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Traffic Analysis and Simulation Performance
of Incomplete Hypercubes

Nian-Feng Tzeng, Senior Member, IEEE, and Harish Kumar

Abstract—The incomplete hypercube with arbitrary nodes provides far better incremental flexibility than the complete hypercube,
whose size is restricted to exactly a power of 2. After faults arise in a complete hypercube system, it is desirable to reconfigure the
system so0 as to retain as many healthy nodes as possible, often leading to an incomplete hypercube of arbitrary size. In this paper,
the highest traffic density over links in an incomplete hypercube under uniform message distribution is shown to be bounded by 2
(messages per link per cycle), independent of its size and despite its structural nonhomogeneity. As a result, it is easily achievable
to construct an incomplete hypercube with sufficient link communication capability where any potential points of congestion are
avoided, ensuring high performance. Simulation results for the incomplete hypercube reveal that mean latency for delivering
messages is roughly the same in an incomplete hypercube as in a compatible complete hypercube under both packet-switching and
wormhole routing. The incomplete hypercube thus appears to be an attractive and practical architecture, since it shares every
advantage of complete hypercubes while eliminating the restriction on the system size.

Index Terms—Incomplete hypercubes, mean latency, message routing, simulation, traffic density.

1 INTRODUCTION

OR a large multiprocessor system, the interconnection

architecture used to connect processors together criti-
cally dictates system performance. While various intercon-
nection schemes have been proposed [1], [2], the binary
hypercube is a powerful interconnection topology due to its
many attractive features [7] and good support of numerous
parallel algorithms [3]. Parallel machines based on this to-
pology have been built and are commercially available [3],
[4], [5], [6], [11]

It is desirable that an interconnection scheme allow any
sized construction, offering maximum incremental flexibility.
The hypercube topology, however, can interconnect exactly 2"
nodes only (n is a positive integer), severely restricting allow-
able system sizes. A flexible version of the hypercube topol-
ogy, called the incomplete hypercube [8], eliminates the restric-
tion on the node number and thus makes it possible to con-
struct parallel machines with arbitrary sizes. In a large hyper-
cube system, operational faults happen with a nonnegligible
probability, and it is commonly advisable to reconfigure the
system in response to operational faults such that after recon-
figuration, the system retains as many workable nodes as pos-
sible. If only complete hypercubes are allowed, then a recon-
figured system loses a considerable amount of nodes even in
the presence of a single fault, simply due to the strong restric-
tion on the system size that results in many healthy node being
unnecessarily discarded. On the other hand, if incomplete hy-
percubes are considered acceptable, then after a fault arises in
a complete hypercube, a reconfigured system reduces its size
by just one, giving rise to a larger system. It should be noted
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that although programming on a hypercube often has the cube
topology assumed, a reconfigured incomplete hypercube has a
performance edge over a reconfigured complete hypercube,
because the former always involves a copy of the latter plus
some smaller sized cube(s) and thus may execute multiple jobs
of different sizes simultaneously.

Simple and deadlock-free algorithms for routing and
broadcasting messages in the incomplete hypercube have
been developed by Katseff [8]. The structural properties of
a class of incomplete hypercube systems have been studied
recently [9]. The system under that study was limited to a
size of 2"+ 2%, 0 <k < 7, i.e., an incomplete hypercube com-
posed of two complete cubes. It was shown [9] that the
highest traffic density in such an incomplete hypercube is
no more than 2 (messages per link per cycle). Efficient
broadcasting based on edge-disjoint spanning trees in that
type of incomplete hypercubes is presented and analyzed
by Tien, Ho, and Yang [13]. Tree embedding in such an in-
complete hypercube is pursued in [16].

Unlike a complete hypercube, the incomplete hypercube
under consideration is asymmetric in nature, because cube
nodes no longer have the same degree and they play differ-
ent roles. It is recognized that in general, an asymmetric
structure, such as the tree, star, and any other irregular to-
pology, tends to have one or several excessively loaded links
or nodes that may become vulnerable points with respect to
performance and reliability. We are interested in finding out
whether or not there is any vulnerable point present in the
incomplete hypercube. If the incomplete hypercube exhibits
no point of vulnerability, it not only manifests itself as an
interesting and important topology, but also potentially
makes the complete hypercube more useful after operational
faults occur by retaining more healthy nodes.

In this paper, we analyze traffic density over links in an
incomplete hypercube with arbitrary nodes under the uni-
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form message distribution to get a better insight into this
flexible architecture. Interestingly, link traffic density in any
sized incomplete hypercube is found to be bounded by 2,
regardless of its structural nonhomogeneity. Therefore,
cube links can easily be designed to prevent a traffic bottle-
neck from arising. This suggests that the incomplete hyper-
cube has a clear advantage over other nonhomogeneous
topologies, such as trees and stars, where points of conges-
tion are likely to exist and serious performance degradation
possibly results, because the highest traffic density in such
a topology is proportional to its size (as shown in [1]).
Simulation studies have been carried out to evaluate in-
complete hypercube performance under packet-switching
and wormhole routing when the queueing delay is taken
into account, with mean latency and throughput chosen as
the performance measures. Mean latency for sending a
message from one node to another arbitrary node in in-
complete hypercubes has been obtained and compared
with that in the complete counterparts. Simulation behav-
iors under nonuniform message distributions are also ex-
amined and discussed.

This paper is organized as follows. Section 2 introduces
necessary nomenclature and background to facilitate the sub-
sequent presentation. A brief review of the routing algorithm
proposed for incomplete hypercubes [8] is also given. Section
3 analyzes the incomplete hypercube to get its basic charac-
teristics and Section 4 derives the upper bound of link traffic
density. Simulation results are presented in Section 5.

2 NOTATIONS AND BACKGROUND

An n-dimensional complete hypercube, denoted by H,, com-
prises 2" nodes, each with 1 links connected directly to n
nearest neighbors. Nodes in H, are numbered from 0 to
2" 1, by #-bit binary numbers (x,_, .- x; -+ x,) as their ad-
dresses. A node and a nearest neighbor have exactly one bit

n-1"

differing in their addresses. A d-dimensional subcube in H,
contains exactly d don’t care bits (denoted by *’s) in its binary
address representation. For instance, like ©+"'y and (15",
=0+ yand (+'1+""'") are example (n — 1)-dimensional sub-

. ! .
cubes in H,, where X' represents [ consecutive x.

The incomplete hypercube under consideration com-
prises multiple complete cubes of distinct dimensions.
Fig. 1 shows an incomplete hypercube comprising three
complete cubes H,, H;, and H;. Each node address involves
5 bits and the three constituent cubes are addressed by
(0 ), (l()>l<3 ), and (1100%), respectively. A link exists be-
tween a node A in H; and another node B in Hy U Hy, if the
addresses of A and B differ in bit 4. Similarly, a link is pres-
ent between a node in H; and another node in Hy, if the two
node addresses differ in bit 3. This incomplete hypercube is
denoted by 152(’, where 5 and 26 are the system dimension

and the total number of nodes in the system, respectively.
In general, an n-dimensional incomplete hypercube with

M nodes, 1,/1"’, 2" < M < 2", can be defined recursively as

follows: 1,:” consists of two components, H, ; and / ,f” -2
(k =Tlog, (M - 2")]), with nodes in H,_, numbered from 0 to
2" ~ 1 and nodes in I,fHM

link exists between a node A in H,_; and another node B in
I = , if and only if the addresses of A and B differ in bit
n - L I,iw is

M
Vn =< 1’ Xpnr Xyozr

numbered from 2" to M — 1 ca

characterized by a bit vector

“, X;, 00+, Xp, X > such that x; equals

1 (or 0) if H; is present (or absent) in I,:” . Clearly,

2y X, 2;:02 2' = M and the bit vector is the binary repre-

sentation of M. The incomplete hypercube given in Fig. 1, for
example, is characterized by bit vector V526 =<11010>.
Note that an incomplete hypercube reconfigured from a
complete hypercube does not necessarily contain all the
healthy nodes, and it often requires renumbering the con-
stituent nodes. A method provided in [10] can be used for
this renumbering.

