are put in one word line
(of 1,024 bits) of SRAM modules. This is commonly
achievable with current on-chip SRAM technologies. The
ASI table requires a comparable number of entries as the filter
data set to attain desirable performance, with the longest ASI
list containing 30þ entries, according to our evaluation
results based on real filter data sets outlined in Section 4.

As demonstrated in Fig. 1, each LuHa table entry is
assumed to have 96 bits for accommodating a pair of sip
and dip together with their 5-bit length indicators, a 16-bit

pointer to an ASI list, and a 6-bit field specifying the ASI list
length. Given the word line of 1,024 bits and all entries of a
set being put inside the same word line with on-chip SRAM
technology for their simultaneous access in one cycle, the
set-associative degree (�) of the LuHa table can easily reach
10 (despite that � ¼ 4 is found to be adequate in practice).

3.2 Installing Filter Rules

When adding a rule under HaRP, the source (or the
destination) IP prefix is used for finding a LuHa entry to
hold its prefix pair after rounded down according to chosen
DPL, if its destination (or source) IP field is a don’t care (�).
Under HaRP�, the number of round-down prefixes for a
given nonwildcard IP prefix is up to * (dependent upon the
given IP prefix and chosen DPL). When both source and
destination IP fields are specified, they are hashed separately
(after rounded down) to locate an appropriate set for
accommodation. The set is selected as follows: 1) If a hashed
set contains the (sip, dip) prefix pair of the rule in one of its
entry, the set is selected (and thus, no new LuHa table entry is
created to keep its (sip, dip) pair). 2) If none hashed set has an
entry keeping such a prefix pair, a new entry is created to
hold its (sip, dip) pair in the set with least occupancy; if all
candidate sets are with the same occupancy, the last
candidate set (i.e., the one indexed by the longest round-
down dip) is chosen to accommodate the new entry created
for keeping the rule. Note that a default table entry exists to
hold the special pair of (�;�), and that entry has the lowest
priority since every packet meets its rule.

3.2.1 Rebalancing Load Distributions in LuHa Table

As (sip, dip) rule pairs are inserted sequentially into the
LuHa table and the hashed sets are likely to be different for
different keys, the initial load distributions of the LuHa
table after inserting all rules may not be ideal. In other
words, even though we always pick the least loaded bucket
when inserting the ith rule, the load distribution is a
function of the past history containing the first (i� 1) rules,
but not of the entire rule set. Fortunately, the transitive
property of prefixes is an independent characteristic, which
allows postmortem migrations or rebalance of (sip, dip)
entries in the LuHa table. To this end, a simple migration
scheme is followed. For each bucket (i.e., set) whose load is
larger than a given threshold, attempts are made to move its
elements to other buckets until the load of the bucket falls
below the threshold or nothing can be done, as outlined in
the pseudocode of Fig. 3. It is understood that optimal
results can be obtained by more sophisticated schemes
involving optimized table entry scheduling, which may call
for moving many entries. This work presents only the
random behavior of a simple scheme, leaving out other
schemes which strive for ideal distributions of hashed
elements at high levels of complexity.

The remaining fields of the rule are then put into an entry
in the ASI table, indexed by the pointer stored in the selected
LuHa entry. As ASI entries are grouped into chunks (with all
entries inside a chunk accessed at the same time, in the way
like accesses to those set entries in the LuHa table), the rule
will find any available entry in the indexed chunk for keeping
the contents of its remaining fields. Should no entry be
available in the indexed chunk, a new chunk is allocated for
use (and this newly allocated chunk is linked to the earlier
chunk, as described in Section 3.1).

PONG AND TZENG: HARP: RAPID PACKET CLASSIFICATION VIA HASHING ROUND-DOWN PREFIXES 1109

3.3 Classification Lookups

Given the header of an incoming packet, a two-staged
classification lookup takes place. During the LuHa table
lookup, two types of hash probes are performed, one keyed
with the source IP address (specified in the packet header)
and the other with the destination IP address. Since rules are
indexed to the LuHa table using the round-down prefixes
during installation, the type of probes keyed by the source IP
address involves m hash accesses, one associated with a
length listed in DPL ¼ fl1; l2; . . . li; . . . lmg. Likewise, the type
of probes keyed by the destination IP address also contains
m hash accesses. This way, taking exactly 2m hash probes
under DPL with m treads, ensures that no packet will be
misclassified regardless of how a rule was installed, as
illustrated by the pseudocode given in Fig. 4.

Lookups in the ASI table are guided by the selected LuHa
entries, which have pointers to the corresponding ASI
chunks. The given source and destination IP addresses could
match multiple entries (of different prefix lengths) in the
LuHa table. Each matched entry points to one chunk in the
ASI table, and the pointed chunks are all examined to find
the best matched rule. As all entries in one pointed chunk are
fetched in one cycle, they are compared concurrently with the
contents of all relevant fields in the header of the arrival
packet. If a match occurs to any entry, the rule associated with
the entry is a candidate for application; otherwise, the next
linked chunk is accessed for examination, until a match is
found or the linked list is exhausted. When multiple
candidate rules are identified, one with the longest matched
(sip, dip) pair, or equivalently the lowest rule number, if rules
are sorted accordingly, is adopted. On the other hand, if no
match occurs, the default rule is chosen.

3.4 Handling Rule Updates and Additional Fields

HaRP admits dynamic filter data sets very well. Adding one
rule to the data set may or may not cause any addition to
the LuHa table, depending upon if its (sip, dip) pair has
been present therein. An entry from the ASI table will be
needed to hold the remaining fields of the rule. Conversely,
a rule removal requires only to make its corresponding ASI
entry available. If entries in the affected ASI chunk all
become free after this removal, its associated entry in the
LuHa table is released as well.

Packet classification often involves many fields, subject
to large dimensionality. As the dimension increases, the
search performance of a decision tree-based approach tends
to degrade quickly while needed storage may grow
exponentially due to the combinatorial specification of
many fields. By contrast, adding fields under HaRP does

not affect the LuHa table at all, and they only need longer
ASI entries to accommodate them, without increasing the
number of ASI entries. Search performance hence holds
unchanged in the presence of additional fields.

