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Abstract—The growing popularity of in-memory computing for bigdata analytics often causes performance bottlenecks to memory

subsystem resided in operating systems (OS). This article purposes cooperative memory expansion (COMEX), an OS kernel

extension. COMEX establishes a stable pool of memory collectively across nodes in a cluster and enhances OS’s memory subsystem

for memory aggregation from connected machines by allowing process’s page table to track remote memory page frames without

programmer effort or modifications to application codes. COMEX employs Remote Direct Memory Access (RDMA) for low-latency data

transfer with destination kernel bypassed and does not rely on an old design of the I/O block subsystem usually adopted by all known

remote paging. COMEX fits soundly in the emerging system design approach of resource disaggregation which breaks hard walls

between server-centric machines into a new design paradigm of separated resource pools. The new architecture facilitates both

system scaling-up and scaling-out, also eliminates imbalance resources existing in datacenters. We have implemented COMEX based

on Linux kernel 3.10.87 and deployed on our 32 networked servers. Performance evaluation results under ten applications from two

benchmark suites reveal the speedup of up to 170 times when application execution footprints are 10 times larger than available

system memory.

Index Terms—I/O block devices, memory management, networked computer systems, operating systems (OS), page tables, remote direct

memory access (RDMA)
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1 INTRODUCTION

PERFORMANCE of a computer system is critically affected by
the system’s bottleneck during job execution. Given the

data-intensive compute paradigm has gained its growing
popularity lately for bigdata processing, thememory subsys-
tem of a legacyOS (operating system) kernel often exhibits as
the system’s bottleneck since its physicalmemory size is usu-
ally dwarfed by the bigdata requirements. As a result, the
memory subsystem relies on slow block device storage to
hold most data during its processing. In addition, temporary
swap space created on the storage device by OS for staging
excessive pages evicted from main memory [4], [5] tends to
become an execution performance bottleneck. Solutions
have been pursued for addressing the performance bottle-
neck of bigdata processing due mainly to extensive accesses
to slow I/O block device storage. Noticeably, they widely
adopt in-memory computing by keeping all data in system
mainmemory (DRAM) for speedy processing.

Since it can drastically boost bigdata application perfor-
mance, in-memory computing realized by huge DRAM in a
machine was considered [1], [2], [3] in support of speedily
executing applications with large execution footprints.
However, such a machine is cost-ineffective potentially as
its memory size can be way excessive for some applications

but be still insufficient for bigdata applications. Hence, it is
challenging for a computing system to achieve effective in-
memory computing across a range of applications, urgently
calling for feasible commodity solutions. Dynamic memory
allocation on-demand for bigdata applications executed on
a server cluster thus has been explored [9], [10], [11], [12],
[13], [14], [15], [16], [17], [18], [19], [20], [21], [22], [23], [24],
[25], [26], [27], [28], [29], [30], [31], [32], [33], [34], [35], [36],
[37], [38], [39], [40], utilizing physical memory of other con-
nected servers to stage excessive data of local applications
during execution.

This article addresses OS kernel support for establishing
immense memory collectively across nodes of a networked
computing system to hold excessive cold memory pages
evicted from the main memory of a host node when execut-
ing applications with huge execution footprints well beyond
what the host’s main memory can hold. Realizing coopera-
tive memory expansion (COMEX), our proposed design per-
mits applications in any node to expand its address space
on-demand onto remote DRAM of other connected nodes,
utilizing OS process page tables with appropriate extensions
as detailed in Section 3 and shown in Fig. 2. Applications
with large working sets under COMEX accelerate their exe-
cution runs transparently without code modifications, as a
result of avoiding much slower secondary storage for swap
space. COMEX is featured with locality-aware memory pag-
ing which keeps continuous swap-out pages of a given pro-
cess in the same remote node at all possible to accelerate
future page-fault handling due to effective page prefetching.
This feature exploits the low-level Linux kernel data struc-
ture of reverse mapping uniquely, to ensure high perfor-
mance even under multi-tasking when multiple concurrent
applications run simultaneously on separate compute nodes,
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as illustrated in Fig. 16 (on pp. 14). In contrast, earlier
demand paging methods realized in the user-level often rely
on I/O block devices [24], [27], [28], [29], [30], [31], [35],
rather than working on kernel data structures (e.g., page
tables and reverse mapping) for fine-grained remote mem-
orymanagement to raise DRAMutilization.

COMEX is attractive with growing adoption of Remote
Direct Memory Access (RDMA) [7], [8], [11], [53] by operat-
ing systems (e.g., Linux and Windows) and by NICs (net-
work interface cards) coupledwith fast switches (like 10 GbE
[50], [51] and InfiniBand [52]), making it possible to achieve
low latency data transfer across nodes of a networked com-
puting system formed using commodity hardware and
software [48], [53]. RDMA represents the core enabler for
resource disaggregation across a pool of resources resided
in separate servers/blades [7], [8], [46], because of its low
latency and high bandwidth [47]. Datacenters have deployed
RDMA over large-scale Ethernet-based network fabrics
using the RoCEv2 protocol [48], [53].

COMEX aims at RDMA-enabled networked computing
systems, including those in general purpose server-centric
datacenters, where each machine is equipped with specific
amounts of resources (CPU, memory, storage, and accelera-
tors). Memory imbalance exists in such a system routinely
when executing diverse applications concurrently on its dif-
ferent nodes [7], [8], [24], [46]. Real-world data ofmemory uti-
lization for a large-scale Alibaba cluster comprising 4,000
servers gathered and published in 2019 [33], [36] is demon-
strated in Fig. 1, where theY-axis denotes the number of serv-
ers with memory utilization below 90 percent. The result of

this production cluster over five days reveals that on an aver-
age, 38 percent of cluster servers have memory utilization
less than 90 percent, with their mean memory utilization (of
those 38 percent servers) equal to only 79 percent. It is evident
that, evenwithmodern job schedulers anddispatchers,mem-
ory imbalance and underutilization usually exist in comput-
ing systems, with unused remote memory available for
exploitation via COMEX transparently. In fact, COMEX fits
soundly in the emerging system design approach of resource
disaggregation [6], [7], [8] by building pools of separate
resource types (e.g., CPU, memory, storage, communication,
etc. [38]) that are allocated on-demand to applications
dynamically. Resource disaggregation facilitates flexible sys-
tem scaling and cost-effective hardware upgrading. COMEX
facilitates aggregate memory resources for effective memory
utilization during job execution, avoiding memory underuti-
lization or overprovision in individual sever nodes.

This work builds a swap-based remote memory system,
COMEX, that is transparent to applications by an OS exten-
sion to manage the swap space resided on remote memory.
To guarantee high performance, RDMA network is used as
the network backend. This enables low-latency data transfer,
which is critical for a swap backend. COMEX differs starkly
from other approaches considered previously for accelerat-
ing local application execution [9], [10], [11], [12], [13], [14],
[15], [16], [17], [18], [19], [20], [21], [22], [23], [24], [25], [26],
[27], [28], [29], [30], [31], [32], [33], [34], [35], [36], [37], [38],
[39], [40] via utilizing idle remote memory, in multiple key
aspects. First, COMEX is completely transparent to applica-
tions and requires no programmer effort normodifications to
application source codes. Second, COMEX is compatible
withmost commodity platforms anddevices (with RDMsup-
port for low-latency networking [7], [8], [46], [47], [48]). Third,
COMEX does not rely on any new networking hardware or
protocol stack for resource aggregation, as does the case ear-
lier [37], [38], [39], [40]. Fourth, COMEXmanages its memory
space and handles data transfer effectively, without utilizing
such commonly adopted mechanisms as swapping and I/O
block subsystems found in most remote memory paging
studies previously [24], [25], [26], [27], [28], [29], [30], [31],

Fig. 2. Overall memory management and page data transfer under COMEX.

Fig. 1. Number of servers with memory utilization below 90 percent for
the 4000-server Alibaba cluster over five days (along the X-axis).
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[32], [33], [34], [35]. This is because those two legacy subsys-
tems were designed for backing storage made of slow hard
disks [29], [41], [42], [43], [4], [45], [67], [68], [69]. Fifth,
COMEX differs from virtualization that partitions physical
hardware resources to logical compute units, called virtual
machines (VMs) [9], [10], [37], [38], [39], [40] for coarse-
grained VM-level resource sharing; instead, COMEX extends
process page tables for fine-grained page-level memory
aggregation and sharing.

We have implemented COMEX based on Linux kernel
3.10.87 and deployed on a testbed system comprising 32
networked Dell servers. Performance evaluation results
under ten applications from two benchmark suites reveal
that COMEX exhibits higher execution speedups when the
ratio of the application execution footprint size to the local
memory size rises, with the speedup to reach 170� when
the ratio equals 10.

2 PERTINENT BACKGROUND AND PRIOR WORK

Virtual Memory. Virtual memory is adopted widely by the
modern OS [4], [5]. It allows a process to have larger (virtual)
address space than real physical memory existing in the sys-
tem. OS maintains a page table for each process to keep the
mappings of its virtual memory pages (of say, 4 KB or 2 MB
each in Linux) to physical memory page frames, with a Page
Table Entry (PTE) denoting one virtual memory page. For
every virtual memory page that has not yet allocated a physi-
cal memory page frame or has been “swapped out” from its
earlier allocated page frame to disk storage, its associated PTE
records such information accordingly. A long latency occurs
when a swapped out (or an unallocated) page is brought back
to (or into) aDRAMpage frame byOS upon a page fault, caus-
ing amarked performance penalty, which grows as the swap-
ping activities intensify for bigdata processing.