The link between two neighboring nodes A and B is de-
noted as A}. A message traveling from one node to a near-
est neighbor is called a traversal. Let D(A, B) represent the
number of differing bits between the node A address and
the node B address, i.e., their Hamming distance. It is ap-
parent that the number of traversals required from node A
to node B is D(A, B). The relative address of two nodes is the
bitwise Exclusive-OR of their addresses. A link is said to
have link number i if it connects two nodes whose addresses
differ only in the ith bit position, denoted by Al,. The link
between nodes (1101) and (0101), for example, is referred to
as link 3, namely, 4|,.

An important property of a topology is traffic density
over links (denoted by TD), which indicates the average
number of messages traversing a link during one unit time
(i.e., cycle) and reflects link utilization. A topology with low
traffic density is preferable because it would avoid any po-
tential communication bottleneck and reduce process-
ing/queueing delay when messages visit a node. TD is de-
pendent upon the message distribution, which describes
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Fig. 1. An incomplete hypercube with 26 nodes, 152(". 'Y, is shown bold.
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the probability of message exchanges among nodes. In our
analytic study, a uniform message distribution is assumed,
ie., the average rate at which node A sends messages to
node B is the same for all nodes A and B, where A # B. TD
in the incomplete hypercube under a uniform message dis-
tribution will be analyzed subsequently.

Routing Algorithm for incomplete Hypercubes

The routing algorithm for incomplete hypercubes by Kat-
seff [8] is similar to e-cube routing and always finds short-
est paths for messages.

ALGORITHM R. (send or forward a message from node src to node
dest with tag < src @ dest in an incomplete hypercube).
if (tag = 0)
{ send message to local processor. }
else
{ starting with the least significant bit of tag:
let i be the bit number of the first 1 in tag and link 7 exists.
send the message over link i and set bit i in fag to zero. }

A message carries with it a routing tag and is sent
through link i only if bit 7 is the least significant nonzero bit
in the tag and link i exists. Algorithm R checks the routing
tag leftwards, starting from the least significant bit.

3 CHARACTERISTICS OF THE INCOMPLETE
HYPERCUBE
As opposed to those in a complete hypercube, nodes in an

incomplete hypercube no longer play an identical role. For
example, nodes in subcubes (00%*) and (0100%) inside con-

stituent cube H, of 1526 shown in Fig. 1 have five links each

(while the other nodes inside H, have four links each) and
are connected to corresponding nodes in subcubes (10***)
and (1100%), respectively. The nodes in subcubes (00**%),
(0100%), and (1000%) are particular (for having more links
than other nodes in their respective constituent cubes) and
are referred to as pivot nodes. A set of pivot nodes is gener-

ally defined as follows: for constituent cubes H; and H;, i > j,
of [/’:4, the pivot nodes associated with the two cubes involve
the collection of nodes P;; = {node x | node x in H; and node

x has a direct link connected to a node in H, it
From our construction of incomplete hypercubes, it is

clear that the direct link between a node in P;; and another
node in H;is 4];. In Fig. 1, for example, P, 5 is the subcube
(00**), and the direct link connecting a node in P,; and
another node in Hj is A|,; whereas P;; is (1000%), and the

direct link between a node in P5; and a node in Hy is 1|;.

LEMMA 1. Suppose H;, H;, and H, are among the constituent
cubes of IM, with i > j, k. The two sets of pivot nodes asso-
ciated respectively with H; and H; and with H; and Hy, P;;
and Py, satisfy P;; 0 Py = (0.

This lemma is obvious since the links connecting a node

in P;; to a node in H;, and the links connecting a node in P;,

to a node in H; are both of type 1 |;, and each node in H; has

exactly one link A|,. Considering Fig. 1, for example, we
have P,; = (00"*) and P,; = (0100*), which have no com-
mon node.

Based on the recursive definition of incomplete hyper-
cubes and the above result, we arrive at an abstract struc-
ture for [ as depicted in Fig. 2, where arrows indicate

links between constituent cubes, with the link type and the
number of present links given next to the arrow. The next
observation results from the abstract structure immediately.

Hy
. i
- M
>
M/
Hj A 2K
My
-t - L R /
2 7 [BEEN——
M
. 3 I
LN ? .
Y:

Fig. 2. An abstract structure of an incomplete hypercube 11’,\4.

OBSERVATION 1. A node in the constituent cube H; of I,fw has
the following links present: 1) 2|, for all x <7, 2) 1],

for any y > i such that the yth bit in the bit vector V,,,M
is “1,” and 3) A |, only if the node belongs to any pivot

set Py .

In Fig. 1, for instance, a node in Hs has 1) 4]y, 4|, and

Al,, which form the connections inside Hs, 2) 1|,, which
connects to the “higher” constituent cube (i.e., a higher di-
mensional cube) Hy, and 3) A | only if the node is in P, ;.
Generally speaking, a node in H; is connected to a node in a
“higher” constituent cube Hj, by A|,, whereas it is con-
nected to a node, if any, in a “lower” constituent cube by
A|;. Consider two pivot sets P;; and Py in constituent cube
H;, 1> j>k. It can also be observed that every node in P, | is

connected to a corresponding node in P;; by using link 4 | I

As an example, nodes in P, ; are connected to correspond-
ing nodes in P, 5 through link A|,’s inside Hy of Fig. 1. Let
(< i) be the set of all constituent cubes H;, j < i, together
with all the intercube links among these cubes inside 7.

Note that ®(< i) itself forms an incomplete hypercube. The
following lemma describes an interesting configuration
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property of the incomplete hypercube. This property is use-
ful for later traffic density derivation.

LEMMA 2. Let , be the collection of all pivot nodes associated with
H;, for all j < i, plus all the connections among these nodes
inside constituent cube H,, then ®(< i) is isomorphic to .

This lemma can be proved according to the facts that 1)
every constituent cube H,, j < i, is associated with a set of 2
pivot nodes, P;j, in H;, and 2) the connections between any
two constituent cubes H; and H (for all j, k <) are the same
as those between pivot node sets P;; and P;;. The implica-
tion of Lemma 2 is that the structure of ®(< i) is reflected by
y, inside H;. In Fig. 1, for example, ®(< 4) has the same
structure as ¥, inside Hy, illustrated by bold lines.

We next develop a partitioning concept which helps to
illustrate the behavior of message traversals. Let
Yu-rYu-2 = N1y be a bit string and O,.(y, ¥, =+ ¥)Yp» /) be
the position of the wth nonzero bit after (i.e., right of) posi-

tion j in the bit string. For example, O;(11010, 3) = 1,
0,(11101, 4) = 3, and O,(11101, 4) = 2. Consider a collection

Q; of subcubes in constituent cube H; of 1//1\4 with bit vector

S yqs gy s Biaqy By iy Bigy ooy By by >0
Q ={(a, 44, 5 - a;,,02,_%;_, - X, 0% >:="”])|
i n-1"n-2 i+1 i-171-2 m+2" m+1
m = O(a, a4, = G4, - ady, i),and
XXy tt* X,,0X,,,; denotes any possible bit string}.

Every element in €; is an (m + 1)-dimensional subcube and
each node in H; belongs to one and only one element
(subcube). One may view €); as a result of partitioning H;

i—m—1
sub-

into identically sized subcubes, with a total of 2
cubes. As an example, Q; of 1526 shown in Fig. 1 is {(100%¥),
(101**)}, as m equals 1 in this case. Let 7.” be an element in
Q, namely (a,_a,_, - a,,,0x, x5, , - x, . *""), such that
the value of x,_x, , --- x,,,, is p. Then, we have the follow-
ing lemma, whose proof can be found in the appendix.

m+l

LEMMA 3. All the pivot nodes in any constituent cube H; of T

lie in the single subcube Tio.