4 EMPIRICAL EVALUATION AND RESULTS

This section evaluates HaRP using the publicly available
filter databases, focusing on the distribution results of prefix
pairs in the LuHa table. Our evaluation assumes a 4-way
set-associative LuHa table design. Overflows are handled
by linked lists, and each element in the linked list contains
four entries able to hold four additional prefix pairs. HaRP
is compared with other algorithms, including the Tuple
Space Search [18], BV [11], and HyperCuts [16] in terms of
the storage requirement and measured execution time on a
multicore AMD server. It is found in our study using both
the Broadcom BCM-1480 multicore platform [14] and the
AMD server, that HC enjoys substantial memory reduction
while considerably quickening the worst-case search time in
comparison to other known decision tree-based algorithms,
as claimed by the HyerCuts article in [16]. Therefore, HC is
chosen as a representative classifier based on the decision
tree, for subsequent contrast against HaRP.

To facilitate discussion, we use the notation of HaRP1
m

(or HaRP�m) to denote a HaRP1 (or HaRP�) scheme with m
treads involved in DPL for the rest of this paper.

4.1 Filter Data Sets

Our evaluation employed the filter database suite from the
open source of ClassBench [20]. The suite contains three seed
filter sets: covering Firewall (FW1), Access Control List
(ACL1), and IP Chain (IPC1), made available by service
providers and network equipment vendors. By their different
characteristics, large synthetic filter data sets of 10K and 30K
rules are generated in order to study the scalability of

1110 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 22, NO. 7, JULY 2011

Fig. 3. Simple one-hop migration.

Fig. 4. Pseudocode for prefix-pair lookups.

classification mechanisms. For assistance in, and validation
on, implementation of different classification approaches, the
filter suite is accompanied with traces, which can also be used
for performance evaluation as well [23].

In a brief summary of the rule characteristics, the
majority of ACL filters contain explicit IP prefixes; on the
other hand, many firewall rules have their source IP
addresses specified as wildcards. IPC contains prefixes of
mixes of lengths. In addition to the above rule data sets, the
ClassBench suite [20] provides four other sets of seed rules.
We had tried all of them plus large rule databases generated
from them, with representative results included in this
paper. As general results for smaller seed filters on the
Broadcom BCM-1480 multicore platform can be found in
our previous publication [14], we emphasize solely the
results of large filter data sets here, in particular, those data
sets listed in Table 1.

4.2 Selections of DPL Treads

As the LuHa table is consulted 2m times for DPL with m

treads, the distribution of prefix pairs plays a critical role
in hashing performance. Since the hashing keys are round-
down prefixes accordingly to DPL ¼ fl1; l2; . . . ; li; . . . ; lmg,
a simple heuristic can be applied to select the treads,
namely, treads are selected such that the number of

unique prefixes between two consecutive treads are
abundant. For example, if liþ1 ¼ 28 is the current tread,
we select the next tread li from candidates in
f27; 26; 25; . . .g such that the number of unique prefixes
(after rounded down to li) is maximal. The heuristic works
by assuming that the hashing function gives reasonably

uniform distributions on unique keys.
When applying this heuristic to the source and destina-

tion IP prefixes, two very different DPLs may be generated.
Our previous work [14] had always assumed the same DPL
applied to both source and destination IP prefixes. In this
paper, however, different DPLs fitting the rule character-

istics are employed, usually yielding better results.1

4.3 Load Distribution in LuHa Table

The hash function is basic to HaRP. In this paper, a simple
hash function is developed for use. First, a prefix key is
rounded down to the nearest tread in DPL. Next, simple

XOR operations are performed on the prefix key and the
found tread length as follows:

tread ¼ find tread in DPLðlength of the prefix keyÞ;
pfx ¼ prefix key 0xffffffff�ð32-treadÞÞ; ==round down

h ¼ ðpfxÞ^ðpfx� 7Þ^ðpfx� 15Þ^tread^ðtread� 5Þ^

ðtread� 12Þ^ � ðtread� 18Þ^ � ðtread� 25Þ;
set num ¼ ðh^ðh� 5Þ^ðh� 13ÞÞ% num of set;

While outcomes may be improved by using more
sophisticated hash functions (such as cyclic redundancy
codes, for example), it is beyond the scope of this paper.
Instead, we show that a single lumped LuHa table can be
effective, and most importantly, HaRP� works satisfactorily
under a simple hash function.

The results of hashing prefix pairs into the LuHa table
are shown in Table 2, where the LuHa tables are properly
sized. Specifically, the first column of Table 2 is the load, or
the number of prefix pairs hashed into a set. Given a 4-way
LuHa table design, overflow happens when more than four
prefix pairs are to be stored in a bucket. The numbers in the
results columns are the percentage of buckets (to the total
number of buckets) with the specified loads. For each of the
filters, the LuHa table is first provisioned with � ¼ 2 (dilated
by a factor of 2 relative to the number of filter rules) for
HaRP1

8, under DPL with eight conveniently selected treads,
{1, 8, 12, 16, 20, 24, 28, 32}. The LuHa table size is then
aggressively reduced by 100 percent (i.e., � ¼ 1:0) to show
how the single set-associative LuHa table performs with
respect to HaRP�5 and HaRP�8 under fewer or an equivalent
number of treads in DPLs, selected according to the
heuristic method of Section 4.2 for HaRP�. The results
clearly show that HaRP1 exhibits no more than 4 percent of
overflowing sets in a 4-way set-associative LuHa table. Only
the IPC1-10K data set happens to have 10 percent overflow
sets, caused partly by the nonideal hash function and partly
by the round-down mechanism of HaRP. Nevertheless, the
single 4-way LuHa table exhibits good resilience in
accommodating hash collisions for the vast majority
(96 percent) cases.

When the hash table size is aggressively shrunk (to
� ¼ 1:0), improved and well-balanced results can be
observed under HaRP�. Under HaRP�8, all data sets now
experience less than 1 percent (or 1.6 percent for IPCs)
overflowing sets. Because the opportunities for hashing
migration are abundant, table utilization results displayed
in the last row show that the LuHa table can be almost fully
populated in many cases. Nevertheless, this is achieved
with a time cost of 16 ð¼ 2mÞ hash probes. When the
number of treads is lowered to five, results of Table 2 show
that more overflowing buckets sprout. The worst case
occurs for IPC1-10K, where as many as 30 percent of
buckets exhibit overflows. This is due to combination of an
imperfect hash function, a small hash table, and the round-
down mechanism used by HaRP. Since the hash values are
calculated over round-down prefixes, and fewer treads lead
to wider strides between consecutive treads, likely to make
more prefixes identical in hash calculation after being
rounded down. Furthermore, fewer treads in DPL implies a

PONG AND TZENG: HARP: RAPID PACKET CLASSIFICATION VIA HASHING ROUND-DOWN PREFIXES 1111

TABLE 1
Filter Data Sets (# of Filters)