Remote Direct Memory Access (RDMA). RDMA allows
hosts to directly read/write data from/to physical memory
in other connected machines [49]. It permits OS kernel
bypassing at the destination machine to lower remote access
time overhead and energy consumption, by means of the
RDMA-enabled network interface card (RDMA-enabled
NIC). Such a widely affordable NIC caches virtual memory
address translation in its on-card memory and requires to
pin the designated physical memory area down through
“RDMA Memory Region registration” [11], [54]. In fact,
RDMA is available for Ethernet (i.e., RDMA over Con-
verged Ethernet or RoCE [55], which is commonly adopted
for networking in datacenters [48] and enterprise server
clusters), besides InfiniBand. RDMA is popularly adopted
in datacenters [48], [53] because of its support from abun-
dant hardware vendors [50], [51], [52] and various operating
systems (including Linux). It facilitates computer system
resource disaggregation [8], [9], [46].

2.1 Remote Memory

Design and implementation effort on remote memory has
aimed at execution performance improvement for years
[11], [12], [13], [14], [15], [16], [17], [18], [19], [20], [21], [22],
[23], [24], [25], [26], [27], [28], [29], [30], [31], [32], [33], [34],
[35]. It can be categorized into two groups, as reviewed sep-
arately in the following subsections.

2.1.1 Programming Remote Memory

Programming techniques have been introduced for overcom-
ing the memory limitation within a single machine. They
employ a privilege for accesses to the memory area outside a
local machine, known as remote memory. Some of them rely
on the native network stack of TCP/IP [16], [17], [18], [22], [25],
[26], whereas others either exploit such features as RDMA [11],
[12], [13], [14], [15], [19], [20], [21] or adopt new network proto-
cols [53]. In particular, RDMA and its variants [11], [12], [13],
[14], [15] expose remote memory to users directly via a collec-
tion of programming APIs, allowing users to manipulate
remote memory by means of considerable application modifi-
cations. However, users have to deal with an RDMA low-level
abstraction [12], [13], [46], often involving steep learning and
high programming skills in order to unleash the full potential
of RDMA. In addition, RDMA library is available only in a
few limited programming languages.

Key-value storage [16], [17], [18], [19], [20], [21], [22] and
RDMA key-value storage [19], [20], [21] offer simpler API
abstractions, allocating DRAM chunks from connected
machines to form a large global pool of DRAM memory for
storing application data. They permit applications to read
their data directly from a DRAM memory pool, avoiding a
huge latency from slow storage. However, applications may
not follow key-value characteristics, making them difficult
to adopt key-value storage [23].

This group of techniques usually has high flexibility for
programmers to decide which data to be kept at remote
memory for good memory usage and performance. How-
ever, they are not readily applicable to applications whose
source codes cannot be modified or re-written easily.

2.1.2 Remote Memory Paging

Remote memory paging studies and implementations
mostly employ traditional memory paging, swapping mech-
anisms, and I/O block subsystems found in operating sys-
tems [24], [25], [26], [27], [28], [29], [30], [31], [32], [33], [34],
[35]. Swapping moves (1) cold memory pages from local
memory to ‘swap-out partitions’ in storage and (2) miss
pages from ‘swap-out partitions’ back to local memory, in
order to expand address space beyond system’s actual physi-
cal memory. However, it relies on asynchronous (for swap-
ping pages out) and read-ahead (for swapping miss pages
in) procedures to hide lengthy disk seek and write/read
times [12], [13], [44], [45], [67], [68], [69]. Under memory pag-
ing to/from remote memory (of a connected machine), how-
ever, care must be taken to fully benefit from much faster
DRAM for a low latency [41], [42], [43], [45].

A recent attempt at remote paging, called INFINISWAP
[24], is based on swapping and I/O block subsystems.
INFINISWAP mounts its block device to the system as a
swap partition to cache cold pages at remote memory areas.
INFINISWAP works at the “SlabSize” granularity, e.g., 1 GB
per slab. When the number of references to a 1 GB (i.e.,
the slab size) address range reaches a set threshold, the
INFINISWAP daemon allocates one slab of memory pages
at a remote machine to hold swapped out pages. Coarse
granularity is chosen by INFINISWAP to contain the track-
ing overhead of memory accesses, but it naturally leads to
remarkable underutilization of allocated slab memory. In
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addition, the I/O block subsystem adopted for page transfer
has low efficiency [10], [41], [42], [43].

INFINISWAP relies on a separate mapping table in each
compute node (being an extra data structure) to manage
removed pages read/write activities for its decision on
remote slab allocation, choosing a very large slab size (of
1 GB [24]) to contain overhead involved in managing extra
data structures. Unfortunately, such a large granularity leads
to low remote storage utilization, since (1) a slab is allocated
at one remote node, as soon as page swap-in/swap-out activ-
ities (within the 1GB address range) per second exceed a
specified threshold (HotSlab), irrespective of how many dis-
tinct pages are involved, and (2) a slab, once allocated, is not
deallocated until its remote host node experiences local mem-
ory pressure, often seen a very small fraction of its page
frames actually taken up by swap-out pages. In contrast, our
COMEXmakes use of page tables existing in any OS (includ-
ing Linux) which supports virtual memory, to track all pages
swapped out onto remote nodes, and to work at the fine
grain page size (of 4 KB). COMEX achieves far better remote
memory utilization than INFINISWAP without resorting to
any extra data structure for remote memory management,
resulting from (1) fine-grained page allocation to lower frag-
mentation and (2) periodical page frame reclaiming at each
involved node to free up unused page frames proactively
(via a light-weight RDMA verb, to be detailed in Section 4.5).

2.2 Resource Disaggregation and Virtual Machines

Growing adoption to the resource disaggregation architec-
ture prompts active studies lately on full disaggregation, by
which components of a computer system are redesigned and
redeveloped from scratch. New design and/or prototype
computer hardware and software in support of full resource
disaggregation have been revealed [37], [38], [39], [40], and
they usually require huge implementation effort and capital
investment while discarding all otherwise functional com-
puter hardware and software components. Full resource
disaggregation may be attractive for new datacenter con-
struction by adopting clean-slate computer hardware and
software components to build compute nodes specific for the
datacenter needs and to permit future node upgrades via
replacing target node components. However, its suitability
for general computer system installations is questionable.

COMEX takes a different approach known as partial
resource disaggregation, aiming at existing server clusters
without doing away with any hardware component nor
developing the whole system software stack afresh. Specifi-
cally, COMEX extends the OS kernel to let its virtual mem-
ory subsystem track swap-out pages staged in remote
physical memory via page tables (instead of adding extra
data structures for tracking remote memory use like INFIN-
ISWAP [24]). We have implemented COMEX on Linux ker-
nel 3.10.87 and made it easy for patching COMEX-specific
software modules into mainline Linux kernels. Partial
resource disaggregation under COMEX permits a server
cluster to add compute nodes or memory nodes’ heteroge-
neously in response to its growth needs, where a compute
(or memory) node has powerful computation cores (or a
limited computing ability) and a small amount of memory
(or large memory), with the same COMEX-provisioned OS
running on every cluster node.

Note that COMEX offers memory resource sharing on
demand among compute nodes in a server cluster, it differs
from resource virtualization, which share all server resources
(compute,memory, storage, etc.) dynamically by adjusting the
container size for good utilization [9], [10], [37], [38], [39], [40].
Instead of sharing physical hardware resources in the form of
virtual machines (VMs), COMEX enables fine-grained page-
level memory resource sharing across a stable pool of DRAM.
On the other hand, virtualization offers coarse-grained
resource sharing at the logical unit (virtualmachine) level.

2.3 Alternatives to COMEX

Three alternatives to the COMEX design are stated in
sequence. The first alternative can exploit native OS’s swap
mechanism by mounting the remote memory block device
as a swap partition for a system for holding evicted cold
pages. This falls into remote memory paging as reviewed in
Section 2.1.2 [24], [25], [26], [27], [28], [29], [30], [31], [32].
It can be achieved through either the traditional software
network stack (TCP/IP) alone [25], [26], [27], [28], [29], [34],
[35] or together with hardware (e.g., RDMA) support [24],
[27], [30], [31], [32], without modification to the OS kernel.
However, this method usually exhibits poor performance
because of its two shortcomings: (1) high time overhead and
(2) reclaiming one single page frame at a time asynchro-
nously [41], [43]. In fact, Linux foundation plans to improve
those shortcomings [44], [45].

Another alternative may hold swapped out pages in
remote memory, which is allocated and managed by extra
data structures in coarse granularity (of 1 GB per slab, as
adopted by INFINISWAP [24]). It is subject to the same
shortcomings of swapping and I/O block subsystems stated
in the previous alternative.

The third design alternative lets the OS kernel employ
dedicated remote memory page-mapping, which is addi-
tional to (and separate from) existing process page tables.
However, this alternative requires excessive effort and high
space overhead, clearly inferior to COMEX that expands
existing page tables to keep mapping information of remote
memory page frames.

3 COMEX DESIGN CONSIDERATION

The process page table is a key software structure to enable
virtual memory for efficient physical memory management
and for securememory sharing and isolation, allowing a pro-
cess to have address space larger than the physical memory
of a system that runs the process [4], [5]. Due to emerging
data-intensive applications with huge execution footprints of
late, the proposed COMEX becomes indispensable to acceler-
ate execution of such applications. COMEX fits soundly in
the system design approach of resource disaggregation,
which facilitates easy system scaling and component upgrad-
ing. It permits flexible memory resource aggregation on-
demand during job execution and lets commodity hardware
and software components be added to existing server clusters
(or upgrade existing ones individually) for cost-effective scal-
ing, in support of speedy execution of applications with big
execution footprints.