An abstract structure of the partitioned H; is illustrated
in Fig. 3, where all 4 |,. ’s (for connecting nodes in Hj, i > j)
terminate at 7;’. Every constituent cube of an incomplete
hypercube can be partitioned accordingly, with one parti-

tion involving all the pivot nodes in the hypercube. Notice
that, due to the recursive nature of an incomplete hyper-

cube, the way of partitioning nodes in H; highlighted above

can be applied to further partition nodes inside 1}” into

m'+1

subcubes each with the size of 2" 7, where

m' = 0,(a, \a, ;- Q. 00, - 4dy, i),
when 1’/7&4 with bit vector

Uy s Gy ooy Uiy Qi Gy oy Gy, Gy >

743

is concerned. The partition in 7" which involves P;; and
P, for all k < j, is denoted by 11/™, as depicted in Fig. 3.

The partitioning concept helps to understand the behavior
of message traversals.

H;
T! '
L[
11' }1)] IIk+1
;i B
Alj
Y
L
Al M;
¥
¥
Al
j N
H g

Fig. 3. The abstract structure of H, showing T,.() and its recursive parti-

tioning into H?' 5.

Let a message coming from a node in constituent cube H, ;
be denoted by u|_, . Messages in the incomplete hyper-

cube are routed by Algorithm R given in Section 2. The
following lemmas are helpful for the derivation carried out
in the next section. It should be noted that a set of similar
lemmas can be derived if messages are routed by another
deadlock-free algorithm different from Algorithm R.

LEMMA 4. Consider any two constituent cubes H;and H;, i > j, of
l',‘:/’. A message ,u]FH/ may enter any partition in H; at
most once, where a partition refers to an element in collec-
tion Q.

A proof of this lemma is straightforward and thus omit-
ted. Tt is clear that a given message may or may not visit
partitions in a constituent cube. If the message visits a par-
tition, according to this lemma, it never reenters the parti-
tion after leaving the partition.
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The next lemma results directly from the fact that the
structure of ®(< i) also exists in constituent cube H; and
thus a message will traverse links in H, if needed, to
“correct” nonzero tag bits with positions lower than i before
taking a link 4|, (which is the link for connecting H; and
d(< i), see Observation 1). In other words, if a message is
destined for a node in ®(< 1), it reaches ®(< 1) directly via its
destination node; it never passes through any other node in
P(< i), as described below. This result enables us to pre-
clude certain messages from contributing traffic over a
given link in our later traffic density derivation.

LEMMA 5. A message L, ., destined for a node in (< 1) never

traverses any link in ®(< 7).
If tag bit j of a message u|_ , k <j, is nonzero and H; is

present, then the message must visit H, regardless of
whether the message is destined for a node in H; or not.
This is because 1) every node in ®(< j) is connected to a
corresponding node in H; through a link 4|, and no link
/1|/. exists inside ®(< j) (from Observation 1), and 2) the

message is routed, according to Algorithm R, in a way that
the nonzero tag bit j is corrected before nonzero tag bits p,
p > j, if any. This fact is provided in the next lemma, which
helps determine the messages that contribute traffic over a
given link in our traffic density derivation.

LEMMA 6. Any message ,LLLHA with nonzero tag bit j, j > k, must
visit Hy, provided that H; exists.

Suppose ®(> i) is the set of all constituent cubes H, j = i,
together with all the intercube links among these cubes in-
side 7). Let a message issued at node X in ®(< i) and des-
tined for node X’ in ®(> i) be denoted by u* 7%, X e d(< i)

X=X .
~% Itis clear

from the above lemma that this message will leave ®(< i)
only when there exists no nonzero tag bit g for which a cor-

and X’ e ® (2 7). Now consider a message u

responding cube H, exists in @(< 7) . This conclusion may be
formally stated as follows.

LEMMA 7. Given H, is present in ®(< i), a message ,uXﬁXl,
X e ®(<i)and X'e O(= i), leaves ®(< i) via a node A in-
side Hj, j < q <1, if and only if there exists no nonzero bit q
in the tag upon its exit from A.

The isomorphism between W¥; and ®(< i), as shown in
Lemma 2, along with the above lemma leads us to the next
lemma (which is similar in form to Lemma 5).

LEMMA 8. A message ,uXHX’, Xe O(<i)yand X' € O(=1), never
traverses any link in \V,.

Suppose H,, is the constituent cube immediately below
H;, then, a proof of this lemma follows from the fact that a
message issued at a constituent cube lower than H,, before
entering H,, , must correct all its nonzero tag bits with posi-
tions either lower than m + 1, if a constituent cube below H,,
exists; or lower than m, otherwise. After arriving at H,, the
message traverses no link which has a corresponding link
present in (< i), and thus no link in ¥,

4 DERIVING THE HIGHEST TRAFFIC DENSITY

Traffic density over links in I/ is not fixed and is location-
dependent. The highest traffic density is of our major con-
cern, since it tends to dictate the longest time taken to trav-
erse a link, and thus the worst message transmission sce-
nario. We derive the highest traffic density, TD,, in I by
evaluating traffic density over an arbitrary link A}, (which
connects nodes A and B), denoted by Py and determining

the maximum possible P The subsequent derivation as-
b

sumes that messages are routed by Algorithm R, following
packet switching for communication. A packet consists of
one message and can be transmitted to a neighboring node
during one cycle, if no congestion arises. Note that any
other deadlock-free routing algorithm would result in the
same traffic density bound.

Under the uniform message distribution, a node X in 7/

issues, on an average, one message to each node other than
X over a period of M — 1 cycles, provided that a node gen-

erates one message per cycle. In order to evaluate TD,,
every node is assumed to issue one message per cycle, un-
der which we consider how many messages go through a

given link over a period of M - 1 cycles. Let Z(Adr, /I’;)
denote the set of all messages with tag (when issued) being
Adr which travel through link A}, over a period of M - 1
cycles. It is clear that only messages in Z(Adr, A}) can pos-
sibly contribute to the traffic density of link A}. Let
|E(Adr, /l/;)l be the number of elements (ie., messages)
in the set. We are interested in the average of ’E(Adr, )f;)f,
and without confusion, |E(Adr, l/é)| refers to average

}E(Adr, /l’;)|. Traffic density over 1}, is then expressed by
P = 2 [EAdr, 2D/ (M -1, M
C o Adr

since it gives the mean number of messages traversing the
link per cycle.
We want to determine the maximum value of P As
B

noted earlier, the incomplete hypercube is an asymmetric
=(Adr, l/;)| is not constant for a link l’;. There

structure, so

are two kinds of links in /: intercube links and intracube
links. All links are bidirectional and full duplex, i.e., two
messages can be transmitted simultaneously in the opposite
directions of any link. The intercube links are called type a
links. We further classify intracube links in a constituent

cube H; into three types and examine |[E(Adr, ﬂf;) for dif-

ferent types of intracube link /1/2f separately.
b) /16;; , each of which connects two pivot nodes;

c) f,\i;’ » each of which connects a node in P;; to a non-
pivot node, NP; and

d) l’;\l,l;,, each of which connects two nonpivot nodes NP
and NP’
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In order to facilitate our subsequent derivation, we clas-
sify the messages which can possibly traverse intracube

link A € H, into the following classes, for any constituent
cube H;.