1. It can be further shown that two DPLs may hold different numbers of
treads, that is, lookup time complexity is not always restricted to 2m hash
probes. Instead, fewer ðm1 þm2Þ < 2m probes are possible for one DPL
with m1 treads and another with m2 treads. Such a scheme could lead to
better results because filter rules may have fewer unique destination (or
source) IPs specified in relation to a large number of source (or destination)
IPs. When two key spaces have different sizes, more treads naturally shall
be applied to the larger key space to produce better hashing distributions.
Nevertheless, to simplify discussion and save space, we assume in this
article that two DPLs always have the same number of m treads.

smaller number of LuHa table candidate sets in which

prefix pairs can be stored.
Results for all other large rule sets with 30K rules under

m ¼ 8 are included in Table 2 as well. Again, HaRP�8
exhibits no more than 2.3 percent overflowing probabilities

for all data sets, under a dilation factor of 1, due to its

abundant opportunities for hashing migration. By a slight

increase of roughly 4 percent of the total storage with � ¼
1:1 (i.e., the LuHa table with its size equal to 1.1 times of the

number of rules), we have observed elimination of almost

all overflows. As outcomes for all rule data sets follow the

same trends, we restrict our subsequent discussion to only

the results of those data sets listed in Table 1.
To eliminate overflows, more DPL treads and/or a larger

table can be deployed as shown by Fig. 5 for the IPC1-10K
data set. The percentage of overflowing buckets (with
respect to the total buckets) consistently drops toward 0
when DPL with seven treads is deployed and the hash table
is enlarged by 1.2 times. Without enlarging the hash table
(for � ¼ 1:0), DPL needs to contain more than eight treads to
avoid bucket overflows. These results indicate that a single
lumped set-associative LuHa table for HaRP� (with load
rebalancing) is promising in accommodating prefix pairs of
filter rules in a classification data set effectively.

4.4 Search over ASI Table

The second stage of HaRP probes the ASI (application-
specific information) table, each of whose entry holds
values of all remaining fields, as illustrated in Fig. 1. As
described in Section 3.1, we adopt a very simple design
which puts rules with the same prefix pairs in an ASI
chunk, and hence, the ASI distribution is orthogonal to the
selection of DPL and to the LuHa table size. Filter rules are
put in the same ASI list only if they have the same prefix
pair combination. The LuHa table search has eliminated all
rules whose source and destination IP prefixes do not

1112 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 22, NO. 7, JULY 2011

TABLE 2
Load Distributions of Large Rule Sets in the LuHa Table

Fig. 5. Overflow rates versus the number of DPL treads under HaRP�

with different hash table sizes for IPC1-10K.

match, pointing solely to those candidate ASI entries for
further examination. It is important to find out how many
candidate ASI entries exist for a given incoming packet, as
they govern search complexity involved in the second stage.

The ASI lists are generally short, as depicted in Fig. 6.
Over 98 percent of them have less than five ASI entries each,
and hence, linear search is adequate. This is well under-
stood and representatively shown by the cache designs with
block granularity and by DRAMs to deliver highest
bandwidth for burst accesses on active open pages.
Occasionally, a few long lists of some low 30 elements
appear for ACL and IPC data sets. By scrutinizing the
outcome, we found that this case is caused by a large
number of rules specified for a specific host pair leading to
a poor case, since those rules for such host pairs fall in the
same list. This is believed to represent a situation, where a
number of applications at the target host rein accesses from
a designated host. Nevertheless, fetching all ASI entries
within one chunk at a time (achievable by placing them in
the same memort word line, or a cache line) helps to
address long ASI lists, if present (since one ASI chunk may
easily accommodate eight entries, each with 80 bits, as
stated in the next section).

Note that we study the effectiveness of HaRP by using
basic linear lists because of their simplicity and empirical
results demonstrate that they are adequate for short ASIs.
However, it does not preclude the use of advanced
techniques and data structures to achieve more optimized
design with smaller storage and higher lookup perfor-
mance. For example, exceedingly long ASI lists can be
handled by typical k-ary search for faster results. Given an
involved rule field, one may fragment the range of that field
into k nonoverlapped segments, so that each rule is kept in a
segment when the value of its associated field falls into the
segment range. A segment can, in turn, be further
partitioned into subsegments, each of which contains a
small fraction of rules in an original ASI list. This simple k-
way partition can be applied to other involved rule fields as
well, yielding fast search over multiple fields. For example,
the source port number ranges, (spnmin; spnmax), and the
destination port number ranges, (dpnmin; dpnmax), of rules
on a long ASI list specify regions in the 2D 216 � 216 space
defined by the port numbers. It is easy to select two gauge
port numbers so that the port space is divided into four
subspaces within which rules on the ASI list fall evenly. It is
also worth noting that this way of optimization is local to,
and tuned for, each long ASI.

4.5 Storage Requirements and Memory Efficiency

Table 3 displays the consumed storage size and the memory
efficiency of different methods, where the dilation factor (�)
refers to the ratio of the number of LuHa table entries to the
data set size. Memory efficiency is defined as the ratio
between the minimal storage required to keep all filter rules
(as in a linear array of rules, each takes up 20 bytes) and the
total storage of constituent data structures (which include the
provisioned but not occupied entries in the LuHa table of
HaRP), namely,

Memory efficiency ¼ Minimum memory for all rules

Total memory used ðand provisionedÞ :

It is clear that an ideal solution has memory efficiency equal
to 1.0; the closer it is toward 1.0, the better.

Under HaRP�, each LuHa entry is 12-byte long, compris-
ing two 32b IP address prefixes, two 5b prefix length
indicators, a 16b pointer to the ASI table, and a 6b integer
indicating the length of its associated linked list. Each ASI
entry needs 10 bytes to keep source and destination port
ranges and the protocol type, plus two bytes for the rule
number (i.e., the priority). Under the HC implementation
(obtained from [13]), each node is assumed to take 4 bytes.
All rules are stored in consecutive memory locations and
each rule requires 20 bytes.

The results in Table 3 clearly demonstrate that HaRP� is
much more memory-efficient than HC. Often, hash tables
have low memory efficiency and are over-provisioned in
order to achieve good hashing results (without many
conflicts). Under HaRP�, its large “pseudo set-associative”
degree makes the dilation factor possible to be as low as 1,
given that each prefix pair can be stored in any one of
multiple candidate LuHa table sets, effectively alleviating
the over-provision shortcomings usually associated with
hash table-based methods. HaRP� consistently enjoys high
LuHa table utilization (i.e., ratio of the total number of
active entries to that of total entries), as unveiled in Table 3.