Design Overview. Aligning with the resource disaggre-
gation design, COMEX is built on a connected server cluster,
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involving compute nodes and memory nodes. A compute
node has high computation power (possibly from multiple
sockets), responsible for application execution with swap-
out pages staged at remote memory nodes. On the other
hand, a memory node has abundant physical memory and
contributes a big portion of its memory to the shared
COMEX memory pool. A general node may also exist in a
COMEX cluster, with modest computing power and sizable
memory. Such a nodemay execute applications and also con-
tribute a small fraction of its memory to the shared memory
pool. Each node (be a compute, memory, or general one) in
the server cluster runs exactly the same OS, with its kernel
extendedwith COMEX-specific softwaremodules.

COMEX is realized by page table extension for tracking
remote physicalmemory (in other connected nodes of a server
cluster) allocated to an application on-demand during its exe-
cution. A connected node is referred to as a “staged node”,
since it is for staging the swap-out pages of a process executed
on another node. COMEX aims at transparent and efficient
memory resource aggregation in server clusters connected by
RDMA-capable networking gear without any user effort,
application modification, or dedicated hardware support. An
example COMEX configuration is illustrated in Fig. 2, where
COMEX harbors three evicted pages (P2, P8, and P9) of a pro-
cess run on Node C (denoted by COMEXC) as the host node.
Page P2 in COMEXC is written transparently (without invok-
ing the destination OS kernel) over the established RDMA
connection to COMEXG in Page Frame P2 of its pinned down
zone upon evicting P2 from COMEXC. Similarly, Pages P8
and P9 resided in COMEXM can be transferred over the estab-
lished RDMA connection directly back to their corresponding
Page frames in COMEXC upon an execution page fault (that
triggers an RDMA Readback). This transfer does not involve
the OS kernel or CPU of COMEXM, and it is much faster than
conventional page fault handling, by which a swapped out
page (say, P8) would have to be brought intomainmemory of
NodeC from a swap partition in secondary storage.

COMEX lets its related PTEs (page table entries) point to
COMEX page frames employed for harboring evicted pages
in remote nodes. As shown in Fig. 2, three evicted pages
(P2, P8, P9) are pointed by three corresponding PTEs of the
process executed in COMEXC. After P2 is evicted to
COMEXG, its associated PTE is changed from a (a page
frame in COMEXC) to a’. Likewise, after P8 and P9 are
RDMA-transferred from COMEXM back to COMEXC, their
associated PTEs are changed from g and d (two page frames
in COMEXM) respectively to g’ and d’ (page frames in
COMEXC), as depicted in the figure. Here, a 4-level page
table is assumed to map the virtual addresses of an execu-
tion process to physical addresses of allocated page frames
(for a 64-bit system).

COMEX is subject to multifaceted design choices that
dictate its performance and complexity in various degrees,
with three major ones being (1) design in the kernel layer
versus in the user layer, (2) RDMA connection setups, and
(3) COMEX memory management. Details and trade-offs of
those three design choices are provided in sequence next.

3.1 Kernel Layer Versus User Layer

In general, remote memory paging may be realized either in
the kernel layer alone for high performance or in the user

layer (plus some kernel modules) for good portability and
flexibility. The kernel layer design usually has lighter over-
head than its user layer counterpart, to yield better execu-
tion performance.

COMEX is designed in the kernel layer alone, realized by a
loadable kernel module along with kernel page table
enhancement. A kernel module is offered by OS (Linux) to let
users add extra functionalities to the kernel. Modifications
and additions for COMEX realization are all confined to the
kernel layer of Linux, due to the following two reasons. For
the first reason, a user layer design for memory aggregation is
not transparent to applications and has to add the offered
library primitives to the proper locations of an application
code. Such a design typically relies on programming libraries,
which enable users to exploit remote memory via a malloc-
like memory allocation library, DLM [25], [26]. It requires the
application’s source code be available to make modifications
explicitly, but the source codemay be unavailable.

The second reason results from the need of PTE (page table
entry) content changes when tracking remote page frames
that hold swap-out pages of a process during its execution.
Given that page tables belong to the kernel data structures
(accessible only to kernel codes), it is preferred to realize
COMEX functions in the kernel layer for direct accesses to
PTEs. On the other hand, if COMEX is resided in the user
layer, it must employ kernel modules to communicate with
kernel data structures, usually suffering from unacceptably
high time overhead. This is because every PTE access
request from the user layer then has to pass down to the ker-
nel layer with a kernel module, with the requested outcome
sent back to the user layer with another kernel module. This
way incurs excessive time overhead even with careful com-
munication channel design, based on our studies. For exam-
ple, the use of netlink socket (a datagram-oriented service
provided by kernel for communications to the user space
[57], [58]) is seen to cause frequent packet losses and corrup-
tion (according to our experiments), since the netlink socket
is an unreliable service [59]. Needed retransmission han-
dling and retransmitted data escalate communication traffic
to hurt performance greatly. Another communication mech-
anism between the two layers by means of memory-based
file systems [58], [60], was also found to be inefficient. Since
a memory-based file system aims to let kernel convey infor-
mation to the user layer in an asynchronous manner, notifi-
cation from the user layer back poses serious bottlenecks
and poor performance, no matter whether it is via polling
(due to massive notification packets, in the order of up to 50
packets per microsecond according to our measurement) or
signaling (due to limited capacity per real-time signal of up
to 64 bits [60], but COMEX needs at least 64 bits for both
local and destination addresses to perform one RDMA oper-
ation) at the kernel layer. Hence, COMEX is unsuitable for
user layer design, determined to be in the kernel layer alone.

Note that implementing COMEX in the kernel layer calls
for patching COMEX-specific software modules and codes
in the kernel of a server’s OS, but requires no programmer
effort or modifications to application source codes executed
on the server. We have implemented COMEX on Linux ker-
nel 3.10.87 and made it easy for patching COMEX software
into mainline Linux kernels in support of quick and wide
deployment.
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3.2 RDMA Connection Setups

RDMA connection establishment is expensive, as revealed
in prior reports [11], [24], [27], [30], [31], [32]. It involves
memory pin-down to prevent allocated RDMA memory
regions from being reclaimed by OS so that virtual address
translation can be cached in the RDMA-capable NIC for OS-
bypassing address translation, avoiding repeated memory
region key distributions. Through loss-free communications
(achieved by PFC [55], DCQCN [53], or DSCP [56]), COMEX
establishes RDMA-connections from every compute node
(and every general node as well, if existing) to its connected
memory nodes (which contribute most of their physical
memory to the COMEX sharing pool) upon its initialization.
After established, connections are held durably so that
expensive connection re-establishment overhead is not to
re-incur later on.

An RDMA connection is established after two steps: (1)
creating its control block to include the address and the size
of pre-allocated memory space to serve as the RDMA buffer
and (2) executing all_init to complete the initialization of all
its connection sockets. The time taken to establish an
RDMA connection varies widely and can be large (in tens of
ms, according to our experimental measurements on our
testbed composed of Dell servers under Linux CentOS 7).
With its RDMA connections established permanently,
COMEX can have the DRAM area of each server that con-
tributes to the shared pool be “pinned down” so that those
DRAM pages are “not swappable” in support of fast RDMA
reads/writes without extra costs for pinning down individ-
ual pages. It was found that a server in our testbed could
hold up to 300þ permanent RDMA connections reliably,
without depleting excessive DRAM for DRMA buffers.

On-demand connection setups are possible, without hold-
ing multiple concurrent connections from each compute node
persistently. However, COMEX operates at the fine granularity
of 4KBmemory pages and involves very frequent data transfer
mainly related to kernel’s page frame reclaiming andpage fault
handling (up to 50 pages permicrosecond observed).

INFINISWAP reports its large-slap allocation time of 55ms,
due mainly to RDMA memory registration, whereas we
observe 18 ms for individual page allocation of our testbed.
However, this lengthy delay could be even higher in real
large-scale deployment, with control and payload packets to
traverse multi-layer network switches. High overhead for
each RDMA connection setup, coupled with frequent transfer
of fine-grained 4 KB pages, makes it unsuitable for COMEX to
establish RDMA connections on-demand during job execu-
tion. This is in contrast to other situations that operate at
coarse granularity (like 1 GB slabs in INFINISWAP [24]).

Hence, at COMEX initialization, every COMEX compute
node establishes durable RDMA connections with memory
nodes to facilitate low-latency page writes (and reads) to
(and from) remote page frames resided in those memory
nodes during job execution. Similarly, every general node,
if existing, also establishes its RDMA connections.

3.3 COMEX Memory Management

COMEXdesign involvesmemorymanagement that deals with
both local and remote memory while cooperating with the
existing OS kernel memory subsystems. Key memory subsys-
tem functions central to COMEX realization are outlined next.

3.3.1 Page Frame Reclaim

In need of promptly satisfying requests for various memory
sizes during job execution, the OS has to maintain an ade-
quate free memory pool proactively. To this end, it relies on
page frame reclaiming, that periodically examines the system
memory pool availability level, replenishing the pool more
aggressively if the availability level is lower. Page frame
reclaiming collects rarely used cold memory pages from exe-
cution processes, based on the access history [4], [5]. These
reclaimable pages are then evicted out, to secondary storage
under a typical OS (like Linux) with considerable latencies.