0) u“7° forC,De H;

) u’”", forYe Hoand Y € O(< i);

2) ,uz_)z/, forZ e H;and Z’' € ®(> i); and
3) 17 for X e ®d(<i)and X € O 1),

where ®(< i) is defined earlier, and ®(> i) is the collection of
all constituent cubes H,, h > i, together with the intercube
links among them inside /. Notice that messages of
classes u“ 7%, and u"~", (where U e ®(> i), U € ®(< 1))
are not considered because according to Lemma 5, none of
them could possibly traverse any intracube link.

In an incomplete hypercube, the normal order of trav-
ersing links by a given message may be violated due to the
absence of a required link, resulting in the traversal of a
higher order intercube link first. Specifically, messages of
classes 0, 1, and 2 would never violate the normal order of
traversing intracube links inside H; (because intracube links
with numbers less than i are all present), but messages of
class 3 could. In the following, we provide an important
result which precludes the possibility of having, on an av-
erage, more than one message of class 3 which traverses an
intracube link A|, over a period of M — 1 cycles, for a given
tag. Let Z,(Adr, 1|, € H,) be the set of all the possible class 3
messages which have a given initial tag value Adr, and
which traverse an intracube link 4|, in H; along a given
direction.

LEMMA 9. Over a period of M — 1 cycles, the mean number of
messages in Z,(Adr, A|, € H,) is no more than one.

A proof of this lemma is given in the appendix. Using
the lemma, we now estimate upper bounds on the value
=(Adr, 1’23). for the three types of intracube links. From
Lemma 8, it is known that no message of class
7% X e d(< i), and X" € ®(> i), traverses a link of type

f;;, in H,. This leads to the following theorem, which char-

acterizes the traffic bound on any link f;; over (M - 1)

cycles.

THEOREM 1. The maximum value of |E(Adr, A%y )| for any link

li,‘i in a constituent cube H; over any period of M ~ 1 cy-
cles is 2.

PROOF. The only messages that can traverse lee\z, are of
classes 0, 1, and 2. None of these messages involve
any violation of the normal order of traversing links
within H,, and the messages inside H; behave in the
same way as in a complete hypercube. Therefore, for
each tag, the average number of messages traversing
a given link over a period of M -1 cycles is no more
than 2, one traveling in each direction. O
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LEMMA 10. For any given tag, the average number of class 3
messages traversing a link of type /IEN[”’ over a period of
M -1 cycles is no more than 1.

LEMMaA 11. For any given tag, the average number of class 3 mes-
sages traversing a link of type AIX][; over a period of M — 1
cycles is no more than 1.

Proofs of the above two lemmas are provided in the ap-
pendix. These two lemmas imply that for a given tag, there
can be at most one more message of class 3 traversing any
given link, in addition to the two messages (of classes 0, 1,
or 2) which are originated inside H; with tag Adr and travel
over the link in two opposite directions. The next two theo-
rems thus follow.

THEOREM 2. The maximum value of |=(Adr, /lep’“") or any link
NP Y

epP . . . .
Ay i a constituent cube H; is 3.

THEOREM 3. The maximum value of |E(Adr, /l';/\,';,)| for any link

NP . . .
Anp ina constituent cube H; 1s 3.

We have proved from the above results that, for a given
tag Adr in ", the mean number of messages which trav-
erse a particular intracube link over a period of M~ 1 cycles
is bounded by 3. For intercube links, a similar result is de-
rived below.

From the abstract structure of 7 shown in Fig. 2, we ob-
serve that the messages which traverse an intercube link X,
with A € Hyand B € @ (2 g) for g > j, can be grouped into
three classes:

1) p*7%, X e ®(2g)and X' € ®(<));

2) 177, Ye ®(<j)and Y'e O(=g);.

3) u?7%, Ze d(<q,>j)and Z' € ®(>¢),

where ®(< 4, > j) is the collection of all constituent cubes H,

g > h > J, together with the intercube links among them inside

1111\4. Notice that messages of class ‘uuﬁu’/ Ue d(<g,>j)and

U e ®(<j), are not considered because they never traverse

. A

link A%.

LEMMA 12. Given a tag, the mean number of class 2 messages
traversing an intercube link l’;‘; with A e Hyand Be ®

(= 9), for q > ], over a period of M — 1 cycles is no more
than 2.

PROOF. See the appendix. O

As a result of the above lemma, we have a bound on
|E(Adr, /l/:g)‘ below, where )V; is an intercube link. A proof
of Theorem 4 can be found in the appendix.

THEOREM 4. The maximum value of [Z(Adr, Xy)| for an inter-
cube link 2/2 is less than or equal to 3.

Finally, we arrive at the upper bound on the traffic den-
sity of any link in 1M, whose proof is given in the appendix.
The existence of a constant traffic density upper bound
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suggests that cube links may be designed easily to avoid
any traffic bottleneck, making 1" superior to other nonho-
mogeneous topologies, such as trees and stars.

THEOREM 5. Traffic density on any link in an incomplete hyper-
cube Il’,w is bounded by 2, for all n > 2.

5 EXPERIMENTAL PERFORMANCE

5.1 Simulation Model

Simulation studies have been performed to evaluate and
compare the communication behaviors of complete and
incomplete hypercubes. Every node in a simulated system
consists of a processing element (PE) and a hardware
router. For each node, one of those router links is connected
to the PE, and the remaining links are to its immediate
neighboring nodes. Messages generated at the PE are sent
over the specific link to the router, from which they are de-
livered through appropriate links determined by routing
Algorithm R (provided in Section 2) to neighboring nodes.
Likewise, messages destined for the node, once they arrive
at the router, are forwarded over this link to the PE. All
links are bidirectional and full duplex.

Simulated systems operate in the packet-switched mode
or under wormhole routing. In the packet-switched mode, a
separate buffer is associated with each link. The message at
the head of a buffer is transmitted in one cycle to the node
connected at the other end of the link and, then, directed to
an appropriate buffer chosen following the routing proce-
dure. If multiple messages compete for a link in one cycle,
they are all stored in the associated buffer, with the mes-
sage at the buffer head proceeding over the link in that cy-
cle and the rest being forwarded in sequence during subse-
quent cycles. Under wormhole routing, a message is broken
into one or more fixed units (called “flits”) for transmission,
and a flit transfer between two connected nodes is assumed
to take one cycle. A physical channel in the system is com-
posed of one or several virtual channels, which share the
bandwidth of the physical channel. Each virtual channel is
allocated on a message-by-message basis, independent of
other virtual channel allocation. The virtual channel as-
signed to a message is released only after all flits compris-
ing the message are transmitted. Each virtual channel has a
buffer to hold one flit.

In our simulation, messages are generated independ-
ently by all the nodes, with their destinations governed by
message distributions. A node generates a message with
probability # in a cycle, called the message generation rate.
The system operates in a synchronous manner, and mes-
sages are issued by nodes at the beginning of each cycle.
The message service discipline is first-come-first-served,
and in one cycle, the head message in a buffer (or the flit
receiving a physical channel under wormhole routing), ad-
vances to the connected neighboring node, whenever pos-
sible. A node may send or forward messages simultane-
ously over all incident links. A PE can receive one message
directed to it from the router in a cycle; if multiple mes-
sages bound for the same PE arrive in one cycle, a random
one is selected to advance to the PE and the rest stay in
their original buffers (because there is only one link be-

tween a local PE and a router), referred to as the single-
accepting strategy in [12].

The measures of interest in this experimental study are
mean latency and throughput. In packet-switching, mean
latency (L) is the number of cycles spent by a typical mes-
sage from its source to its destination, taking the queueing
delay into consideration. Under wormhole routing, L is the
time from message creation until the first flit of the message
is accepted at the destination. In either case, the source
queueing time is included in L. Throughput (T) is the prob-
ability of a node receiving a message (or flit) during a cycle;
it indicates accepted traffic, or equivalently, the load. When
a link experiences heavier traffic under packet-switching,
its associated buffers at both ends involve more messages
on the average, so that a message traveling through that
link tends to encounter higher latency. Similarly, under
wormhole routing, a link with heavy traffic tends to result
in high blockage, making a message traversing the link in-
cur large latency. For a given system, mean latency gener-
ally grows with the increase of T. When T is low, latency is
contributed mainly by the number of hops a typical mes-
sage makes, because little queuing delay (due to contention
or blockage) is involved. As T increases, a longer queueing
delay results, leading to higher latency.