In contrast to a hash table-based method, decision tree
search (such as that under HC) tries to eliminate as many
rules as possible for further consideration at each search step.
Unlike the LuHa table, where all rules with identical (sip,
dip) pair but distinct other fields share one single entry
therein, the decision tree data structure keeps all rules
separately without consolidation. This naturally leads to
lower memory efficiency for decision tree-based classifiers,
whose search times are also impacted adversely. Also

PONG AND TZENG: HARP: RAPID PACKET CLASSIFICATION VIA HASHING ROUND-DOWN PREFIXES 1113

Fig. 6. Length distribution of ASI link lists.

TABLE 3
Memory Size and Efficiency for HaRP� and for HC (with Bucket

Size ¼ 16 and Space Factors of Two)

decision-tree- or trie-based algorithms, such as HyperCuts,
exhibit rather unpredictable outcomes because the size of a
trie largely depends on if data sets have comparable prefixes
to enable trie contraction; otherwise, a trie can grow quickly
toward full expansion. Those listed outcomes in Table 3
generally indicate what can be best achieved by the cited
HyperCuts technique, with its refinement options (including
rule overlapping and rule pushing) all turned on for the best
results [16]. Also, this implementation assumes a 64-bit EPB
(Extended Path Bitmap for at most 64 child nodes), yielding a
constant node size immune to the “dead space” pointers;
hence, the results of Table 3 reveal the lower bounds for HC
under memory-conserving implementation.

4.5.1 Effects of Wildcard and Low-Explicit Rules on HC

The memory size for HC swings wildly for different data
sets. For the firewall application, its plentiful wildcard IP
addresses cause explosion of the decision tree. Generally
speaking, the less specific the filter rules are, the larger the
decision tree becomes, as expected and shown. This is due to
the fact that wildcard rules end up in many leaves, enlarging
storage dramatically. Consider k rules with their source IP
being 16-bit prefixes in the form of x:y:0:0j16. Assume all
other fields of the rules are ignored, with expansion
performed on the source IP address, so that the path from
the root to Node N� is determined exactly by the prefix string
of x.y. Obviously, all k rules hold true for the eventual subtree
rooted at N�, and such a subtree can have up to 216 leaves. If k
is small, the expansion may stop and linear search over the k
rules during lookups may suffice. On the other hand, for a
large k, the expansion continues and the decision tree size
can grow rapidly, because the source IP prefix can no longer
be a factor helpful to differentiate and eliminate rules for
further expansion consideration. This signifies that with
most explicit rules, the ACL data set invokes the least amount
of memory. When the number of explicit rules drops slightly
(as in IPC), the tree size increases rapidly.

4.5.2 Effects of Algorithmic Parameters on HC

As a heuristic parameter, SF (space factor) governs the
expansion of the decision tree at each node so that tradeoffs
between space and time can be made. As suggested in HC
[16], the total number of splits at a node is bounded by
SF �

ffiffiffiffiffi
N
p

, where N is the number of rules holding true at
that node.

In general, a larger SF leads to a wider and shallower
decision tree, but it does not exhibit a conclusive trend on the
total numbers of tree nodes, rules stored, and rules pushed
and kept in intermediate nodes, as listed respectively in the
fourth, the fifth, and the last columns of Table 4. The matter
is complicated by all three factors: SF, selection of dimension
cuttings, and specificity of the filter rule data sets (not just SF
alone). There is really no consummate way to guide the
construction of decision trees for minimal storage and fast
lookups within a reasonable computing time. Most impor-
tantly, we have observed in our studies that the storage size
and the lookup speed can be two conflicting goals under HC.
For example, common rule pushing that pushes rules holding
true for all child nodes to their common parent node is an
important technique for HC to help contain forward tree
expansion. However, it can cause adversely long lists of

rules stored in the intermediate (nonleaf) tree nodes. Those
pushed rules make lookup performance crawl to a halt
because every lookup requires inspecting those pushed
rules. Such an undesirable consequence results from making
tradeoffs between storage and time under the decision tree
method. It also enlightens the potential pitfalls, where rule
pushing trades lookup performance for storage space.

5 SCALABILITY AND LOOKUP PERFORMANCE ON

MULTICORES

As each packet can be handled independently, packet
classification suits a multicore system well [5]. Given a
multicore processor with np cores, a simple implementation
may assign a packet to any available core at a time so that
np packets can be handled in parallel by np cores.

This section presents and discusses performance and
scalability of HaRP� in comparison with those of Hyper-
Cuts. By the results of Table 2, basic HaRP1 can never
outperform HaRP�, and studies thus emphasize lookup
performance under HaRP� here. Two configurations,
HaRP�5 and HaRP�8, with the LuHa table sized to a dilation
factor of � ¼ 1:0, are considered to reflect the results given
in Table 2.

For gathering measures of interest on our multicore
platform, our HaRP code was made multithreaded for
execution. With the source code for HC implementation
taken from the public source [23], we closely examined and
polished them by removing unneeded data structures and
also replacing some poor code segments with their efficient
equivalences in order to get best performance levels of those
referenced techniques. All those program codes were made
multithreaded to execute on the same multicore platform,
with their results presented in next sections.

5.1 Data Footprint Size

Because search is performed on each hashed set sequen-
tially by a core, it is important to keep the footprint small so
that the working data structure can fit into its caches,
preferably the L1 (level-one) or L2 cache dedicated to a core.
According to Table 2, HaRP� requires the least amount of
memory provisioned. By our measurement, it requires less
than 800 KB to keep 30K data sets, making it quite possible
to hold the entire data structure in the L2 cache of a today’s
core. This advantage in containing the growth of its data
footprint size as the number of rules increases is unique to

1114 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 22, NO. 7, JULY 2011

TABLE 4
Breakdowns of Storage for HC

HaRP� (and not shared by any prior technique), rendering it
particularly suitable for multicore implementation to attain
high performance.

5.1.1 Average Footprint

The behavior of HaRP� driven by the traces provided with
filter data sets [23] was evaluated to obtain the first order of
measurement on the data footprint for lookups. Fig. 7
depicts the mean number of bytes fetched per packet
lookup, a conventionally adopted metric for comparing
classification methods [16]. It is clearly shown that HaRP�5
touches fewer data than HaRP�8. This is because HaRP
always probes 2�m LuHa sets (irrespective of the data set
size), and thus keeping a small m is important. Although
results in Table 2 show that HaRP�5 causes more over-
flowing buckets than HaRP�8, the working data set tells an
interestingly different story. HaRP�5 saves six hash probes to
the LuHa table per classification lookup in comparison to
HaRP�8 (namely, 10 probes to more occupied sets versus
16 probes to less occupied sets).