The flowchart of kernel page frame reclaiming is
shown in Fig. 3, with its shaded portions denoting such
COMEX-specific functions as (1) holding reclaimed pages in
the pre-registered RDMA write buffer and (2) transmitting
reclaimed pages from the buffer eventually to the pindown
memory page frames via RDMA write. This way lets
reclaimed page frames be freed immediately after their con-
tents are copied to the COMEX RDMAwrite buffer. It exhib-
its much faster page frame reclaiming than under a typical
OS, which asynchronously waits for slow confirmation from
the I/O block device driver. In addition, COMEX issues an
RDMA write to transmit all reclaimed pages destined to the
same remote node in one batch.

3.3.2 Pindown Memory Area Management

Each memory node’s pre-allocated pindown memory area
(contributing to the COMEX global memory pool) has to be
managed properly for its efficient utilization in satisfying
requests from other compute nodes for holding swap-out
pages during job executions on those nodes. To this end, the
memory area is managed by a buddy system similar to
Linux physical memory management (mm/page_alloc.c),
using one list to track groups of contiguous page frames
with a given group size. If eleven lists exist in the buddy
system, the ith list (0 � i � 10) is to keep track of groups of
contiguous page frames, with each group having 2i contigu-
ous page frames. Upon receiving a memory request from a
compute node, the COMEX buddy system allocates one ele-
ment from the list that matches the requested size for the
request. On the other hand, when allocated pages to remote
compute nodes become unneeded (after their contents are
fetched back to their respective compute nodes where page

Fig. 3. Flowchart of the kernel page frame reclaiming process, with modi-
fied parts shaded.
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faults occur), they are periodically released back to its origi-
nal buddy system maintained at the memory node, with
possible coalescing to get larger contiguous groups.

3.3.3 Remote Page Frame Management

At a compute node, COMEX maintains free memory pools of
remotepageframesallocatedtothecomputenode,makinguseof
linked lists, with one list entry for a chunk of contiguous page
frames (not limited to 2i page frames per chunk from amemory
node, as a number of page frames from an initially allocated 2i

page-framegroupmayhavebeenusedtostageswap-outpages).
Multiple swap-out pages of a given process are transferred by
one single RDMAwrite to contiguous page frames in the same
staged memory node (which is determined in a way explained
next).With swap-out pages staged in contiguousmemory page
frames, a later page fault (due to a swap-out page) is fulfilled by
fetching the target swap-out page plus those in its neighboring
multiplepage frames (asprefetching, fora totalof, say, 16pages)
via one RDMA read. Those fetched page and prefetched neigh-
boringpagesareheldinoneentryoftheRDMAreadbufferofthe
computenode(asstatedlaterinthissubsection).

The numbers of allocated free pages maintained in local
pools (by linked lists) need to be considered carefully, since
COMEX prefers to have enough pages ready for page-reclaim-
ing. Insufficient pagesmay lead to poorCOMEXpage-reclaim-
ing performance, whereas excessive pages can harm overall
memory utilization. With a threshold assigned to each list,
COMEX proactively sends out a replenishing request to a cor-
responding remote node for page refilling if the list sees its
remaining page count to drop below the threshold. Naturally,
proper thresholds and refilling page counts depend on the
message round trip time (RTT), aiming to avoid exhausting
free pages in any list. Message RTT includes network latency,
service time, and queueing time, i.e.,RTT ¼ TNW þ TS þ TQ.
Network latency comprises all networking hardware latencies,
service time indicates the time a memory node taken to reply
one request. The waiting time of a request issued by one com-
pute node of interest to a givenmemory node, TQ, depends on
the service time, TS , and the mean number of requests issued
from all other compute nodes to the samememory node at the
same time. Themean number of requests to the givenmemory
node,R, is derived next.

Given a system with N compute nodes and M memory
nodes, where each compute node has a probability P to
send one request out at a time independently and uniformly
to any memory node, we have the probability for a request
to arrive at the given memory node of P 0 ¼ ð 1

MÞ P . The bino-
mial probability distribution function of a random variable
R that represents the number of requests sent by all (N � 1)
compute nodes (other than the one of interest) to the
given memory node can be expressed by P ðRR ¼ kÞ ¼
ðN � 1

k
Þ P 0kð1� P 0ÞN�1�k. The expected number of requests

issued from (N � 1) compute nodes to a memory node,
E½RR�, then equals

XN�1

k ¼ 1

k � P RR ¼ kð Þ

¼
XN�1

k¼1

k
N � 1

k

� �
P 0k 1� P 0ð ÞN�1�k ¼ N � 1ð Þ P 0 ¼ N � 1

M
P;

which indicates that E½RR� is dictated by the ratio of N and
M, as expected. The queueing time rises with more compute
nodes or fewer memory nodes.

Our established testbed with 32 Dell servers is net-
worked by one Mellanox RDMA-enabled switch and thirty-
two 10 GbE NICs, as detailed in Section 5.1.2. According to
its whitepaper [62], Mellanox MSX1024B-1BFS-RF (RDMA
switch) has its lowest latency of 270 ns. Mellanox’s evalua-
tion [61] reveals that its 10GbE ConnectX-3 RoCE NIC has
�1 ms latency. The end-to-end basic hardware latency of
our testbed involves four trips over NICs (two at each server
end) and two switch trips for a minimal of 4.54 ms in total.
Note that the actual end-to-end latency can be higher, as it
includes the times for realizing such network policies as
RDMA, VLAN, and PFC in both end NICs. The service time
(TS, which includes kernel interrupt handling and work
queuing times) is measured on our testbed via Linux Kernel
Timer API [4], and it ranges from 4.0 ms to 6.0 ms. The page
reclaiming rate varies, with the measured rate on our
testbed to reach up to 50 pages per microsecond. In order to
keep up with 50 pages/ms for the duration of RTT, a
COMEX compute node that issues a memory request has to
cache at least (50 � RTT) pages locally, with expected RTT
given by

4:54msþ 6:0msþ TQ ¼ 10:54msþ 6:0ms� N � 1

M

� �
� P;

(1)

where the last term indicates TQ that is due to memory
requests sent by all other (N � 1) compute nodes at the
same time.

COMEX takes advantage of locality-aware page staging
at remote memory nodes, by keeping swap-out pages of the
same process at the same memory node as best as possible.
To this end, COMEX assigns a dynamic threshold to each
pool because PIDs change over time. Such a threshold can
be derived according to estimated RTT to ensure that each
buffer has adequate page frames assigned for good perfor-
mance, while avoiding excessive over-provision to the
buffer. An insufficient buffer size leads to low execution
performance. Excessive buffer over-provision is especially
damaging when the physical memory of compute nodes is
scarce, as a result of performance degradation due to
heightened memory pressure unnecessarily. Those situa-
tions are confirmed by our testbed evaluation results illus-
trated in Fig. 10 (on pp. 11). All benchmarks shown in
the figure are seen to exhibit poor execution performance
for small buffer sizes. Their performance levels near
peak for the buffer replenishing threshold of some
750ð	 50 � ð10:54þ 6:0 � 9

12Þ according to Eq. (1) under 12
memory nodes and 10 compute nodes with P approaching
1.0), and they start to drop if the threshold rises beyond
16K. More details of threshold values on execution perfor-
mance are provided in Section 5.1.3.

3.3.4 Page Frame Discovery

COMEX design aims to have participating nodes work inde-
pendently and to avoid a single point of failure. Given that
multiple memory nodes together contribute to the shared
memory pool for staging swap-out pages from all execution
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processes in the system, it is highly desirable to balance traf-
fic and memory utilization across contributing memory
nodes to ensure high performance. There are different design
options for such load-balancing in a distributed manner,
without involving broadcasts, probes to all memory nodes,
or a dedicated management node. The first option distributes
swap-out pages uniformly across memory nodes, irrespec-
tive of which processes they are associatedwith (like [4], [5]).
This way achieves load-balancing in page granularity but
disregards page locality, which could have boosted perfor-
mance substantially resulting from fewer RDMA operations
and effective prefetching after page faults. In addition,
COMEX is designed to support heterogeneous clustered sys-
tem where nodes can have different memory capacity and
general purpose nodes may share only a slim portion of their
memory. Thus decentralized uniform page distribution can-
not balance the memory in such situations. Unlike INFINIS-
WAP which holds swap-out pages in GB-sized slabs in the
same or different memory nodes (due to far larger memory
granularity) [24], COMEX favors locality-aware page frame
allocation to swap out pages that belong to the same execu-
tion process, due to its fine granularity (of 4 KB pages). Such
locality-aware page frame allocation is the second option.

This second design option discovers available memory
page frames by involving the process ID (PID, obtained
from the Linux page frame reverse mapping), so that swap-
out pages from a given execution process are staged in the
same memory node (called its preferred node). In a clus-
tered system, different compute nodes may involve execu-
tion processes with an identical PID, making it desirable
from the load-balancing standpoint to include the node ID
(NID) for deciding page frames. Hence, our design hashes
the NID plus PID of a given execution process to identify its
preferred memory node in which its swap-out pages are
staged, to balance traffic and maintain locality of swap-out
pages (to the same remote memory node). If the linked list
of a preferred memory node (maintained in the compute
node) is exhausted (typically signifying that the memory
node no longer has large enough contiguous page frames
available in its pindown memory region), the next memory
node is identified by rehashing the NID of the preferred
memory node plus PID for alternative memory node dis-
covery, as shown in Fig. 4. This way fixes the sequence of

memory nodes examined for a process executed on a given
compute node, likely to expose staging locality of swap-out
pages and exhibit good load-balancing during multiple-process
execution. As a result, it is preferred over other means for
deciding alternative memory nodes, e.g., choosing the next
available linked list, the longest linked list in the compute
node, etc.