It is assumed that, in the packet-switching mode, the
buffer associated with a link has the capacity of holding
three messages; whereas under wormhole routing, a physi-
cal channel is composed of three virtual channels. The
simulation study under uniform traffic was carried out first
to investigate the situations where the nature of tasks to be
executed is unknown, and no assumption is made about
the type of computation producing the messages. This
study also enables us to verify our earlier analysis. Since
many computations involve certain type of communication
locality practically, simulation was then conducted to pur-
sue system performance under nonuniform traffic, and the
results are provided in a separate subsection. The simula-
tion results are averaged over eight independent runs, with
an approximate 95% confidence interval for each point
shown in the figures equal to the point value £3%.

5.2 Numerical Results under Uniform Traffic

Fig. 4 depicts mean latency (L) vs. throughput (T) for three
incomplete hypercubes of sizes 1048, 1114, and 1818, re-
spectively, under uniform traffic with packet-switching.
The three system sizes are chosen for illustration, because
1048 is slightly more than 2" and 1818 is close to 211, with
1114 in between. (Many other sizes were simulated and
their results followed similar trends.) When the system size
is 1024, L starts with 5 and gradually increases as T grows
due to increasing contention. For the system with 1048
nodes (composed of Hyy, Hy, and H;), L grows slowly until
T reaches 0.6, and starts to change quickly thereafter. Com-

pared with the complete hypercube of Ho, /™ has virtu-

ally the same L value for any T < 0.68, implying that no se-
rious contention exists in the system with low to moder-
ately high traffic. Similarly, for the system with 1114 nodes

(composed of Hyg, He, Hy, Hs, and H), L stays pretty close to
that of Hyy until T approaches 0.68, and begins to increase
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rapidly thereafter. The system can deliver good perform-
ance unless the load is high (say, > 0.7).

L
)

1048
—_
Ill

1114
Ill

20 -
-

1818
111

0 I I I I = T
0.0 02 04 0.6 0.8

Fig. 4. Mean latency (L) vs. Throughput (7) under uniform traffic with
packet-switching. (Hyo and Hy4 results are shown, respectively, by the
dotted and the dashed curves.)

For the system with 1818 nodes (comprising Hyg, Ho, Hg, Hy,
Hs, and H,), its L is always slightly larger than L of Hy, and
approaches L of Hy;, because its size is close to that of Hy;. This
incomplete hypercube is expected to deliver performance as
good as Hj;, the compatible complete hypercube.

It is known that L comprises two components: 1) the
mean number of hops between the source and the destina-
tion of a typical message, and 2) the queuing delay due to
contention. Under a given traffic pattern, component 1) is

determined only by the system size and is independent of T

(the system load). Component 1) values for Hyg, 1]]?48, 111]”4,

¥, and Hy; are 5.00, 5.05, 5.14, 547, and 5.50, respec-
tively. From the curves of Fig. 4, component 2) for each
system under different T can be obtained immediately.

Simulated peak traffic density data was also gathered;

values were 1.00, 1.62, 1.64, 1.06, and 1.00 for Hyj, 111?48, [1]1] 14

I ,'Im, and H;, respectively, all bounded by 2, as predicted.

Since the degree of contention in a system can be indexed
by traffic density, it is interesting to find out the percentage
of links with high traffic density. To this end, we collected
the traffic density distribution of links in every simulated

system. It turns out that for 1:?48, less than 0.6% of the links
carry traffic density greater than 1.0 under any traffic load

(T). Similarly, for I,I 1”4(01‘ I]'lm) under any T, less than 2.1%
(0.2%) of its links have traffic density beyond 1.0. In gen-
eral, only a small fraction of links in an incomplete system
carry very high traffic density.

The simulation results of the same set of systems under
wormbhole routing are demonstrated in Fig. 5, where a mes-
sage is assumed to contains 20 flits. Again, incomplete hy-
percubes are shown to perform quite closely to their com-
plete counterparts for any T. The queuing delay due to

blockage for each system can be obtained directly from a
curve in the figure, because the mean number of hops be-
tween source and destination is fixed, irrespective of T. At a
low T, latency is contributed chiefly by the mean number of
hops, and when T grows, latency increases as a result of
larger blockage. Compared with the curves in Fig. 4, it is
observed that blockage under wormhole routing causes L to
grow much faster than contention under packet-switching,
as T increases. This is because a blocked message under
wormbhole routing could span up to 20 nodes (one flit at a
node), holding many resources.

0 T I | T | | — T
0.0 0.2 0.4 0.6 0.8

Fig. 5. Mean latency (L) vs. Throughput (7) under uniform traffic with
wormhole routing. (Hyg and Hq4 results are shown, respectively, by the
dotted and the dashed curves.)

Simulated peak traffic density for every system under
wormhole routing is also bounded by 2. Specifically, peak

traffic density values are 1.00, 1.67, 1.58, 1.15, and 1.00 for

Hyg, 11]?48, n", 11]‘8]8, and Hy;, respectively. The percentage

of extremely heavily loaded links in an incomplete system
is very small. In 7, M for example, less than 0.5% of the

links carry traffic density exceeding 1.0. Similarly, L)' (or
I]'fﬂg) has less than 1.4% (or 0.4%) of its links with traffic
density > 1.0.

5.3 Numerical Results under Nonuniform Traffic

There are many forms of nonuniform message distribu-
tions, reflecting different types of reference locality. In this
study, we focused on two types of nonuniform message
distributions, referred to, respectively, as sphere of locality
and decreasing probability reference [11]. An abstraction of
sphere of locality is as follows: each node is considered to
be at the center of a sphere comprising all nodes which are
no more than B hops away, and the center node sends mes-
sages to other nodes inside its sphere equiprobably with
total probability (which is usually high), with probability
1 - ¢being addressed uniformly to all the nodes (other than
the originating node). Decreasing probability reference in-
tuitively captures the notion that the probability of sending
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Fig. 6. Mean latency (L) vs. Throughput (7) under sphere of locality
traffic with packet-switching. (Hyq and Hy4 results are shown, respec-
tively, by the dotted and the dashed curves.)

L

80

60

40

— T
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Fig. 7. Mean latency (L) vs. throughput (}) under sphere of locality traf-
fic with wormhole routing. (Hjg and Hy; results are shown, respec-
tively, by the dotted and the dashed curves.)

messages to a node decreases as its distance from the
source node increases. This is often expected, as mapping a
distributed computation onto a hypercube system desires
more frequent message exchanges with physically closer
nodes. The results under these two nonuniform message
distributions are depicted in Figs. 6,7, 8, and 9.

Mean latency vs. throughput under sphere of locality
traffic with B = 4 and {'= 0.8 for the three carlier incomplete
hypercube systems with packet-switching is illustrated in
Fig. 6. Under this reference locality, a generated message is
more than 10 times as likely to be destined for a node
within a sphere as for a node outside the sphere. The mean
latencv of an incomplete hypercube increases gradually as
T grows up to 0.7, and beyond that, L starts to change more

rapidly. All the three incomplete hypercubes, Hy,, and H,

L
20 Ilﬂllﬂs
11
3 III;HX

15 —

0 T T I T T T T
0.0 0.2 0.4 0.6 0.8

Fig. 8. Mean latency (L) vs. throughput (7) under decreasing probability
reference with packet-switching. (Hyq and Hyy results are shown. re-
spectively, by the dotted and the dashed curves.)