Table 5 provides advanced insight into the search
performance under HaRP�5 and HaRP�8, involving accesses
to both LuHa table and ASI table. The mean numbers of
matched entries differ only a little, as listed in Table 5,
where the first and the third result columns give the
average numbers of prefix pairs inspected per packet
classification under HaRP�5 and HaRP�8, respectively.
Clearly, HaRP�5 touches and inspects fewer prefix pairs
than HaRP�8, due to fewer hash probes. The second and the
fourth column contain the average numbers of prefix pairs
matched. On average, less than two prefix pairs match in
the LuHa table per classification lookup, signifying that the

two-stage lookup procedure of HaRP� is effective. Finally,
the 5th and 6th result columns list the mean numbers of ASI
tuples inspected per matched prefix pair. Since the mean
numbers are small, linear search as being performed in this
work may suffice.

In summary, results depicted in Fig. 7 and Table 5 reveal
an interesting fact that fewer treads with manageable LuHa
table overflows may prevail under a software implementation. As
we will demonstrate in the next section, lookup perfor-
mance is affected predominately by the number of hash
probes or the data footprint that impacts the cache behavior.
On the other hand, hardware support for HaRP* to allow
parallel probes to the candidate LuHa sets may benefit from more
DPL treads. With adequate memory bandwidth, all hash
probes can be launched in parallel, as depicted by the
model of Fig. 1. When overflows present, they complicate
the (hardware) table management and slow down classifi-
cation because now multiple cycles are required to chase
overflowed entries for completing hash lookups. And
hence, selection of DPL treads to minimize LuHa table
overflows or maximize parallelism is a practical implemen-
tation tradeoff requiring careful evaluation.

Fig. 7 also illustrates that HaRP� consistently enjoys
much lower average footprint per lookup than HyperCuts.
Particularly for the firewall rule data sets, HC fetches five to
nine times of data than HaRP�5, clearly putting pressures on
the cache systems of modern processors and thereby
lowering their performance (as to be shown in the next
section). The second to the last column of Table 5 displays
that the average search depth of the decision tree is between
4.5 and 8.2. As expected, it is not deep when multiple bits
(cuts) are considered at each tree node. However, to truly
understand how HC may perform, the last column reveals
that many rules are inspected per classification lookup. This
is because many rules are pushed to the intermediate nodes
as shown by the last column of Table 4, especially for the
Firewall data sets.

5.1.2 Worst Cases

Besides demonstrating a smaller mean data footpriont, the
deterministic procedure to probe 2�m LuHa sets under
HaRP�m also yields more stable worst-case results across
various rule data sets, as shown in Fig. 8. For HyperCuts, the
results fluctuate, depending on the depth of the decision tree
and the number of rules which are pushed up from the leaves
and stored at the intermediate nodes. As we have described
before, pushing common rule subsets upward the trie
structure is an important technique for saving storage in
HC [16]. While keeping common rules at nonleaf nodes saves

PONG AND TZENG: HARP: RAPID PACKET CLASSIFICATION VIA HASHING ROUND-DOWN PREFIXES 1115

Fig. 7. Average number of bytes fetched per lookup.

TABLE 5
Search Performance (in Terms of Mean Number of Entries) Per

Lookup under HaRP� with � ¼ 1

Fig. 8. Worst-case number of bytes accessed.

storage by avoiding replicas at the leaves, this optimization
heuristic requires inspection of rules kept at the nonleaf
nodes upon traversing the trie during lookups, possibly
leading to a large data footprint, as revealed in Fig. 8.

5.2 Performance on AMD Opteron Server

While data footprint results presented in the last section
might unveil relative performance of different classification
techniques (given the memory system is generally deemed
as the bottleneck), computation steps or the mechanisms
involved in dealing with the data structures are equally
important and have to be taken into consideration. To arrive
at more accurate evaluation, we executed all classification
programs on an AMD 4-way 2.8 GHz Opteron system with
1 MB cache for each core. Throughput performance is
measured, with the results for HaRP and HC listed in
Table 6. Values in the table are all relatively scaled to one

thread HyperCuts performance, which is shown as a
reference of one in the second column for clear and system
configuration-independent comparison. The second to the
fourth columns include the single core results. The fifth to
the seventh columns contain the speedups relative to one
thread HyperCuts performance, with the rest for results
under four cores.

When the number of threads rises from one to two and
then to four, HC shows nearly linear or superlinear
scalability (in terms of raw classification rates) with respect
to the number of cores. The superlinear phenomenon may be
due to the fact that one tread can benefit from a warmed up
cache by another thread, or marginal errors occurred during
statistic collection. This scalability trend indeed exists for
HaRP� as well, because packet classification is inherently
parallel, as expected. Overall, HaRP demonstrates much
higher throughput than HyperCuts for all data sets. On a per
core basis, HaRP�5 (or HaRP�8) consistently delivers 1.7 to 3.6
(or 1.1 to 2.5) times improvement over HC. According to the
average footprint results given in Fig. 7, HC clearly puts
more pressure on the cache system. With random touching of
cache lines, it is anticipated that HC will perform worse than
HaRP�. However, while data footprint can indeed give first-
order estimation on how well a technique could perform, the
code path during execution is equivalently critical. By
inspecting the disassembled HC code, we found that the
code path for HC could be rather long. For example, at each
step traversing the decision tree, the number of bits extracted

from a field needs to be determined, and next the extracted
bits are used to calculate the location of the next child in the
decision tree. In brief, the total number of splits (i.e., children)
of a node is specified by NC ¼ �incðiÞ, where nc(i) is the
number of cuts performed on the ith header field. During
search, log2ðncðiÞÞ bits are extracted from the appropriate
positions in the ith field; assuming the decimal value
represented by the extracted bits is vi, the number of child
positions in the linear array covering the NC space is then
expressed by

PD�1
i¼1 vi ��D

j¼iþ1 ncðjÞ þ vD for D dimensions.
These operations seem simple, but in fact, they can take
hundreds of cycles to complete, causing a significant
performance loss, as observed.