3.3.5 Page Fault Handling and Prefetching

As depicted in Fig. 5, COMEX handles a page fault by
not only fetching the faulty page but also prefetching its
neighboring pages from the same staged memory node
in one RDMA read, with all fetched and prefetched
pages held in an RDMA read buffer entry. For high per-
formance, an RDMA read buffer is pre-allocated stati-
cally at each compute node during initialization, as
stated earlier. The number of read buffer entries is a
design parameter. Buffer entries are shared by all RDMA
reads, no matter where they are from. This shared buffer
design is preferred over its dedicated counterpart (where
each staged memory node is provided with a separate
buffer slice statically), promising better buffer utilization.
If an RDMA read to a buffer with its entries all taken,
one suitable buffer entry must be chosen to accommo-
date those prefetched pages transferred by the RDMA
read. Different policies for choosing a replacement entry
are possible, including LRU (least recently used), LFU
(least frequently used), FIFO, a random choice, etc. The
current COMEX prototype adopts the LRU policy.

According to remote page frame management described
earlier, the swap-out pages of a process are usually staged
in the same memory node, with those pages reclaimed at a
time held in consecutive physical page frames. Hence, those
pages prefetched in one RDMA read mostly belong to the
same process, and they are available to fulfill subsequent
page faults until their buffer entry is replaced. Once fulfill-
ing associated page faults, those pages are kept in a separate
list, waiting for periodical notifications via RDMA verbs to
free up their associated page frames in remote memory
nodes. Upon receiving an informed packet, the memory
node then releases those corresponding page frames back to
its maintained buddy system (as stated earlier under pin-
down memory area management).

Fig. 4. Page frame discovering and claiming process.

Fig. 5. Kernel page fault exception handler process flowchart, with modi-
fied parts shaded.
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4 COMEX IMPLEMENTATION

This section describes COMEX implementation through
enhancing functionality of the virtual memory subsystem of
mainline Linux kernel 3.10, which is a base stable version
adopted in various enterprise-grade Linux distributions,
such as Red Hat Enterprise Linux 7 (RHEL 7) and Commu-
nity Enterprise Operating System 7 (CentOS 7).

4.1 Page Table Entry (PTE)

COMEX leverages on Linux’s original page table. When a
page is claimed with its contents sent to a swap partition,
the associated PTE’s present bit and dirty bit are cleared (set
to zero). In general, a PTE has up to 62 bits available for a
“swapped out page identifier”, as shown in Fig. 6 with six
bits reserved for a “swap_type” field to indicate a swap par-
tition (that keeps swap-out pages) and the remaining 57 bits
for a “swap_offset” field to denote the partition’s starting
point [4], [5].

To simplify kernel modification, COMEX exploits the
existing PTE format by reserving one unused swap_type
number for COMEX identifiers. The 57-bit swap-offset field
is for storing a remote node ID (NID) and the page frame
number (PFN) of its physical memory allocated to hold a
swap-out page of a job executed on the local node. In the
current prototype, 16 bits of the field are for remote node ID
and 32 bits are for the memory PFN, able to accommodate
up to 65,536 COMEX nodes, each contributing up to 4 tera-
bytes physical memory.

4.2 COMEX Memory Management

Every participating node allocates a portion of its physical
memory in support of COMEX functionality during initiali-
zation, depending on its available physical memory size.
For example, a compute node may allocate only a small
memory area mainly for RDMA buffers. On the other hand,
a memory node can allocate a majority of its physical mem-
ory for COMEX use, with (1) the allocated memory region
registered to its RDMA-capable NIC and (2) the associated
memory region key (produced after registration) sent to
other participating nodes.

Each registered memory region is pinned down, parti-
tioned into 3 fragments, as illustrated in Fig. 7. Note that the
sizes of all fragments are specified in the configuration file
for initialization use. The first fragment contributes to the
COMEX shared global memory pool, formed by aggregat-
ing the memory fragments of all participating nodes. This
fragment varies among nodes, with a compute node possi-
bly allocating little to the shared pool but a memory node
allocates its major physical memory for sharing. Memory
nodes may contribute different amounts of memory for het-
erogeneous datacenters. The second fragment serves as the
RDMA write buffers, one per connection (to a remote mem-
ory node), for efficient RDMA writes. Each buffer consists
of a small number of frames (say, 256-512 frames of 4 KB

each in our COMEX prototype) to house page frames that
are reclaimed by kernel’s page frame reclaiming function,
waiting for RDMA-transfer. These dedicated RDMA write
buffers also serve as buckets for sorting page frames, so that
reclaimed pages with the same destination node are placed
in physically contiguous buckets of the same buffer. The
write buffer for a page is determined by its owner PID (pro-
cess ID) and NID (ID of the node on which the process is
executed). For a process with large memory footprint, its
virtual address can be involved for buffer determination as
well. Multiple contiguous pages in a buffer are transferred
in one RDMA write onto the connected node, resulting in
high performance and low network traffic. The third frag-
ment is designated as the RDMA read buffer, for receiving
faulted pages and accompanied prefetch pages transmitted
by RDMA reads from staged nodes upon page faults. The
read buffer is shared dynamically by all remote memory
nodes, with its buffer entries managed by the LRU replace-
ment policy, as discussed earlier.

The buddy system is employed at each memory node to
manage the first memory fragment that contributes to the
shared global memory pool (see Fig. 7). The buddy system
provides contiguous memory allocation efficiently while
collecting unused page frames returned from compute
nodes and merging them to large sizes (of powers of 4 KB)
when possible. COMEX buddy system implementation fol-
lows page_alloc.c of the Linux kernel source code with
modifications. Upon receiving a request for memory page
frames to stage the swap-out pages of an execution process,
the buddy system allocates a linked list entry that matches
the requested size. If the requested memory node has no
large enough contiguous page frame chunk available, a neg-
ative reply is sent to let the requestor node try another mem-
ory node. This way prevents small contiguous memory
chunks being allocated, avoiding excessive page frame
requests and replies unnecessarily.

4.3 Page Frame Reclaiming

Page frame reclaiming under Linux is invoked periodically
and also on-demand if system’s free memory level drops
below a threshold, where a more aggressive scheme is fol-
lowed as the free memory amount shrinks (and becoming
very aggressivewhen the amount is down toward 10 percent).
It identifies candidate page frames in local memory for
reclaiming, based on the well-known LRU-based algorithm.
Identified page frames are passed to “shrink_page_list” (the

Fig. 6. Linux page table entry (PTE) layout.

Fig. 7. COMEX Pin-down area layout.
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page reclaiming function in Linux; see Fig. 3), and they belong
to four major types: (1) unclaimable pages, (2) file pages,
(3) anonymous pages, and (4) discardable pages [4], [5]. The
first page type includes kernel pages and pindown pages
that cannot be swapped out from system physical memory.
The second page type refers to those page frames which
host copies of pages resident in storage, and hence their con-
tents are either written back to corresponding storage copies
(if dirty) or simply dropped (if clean), upon reclaiming. The
last page type generally signifies page frames that keep cache
and buffering pages, and they are simply reclaimed (with
their contents discarded). Typically, only the anonymous
page type has to be held in the swap partition, and that type
can account for a significant portion of pages in the list of
shrink_page_list during job execution of data-intensive appli-
cations. According to our evaluation for various benchmark
runs, the total numbers of anonymous pages reclaimed dur-
ing execution hike rapidly as the benchmark execution foot-
prints grow larger than host’s physical memory size. From
Fig. 13, it reveals that the reclaimed page count rises above
185 million over the course of execution for all benchmarks
examined.

Under COMEX, a reclaimed anonymous page is assigned
to a remote page frame (maintained in the local linked list
determined by PID and NID), waiting for transfer in a batch
later by one RDMA write. The address of the allocated page
frame (comprising the NID and the PFN (page frame num-
ber)) is then put to the PTE of the corresponding page,
before the reclaimed page frame is released back to the
system.

An RDMA write is invoked in one of the three situa-
tions: (1) when contiguous pages reach a certain number
(set to 64 pages in the prototype), (2) the copy page is not
placed in a contiguous page frame location, or (3) the copy
page exhausts an RDMA write buffer. After the write, its
associated RDMA write buffer is ready for the next
reclaiming batch.

Fig. 8 illustrates page frame reclaiming under COMEX,
where Px2 and Px13 are two pages of Process X while Py6,
Py7, and Py15 are pages of Process Y. These five pages are

cold and passed to the kernel reclaiming function (shrink_
page_list). COMEX assigns them to remote page frames
based on their PID and NID (as described in Section 3.3.4).
Specifically, Px2 and Px13 are assigned to Node I whereas
Py6, Py7, and Py15 are assigned to Node J, since the first two
(or last three) belong to the same process of X (or Y). After
assignment, their contents are copied to the associated
buffer slots (for Node I and Node J), waiting for RDMA-
transfer in batches, with one batch of buffer slots transferred
via one RDMA write to a remote memory node. If a page
fault exception happens to any page in an RDMA write
buffer, such an exception is handled directly from the write
buffer, fulfilling the request via one kernel-level memory
copying operation.

4.4 Page Fault Handling

A page fault exception is raised when an execution refers to
a location absent in local physical memory, caused possibly
by such kernel activities as on-demand paging, copy-on-
write, swap-out paging, etc. In the Linux kernel, a page-
fault exception is passed onto “handle_mm_fault”, a han-
dler implemented in memory.c of the Linux source code
(see Fig. 5). The handler examines the faulted PTE (plus
flags therein) before taking proper actions. A page fault
caused by a swap-out page under Linux results in its associ-
ated exception being passed to the “do_swap_page” func-
tion, which brings in target page contents from the swap
partition via a “read_swap_cache_async” call.