L

Ilmx
—_—

0.0 0.2 0.4 0.6 0.8

Fig. 9. Mean latency (L) vs. throughput (7) under decreasing probability
reference with wormhole routing. (H,, and H,, results are shown. re-
spectively, by the dotted and the dashed curves.)

all have virtually the same mean latency when T is less than
(.78, indicating that an incomplete system can handle traftic
as satisfactorily as a compatible complete system, unless the
traffic load (T) is exceedingly high. The mean number of
hops between source and destination of a typical message
under this traffic pattern is 2.46, 2.46, 2,48, 2.55, and 2.55 for
AN tid IS8

Hio, s /H =i
T). When compared with the results in Fig. 4, it can be ob-

,and Hy,, respectively (independent of

served that for any given T, an incomplete hyvpercube con-
sistently exhibits lower mean latency under reference local-
ity than under uniform traffic. These results show that the
mean latency derived under uniform traffic provides an
upper bound on [ of a real execution situation, where a
certain type of reference locality usually exists. It is also
found from our simulation that the peak traffic density over
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a link in any system now is no more than 0.9, much lower
than that observed under uniform message distributions.

The simulation results of same systems with the sphere
of locality traffic pattern but under wormhole routing is
depicted in Fig. 7, where a message is assumed to involve
20 flits. An incomplete system exhibits performance almost
identical to its complete counterpart, unless T is extremely
high. Like a complete system, an incomplete system sees its
L grow much more swiftly under wormhole routing than
under packet-switching, as T increases. The peak traffic
density in any system under this routing strategy is found
to be lower than 1.03.

Simulation results for the three incomplete hypercube sys-
tems with decreasing probability reference under packet-
switching are shown in Fig. 8. They are obtained under the
reference distribution that the probabilities of message desti-
nations to be 1 hop, 2 hops, 3 hops, and 4 hops away when
generated, are 0.34, 0.20, 0.16, and 0.10, respectively, with the
remaining probability of 0.20 having messages uniformly des-
tined for all nodes (other than the originating node). Under
this reference distribution, the rate for a message to terminate
at an immediate neighbor is more than seven times higher
than that at a node 2 hops away, which in turn is about 3.3
times higher than that at a node 3 hops away, which is ap-
proximately 2.8 times higher than that at a node 4 hops away.
The probability of addressing a node decreases as the distance
grows. This message distribution exhibits more severe refer-
ence locality than the prior nonuniform message distribution.
From Fig. 8, L is found to grow slowly as T increases until 0.78,
and it then begins to changes rapidly thereafter. An incom-
plete hypercube is able to handle messages fluently, unless its
traffic load is fairly high. According to our simulation, the
peak traffic density over a link in any system under this de-
creasing probability reference is less than 0.93.

The results under this decreasing probability reference
with wormhole routing are given in Fig. 9, where a mes-
sage contains 20 flits. Again, an incomplete system has
almost identical performance as a corresponding complete
system, unless the system load (T) is very high. It is clear
from the curves in Figs. 8 and 9 that the latency (L) of any
system grows much faster under wormhole routing than
under packet-switching, as T increases. The peak traffic
density over a link in any system under this reference
pattern is below 1.02.

6 CONCLUSIONS

We have analyzed traffic behaviors over links in any sized
incomplete hypercube under the uniform message distri-
bution, following packet switching for communication. Our
analytic result reveals that link traffic density is upper
bounded by 2, independent of the system size, when dead-
lock-free routing, like the e-cube routing algorithm or its
variation, is employed to create paths for message delivery.
The simulation study indicates that mean latency for
transmitting messages is roughly the same in an incomplete
hypercube as in a compatible complete hypercube under
both packet-switching and wormhole routing. This inter-
esting result implies that an incomplete hypercube, despite
its structural nonhomogeneity, can easily be so constructed

that any potential congestion points are avoided, ensuring
good performance always.

Points of congestion are likely to occur in other nonho-
mogeneous topologies such as trees and stars. For example,
the peak traffic density of a binary tree with ! levels under
uniform traffic is ZH, as derived in [1]. This high traffic
density tends to result in poor performance. The incomplete
hypercube is thus favorable when compared with other
nonhomogeneous topologies, making it a practical and in-
teresting structure.

There are some open issues related to incomplete hyper-
cubes. Since multicast is a useful operation and has been
studied earlier for complete hypercubes [14], it is interesting
to examine how to carry out multicast efficiently in incom-
plete hypercubes. Hot spots in a network system often cause
serious performance degradation [15]. The behavior of an
incomplete hypercube with hot spots is worth investigation.

APPENDIX

PROOF OF LEMMA 3. From the definition of Q;, it is clear that
H,, is the constituent cube immediately below H; and
T° is an (m + 1)-dimensional subcube, which is larger

’

in size than the summation of all constituent cubes
with dimensions less than m + 1. Since all pivot nodes

in H; are directly connected to nodes in constituent

cubes H,, for all j < m, through links with number i
(from Observation 1), every such connected pair thus
differ only in bit i of their addresses (see Fig. 3).

Nodes in T,‘O are addressed by

i-m—1 m+l
(a, y, a 0, )

2y s a

+1° ’

whereas nodes in constituent cubes H; have addresses
of

X L X,

i—m-2
s iy 1,0 » X [

(an-—lf an-Z’ m’ K x(l)
where x;€ {0, 1}. As a result, each node in H,, for all
j <m, has its address differing in bit i of the address of a
node in 7;0 , indicating that each node in Hj is connected

to a node (which is a pivot node) in T,0 through a link
with number i. This proves the lemma. O

PROOF OF LEMMA 9. Consider two messages u* % and

w7 We prove this lemma by showing that after

the two messages traverse the given link A|, in H,
they have the same tag value (note that the two mes-
sages have an identical tag Adr initially). If this is
shown, then the two messages must terminate at the
same destination, because they are routed by the
same routing algorithm, from the common node (after
traversing the given link), with an identical tag value.
Therefore, nodes X’ and Y’ are, in fact, the same node.
Since there can be only one node whose relative ad-
dress with respect to X’ (i.e., Y’) is Adr, it is clear that
nodes X and Y coincide, indicating that the two mes-
sages are actually the same one.
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The subsequent three observations follow immedi-
ately: 1) the two messages correct all nonzero tag bits

lewer than j before departing from H; (as all links

with numbers less than j exist in H)); 2) at the time
when the two messages traverse the common link 4 ' »

none of the links with numbers larger than I, I # i,
have been traversed by any of the messages (because

inside H;, the normal link traversal order is preserved
for all links with numbers less than 7, and no link with
number greater than i — 1 will be traversed); and 3)
both messages take links with number 7 to reach H;
and thus their tag bits i are corrected upon entering

H;. From the above observations, we know that only
tag bits with positions between [ and j must be ex-
amined to check if the tag values of the two messages
are the same immediately before they traverse the
common link 2[,.