For HaRP�, it is worth noting how the performance level
changes according to the number of DPL treads. Due to
fewer hash probes and the smaller data footprint (see Fig. 7)
enjoyed by HaRP�5, it performs better than HaRP�8. It stems
from the fact that HaRP�5 employs DPL with five treads, as
opposed to eight treads for HaRP�8. This brings the number
of hash probes per lookup from 16 down to 10, incurring
less hashing overhead. Most importantly, HaRP�5 is ex-
pected to be more caching-friendly than HaRP�8, because
accessing prefix pairs located in 10 sets should enjoy better
caching locality than prefix pairs spread across 16 sets.

The above results raise an interesting question about
choosing the number of DPL treads under HaRP�. If fewer
treads lead to less hash probes, does it always deliver
higher performance? The answer is a complex matter,
involving many factors, like the number of overflows (or the
number of elements hashing to the same buckets), the
overhead in hashing calculation, and the degree of
parallelism of capability for inspecting multiple elements
simultaneously. Clearly, as shown in Tables 2 and 5, HaRP�5
involves fewer hash probes to more congested hash buckets
in the LuHa table. By contrast, HaRP�8 incur more hash
probes, but to lightly-filled buckets. While HaRP�5 is
observed to outperform HaRP�8, it is not realistic to expect
the trend to continue favoring fewer and fewer treads. At a
certain point, when the number of DPL treads is too few to
yield good hashing distribution (due to rounding down
prefixes under HaRP to let many prefixes mapped to the
same hash bucket), the hash table will degenerate to a few
overly congested buckets, slashing its performance.
Furthermore, when the system has adequate bandwidth
and is capable of launching all hash probes in parallel, a
larger DPL is favorable.

6 LOOKUP ACCESS ANALYSIS

In the previous section, the measured results have shown
that HaRP� outperforms decision tree-based methods
represented by HC [16]. Here, an analytical model is built
to capture the fundamental property of HaRP� relative to
HC [16] under different system capabilities, in particular,
when both methods are realized by hardware using on-chip
SRAM, off-chip SRAM, or both together.

6.1 Memory System Consideration

HaRP� is suitable for high performance hardware imple-
mentation, 2m hash probes to the LuHa table possibly
executed in parallel. Consider a LuHa table design under

1116 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 22, NO. 7, JULY 2011

TABLE 6
Measured Throughput Results on an AMD System (in Relative

Scale to HC under One Core)

today’s 65 nm ASIC technology, realized by 64 on-chip
256� 144b SRAM blocks (each with 46339 �m2), for a total
of some 3 mm2; this small-area table suffices to keep 30K
filtering rules. When 2m (¼ 16 under m ¼ 8) hash probes are
issued to the 64 blocks, all accesses are in parallel except for
those to the same memory blocks (which are then serial-
ized). While the worst-case is bounded by 2m cycles, our
extensive simulation reveals the the worst-case to take
5 cycles in practice, with the mean of 1.38 cycles. With a
scheduler to orchestrate filtering requests made by multiple
interfaces, an average one-lookup-per-cycle rate is attain-
able using the memory system. At 500 MHz, for example,
such a LuHa table design can serve O(100 MPPS) lookups. It
is also feasible to realize the ASI table by on-chip RAMs,
given that most ASI lists inspected after matches reported in
the LuHa table are short, per the results in Table 5.

Additionally, our HaRP� design matches the commodity
RAM technology well. For today’s advanced QDR SRAM, as
an example, it delivers the maximum throughput when
continuous requests are made to the device every other
cycle. Because addresses for the 2m sets in the LuHa table are
calculated simultaneously, the 2m accesses can be issued to
QDR SRAM one-by-one in a truly pipelined manner without
interruption. After a prefix pair is found, its ASI list is
fetched in the same way. Therefore, the HaRP� design can
really benefit from the maximum potential bandwidth
offered by QDR SRAM. This is in sharp contrast to
attempting a pipelined decision tree, because upon traver-
sing down a tree, each step then requires to fetch the node
contents, select the correct bits from fields to make cuts as
specified in the node contents, and calculate the next nonleaf
node address before issuing a request. It is clearly challen-
ging to complete all the tasks in one cycle without causing
pipeline bubbles for a high performance design. Further-
more, the memory size required for holding nodes at each
level grows exponentially toward the bottom of the trie.

6.2 The Analytical Model

To provide insights into the advantages gained poten-
tially by the parallel nature of HaRP� under different
hardware characteristics, we have recourse to an analy-
tical model for its generality. The model contains the
following four parameters:

1. Lag, � ¼ tn=th, reflecting the ratio between the
average time to move through a decision tree node
(tn) and the average time to fetch and check a LuHa
entry (th),

2. Delay, � ¼ tf=th, being the ratio between the mean
time to access and inspect a filter rule under a
decision tree-based method (tf) and the mean time
to access and inspect an ASI entry under HaRP
(which is the same as th),

3. Parallelism, �, denoting the number of LuHa table
entries and ASI entries being fetched and processed
in parallel; the number of rules checked in parallel at
each node in the decision tree also equal to �, and

4. Bandwidth, !, referring to the number of such
elements as LuHa entries, ASI elements, and filter
rules stored in consecutive locations that can be
fetched simultaneously due to a wide memory data

path. Note that ASI entries are stored in consecutive
memory locations, � captures the possible efficiency
gain experienced by HaRP over a decision tree-
based design, where filter rules, stored and indexed
in an array, are mostly accessed in a random and
scattered fashion.

In addition, the storage-saving technique for decision tree-
based design by pushing common rules upwards (to avoid

holding the same rules repeatedly in all of its child nodes)
requires inspection of rules kept at the nonleaf nodes while

traversing the trie during lookups, often involving a much
longer trie traversal time.

The expected packet lookup gain (G) enjoyed by HaRP�

over its decision tree-based counterpart can then be
expressed as

G ¼ E½TT 	
E½TH 	 ¼

tn � E
�
LTn
�
þ tf � ð1=�!Þ�E

�
LTf
�

th � ð1=�!Þ �
�
2m�

�
E
�
LHn
�
þE

�
LHf
���

¼
��E

�
LTn
�
þ � � ð1=�!Þ�E

�
LTf
�

ð1=�!Þ �
�
2m�

�
E
�
LHn
�
þ E

�
LHf
���

¼
��!� E

�
LTn
�
þ � � E

�
LTf
�

2m�
�
E
�
LHn
�
þE

�
LHf
�� ;

where E½TT 	 (or E½TH) denotes the expected lookup time
per packet under the decision tree-based method (or

HaRP�), E½LTn 	 and E½LTf 	 refer, respectively, to the mean
search depth in a decision tree and to the average number of

rules fetched and inspected per packet lookup, while
E½LHn 	(or E½LHf) is the mean number of matched prefix

pairs (or of ASI entries checked) per hash probe under
HaRP. In other words, G under HaRP� is given by a

function of average search path length (in terms of the
number of visited prefix pairs and ASI entries) for varying

degrees of delay (�; �), hardware parallelism (�), and the
bandwidth ratio (!).