Like the Linux kernel, COMEX examines the faulted PTE
to get the swap_type field in the event of a page fault. If the
field designates COMEX, NID (node ID) and PFN (page
frame number) kept in the associated swap_offset field are
extracted. The faulted page in question can be found in
three possible locations, by making use of extracted NID
and PFN. First, the page is still resided in the RDMA write
buffer that is waiting to be written to the staged memory
node. In this case, COMEX simply fulfills the page fault
with needed contents from the write buffer. Second, the
faulted page was found in an RDMA read buffer entry, as a
result of prefetching. In this case, COMEX simply moves
the found page contents to the page frame allocated by the
OS kernel. The page is then marked as “used”. Third, if the
faulted page is not in either location, it needs to be fetched
from a staged node. COMEX in this case issues an RDMA
read to bring the faulted page plus its neighboring pages
back to the prefetch area (i.e., RDMA read buffer), held in
one buffer entry. The faulted page is then used to satisfy the
page-fault exception.

Fig. 9 explains a situation when COMEX handles a page-
fault exception with respect to a memory page, Py6, which is
staged in a remote node. After examining the RDMA-read
and the RDMA-write buffers to find that the failed page is not
held there, COMEX issues an RDMA read to bring back the
target page of Py6 plus its three neighboring pages of Py15,
Py7, and Py9. Those four pages are placed in one RDMA-read
buffer entry, and then Py6 contents are copied to the page
frame allocated by the page-fault exception handler. Finally,
the PTE of Py6 records the allocated page frame.

The page frames in a staged memory node can be
released, as long as their corresponding pages (in the
RDMA-read buffer maintained in a compute node, as shown

Fig. 8. COMEX page frame reclaiming and transparent RDMA write
operation.
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in Fig. 9) have been used for fulfilling page faults, notified by
the compute node. To contain traffic of release notifications
sent to memory nodes, COMEX collects multiple used pages
in a compact data structure before issuing an RDMA verb
notification to thememory node for releasing them at once.

4.5 RDMA Functions

RDMA functions developed in support of COMEX data
transfer were modified from krping’s example RDMA pro-
gramming code [63]. Being kernel loadable, the krping mod-
ule utilizes the Open Fabrics verbs originally to implement a
client/server ping/pong program. It is modified exten-
sively for our use in the distributed system environment. At
initialization, each node first reads its configuration file to
obtain parameters which specify the NID (node ID), the
total number of nodes in the cluster with which RDMA con-
nections are to be established, and the size of pre-allocated
memory space to serve as the RDMA read buffer, which is
shared by all connections, and as an RDMA write buffer,
which is dedicated per connection. It then creates control
blocks for connections to complete the initialization of all its
connection sockets. Two major types of RDMA operations
are implemented in the module, as follows.

1) RDMA verbs aim to send control information to a
connected node, which will then provide a reply that
includes the necessary information based on the
received verb. The sender fills a corresponding verb
data structure before invoking do_send() to actually
deliver the verb. Upon receiving the verb, the
receiver prepares a reply data structure accordingly
(or simply an acknowledge) before sending it back in
a verb via do_send(). Initialization messages, page
request/reply messages, and free page message are
implemented in RDMA verb.

2) RDMA reads andwrites are implemented by the func-
tions of do_read() and do_write(), respectively, with
respect to the specific areas in staged memory nodes.
They are transparent to the receiving support nodes.
However, a node which performs such reads or writes
can operate asynchronously (i.e., non-blocking that
exits the function afterwards immediately) or in a
blocking way (which ensures write or read operations
are completed before exiting the function). Since
RDMA connections established for COMEX are

reliable via Mellanox’s Priority Flow Control (PFC)
[55], non-blocking RDMA reads and writes are
adopted.

5 EVALUATION AND RESULT DISCUSSION

This section deals with COMEX performance evaluation
under various benchmarks with big execution footprints. A
given application can finish its execution on a host machine
faster under COMEX than under its native Linux OS (with
kernel 3.10.87) counterpart when its execution footprint
exceeds host’s memory capacity. The speedup results for
various memory sizes under an application are gathered
using our real testbed, which consists of 32 servers intercon-
nected by an RDMA-enabled switch. Each result shown in
subsequent figures is the average of multiple execution
runs. Given that the speedup of COMEX results from
lower-latency data page transfer between host DRAM and
remote DRAM in connected servers, we also collect both (1)
the rate of data pages swapped into remote DRAM (over all
swapped pages) and (2) the page fault count and its break-
downs during execution, as two additional performance
measures of interest. A page fault leads to one RDMA read-
back from remote DRAM, if it is not a hit to the COMEX
prefetching buffer, prolonging execution.

5.1 Evaluation Benchmarks and Testbed

5.1.1 Benchmark Details

Benchmarks chosen for evaluation all involve large execu-
tion footprints, including NAS Parallel Benchmarks (NPBs)
[64] and CMU’s Problem Based Benchmarks Suite (PBBS)
[65], as listed in Table 1. As an open source benchmark set
from NASA Advanced Supercomputing Division, NPBs are
designed to measure high-performance supercomputers.

Fig. 9. COMEX page fault exception handler and transparent RDMA
read operation.

TABLE 1
Benchmark Details and Execution Footprints

Benchmarks Configuration Footprint

NPB 3.3.1 BT - Block Tri-

diagonal solver

Class Customized D 19.6 GB

Grid size 500 x 500 x 500

FT - discrete 3D FFT Class Customized D 40.0 GB

Grid size 1024 x 1024 x 1024

LU - Lower-Upper

Gauss-Seidel solver

Class Customized D 21.4 GB

Grid size 550 x 550 x 550

MG - Multi-Grid Class Customized D 26.5 GB

Grid size 1024 x 1024 x 1024

SP - Scalar Penta-

diagonal solver

Class Customized D 35.5 GB

Grid size 600 x 600 x 600

PBBS BFS - Breadth First

Search Tree

# of nodes 50,000,000 25.9 GB

# of edges 400,000,000

DICT - Dictionary Type Integer 23.3 GB

# of entries 700,000,000

FSORT - Floating

point sorting

Type Floating point 33.9 GB

# of entries 700,000,000

HULL - Convex Hull Type Uniform 2D 34.6 GB

# of dots 350,000,000

MIS - Maximal

Independent Set

# of nodes 50,000,000 20.0 GB

# of edges 300,000,000
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Among three NPB variants, NPB-SER does not require any
special library and is chosen for our benchmark use, since it
can run on commodity machines, like networked servers of
our testbed. Each benchmark in NPB-SER (Release 3.3.1)
has its pre-defined parameters and input sets that lead to
different workload classes. Five NPB-SER benchmarks are
chosen for evaluation use, with their details provided in
Table 1.

PBBS is an open source benchmark suite which
defines problems in terms of their functional specifica-
tions to compare different programming methodologies
[65]. Their execution footprints can be specified flexibly.
The five PBBS chosen for our evaluation use have their
execution footprints ranging from 23.3 GB to 34.6 GB, as
given in Table 1.

5.1.2 Testbed Configuration

Our testbed consists of 32 Dell PowerEdge 1950 servers net-
worked by a Mellanox 48-Port 10GbE RDMA-enabled
switch (Model MSX1024B-1BFS-RF). Each 1950 server has
two processor sockets, each equipped with a dual core Intel
Xeon Processor 5160 (Woodcrest, with a 4-MB shared L2
cache). Every server has eight 8-GB DDR2 DRAM modules
(for a total size of 64 GB), with one Mellanox RDMA-
enabled dual-port 10GbE ConnectX-3 network interface
card (NIC) [66] installed. A server is connected to the
MSX1024B switch via one port of its installed NIC. We also
upgrade the backing storage to the recent batch (February
2018), Western Digital 2-TB 5,400RPM SATA hard disk
drive with 64 MB buffer cache, because old disks can gener-
ate unrealistic results and backing storage is the sensitive
parameter in our evaluation.

Each machine runs CentOS 6.10 Final, Linux-based dis-
tribution (under kernel 3.10.87), with all software updated
to the date when our evaluation commenced, as the basis
for gathering performance metrics of interest during bench-
mark execution on a configured DRAM size. Performance
metrics of benchmark execution on the testbed with its con-
stituent servers running COMEX (built under customized
kernel 3.10.87) for the same DRAM configuration are then
gathered. They reveal COMEX memory aggregation results
under various situations ranging from partial disaggre-
gation (where compute nodes equipped with reasonable
size memory) to almost full disaggregation (where most
memory is disaggregated). Note that when an application is
executed on a compute node, its physical memory capacity
is configured to various sizes through GNU GRUB boot-
loader option. Compute node only pins down a small mem-
ory fragment for RDMA buffers (read and write) in support
of RDMA operations while contributing zero memory to the
shared global pool. Other idle nodes are performing sup-
porting role as staged nodes (memory nodes) with majority
of their physical contributed to the shared global pool and
they are configured to contribute 48 GB memory in this
experiment.

5.2 COMEX Sensitivity Analysis

COMEX performance is dictated by several configuration
parameters. In this section, we evaluate COMEX key param-
eters, including the replenishing threshold (denoted by T),

the prefetch size (denoted by P), and the RDMA readback
buffer size (denoted by B). When the number available
pages maintained in local pools drop below T, COMEX
sends out a memory replenishing request to one memory
node for memory refilling. P refers to the number of contig-
uous data pages to be prefetched into the COMEX read
buffer upon each page fault when the page contents located
in remote memory (DRAM), via one RDMA read operation.
The RDMA readback buffer allocated for holding data
pages prefetched from remote DRAM. Naturally, a larger
buffer size (B) usually yields a better result because more
data pages then can be held for future subsequent page
faults, as a result of spatial and temporal locality. However,
an excessively large B is undesirable. COMEX employs a
prefetch table to keep track of those prefetched page frames.
Any page fault that has a hit in the buffer is fulfilled imme-
diately without invoking RDMA data transfer.