We consider two cases, depending on whether or not
there is a nonzero bit p, [ > p > j, in Adr. If there is no
such bit, the two messages certainly have the same
tag value upon traversing the common link. On the
other hand, if there is a nonzero bitp, I > p > j, in Adr,
three possible situations arise: 1) constituent cube H,
exists, 2) cube H,is absent, but for a nonzero bits, i >
5> p, in Adr, constituent cube H, exists, and 3) cube H,
is absent, and so is H, for each nonzero bits, i > s> p,
in Adr. For situation 1), both messages will visit H,
after leaving H; (from Lemma 6), and thus the tag bit
p in both messages gets corrected before entering H,.
Similarly, for situation 2), both messages will visit H,
before reaching H;, and the traversal of link p is made
inside H,. For situation 3), the two messages will enter
H; with their tag bit p uncorrected. However, the tra-
versal of link p will be carried out in H; before they
traverse the common link, because p is less than [ and
the normal link traversal order is preserved for all
links with numbers less than i inside H,. This com-
pletes our proof. O

PrOOF OF LEMMA 10. Consider the abstract structure of H,

given in Fig. 3. Let 4|, be a link of type fyf; Suppose
there is a class 3 message with initial tag Adr, say
7%, which traverses the given link Af, in the
b, — NP direction. We know from Lemma 9 that
only one such class 3 message exists. What remains to
be shown is that there exists no other message of class
3 having initial tag Adr, say uyayl with Y € (< i)
and Y" € ®(2 i), which traverses A|, in the opposite di-
rection, namely, the direction of NP — B, . Assume

that there is such a message ,uY“’Y’, then, three possible
cases are considered, depending on the location where

w ™ enters H: 1) 1"~ enters H through P, with

k<j,2) u"~" enters H, through B, with g > j, and 3)

17" enters H; through P, itself.

The following facts are useful: The number of the
given link, [, is greater than j — 1, as links with num-
bers 0, 1, ..., j — 1 are all inside E‘/ and never connect

pivot nodes in F, ;to nonpivot nodes; £, and pivot
sets P, , for all k < j, are enclosed in a subcube of di-

mension j + 1, denoted by I1/"" (see Fig. 3).

Case 1. Since [ 2 j, we consider two subcases: / = j and
I'>j+ 1 For Il =j any message Tids entering H,;
through £, will never traverse links with number [ in

H,;, since all nodes in H are connected to H,, j > k, us-

ing links with number j (from Observation 1), and

Y—-Y’

message U visits H; (for bit j (= I) in Adr is nonz-

ero) before reaching H;. For I 2 j + 1, message uYﬁY,
has to leave H{H in order to traverse link 2|, along
the direction of NP -» P;; (because link |, I 2+ 1,
connects a node in H{“ to another node outside
Hlf'“). Once it does so, however, it cannot reenter

ﬂ{” again (from Lemma 4). Hence, this subcase is

impossible, because the message will reenter 1'[{ 1 af-

ter the traversal of the given link along the direction
of NP = P,

Case 2. In this case, / is greater than g, because nodes
in £, ; are connected to corresponding nodes in £, by

links with number g, g > j, and all links with numbers
less than ¢ exist in B . By a similar argument as

g+l

above, message ,LLYﬁY must leave II!" in order to

traverse the given link along the direction of
NP — B . Again, the message is prohibited from

traversing the given link along direction NP — F,
according to Lemma 4.

Case 3. This case is ruled out similarly, because it
requires message 17" to leave H{“ before trav-

ersing the given link along the direction of
NP — P [

it

PROOF OF LEMMA 11. Let A, be a link of type A)/,. We have

two possible cases, depending on whether or not the
two nonpivot nodes are located in the same partition.

NPin 7 and NP’ in T"(= T)

Suppose u*7*'is a class 3 message which traverses
1|, along the direction of 7 — T”. From Lemma 9,
we know that there exists only one such message.
Since links inside H; are traversed in the normal order
without violation, if message 1N after entering H;
through T[O, reaches 7" before Tlh, every other mes-
sage of class 3 must also visit 7" first, after entering

H; through 7. Therefore, it is impossible for any



message to traverse A|, along the direction of
7;/7 N 7;11.
Both NP and NP’ in T

Since every partition is of the same size, let us assume
that a partition involves an (m + 1)-dimensional sub-
cube in H;. For a = 0, NP and NP’ are connected by a
link with number less than m, because each link 1]

m
in H; connects either two pivot nodes or one pivot
node to one nonpivot node, and a message of class 3
terminates directly at NP or NP’ without taking the
link between the two nodes, as such a message enters
H; (from a lower constituent cube) via a pivot node
and traverses links in H; following the normal order.
For a > 0, a message of class 3 does not traverse the link
connecting NP and NP’ either, since the message, after
entering T,.O, corrects all nonzero tag bits p, p <m + 1,

before proceeding to 7%, a > 0, and the two nodes in

T“, a > 0, are connected by a link with number less

than m + 1. |

PrOO¥ OF LEMMA 12. For a given tag, say Adr, we consider

the class 2 messages uyay', YedEj), and
Y e ®(2 g), for q > j, which originate from H; and

from @(< j) separately. A message originating from H;
must correct all nonzero Adr bits whose positions are
lower than j before taking an intercube link to leave

H, and once it leaves H/ , it never reenters H; . Since H,
links with numbers less than j are traversed, if
needed, in the normal order, for any Adr, there is only

one message p 7 with Y e H, passing through the
given intercube link 1}, A € H; and B € ®(2¢).

We next show that there can be at most one more
message originating from @®(< j) which traverses the
given intercube link. Suppose that there exist two

such messages, w7 and 17", where Y1, Y2 €
@(< j). When the two messages leave H; after taking

X}, their tag bits with positions lower than j + 1 have
become zero, and no link with number greater than j
has ever been traversed by either message (from
Lemma 7). Since the two messages have the same ini-
tial tag value, Adr, their tag values after arriving at
node B must be identical, indicating that Y1” and Y2’
coincide (because the same routing algorithm is em-
ployed). For any given Adr, if Y1” is the same as Y2/,
then Y1 must be the same as Y2, implying that there
cannot be more than one message issued at ®(< j). As
a result, there are at most two messages of class 2
which traverse a given intercube link, for any given
tag.

PROOF OF THEOREM 4. Messages traversing an intercube link

Xy, Ae H; and B € ®(= q), for q > j, consist of classes
1, 2, and 3. Class 1 messages are issued from ®(= g)
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and terminate at ®(< j). From Lemma 5, a message of
class 1 never traverses any link in ®(< j), namely, the
message arrives at its destination (i.e., node A) imme-
diately after taking the intercube link 1. For a given
tag Adr and destination (i.e., A), there is a single class
1 message.

We next show that a message of class 2, p" 7" with
Ye ®(=j)and Y € ®(= g), and a message of class 3,
u”7% with Z e ®(< g, >j)and Z’ € ®(2 g), cannot co-
exist for a given Adr. A message of class 3 has to trav-

erse an intercube link, say [, to reach node A in H;

before taking the intercube link A%. If the link number

of /l?; is I, then I should be greater than f, for other-
wise, A, would have been taken before 1| ,. Assume

that message ,uYHyl exists. In this case, bit f in Adr

must be zero, because every node in @ (< j) has inter-
cube link 4|, connected (since f > j, from Observation

1), and the message would otherwise have traversed
link 4|, prior to 4|, (for I > f). This implies that mes-

sage ,uZﬁZ’ cannot exist. On the other hand, if qu_m’

exists, Adr must have a nonzero bit f and therefore
Y-Y’ .
message cannot exist.

Now, if messages of class 2 exist, then from Lemma
12, there can be at most two such messages. If mes-
sages of class 3 exist, we explain below that there can
be only one such message. In this case, bit f in Adr is
nonzero and the traversal of 4|, is made to depart

from a node in Hj, say node C, for H;. It can be shown

that constituent cube H; must be present and the
originating node Z has to be in ®(< f), because oth-
erwise if Z is in ®(> f), the traversal of 4|, is con-
fined inside ®(> f) (since a node in ®(> f) is con-
nected by )L|f to another node in ®(> f)). At node C,

all tag bits lower than f and no tag bits higher than f
have been corrected. As a result, any two messages of
class 3 with the given tag should have an identical tag
value at node C. Using an argument similar to that
provided in the proof of Lemma 12, we know that, for
any given tag, there can be only a single message of
class 3. This completes our proof. O

PROOF OF THEOREM 5. The traffic density bounds on the in-

tracube links and on the intercube links are treated
separately.