Fig. 9 demonstrates the HaRP� throughput gain for

various hardware characteristics, ranging from most ag-
gressive (the upper bound) to least aggressive (the lower
bound) scenarios. Under a decision tree method, 1) the

operations performed for descending the tree are more

PONG AND TZENG: HARP: RAPID PACKET CLASSIFICATION VIA HASHING ROUND-DOWN PREFIXES 1117

Fig. 9. Throughput gain by HaRP� over its decision tree-based

counterpart, whose average search depth and mean number of

inspected rules are 6 and 87, respectively, under the FW1-30K rule

data set.

complex than hashing and linear search operations under
HaRP�, and 2) memory bandwidth efficiency degrades (as
discussed in Section 2.1), expecting to yield � times longer,
with 1 � � � 4. A decision tree method fetches the filter
rules via indirect indices, leading to a delay ratio of �, with
1 � � � 1:5. Aggressive HaRP performs 2m (� ¼ 10, if m is
5) hash probes in parallel, and fetches ! ¼ 4 prefix pairs (or
ASI entries) per memory access. Hence, the most aggressive
design corresponds to � ¼ 4; � ¼ 1:5; � ¼ 10, and ! ¼ 4,
reflecting upper bounds. On the other hand, the least
aggressive setting of � ¼ � ¼ � ¼ ! ¼ 1 gives lower
bounds. The shaded area in Fig. 9 displays the empirically
obtained distribution of the search path length under HaRP,
marking expected gains for HaRP with varying hardware
characteristics. In essence, the largest gain of HaRP� is
expected to come from parallelism and wide memory
support (enabling multiple hash probes and simultaneous
accesses to multiple prefix pairs and ASI entries). This
signifies the advantages of keeping simple and efficient
data structures, like the LuHa table and the ASI lists under
HaRP�.

7 CONCLUDING REMARKS

Packet classification is essential for most network system
functionality and services, but it is complex, since it
involves comparing multiple fields in a packet header
against entries in the filter data set to decide the proper rule
to apply for handling the packet [8]. This paper has
considered a rapid packet classification mechanism realized
by HaRP able to not only exhibit high scalability in terms of
both the classification time and the SRAM size involved, but
also effectively handle incremental updates to the filter data
sets. Based on a single set-associative LuHa hash table
(obtained by lumping a set of hash table units together) to
support two-staged search, HaRP promises to enjoy better
classification performance than its known software-oriented
counterpart, because the LuHa table narrows the search
scope effectively based on the source and the destination IP
addresses of an arrival packet during the first stage, leading
to fast search in the second stage. With its required SRAM
size lowered considerably, HaRP makes it possible to hold
entire search data structures in the local cache of each core
within a contemporary processor, further elevating its
classification performance.

The LuHa table admits each filter rule in a set (i.e., bucket)
with lightest occupancy among all those indexed by
hash(round-down sip) and hash(round-down dip), under
HaRP�. Utilizing the first � bits of an IP prefix with l bits (for
� � l; � 2 DPL) as the key to the hash function (instead of
using the original IP prefix), this way lowers substantially the
likelihood of set overflow, which occurs only when all
indexed sets are full, attaining high SRAM storage utilization.
It also leads to great scalability, even for small LuHa table set-
associativity (of 4) and a small table dilation factor (say, � ¼
1:0 or 1.2). Our evaluation results have shown that HaRP�

with the set associative degree of 4, generally experiences
very rare set overflow instances.

Empirical assessment of HaRP has been conducted on
an AMD 4-way server with the 2.8 GHz Opteron processor.
A simple hashing function was employed for our HaRP

implementation. Extensive measured results demonstrate

that HaRP� outperforms HC [16] to exhibit throughput of

1.7 to 3.6 times, on an average, under the six databases

examined, when its LuHa table is with � ¼ 1:0 and there

are five DPL treads. Besides its efficient support for

incremental rule updates, our proposed HaRP also enjoys

far better classification performance than previous soft-

ware-based techniques.
Note that theoretically pathological cases may occur

despite encouraging pragmatic results by � ¼ 1:0, as we have

witnessed in this study. For example, a large number of (hosts

on the same subnet with) prefixes Pjw can differ only in a few

bits. Hence, those prefixes can be hashed into the same set

after being rounded down, say from Pjw down to Pjli, for

li � w < liþ1, under HaRP�. There are possible ways to deal

with such cases and to avoid overwhelming the indexed set.

A possible way is to use one and only one entry to keep the

round-down prefix Pjli, as opposed to holding all Pjw’s in

individual entries under the current design. Subsequently,

the (w� li) round-down bits can form a secondary indexing

structure to provide the differentiation (among rules specific

to each host) and/or the round-down bits can be mingled

with the remaining fields of the filter rules. Thus, each stage

narrows the search range by small and manageable struc-

tures. These possible options are being explored.

ACKNOWLDGMENTS

An earlier version of this manuscript was presented at the

2009 USENIX Annual Technical Conference (USENIX ’09),

June 2009.

REFERENCES

[1] A. Broder and M. Mitzenmacher, “Using Multiple Hash Functions
to Improve IP Lookups,” Proc. 20th Ann. Joint Conf. IEEE Computer
and Comm. Soc. (INFOCOM ’01), pp. 1454-1463, Apr. 2001.

[2] F. Chang et al., “Efficient Packet Classification with Digest
Caches,” Proc. Third Workshop Network Processors and Applications
(NP-3), Feb. 2004.

[3] W.T. Chen, S.B. Shih, and J.L. Chiang, “A Two-Stage Packet
Classification Algorithm,” Proc. 17th Int’l Conf. Advanced Informa-
tion Networking and Applications (AINA ’03), pp. 762-767, Mar. 2003.

[4] Y.H. Cho and W.H. Magione-Smith, “Deep Packet Filter with
Dedicated Logic and Read Only Memories,” Proc. 12th IEEE Symp.
Field-Programmable Custom Computing Machines, pp. 125-134, Apr.
2004.