5.2.1 Page Replenishing Results

As discussed in Section 3.3.3, COMEX caches memory
pages in its corresponding memory pools for good page-
reclaiming performance, with the replenishing threshold of
T. Obviously, without enough memory pages cached locally
(under a small T), COMEX has to wait for the reply of a
memory request back from a memory node before putting a
swap-out page into its corresponding buffer when the mem-
ory pool is exhausted, degrading execution performance.
Excessively large T, on the other hand, may see memory
pool pages unused, while blocking applications from utiliz-
ing those allocated pool pages unnecessarily, lowering exe-
cution performance as well.

Execution speedup results versus a wide T range for
multi-tasking with ten benchmarks executed concurrently
on separate compute nodes of the COMEX testbed are
shown in Fig. 10. Each compute node has 8 GB systemmem-
ory, whereas a memory node contributes 48 GB of its
DRAM to the global memory pool. Benchmarks are
launched simultaneously on compute nodes, which concur-
rently share the global memory pool contributed by 12
memory nodes. The speedup gain is calculated against T ¼
0, referring to the baseline configure with proactive replen-
ishing disabled.

When T is smaller than 256 pages, all benchmarks exhibit
performance levels lower than their best potentials. Specifi-
cally, four benchmarks (i.e., BFS, DICT, FSORT, MIS) see

Fig. 10. Execution speedup versus replenishing threshold (T ranging
from 1 to 256K pages) for multi-tasking with ten benchmarks executed
concurrently on separate compute nodes of the COMEX testbed.
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their performance levels plateau for T 
 256, since the mem-
ory pool can then keep up with the system (Linux) page
frame-reclaiming rate. On the other hand, other benchmarks
require T to reach 512 or even 2K before their performance
levels peak. Results in Fig. 10 also reveal that benchmark
performance starts to degrade if T goes beyond 8K. Overall,
there is a favorable range of T (say, 512 to 8K) for which
benchmarks tend to exhibit sound performance, agreeing
with our derivation given in Section 3.3.4. In COMEX evalu-
ation hereafter, we adopt T of 1024 as the proactive replen-
ishing threshold for local memory pools.

5.2.2 Prefetching Results

For a given B (buffer size), the best P (prefetch size) is
application-dependent, since sequential data access patterns
are to favor a large Pwhereas randomdata access patterns ben-
efit froma small P as a result of better buffer utilization and less
energywaste caused bymoving unused page contents.

The prefetching performance outcomes for ten bench-
marks under different P values ranging from consecutive 8
to 64 pages are shown in Fig. 11, when benchmarks are exe-
cuted under a compute node with 8 GB memory (DRAM)
and under B¼ 8192 pages (to avoid it from causing a perfor-
mance bottleneck). The baseline result for each benchmark
in the figure is obtained under P ¼ 8 pages. As can be found
in the figure, five benchmarks (e.g., MG, SP, DICT, FSORT,
HULL) exhibit slightly performance improvement for a
larger P (likely due to their sequential data access manners)
whereas five other benchmarks (e.g., BT, FT, LU, BFS, MIS)
suffer performance degradation as P rises. However, 32-
pages and 64-pages reveal severe deteriorated results under
two benchmarks (FT and LU). In general, it is concluded
that 8 and 16 pages are appropriate prefetch sizes since both
are favorable across all benchmarks examined while benefit-
ing from spatial and temporal locality reasonably. COMEX
results presented in subsequent figures are all based on P ¼ 16
(i.e., prefetching 16 pages).

In Linux 3.10, the OS kernel prefetches (also known as
readahead in Linux) consecutive 8 swap-out pages at a time
because the kernel I/O block subsystem is fundamentally
designed and heavily tuned with optimizations for rota-
tional devices (hard disk drive), such as buffering, reorder-
ing, and prefetching [4], [67], [68], [69]. Due to the fact that
disk device is a non-uniform-access device returning differ-
ent access latencies from physical data locations, disk’s ran-
dom access can be a magnitude slower than its sequential
access [67], [68] because such a device needs to move its
read/write head to the right location before accessing.

Paying huge seeking time and spinning time for reading
only one swap-out page is not worth the excessive price, so
that Linux expands a small random access to a larger effi-
cient sequential access. On the other hand, DRAM (remote
memory) is a random access media returning uniform
access latency across all locations storing data in the chip.
Thus, COMEX does not need to worry about seeking and
spinning delays like disk counterparts. COMEX prefetching
mainly aims for high performance.

5.2.3 Buffering Results

It is natural that a larger COMEX buffer (B) can hold more
prefetched pages from remote DRAM via RDMA reads,
each for 16 contiguous pages. However, after B reaches a
certain value, any further increase is subject to a quick
diminishing return, making it unattractive to provision the
COMEX buffer excessively. In addition, since the provi-
sioned buffer counts toward overall COMEX memory con-
sumption, it is desirable to set the buffer size appropriately
to have high performance, avoiding aggressive system
memory reclaiming.

COMEX buffering performance outcomes over ten
benchmarks chosen for evaluation with 16-pages prefetch-
ing under four buffer sizes are depicted in Fig. 12, where
each benchmark is run on a compute node with its DRAM
sized to 8 GB and the results of B ¼ 1K pages normalized to
1.0. The figure reveals that an increase in B from 1K to 2K
and 4K benefits all benchmarks with lowered execution
times. However, further increasing in B beyond 4K pages is
found to have diminishing gains in five benchmarks (BT,
FT, MG, SP, DICT). As a result, the COMEX buffer B is sized
to 4096 pages for all results illustrated in subsequent figures.

5.3 COMEX Evaluation Results

We evaluate COMEX under different system memory sizes
(denoted by M). Naturally, a smaller M results in higher
system memory pressure, which causes Linux (OS) to claim
memory more aggressively. For a given M, all benchmarks
execute faster with COMEX support than without (under
their native kernel counterparts), resulting in execution
speedups.

5.3.1 Mono-Tasking Execution Results Under COMEX

For mono-tasking evaluation, each benchmark is run on one
server, with on-demand paging support by staging servers
(connected by an RDMA-enabled switch). The compute
node is configured to allocate a small pin-down region,
whereas each staged node pins down and contributes 48 GB
of its DRAM to the shared global pool.

Fig. 12. Normalized benchmark execution times (with respect to those of
B ¼ 1K pages) under various buffer sizes for P ¼ 16 pages.

Fig. 11. Normalized benchmark execution times under various prefetch
sizes when B ¼ 8192 pages (with the result of P ¼ 8 pages for each
benchmark as the baseline).
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Execution speedups versus M values for ten benchmarks
under COMEX are shown in Fig. 13, where each benchmark
exhibits a larger speedup for a smaller M value, as a result
of longer execution under native Linux but limited execu-
tion prolongation with COMEX support, when the bench-
mark execution footprint exceeds M. If M drops further,
increased system memory pressure pushes kernel page
frame reclaiming to aggressively claim cold anonymous
pages, resulting in stagnant execution without COMEX sup-
port. For M ¼ 4 GB, COMEX accelerates SP execution by
more than 170�, when compared with its execution under
native Linux on the same host machine. All benchmarks
under extremely scarce memory (of 4 GB) have their speed-
ups well exceeding 20.0, except for DICT (with its speedup
of 7.2) and MIS (with the speedup of 6.8).

5.3.2 Application Memory Footprint and Working-Set

On the other hand, different benchmarks for a given M,
have their speedups dictated by their execution footprints,
memory working-set sizes, and application memory access
patterns. Some applications may allocate large memory
chunks for storing their data (footprint) but do not require
all data simultaneously during computation (working-set).
Such memory access patterns technically can work at low
system memory with negligible swapping penalties until
available system memory drops below their actual work-
ing-set sizes. As can be found in Fig. 13, SP has a smaller
execution footprint (of 35.5 GB) than FT (with 40.0 GB) and
yet exhibits far bigger speedups for M � 16 GB, mostly due
to its less regular memory accesses that result in more page
faults during execution to amplify COMEX’s benefits. In
contrast, HULL has a relatively large execution footprint (of
34.6 GB) but exhibits a speedup spike only when M drops
down to 4 GB, because of its regular memory access pat-
terns to make it tolerate memory insufficiency well until
memory is extremely small.

5.3.3 Page Fault Count and Prefetch

Results Under COMEX

The number of page faults directly affects the execution
time of a benchmark, with a larger page-fault count natu-
rally resulting from both higher memory scarcity (i.e.,
smaller M) and less regular application memory accesses,
as explained above. Under COMEX, page faults can be ful-
filled in two possible ways: (1) from the RDMA readback
buffer, if a faulted page is already brought back by a prior
RDMA read, resulting in a prefetch hit with very low

latency and (2) from DRAM of a staged node, if the faulted
page is not resided in the RDMA read buffer, requiring
COMEX to issue an RDMA read transfer for reading back
the page. Break-downs of page fault activities under
COMEX for ten benchmarks are depicted in Fig. 14, where
the RDMA readback count typically represents a small frac-
tion of all paging activities and the prefetch hit count
includes those faulted pages found in the RDMA readback
buffer. Six bars associated with each benchmark in the
figure denote the page-fault counts for M ¼ 32, 24, 16, 12, 8,
and 4 GB, respectively.