Bound on Intracube Links

We analyze the changes on the traffic density bounds
when a constituent cube is added to an existing in-
complete hypercube, which starts with a configura-

tion composed of only two cubes H,—, and H;, (11 ~ 1)
> 1 (note that this special class of incomplete hyper-
cubes has been analyzed earlier [9]). Consider an ar-

bitrary link Af, inside constituent cube H; of the in-



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 7, NO. 7, JULY 1996

n=1_ i
complete hypercube 1> "% (the case of A|, in con-

stituent cube H,-; is examined later). From Theorems
1,2, and 3, it is clear that for a given tag Adr, the mean
number of messages passing through 1|, over a pe-

n—1

riod of M -1 cycles (here, M =27 + 2i) is 1o more

than three. There are (M — 1) Adr’s in total, with bit ]
equal to 1 (so that link 1|, is traversed), resulting in

[(M —1)/2] different tag values contributed to (1). The
worst case scenario of traffic density, from (1), is
bounded by
32"+ 27 )

Now, let an arbitrary cube H,.n—1> g > i, be added
to the initial incomplete hypercube, giving rise to a
system with size M + 27. The new messages traversing
A;, introduced due to the addition of Hq, are those
which originate from H; and terminate in H, because

H, is a higher cube with respect to the cube in which
Al, resides, and messages issued from a higher cube
will not traverse the given intracube link, according to
Lemuma 5. Over a period of M — 1 cycles, the number

of newly introduced tag values is thus 27 or less. Since
any new tag contributed to traffic density over link
2|, must have a nonzero bit /, and for each tag, again,

no more than three messages traverse A|,, we have
the bound of
32727 —1427h
22 12t
It can be shown by repeating this process that if mul-

tiple constituent cubes with K, total nodes are added
in between H,— and H, traffic density on link A|, is
bounded by
32" 7+ 27 -1+ K, /2)
2" 42 1+ K, '

We next consider the impact of adding a constituent
cube Hj, j <1, to the incomplete hypercube obtained so
far. The new messages traversing A|,, introduced by
this addition, are those between H; and H; (because

those between H; and ®(> i) have been taken into ac-
count previously when the number of messages trav-
ersing A|, for a given tag is assumed to be 3). Over

the period of M — 1 cycles, the average number of
newly introduced tag values is no more than 2’ (with
2’7" originating from H ; and another 2'"" terminating
in H, for I 2 j; if j > I, no message originating from H,
traverses A|, in H,). There are no more than three

messages traversing the given link for any tag, yield-
ing the traffic density upper bound of

32"+ 27 1+ K, /2+2))
pLEL I L T L

If this process is repeated and multiple constituent

cubes of dimensions less than #, with K, total nodes,
are added, the bound can be expressed by

32" 42 214K, /2+K,)
27N 2 S 14K, + K,

n=2

which is less than 2 provided that 27~ + 2741+
K,/2 > K. It is clear in this case that traffic density is
below 2, for all n > 2.

Next, consider any link 4|, inside constituent cube H,—.
According to Lemmas 10 and 11, there is no more than
one class 3 message traversing the given link A|,. For
any tag, the three messages which might traverse the
given link over a period of M — 1 cycles are /ULXﬁX,, Xe

O(<n—-1),and X' € H,, [uYHYll ,Yle H,,and Y1 e

d(<n—1),and u"*7",Y2e H, ,and Y2 € d(<n-1),
where the latter two messages traverse the given link
along opposite directions. We show in the following
that there are only two possible messages (out of the
three) which can pass through the given link, by treat-
ing the subcases of 1) X’ being a nonpivot node and 2)

X' being a pivot node (¢ H,—) in sequence.

Y2—v2’

For 1), suppose that messages uXﬁX/and i tra-

verse the given link along the same direction. Then, it
is clear that the two messages must take the same
path until node X', after passing through the given
link 1|, (because they have the same initial tag, and

the normal link traversal order is maintained inside
H,-1). At node X', message ,u,”%yz, (which originates
in H,~) has to take an intercube link 4|, to its des-
tination Y2’ (in ®(< n — 1)). However, X’ has no 4|
since it is a nonpivot node. This contradiction implies

that messag u’*~"% is not present, and only two pos-
sible messages may traverse the given link.

n—1

For (2), suppose that node X is in H;. If node X’ be-

X’

X
longs to P, then message 1" ~" never traverses

n=1i’
any link in H, -, so it does not take the given link. If

node X" belongs to P, n—1>¢g > i, then constitu-

~l,g°
. X=X . .
ent cube H, exists and message u 7% issued in H,

will visit H, (from Lemma 6), and then reaches its
destination, X’, immediately after taking link A|, _,

: X=X
from H,. Again, message y° ~ never traverses the

given link. Finally, if node X’ belongs to P, i

then constituent cube H; exists, and it can be easily
shown that message @ does not take the given

link, either. As a result, only two possible messages
may traverse the given link.
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For a message to traverse link 1|, its tag must have a
nonzero ! bit. According to (1), we arrive at the upper
bound of traffic density over an arbitrary link in H,—
being

202" -1
where K is the total number of nodes in ®(< 1 - 1).

Bound on Intercube Links

Now consider an arbitrary intercube link between
constituent cubes H; and H;, i > j, in 1117\4 From Obser-
vation 1, 1|, is an intercube link between the two
cubes. We have from the proof of Theorem 4 that for a
given tag, the mean number of messages traversing
this link over a period of M — 1 cycles is 1) no more
than 3, if the tag has a nonzero bit j (i.e., involving a
traversal of link A|,); otherwise, it is 2) no more than
2. In either situation, the tag must have a nonzero bit 7
for a message to traverse the given link A|,. The total
number of different possible tag values is M (which is
less than 2"). In situation 1), only tags whose bit posi-
tions 7 and j are “1” contribute to traffic density over
the given link, yielding the bound of
3(2/1—2 )
272 w2l vk -1

n—1

where K’ equals M — (2" +2'+27). In situation 2),
only tags with bit position i being “1” contribute to
traffic density over the given link, leading to the
bound of
2(2714 )
A Ry T
The worst case scenario of the upper bound on traffic den-
sity over an intercube link is therefore no larger than2. [

List of Notations

IM

o

n-dimensional incomplete hypercube with M nodes.

B+ collection of pivot nodes associated with two constitu-
ent cubes H;and H;, i > j, of I,/y.

®(< i) : set of all constituent cubes H/., j < i, together with

all intercube links among these cubes in 1:4.

®(< ¢,> j) : collection of all constituent cubes H,, g > h > j,
together with the intercube links among them inside
.

n

¥, : collection of all pivot nodes associated with H;, for all
j <, plus all the connections among these nodes inside
constituent cube H;.

O, (Y, 1Yus == YVo» J) @ position of the wth nonzero bit after
(i.e., right of) position j in bit string y, v, , -+ »¥,-

Q : collection of (m + 1)-dimensional disjoint subcubes in

1Y, where the binary representation of M is

Aoy " A GGy - 41y

and

m = 0@, G, 5 A 40, - qdy, )

in other words,

_ . " . it
Qz’ - {(arl\lan—Z ai+10xi—1li—2 xr17+2xm+1 ) 1xt—1xi—2 ’

X%, ., denotes any possible bit string}.
T” : anelement in ¢2;, namely

gemtl
(auflan—-Z ai+10‘xi¥l'xi72 X )’

such that the value of x,_x,_, --- x,,,, equals p.

H'," . partition in 7}0 which involves F; and Iy forallk <

lul«—H/ :

a message coming from a node in constituent cube
Hj:
1" 7% . a message issued at node X and destined for node X',

E(Adr, Xy) @ set of all messages with tag (when issued)
being Adr which travel through link ;t/jg over a period
of M -1 cycles.
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