[5] H. Cheng et al., “Scalable Packet Classification Using Interpreting
a Cross-Platform Multi-Core Solution,” Proc. 13th ACM SIGPLAN
Symp. Principles and Practice of Parallel Programming (PPoPP ’08),
pp. 33-42, Feb. 2008.

[6] S. Dharmapurikar et al., “Fast Packet Classification Using Bloom
Filters,” Proc. IEEE/ACM Symp. Architectures for Networking and
Comm. Systems (ANCS ’06), pp. 61-70, Dec. 2006.

[7] Q. Dong et al., “Wire Speed Packet Classification without TCAMs:
A Few More Registers (and a Bit of Logic) Are Enough,” Proc.
ACM SIGMETRICS Int’l Conf. Measurement and Modeling of
Computer Systems (SIGMETRICS ’07), pp. 253-264, June 2007.

[8] P. Gupta and N. McKeown, “Packet Classification on Multiple
Fields,” Proc. ACM Ann. Conf. Special Interest Group on Data Comm.
(SIGCOMM ’99), pp. 147-160, Aug./Sept. 1999.

[9] P. Gupta and N. McKeown, “Classifying Packets with Hierarch-
ical Intelligent Cuttings,” IEEE Micro, vol. 20, no. 1, pp. 34-41,
Jan./Feb. 2000.

[10] A. Kennedy, X. Wang, and B. Liu, “Energy Efficient Packet
Classification Hardware Accelerator,” Proc. IEEE Int’l Symp.
Parallel and Distributed Processing (IPDPS ’08), pp. 1-8, Apr. 2008.

1118 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 22, NO. 7, JULY 2011

[11] T.V. Lakshman and D. Stiliadis, “High-Speed Policy-Based Packet
Forwarding Using Efficient Multi-Dimensional Range Matching,”
Proc. ACM SIGCOMM ’98, pp. 191-202, Aug./Sept. 1998.

[12] F.-Y. Lee and S. Shieh, “Packet Classification Using Diagonal-
Based Tuple Space Search,” Computer Networks, vol. 50, pp. 1406-
1423, 2006.

[13] J. van Lunteren and T. Engbersen, “Fast and Scalable Packet
Classification,” IEEE J. Selected Areas in Comm., vol. 21, no. 4,
pp. 560-571, May 2003.

[14] F. Pong and N.-F. Tzeng, “Hashing Round-Down Prefixes for
Rapid Packet Classification,” Proc. USENIX Ann. Technical Conf.
(USENIX ’09), June 2009.

[15] D. Shah and P. Gupta, “Fast Incremental Updates on Ternary-
CAMs for Routing Lookups and Packet Classification,” Proc.
Eighth Ann. IEEE Symp. High-Performance Interconnects (Hot
Interconnects ’08), pp. 145-153, Aug. 2000.

[16] S. Singh et al., “Packet Classification Using Multidimensional
Cutting,” Proc. ACM SIGCOMM ’03, pp. 213-114, Aug. 2003.

[17] H. Song and J.W. Lockwood, “Efficient Packet Classification for
Network Intrusion Detection Using FPGA,” Proc. ACM/SIGDA
13th Int’l Symp. Field Programmable Gate Arrays (FPGA ’05), pp. 238-
245, Feb. 2005.

[18] V. Srinivasan, S. Suri, and G. Varghese, “Packet Classification
Using Tuple Space Search,” Proc. ACM SIGCOMM ’99, pp. 135-
146, Aug./Sept. 1999.

[19] D.E. Taylor, “Survey and Taxonomy of Packet Classification
Techniques,” ACM Computing Surveys, vol. 37, no. 3, pp. 238-275,
Sept. 2005.

[20] D.E. Taylor and J.S. Turner, “ClassBench: A Packet Classification
Benchmark,” Proc. 24th IEEE INFOCOM ’05, Mar. 2005.

[21] G. Wang and N.-F. Tzeng, “TCAM-Based Forwarding engine with
Minimum Independent Prefix Set (MIPS) for Fast Updating,” Proc.
IEEE Int’l Conf. Comm. (ICC ’06), June 2006.

[22] P. Warkhede, S. Suri, and G. Varghese, “Fast Packet Classification
for Two-Dimensional Conflict-Free Filters,” Proc. 20th IEEE
INFOCOM ’01, pp. 1434-1443, Apr. 2001.

[23] Washington Univ., “Evaluation of Packet Classification Algo-
rithms,” http://www.arl.wustl.edu/~hs1/PClassEval.html. Feb.
2007.

[24] Z. Wu, M. Xie, and H. Wang, “Swift: A Fast Dynamic Packet
Filter,” Proc. Fifth USENIX Symp. Networked Systems Design and
Implementation (NSDI ’08), pp. 279-292, Apr. 2008.

[25] L. Xu et al., “Packet Classification Algorithms: From Theory to
Practice,” Proc. 28th IEEE INFOCOM ’09, Apr. 2009.

Fong Pong (M’92-SM’10) received the MS and
PhD degrees in computer engineering from the
University of Southern California, in 1991 and
1995, respectively. He is currently with Broad-
com Corporation, where he has developed the
award-winning BCM1280/BCM1480 multicore
SoCs used in many products, and a GPON
device that streams multimedia data at gigabit
speed. Before Broadcom, he was with several
start-ups, HP Labs, and Sun Microsystems,

where he developed blade servers, network and storage protocols
offload products, and multiprocessor systems. He has received 36
patents and has served the US National Science Foundation (NSF), the
IETF RDMA Consortium, and program committees for several confer-
ences. His research interests include network processor designs and
development of algorithmic solutions for packet classification, filtering,
and QoS. He is a senior member of the IEEE.

Nian-Feng Tzeng (M’86-SM’92-F’10) has been
with the Center for Advanced Computer Studies,
the University of Louisiana at Lafayette, since
1987. He was on the editorial boards of the IEEE
Transactions on Computers and the IEEE
Transactions on Parallel and Distributed Sys-
tems, from 1994 to 1998, and from 1998 to
2001, respectively, and also was the chair of the
Technical Committee on Distributed Processing
of the IEEE Computer Society, from 1999 till

2002. His current research interests include computer communications
and networks, high-performance computer systems, and parallel and
distributed processing. He is the recipient of the Outstanding Paper
Award of the 10th International Conference on Distributed Computing
Systems, May 1990, and also the University Foundation Distinguished
Professor Award in 1997. He is a fellow of the IEEE and the IEEE
Computer Society.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

PONG AND TZENG: HARP: RAPID PACKET CLASSIFICATION VIA HASHING ROUND-DOWN PREFIXES 1119