From the breakdowns of each bar, it is evident that
COMEX achieves a high hit rate to the RDMA readback
buffer, which is filled with page prefetching upon page
faults. The vast majority of page faults, which are on the
critical path, can be satisfied by prefetched pages kept in the
COMEX buffer (desirably sized to B ¼ 4096 pages, as dis-
cussed earlier and illustrated in Fig. 12), thanks to COMEX
page locality-aware handling which sorts and keeps pages
of the same process in a given staged node as best as possi-
ble. Six benchmarks achieve high hit rates under M ¼ 4 GB
(specifically, 87 percent for FSORT, 86 percent for DICT,
85 percent for HULL, 79 percent for MG, 78 percent for SP,
and 70 percent for BT), clearly benefiting from COMEX pre-
fetching and page locality-aware handling. Only three
benchmarks exhibit mediocre hit rates (with 44 percent for
BFS, 47 percent for FT, and 53 percent for LU) likely due to
their irregular memory accesses that limit prefetching gains.
In fact, they can suffer more from larger prefetch sizes (P >
16) because then higher amounts of prefetched pages are
wasted, as revealed in Fig. 11 on prefetching size evaluation.
It can be seen in Fig. 11 that FT and LU exhibit markedly
worse performance if P rises beyond 16. They favor small
prefetch sizes (of P � 8).

5.3.4 Multi-Tasking Execution Results Under COMEX

COMEX multi-tasking execution performance is evaluated
under a range of M for each compute node, with different
benchmarks executed on separate compute nodes concur-
rently. Our testbed cluster is configured to have 10 compute
nodes (to run ten different benchmarks launched simulta-
neously) and 22 memory nodes, with each memory node
contributing 48-GB memory to the global pool in support of
demand paging dynamically and transparently during
multi-tasking execution.

Multi-tasking execution results are illustrated in Fig. 15,
where the speedups are against times taken under native

Fig. 13. Mono-tasking execution speedups versus M values under
COMEX of ten benchmarks for T ¼ 1024, P ¼ 16, and B ¼ 4096 pages.

Fig. 14. COMEXMono-tasking page fault activity break-downs under ten
benchmarks for T ¼ 1024, P ¼ 16, and B ¼ 4096 pages, with the results
of each benchmark for M ¼ 32, 24, 16, 12, 8, and 4 GB denoted respec-
tively by its associated six bars.
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Linux on same ten compute nodes to run benchmarks sepa-
rately. Every compute node is equipped with the same
amount of memory (M), which ranges from 32 GB to 4 GB.
Benchmarks executed concurrently on compute nodes
under COMEX are all found to enjoy various speedups,
with more speedups for all benchmark under a smaller M.
This is mainly because the memory requirements of bench-
marks vary during the course of execution, with some hav-
ing high memory demands at a time point when others
have low memory needs (as observed also in prior work [7],
[8], [24], [46]), making on-demand memory expansion effec-
tive. If compute nodes have extremely scarce memory (e.g.,
M ¼ 4 GB), concurrent execution exhibits speedup upsurges
for all benchmarks, resulting from their drastic execution
slowdowns on computer nodes with native Linux. When
executed on servers without COMEX support, applications
are to experience performance degradation if their execu-
tion footprints exceed the physical memory sizes of servers,
with bigger degradation under higher server memory scar-
city then to better benefit from COMEX. The page fault
activity count under COMEX multi-tasking scenarios are
shown in Fig. 16, where COMEX is seen to still exhibit pre-
fetching performance levels close to those under the mono-
tasking counterpart (see Fig. 14). While aggregate memory
offered by memory nodes is shared heavily under multi-
tasking, COMEX still maintains effective prefetching due
mainly to its key design feature of locality-aware remote
paging discussed earlier.

A given benchmark is expected to have a smaller
speedup under multi-tasking execution than under mono-
tasking execution, as a result of competing the global
memory pool and higher aggregate network traffic from
multiple compute nodes. For example, under M ¼ 8 GB,
the mean execution speedup of ten benchmarks drops to
19� under multi-tasking (see Fig. 15) from 24� under
mono-tasking (see Fig. 13). Since the global memory pool
of COMEX is managed following the buddy system (as
described in Section 3.3), memory fragmentation in the
global pool is expected after demand paging from
involved compute nodes to get continuous page frames
(with prefetching) and page reclaiming to return mostly
noncontiguous page frames repeatedly. The fragmentation
degree is higher under multi-tasking execution than under
mono-tasking, and it is more severe if the compute nodes
have higher memory pressure (under a smaller M). A
mechanism for alleviating this memory fragmentation is
yet to be included in COMEX.

In line with the modern design approach of resource dis-
aggregation, COMEX facilitates easy memory upgrading
through both scale-up (increasing memory capacity) and
scale-out (adding more memory nodes). Every compute
node in a server cluster thus benefits from memory upgrad-
ing equally, without concerning about hardware limitations
of individual server nodes.

5.3.5 Execution Results With SSD as Swap Partition

The solid-state drive (SSD) has become an alternative stor-
age device even in datacenters where failures cannot be
avoided [70], due to its far speedier reads and writes. To
demonstrate the advantage of COMEX over a counterpart
server with its swap partition served by an SSD (of SATA
Transcend 64 GB SSD340), we conducted benchmark evalu-
ation under M ¼ 8 GB, with normalized execution time
results shown in Fig. 17. The results were normalized with
respect to those of COMEX under mono-tasking execution
(given in Fig. 13). It is evident that COMEX clearly prevails,
as a result of three key aspects. First, the remote memory
(DRAM) access in our testbed is faster than the access to the
SSD (of Transcend SSD340 with 530 MB/s read bandwidth),
even with its dual-channel 667 MHz PC5300 DDR2 DRAM
(with 10.6 Gb/s bandwidth). Second, COMEX employs
superior data transfer channels over the 10GbE RDMA-
enabled networking fabric, as compared to SATA’s 1.5 Gb/s.
Third, SSD suffers from heavy overhead inherent to the leg-
acy swap design [41], [42], [43], [44], [45]. Under a larger M
(say, 16 GB), it is found that the normalized execution time
gaps shrink but COMEX always solidly outperforms its
counterpart with an SSD-based swap partition.

Adopting SSD to improve swap performance in datacen-
ters and HPC environments is possible, given that SSD and
non-volatile memory have seen their capacities rise and costs
drop. However, SSD has awell-known limited lifespan prob-
lem which can be undesirable for such write-intensive

Fig. 15. Multi-tasking execution speedups under COMEX when ten
benchmarks are executed concurrently on separate compute nodes,
with each of its M ranging from 32 to 4 GB.

Fig. 16. COMEX multi-tasking page fault activity breakdowns under ten
benchmarks for T ¼ 1024, P ¼ 16, and B ¼ 4096 pages, with the results
of each benchmark for M ¼ 32, 24, 16, 12, 8, and 4 GB denoted respec-
tively by its associated six bars.

Fig. 17. Normalized execution time results of COMEX in comparison to
those of SSD as a swap partition under M ¼ 8 GB.
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applications as swap partitions. Hence, adopting SSD for
swap partition use must be considered thoroughly from the
resilience perspective, besides its cost and performance.

6 CONCLUSION

Cooperative memory expansion (COMEX) aims to enable
fine-grain kernel-level memory aggregation in networked
computing systems in support of resource disaggregation
design. COMEX has been developed and implemented by
extending the OS kernel memory subsystem to let any
machine in a networked computing system expand its mem-
ory size on-demand dynamically to hold evicted pages for
accelerating execution. COMEX leverages page tables existing
in Linux OS to manage data transfer between remote page
frames (in memory nodes) and local page frames (in a com-
pute node) over low-latency RDMA connections. It achieves
execution speedups of applications with large execution foot-
prints that dwarf the host’s memory size, by avoiding much
slower disks as swap space (commonly under a modern OS).
COMEX is a light-weight kernel-level design and exploits ker-
nel information for locality-aware page transfer, resulting in
superior prefetching performance. It is completely transpar-
ent to applications and users, applicable to any commodity
computing system networked by the RDMA-enabled fabric.
Such a design approach is suitable for any OS that relies on
page tables to handle virtual addressmapping.

In support of applications with memory footprints larger
than what is available to a node’s physical memory alone,
COMEX utilizes physical memory of remote nodes in a dis-
tributed system networked by an RDMA fabric (i.e., Mella-
nox RoCEv2) for page-fault swapping realized via the
Linux OS virtual memory subsystem. It avoids the pitfalls
of previous RDMA memory expansion solutions that rely
on less efficient I/O-based Linux swap mechanisms, more
granular slab-based approaches, or user-level remote buffer
regions that require application integration.

With 16-page prefetching to a 4096-page RDMA read-
back buffer at each compute node, COMEX exhibits high
buffer utilization for almost all execution scenarios exam-
ined in our experimental evaluation, undertaken on a
testbed with 32 Dell servers connected by an RDMA-
enabled 48-port 10GbE switch (Model MSX1024B) via Mel-
lanox 10 GbE ConnectX-3 NIC ports [66]. Evaluation results
demonstrate that memory aggregation over networked
computing cluster achieved by COMEX enjoys higher
speedups as the execution footprint grows larger than
machine’s memory size. Under extreme memory disaggre-
gation from compute nodes, one benchmark is seen to yield
a speedup over 170� (or 86�) under mono-tasking execu-
tion (or multi-tasking execution with ten concurrent work-
loads). Hence, COMEX is particularly advantageous in
support of memory disaggregation for executing diverse
applications with large execution footprints.
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